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Abstract

In the field of safe offline reinforcement learning (RL), the objective is to utilize1

offline data to train a policy that maximizes long-term rewards while adhering to2

safety constraints. Recent work, such as the Constrained Decision Transformer3

(CDT) [30], has utilized the Transformer [38] architecture to build a safe RL4

agent that is capable of dynamically adjusting the balance between safety and task5

rewards. However, it often lacks the stitching ability to output policies that are6

better than those existing in the offline dataset, similar to other Transformer-based7

RL agents like the Decision Transformer (DT) [7]. We introduce the Constrained8

Q-learning Decision Transformer (CQDT) to address this issue. At the core of9

our approach is a novel trajectory relabeling scheme that utilizes learned value10

functions, with careful consideration of the trade-off between safety and cumula-11

tive rewards. Experimental results show that our proposed algorithm outperforms12

several baselines across a variety of safe offline RL benchmarks.13

1 Introduction14

Recent studies have demonstrated the Transformer’s [38] state-of-the-art performance across a range15

of applications, including natural language processing [40, 4] and computer vision [27, 3]. When16

applied to the domain of Reinforcement Learning (RL), a recent trend is to treat the decision-making17

problem as a sequence modeling problem, using auto regressive models such as Transformer which18

maps the history information directly to the action [7] or the next state [18]. Notably, the Decision19

Transformer (DT) [7] effectively extends the Transformer architecture to offline RL tasks, showcasing20

strong performance, particularly in sequential modeling. However, it is worth noting that while DT21

excels in maximizing long-term rewards, it may not always align with the complexities of real-world22

tasks. In practice, many tasks cannot be simplified solely into optimizing a single scalar reward23

function, and the presence of various constraints significantly narrows the spectrum of feasible24

solutions [12]. Such a setting is called safe RL, which has been studied in lots of safety-related25

decision-making problems. For instance, it is crucial that robots interacting with humans in human-26

machine environments prioritize human safety and avoid causing harm. In the realm of recommender27

systems, it is imperative to avoid recommending false or racially discriminatory information to users.28

Similarly, when self-driving cars operate in real-world environments, ensuring safety is paramount29

[36, 14, 31].30

Constrained Decision Transformer (CDT) [30] serves as a pioneering work which extends the31

Transformer-based RL to the safe RL regime, which builds upon the foundation of the DT while32

incorporating essential safety constraints. CDT’s core objective is to acquire a safe policy from an33

offline dataset. Its distinguishing feature is the ability to maintain zero-shot adaptability across a34

range of constraint thresholds, rendering it highly suitable for real-world reinforcement learning35

applications burdened by constraints. While CDT demonstrates exceptional competitiveness in safe36

offline reinforcement learning tasks, it shares a common limitation with DT—an absence of the37

’stitching’ capability. This crucial ability involves integrating sub-optimal trajectory segments to form38
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Figure 1: The toy example is presented where arrows denote the node connections. Here we use black number to
denote rewards and gray nodes to denote costs. The demonstration example shows that cost return-based method
(CDT) fails to find the shortest path to the goal since it lacks the stitching ability. In contrast, Q-learning-based
DT (QDT) finds the shortest path, while it violates the safety constraints. Our proposed CQDT enjoys the
superiority of both methods.

Figure 2: Performance
comparison between CDT
and CQDT, with results
averaged over three ran-
dom seeds.

Figure 3: Stitching ability comparison
between CDT and CQDT on reward-
suboptimal datasets with results averaged
over three random seeds.

Figure 4: Stitching ability comparison be-
tween CDT and CQDT on cost-suboptimal
datasets with results averaged over three ran-
dom seeds.

a near-optimal trajectory, a pivotal characteristic highly desired in offline reinforcement learning39

agents. What is more challenging is that for RL with safety constraints, the agent not only needs to40

stitch trajectories to achieve better reward feedback but also needs to guarantee that the obtained41

policy is still safe after stitching, not being affected by unsafe trajectories in the offline dataset. Thus,42

we raise the following question:43

Can we design DT-based algorithms that output safe policies with the stitching ability?44

We answer this question affirmatively. To better demonstrate our algorithm design, we propose a toy45

example involving finding the path that maximizes reward under cost constraints, as illustrated in46

Figure 1. The task’s objective is to identify a path with the highest reward while adhering to a cost47

constraint (cost limitation = 10). The training data covers segments of the optimal path, but none48

of the training data trajectories encompass the entire optimal path. The agent must synthesize these49

fragmented trajectories to determine the optimal path within the cost constraint. For the existing50

DT-based RL algorithms such as Q-learning Decision Transformer (QDT) [42], they are able to51

stitch suboptimal trajectories into the optimal ones, but they are unable to maintain safety during52

the stitching phase. For the existing DT-based safe RL methods such as CDT, they can only obtain53

suboptimal policies while satisfying the safety guarantee, due to the lack of stitching ability. Thus,54

we propose the Constrained Q-learning Decision Transformer (CQDT) method to address the55

issues in existing methods, as shown in Figure 1. The main contributions are listed as follows.56

• CQDT seeks to improve the quality of the training dataset by utilizing cost and reward critic57

functions from the Constraints Penalized Q-learning framework [41] to relabel the return-to-go58

(RTG) and cost-to-go (CTG) values in the training trajectories. This relabeled dataset is subsequently59

used to train a Decision Transformer-based safe RL method, such as CDT.60

• We provide a comparative analysis of our CQDT against various safe RL benchmarks across61

different RL task settings. The results are summarized in Figure 2, demonstrate that CQDT62

consistently outperforms all existing benchmarks in several offline safe RL tasks.63

• We also show that our proposed CQDT enjoys better stitching ability compared with CDT, which64

suggests that CQDT can better utilize suboptimal trajectories in the offline dataset. The results are65

summarized in Figure 3 and Figure 4.66

2 Related Work67

Offline Reinforcement Learning. Offline Reinforcement Learning refers to a data-driven approach68

to the classic RL problem [25]. It focuses on deriving policies from pre-existing data without69
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requiring further interaction with the environment. The practical applications of offline RL are70

extensive, spanning domains such as healthcare [13] and the acquisition of robotic manipulation71

skills [19]. However, its inherent challenge lies in the potential disparity between the learned policy72

and the behavior that generated the initial offline data [21]. Addressing this challenge has spurred73

the development of various methodologies, including constraining the learned policy close from the74

behavior policy [11, 21, 22, 44, 17, 20, 39, 32, 18]. There is a recent line of work aiming at providing75

a Transformer-based policy without explicitly constraining the distribution shift issue [7]. Our work76

falls into that regime, which uses a Transformer as the policy model focusing on the safe RL setting.77

Offline Safe Reinforcement Learning. Offline Safe Reinforcement Learning aims to acquire con-78

strained policies from pre-collected datasets, ensuring adherence to safety requirements throughout79

the learning process. This approach amalgamates techniques from both offline RL and safe RL, lever-80

aging methodologies from both domains [23]. Certain methods tackle the constrained optimization81

problem through stationary distribution correction, employing Lagrangian constraints to ensure safe82

learning [41, 33]. Our work does not take the Lagrangian approach to learn a safe policy. Instead,83

our method explicitly treats the safe policy learning as a sequence modeling problem, similar to the84

previous CDT approach [30]. Such an approach enjoys the simplicity regarding the algorithm design,85

as well as the robustness to the algorithm performance.86

3 Preliminaries87

Safe Offline RL. We formulate the environment as a Constrained Markov Decision Process (CMDP),88

a mathematical framework for addressing the safe RL problem [2]. A CMDP comprises a tuple89

(S,A,P, r, c, µ0), where S denotes the state space, A signifies the action space, P : S ×A× S →90

[0, 1] represents the transition function, r : S × A × S → R stands for the reward function, and91

µ0 : S → [0, 1] indicates the initial state distribution. In CMDP, c : S×A×S → [0, Cmax] quantifies92

the cost incurred for violating constraints, where Cmax denotes the maximum cost allowable.93

We denote the policy by π : S×A → [0, 1], while τ = {s1, a1, r1, c1, . . . , sT , aT , rT , cT } delineates94

the trajectory containing state, action, reward, and cost information throughout the maximum episode95

length T . We use τ.st, τ.at, τ.rt, τ.ct to denote the t-th state, action, reward and cost in trajectory96

τ . For each time step t, the action at is drawn following the distribution π(st, ·), and the next97

state st+1 is drawn following the transition function P(st, at, ·). The cumulative reward and cost98

for a trajectory τ are represented as R(τ) =
∑T

t=1 rt and C(τ) =
∑T

t=1 ct. We also denote99

Rt =
∑T

i=t ri by the return-to-go (RTG) at t-th step, Ct =
∑T

i=t ci by the cost-to-go (CTG)100

at t-th step as well. For simplicity, we define Qπ
r (s, a) = Eτ∼π[R(τ)|τ.s1 = s, τ.a1 = a] as101

the expected return of the policy starting from initial state s and action a. Similarly, we denote102

Qπ
c (s, a) = Eτ∼π[C(τ)|τ.s1 = s, τ.a1 = a] as the expected cost. The agent’s objective is to103

determine a policy πκ that maximizes the reward while ensuring that the cumulative cost for constraint104

violation remains below the threshold κ:105

πκ = argmax
π

Eτ∼π,τ.s1∼µ0 [R(τ)],

s.t. Eτ∼π,τ.s1∼µ0 [C(τ)] ≤ κ. (1)

For safe offline RL, the agent learns the optimal safe policy purely from a static dataset T that is106

previously collected with an unknown behavior policy (or policies). Specifically, T consists of m107

episodes τi with the maximum length T , which is T := {τ1, . . . , τm}.108

Constrained Decision Transformer. Our algorithm builds on the Constrained Decision Trans-109

former (CDT) [30]. We briefly introduce the details of CDT here, and we leave more details in110

the appendix. CDT utilizes the return-conditioned sequential modeling framework to accommo-111

date varying constraint thresholds during deployment, ensuring both safety and high return. CDT112

employs a stochastic Gaussian policy representation to generate the action at t-th time step, i.e.,113

at ∼ πθ(·|ot) = N (µθ(ot),Σθ(ot)), where ot = {Rt−K:t, Ct−K:t, st−K:t, at−K:t−1} represents114

the truncated history from step t − K to t, K ∈ {1, . . . , t − 1} indicates the context length and115

θ denotes the CDT policy parameters. During the training phase, CDT generates the training set116

{(ot, at)} by splitting trajectories in T into shorter contexts with length K, then it trains the policy by117

minimizing the prediction loss between at and πθ(·|ot). During the inference phase, CDT selects the118

initial return-to-go R1 as well as the cost-to-go C1, then it selects the action at based on the current119
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Algorithm 1 Relabeling trajectory set

Require: Trajectories dataset T , cost limitation list K = [κ1, κ2, ..., κm], reward critic functions
Qr = ∅, cost critic functions Qc = ∅

1: //Run CPQ under various cost limitations to derive distinct reward critic and cost critic functions.
2: for κi in K do
3: Run CPQ(Algorithm 3) with the constraint limit κi, obtain the reward and cost critic Qr, Qc

4: Set Qr[κi] = Qr;Qc[κi] = Qc

5: end for
6: //Relabel trajectories in the dataset.
7: for τ in T do
8: Select κτ = argminκi∈K |Qc[κi](τ·s0, τ·a0)− C0|
9: Set Qτ

r = Qr[κ
τ ];Qτ

c = Qc[κ
τ ]

10: Take τ ′ as the output of Algorithm 2, based on τ , Qτ
r and Qτ

c , T ← T ∪ {τ ′}
11: end for
12: Use Pareto-Frontier augmentation method in Algorithm 4 to augment T
Ensure: New trajectory dataset T

Rt, Ct. It is worth noting that CDT enables the agent to dynamically adjust its constraint threshold120

during deployment without using a Lagrangian-type update.121

Constraints Penalized Q-learning. Our algorithm relies on a component that delivers precise value122

estimates for the state. We take a state-of-the-art method called Constraints Penalized Q-learning123

(CPQ) [41] as our primary approach and discuss its details as follows. CPQ adopts the actor-critic124

framework, which maintains four components at each iteration. They are a policy π : S ×A → [0, 1],125

a discriminator ν : S × A → {0, 1} that decides whether a given state-action pair (s, a) are126

out-of-distribution (OOD) of the behavior policy of the offline dataset; a reward critic function127

Qr : S ×A → R and a cost critic function Qc : S ×A → R. During the training phase, CPQ first128

pre-trains ν by a Conditional Variational Autoencoder (CVAE) [16, 43]. At t-th step, CPQ maintains129

its current policy π. Then it updates the cost critic first, following130

Qc = argmin
Q
−αEs,a∼T [Q(s, a)ν(s, a)]

+ Es,a,s′,c∼T [(Q(s, a)− c− γEa′∼π(·|s′)[Q(s′, a′)])2],

where 0 < γ < 1, α are tunable parameters. Next, CPQ updates the reward critic by optimizing the131

following cost-penalized Bellman equation, which is132

Qr = argmin
Q

Es,a,s′,r∼T [(Q(s, a)− r

− γEa′∼π[I(Qc(s
′, a′) ≤ κ)Q(s′, a′)])2], (2)

where κ is the cost constraint defined in Equation (1). Finally, given Qr and Qc, CPQ performs any133

policy optimization method to obtain π′, which maximizes the following constrained optimization134

problem:135

π′ = argmax
π

Es∼T Ea∼π(·|s)[I(Qc(s, a) ≤ κ)Qr(s, a)]. (3)

4 Method136

Algorithm Overview. We present a framework called Constrained Q-learning Decision Transformer137

(CQDT), which exploits the Constrained Dynamic Programming approach, specifically CPQ, to138

overcome the limitations of CDT. The algorithm details are summarized in Algorithm 1. Intuitively139

speaking, CQDT takes a trajectory dataset T as its input and outputs an augmented dataset T ′ based140

on T . It then trains CDT over the augmented dataset T ′. Next, we describe how to augment T in141

steps.142

First Step: Training CPQ to Obtain Value Functions. The objective of this step is to train CPQ to143

obtain precise estimates of action value functions across different cost limit κ settings. We maintain a144

list of cost limitations, K, which includes m different cost limits, κ1, . . . , κm, and run CPQ m times145

to obtain corresponding Qr and Qc functions, denoted as Qr[κi] and Qc[κi], respectively, as outlined146
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Algorithm 2 Relabeling one trajectory

Require: Trajectory τ , reward critic Qτ
r and cost critic Qτ

c
1: Set T as the length of τ , the new trajectory τ ′ = τ , τ ′.RT+1 = τ ′.CT+1 = 0
2: for t = T + 1, . . . , 2 do
3: Set V τ

r (τ·st) = Qτ
r (τ·st, τ·at) , V τ

c (τ·st) = Qτ
c (τ·st, τ·at)

4: τ ′·Rt−1 ← τ·rt−1 + τ ′·Rt, τ ′·Ct−1 ← τ·ct−1 + τ ′·Ct

5: if V τ
c (τ·st) ≤ τ ′·Ct and V τ

r (τ·st) ≥ τ ′·Rt then
6: τ ′·Rt−1 ← τ·rt−1 + V τ

r (τ·st), τ ′·Ct−1 ← τ·ct−1 + V τ
c (τ·st)

7: end if
8: end for

Ensure: Relabeled trajectory τ ′

in line 4 of Algorithm 1. In the subsequent steps, the Qr and Qc lists are utilized to relabel the RTG147

and CTG for each trajectory. For additional details, please refer to Appendix A.1.148

Second Step: Relabeling Trajectories. Now we describe how to relabel a given trajectory τ using149

Qr and Qc in detail. The steps are summarized in Algorithm 2. To demonstrate that, recall that our150

goal is to learn πκ that maximizes the expected return under the κ constraint. Assume that for the151

trajectory τ , the policy π that generates τ satisfies the constraint κ. Therefore, in order to further152

push the agent to learn πκ instead of only learning π, we generate a new trajectory τ ′ identical to τ ,153

with different τ ′.Ri, τ
′.Ci, to make τ ′ similar to a trajectory generated by πκ. Our strategy is simple:154

we first replace the last RTG and CTG of τ ′ as 0. At the t-th step of τ ′, we would like to calculate155

τ ′.Rt−1 and τ ′.Ct−1. Then we either to use the existing RTG (τ ′.Rt) and CTG (τ ′.Ct) to update156

τ ′.Rt−1 and τ ′.Ct−1 (line 4 in Algorithm 2), or we use the learned reward critic and cost critic to157

update τ ′.Rt−1 and τ ′.Ct−1 (line 6 in Algorithm 2), if the reward critic and cost critic provide a158

more "aggressive" approximation, i.e., V τ
c (τ·st) ≤ τ ′·Ct and V τ

r (τ·st) ≥ τ ′·Rt (line 5 in Algorithm159

2). Here V τ
r and V τ

c are learned reward and cost critics, and they are selected from Qr and Qc to160

make sure that the cost constraint estimation Qτ
c is close to the true CTG C0 (line 8 in Algorithm 2).161

We summarize the relabeling process in Algorithm 2.162

The most notable difference between our relabeling strategy and the previous one for offline RL163

[42] is that we relabel RTG and CTG jointly and simultaneously. If we only relabel each trajectory164

based on their RTG and CTG separately, we might obtain unsafe trajectories, which hurts the overall165

performance of CQDT. Instead, our strategy ensures that, each safe trajectory will still be safe after166

relabeling, which is crucial for the safe RL setting. Our experimental results in the later section167

suggest the effectiveness of our relabeling strategy.168

Third Step: Post-Processing Steps for the Final Trajectory. Now, we have produced an augmented169

trajectory dataset T which consists of the original trajectories τ and the new trajectories τ ′. Finally,170

we introduce some additional post-processing steps over T from existing works [30, 42] for the171

further performance improvement of CQDT.172

The first post-processing technique we adopt is to resolve the potential conflict between a high RTG173

and a low CTG. Due to the nature of safe RL, we would like to first guarantee the safety of our174

learned policy. Following [30], we use a Pareto Frontier-based data augmentation technique to further175

generate new trajectories and add them to T . The second post-processing technique aims to maintain176

the consistency of the RTG and CTG within the input sequence of CDT. Due to space limitations, we177

defer the detailed in Appendix A.2.178

5 Experiment179

In this section, we begin by outlining the fundamental settings of our experiment. We then show the180

performance of CQDT under a series of experiments, each addressed a key challenge as follows:181

• How does CQDT compare with CDT and other offline safe reinforcement learning methods in182

terms of performance? Additionally, how does the choice of the value function affect CQDT’s183

performance?184

• Is CQDT capable of performing effective stitching?185
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CarCircle CarRun AntRun DroneCircle DroneRun Average
reward cost reward cost reward cost reward cost reward cost reward cost

BC-Safe∗ 0.500 0.840 0.940 0.220 0.650 1.090 0.560 0.570 0.280 0.740 0.586 0.692
BCQ-Lag ∗ 0.630 1.890 0.940 0.150 0.760 5.110 0.800 3.070 0.720 5.540 0.770 3.152

BEAR-Lag ∗ 0.740 2.180 0.680 7.780 0.150 0.730 0.780 3.680 0.420 2.470 0.554 3.368
COptiDICE ∗ 0.490 3.140 0.870 0.000 0.610 0.940 0.260 1.020 0.670 4.150 0.580 1.850

CDT∗ 0.750 0.950 0.990 0.650 0.720 0.910 0.630 0.980 0.630 0.790 0.744 0.856
CPQ ∗ 0.710 0.330 0.950 1.790 0.030 0.020 -0.220 1.280 0.330 3.520 0.360 1.388

CQDT(ours) 0.767±0.081 0.895±0.103 0.994±0.361 0.886±0.138 0.735±0.094 0.832±0.205 0.753±0.075 0.981±0.285 0.6400.075 0.812±0.046 0.778±0.137 0.881±0.155

BCQL-CDT 0.733±0.206 0.893±0.002 0.983±0.186 1.7580.072 0.673±0.029 0.793±0.038 0.685±0.275 0.747±0.143 0.621±0.101 0.597±0.239 0.739±0.159 0.958±0.099

BEARL-CDT 0.735±0.227 0.929±0.178 0.999±0.059 1.707±0.134 0.665±0.229 0.719±0.162 0.684±0.034 0.766±0.122 0.597±0.266 0.647±0.091 0.736±0.163 0.953±0.137

Ablation➀ 0.785±0.145 0.981±0.238 0.977±0.296 1.357±0.082 0.560±0.053 0.313±0.218 0.633±0.076 0.837±0.224 0.636±0.094 0.551±0.175 0.718±0.133 0.808±0.187

Ablation➁ 0.767±0.201 0.964±0.230 0.982±0.186 1.901±0.110 0.702±0.194 0.874±0.076 0.7640.263 1.202±0.130 0.621±0.149 0.776±0.051 0.767±0.198 1.143±0.119

Table 1: Evaluation results for normalized reward and cost are provided. Bold: Safe agents with a normalized
cost smaller than 1. Gray: Unsafe agents. Blue: Safe agent achieving the highest reward. Each value is averaged
over 3 distinct cost thresholds (κ = 10, 20, 40), 20 episodes and 3 seeds, following the setting in [29]. Results
for baselines with ∗ are copied from [29]. BCQL-CDT: Validation of the impact of the value function on
algorithm performance: Using the value functions in BCQ-Lag. BEARL-CDT: Validation of the impact of
the value function on algorithm performance: Using the value functions in BEAR-Lag. Ablation➀: Effect
of removing constraints learning by separately considering reward and cost relabeling. Ablation➁: Without
PF-based augmentation.

• What is the impact of the various components of CQDT on its overall performance?186

• How does CQDT perform in a sparse reward environment?187

5.1 Basic Experiment Setting188

An overview of the basic setup is provided. See Appendix B for details.189

Tasks and Environments. We utilize established safety reinforcement learning tasks within the190

BulletSafetyGym environment following [30]. In our experiment, we focus on two tasks: Circle and191

Run, and train three types of agents: Car, Ant, and Drone.192

Dataset. We utilize the offline safe RL dataset from [29]. For each environment, the dataset is193

collected by training different implemented algorithms under gradually varied cost thresholds and194

collecting the generated trajectories. The algorithms employed during this procedure include CPO195

[1], FOCOPS [45], CVPO [28], among others.196

Baselines and Parameters Setting. In our selection of baseline models, we have covered a variety197

of established offline safe RL methods, as thoroughly discussed in [29]. The baselines encompass198

CDT [30], Behavior Cloning (BC) [41], COptiDICE [24], CPQ [41], BCQ-Lag [11, 37], and199

BEAR-Lag[21, 37].200

5.2 CQDT Performance Analysis201

Evaluation Metrics. We employ the normalized reward return and normalized cost return as our com-202

parison metrics [10]. Let Rmax(T ) and Rmin(T ) denote the maximum and minimum empirical reward203

returns for taskM, respectively. The normalized reward is calculated as Rnorm(T ) = Rπ(T )−Rmin(T )
Rmax(T )−Rmin(T ) ,204

where Rπ represents the raw return of policy π. For the cost measure, we use the normalized cost205

return defined as Cnorm(T ) = Cπ

κ+ϵ , where κ denotes the cost limitation of the task and ϵ is a small206

positive number incorporated to ensure numerical stability. The term Cπ represents the evaluated207

accumulated cost return of policy π. If the cost return surpasses κ + ϵ, the normalized cost return208

exceeds one; otherwise, it remains within the range of one.209

Result Analysis. Table 1 provides a comprehensive overview of the performance of contemporary210

offline RL strategies in various environments and task configurations. Performance is assessed using211

reward and cost metrics, with evaluation criteria outlined as follows:212

- When Cnorm ≤ 1, a larger Rnorm indicates superior strategy performance.213

- When Cnorm ≥ 1, a smaller Cnorm signifies enhanced strategy performance.214

- Comparing strategies with Cnorm ≤ 1 and Cnorm ≥ 1, preference is given to the policy with215

Cnorm ≤ 1.216
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Compared to other baselines, our proposed CQDT method achieves maximum return while ensuring217

safety. CPQ, BCQ-Lag, and BEAR-Lag, three Q-learning-based safe reinforcement learning methods,218

encounter challenges in balancing safety and reward optimization. The BC-Safe method, grounded in219

imitation learning and trained on provided data, exhibits suboptimal performance during the test phase.220

This phenomenon may be attributed to the scarcity of safe data in the training dataset, indicating a221

lack of robustness. COptiDICE employs novel estimators to evaluate policy constraints and achieves222

suboptimal rewards, while facing challenges related to adhering to strict safety constraints.223

Figure 5: Verification of stitching-reward ability with p = 0.x values representing various suboptimal datasets.
Suboptimal datasets were generated by removing safe trajectories that fall within the top x% of cumulative
rewards. Higher p-values indicate the removal of more high-reward safe paths, degrading dataset quality. The
first row illustrates cumulative rewards obtained by CQDT and CDT trained on these datasets for different
tasks, while the second row shows the corresponding cumulative costs. The black dashed line denotes the cost
limitation.

Figure 6: Verification of stitching-cost ability with p = 0.x values corresponding to various suboptimal datasets.
These datasets were created by excluding trajectories with low cumulative costs. As the p-value increases, fewer
trajectories with small cumulative costs are retained, resulting in increasingly suboptimal datasets.

The CQDT method presented in our work leverages additional value functions to relabel trajectories,224

enhancing the model’s stitching capability and enabling it to achieve state-of-the-art performance.225

To demonstrate the effectiveness of the CQDT method, we conduct a comprehensive comparative226

analysis examining the impact of various value functions on algorithmic performance. BCQ-Lag227

and BEAR-Lag, both grounded in offline safe reinforcement learning and based on Q-Learning, are228

employed for this investigation. The Qr and Qc functions in these methodologies are employed to229

estimate the RTG and CTG values of the original trajectory. To signify the enhanced versions of230

these methods, we specifically refer to them as BCQL-CDT and BEARL-CDT, respectively. Refer231

Appendix C.2 for further details.232

Our experimental results, detailed in Table 1, indicate that BCQL-CDT and BEARL-CDT perform233

similarly to CDT in the selected tasks, although they do not reach the performance of CQDT. The234

performance discrepancy between BCQ-Lag and BEAR-Lag compared to CPQ suggests suboptimality235

in relabeling the original trajectories using their respective value functions. This contributes to the236

varied performance among BCQL-CDT, BEARL-CDT, and CQDT.237

We also conduct two ablation studies, Ablation ➀ and Ablation ➁, to assess the impact of various238

components within CQDT. The results of these experiments are provided in Table 1. For further239

details on the ablation studies, please refer to Appendix C.1. In addition, we evaluate the Zero-Shot240

Adaptation capability and robustness of CQDT. For more information, refer to Appendix C.4.241

5.3 The Stitching Capability of CQDT242

We conduct an evaluation of CQDT’s stitching capabilities for reward and cost by creating various243

suboptimal datasets for five tasks and comparing the performance of CQDT and CDT across these244

datasets.245
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Figure 7: Comparison of CQDT and CDT performance
in the Sparse-Reward DroneCircle environment with
varying target return and fixed target cost.

Figure 8: Comparison of CQDT and CDT performance
in the Sparse-Reward DroneCircle environment with
varying target costs and fixed target return.

To evaluate the reward stitching ability, we remove the top X% of trajectories with the highest RTG246

from batches of trajectories. As the value of X increases, more high-return trajectories are excluded247

from the dataset. To create a suboptimal dataset for evaluating cost stitching capability, we group248

trajectories based on their RTG, then we remove the trajectories with lowest CTG in each group. In249

detail, we divide the trajectories into Max Return
10 groups, where Max Return denotes the highest250

return among all trajectories. Within each group, we remove trajectories with the lowest X% CTG251

from each group. Such a setup allows us to detect the stitching ability for a safe offline RL agent, as252

we want her to learn safe and high-return policy from unsafe and low-return trajectories. We leave253

the detailed parameter setup and the visualization of these suboptimal datasets in the Appendix C.3.254

We present the performance of CQDT on different suboptimal datasets in Figures 5 and 6. These255

experiments demonstrate that as the value of X increases, leading to the removal of higher-quality256

trajectories, the performance of policies generated by CQDT and CDT deteriorates. We can observe257

that the cumulative reward decreases. However, CQDT consistently outperforms CDT, demonstrating258

its superior stitching ability. Even when trained with suboptimal datasets, CQDT effectively utilizes259

these datasets to maximize performance by leveraging its stitching capabilities. Superior performance260

by CQDT highlights its unique ability to stitch suboptimal trajectories, a capability not present in261

CDT. This stitching ability enables CQDT to achieve better overall performance.262

5.4 Performance of CQDT in Sparse Reward Environment263

The experiments in the previous sections demonstrate that CQDT performs well in dense reward264

environments. In this section, we evaluate and analyze the performance of CQDT in the sparse reward265

environment. Since there is no publicly available dataset or corresponding environment for sparse266

reward scenarios in the field of offline safe RL, we build our own environment based on existing267

datasets. Specifically, we select the existing DroneCircle environment to create a Sparse-Reward268

DroneCircle environment.269

For any trajectory τ in DroneCircle, we aim to create a new trajectory τ ′ as follows. We consider270

each subsequence in τ with length 10, i.e., τ.r10k, τ.r10k+1, ..., τ.r10k+9. We then set τ ′ = τ , while271

it replaces τ ′.r10k+9 with τ.r10k + τ.r10k+1 + · · · + τ.r10k+9, and replaces τ ′.r10k+i, 0 ≤ i < 9272

with 0. Such an operation keeps the total reward of τ ′ unchanged, while it makes τ ′ a trajectory with273

sparse rewards. Accordingly, we use the Sparse-Reward DroneCircle Offline Dataset to train CQDT274

and CDT. During testing, we adopt the similar strategy, where each agent encounters 0 reward in time275

step 10k, 10k + 1, ..., 10k + 8, and she encounters τ.r10k + τ.r10k+1 + · · ·+ τ.r10k+9 at time step276

10k + 9. We do not change the cost distribution.277

Figures 7 and 8 show the performance comparison between CQDT and CDT under different target278

return and target cost settings in the Sparse-Reward DroneCircle environment. The results indicate279

that CQDT consistently outperforms CDT across various settings of target return and target cost.280

These experimental results demonstrate that CQDT maintains its superiority even in sparse-reward281

environments.282

6 Conclusion and Future Work283

In this work, we proposed the Constrained Q-learning Decision Transformer (CQDT) for safe284

offline RL. Our approach replaces reward-to-go and cost-to-go in the training data with dynamic285

programming-based learning-based reward return and cost return, which brings the stitching ability286

and addresses the weakness of the Constrained Decision Transformer (CDT). Our evaluation shows287

that our approach is able to outperform existing safe RL baseline algorithms. One potential future288

direction is to build a theoretical analysis to justify the effectiveness of our learning-based constraint289

approach to safe RL, similar to previous analyses applied to general goal-based RL algorithms [5].290

8



References291

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.292

In International conference on machine learning, pages 22–31. PMLR, 2017.293

[2] Eitan Altman. Constrained markov decision processes with total cost criteria: Lagrangian294

approach and dual linear program. Mathematical methods of operations research, 48:387–417,295

1998.296

[3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia297
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A Implementation Details417

In this section, we introduce more details of the implementation of CQDT.418

A.1 Implementation Details of CPQ (First Step of CQDT)419

OOD discriminator ν. The process of learning the OOD action generation distribution ν uses an420

OOD detection method based on the Conditional Variational Autoencoder (CVAE). In detail, ν is421

based on a decoder p : S × Z × A → [0, 1] that generates the action following the distribution422

p(s, z, ·), where z ∈ Z ⊆ R is the hidden state; an encoder q : S ×A×Z → [0, 1] that generates the423

latent state following the distribution q(s, a, ·). p and q are trained by solving the following evidence424

lower bound (ELBO) objective, which is425

max
p,q

Es,a∼T

[
Ez∼q log p(s, z, a)− βKL(q(s, a, ·)∥N(0, 1))

]
, (4)

where KL denotes the KL divergence and β is the penalty parameter. We then set ν as426

ν(s, a) =

{
1 KL(q(s, a, ·)∥N(0, 1)) ≥ d

0 Otherwise
(5)

Here we provide a detailed implementation code for CPQ, following (author?) [41].427

Algorithm 3 CPQ

Require: Trajectories dataset T ; constraint limitation κ; initialize encoder q and decoder p; training
steps M and N .

1: // VAE training
2: for t = 0 to M do
3: Sample mini-batch of state-action pairs (s, a) ∼ T and update p, q through (4)
4: end for
5: Update ν following (5)
6: // Policy training
7: Initialize reward critic Qr, cost critic Qc, actor πθ

8: for t = 0 to N do
9: Update cost critic by

Qc = argmin
Q
−αEs,a∼T [Q(s, a)ν(s, a)] + Es,a,s′,c∼T [(Q(s, a)− c− γEa′∼π(·|s′)[Q(s′, a′)])2],

10: Update reward critic by

Qr = argmin
Q

Es,a,s′,r∼T [(Q(s, a)− r − γEa′∼π[I(Qc(s
′, a′) ≤ κ)Q(s′, a′)])2],

11: Update policy as

π′ = argmax
π

Es∼T Ea∼π(·|s)[I(Qc(s, a) ≤ κ)Qr(s, a)].

12: end for
Ensure: reward critic Qr(s, a), cost critic Qc(s, a)

A.2 Implementation details of Data Augmentation (Third Step of CQDT)428

We adopt a data augmentation technique based on the Pareto Frontier (PF) from [30]. The dataset429

used in safe offline RL is characterized by the PF value PF(κ, T ), which is430

PF(κ, T ) = max
τ∈T

R(τ), s.t. C(τ) ≤ κ

Given that CQDT shares the fundamental framework with CDT, it adopts the target returns-431

conditioned policy structure. Consequently, the agent’s behavior becomes sensitive to choices re-432

garding target return and cost. This sensitivity limits the valid choices for target cost and reward433
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Table 2: The hyperparameter configurations for dataset collection algorithms across diverse tasks.
The parameters Cost Start, Cost End, Epoch Start, and Epoch End are utilized to modify the cost
limitations.

Task Cost Start Cost End Epoch Start Epoch End Epoch Number Max Trajectory Length
CarCircle 5 100 100 900 1000 1500
CarRun 5 100 100 900 1000 1500
AntRun 5 200 400 2500 2600 2000

DroneCircle 5 150 500 2500 2600 2000
DroneRun 100 5 50 800 1000 1500

return pairs to the PF points. To address this limitation, CQDT employs the same data enhancement434

strategy as CDT to improve the relabeled data. We list the details of the data augmentation technique435

in Algorithm 4.436

Algorithm 4 PF augmentation

Require: Trajectories dataset T , iteration number N , max length T of trajectories in T
1: Set cmin = minτ∈T C(τ), cmax = maxτ∈T C(τ), rmax = maxτ∈T R(τ)
2: for i = 1, . . . , N do
3: κi ∼ Uniform(cmin, cmax) // Sample a cost return
4: ρi ∼ Uniform(PF(κi, T ), rmax) // Sample a reward return above the PF value
5: τ∗i ← argmaxτ∈T R(τ), s.t. C(τ) ≤ κi // Find the closest and safe Pareto trajectory
6: Generate τ̂i, where τ̂i.Rt ← τ∗i .Rt + ρi − R(τ∗i ), τ̂i.Ct ← τ∗i .Ct + κi − C(τ∗i ) for all

1 ≤ t ≤ T // Relabel the reward and cost return
7: T ← T ∪ {τ̂i} // Append the trajectory to the dataset
8: end for

Ensure: Augmented trajectories dataset T

Finally, we generate the final sliced trajectories dataset T K which includes consistent trajectory τ437

with length K. To generate it, for each τ ∈ T , we regenerate new trajectories dataset τ1, . . . , τT−K as438

follows. For τ t, we set its last RTG and CTG as τ t.Rt+K ← τ.Rt+K and τ t.Ct+K ← τ.Ct+K . Then439

we repeatedly apply τ t.Ri ← τ.ri + τ t.Ri+1 and τ t.Ci ← τ.ci + τ t.Ci+1 for i = t+K − 1, . . . , t.440

We summarize it in Algorithm 5.441

B Experiment Setting and Hyperparameters442

B.1 Tasks Description443

In our experiments, we employ the BulletSafetyGym environment, which is a suite built atop the444

PyBullet physics simulator, resembles SafetyGym but features shorter horizons and a larger number445

of agents [1, 34, 9, 8, 6]. Within BulletSafetyGym, we deploy three distinct agent models: the Car,446

Ant, and Drone. The Ant agent is designed as a four-legged creature with a spherical torso, while the447

Car agent, inspired by MIT’s Racecar, features a four-wheeled configuration. The Drone agent is an448

aerial vehicle based on the AscTec Hummingbird quadrotor. These agents are employed to complete449

the Circle and Run tasks. In the Circle task, they move clockwise on a circle. The reward is defined as450

r(s) =
vT [−y, x]

1 + 3|ragent − rcircle|
(6)

(6) is maximized when agents move quickly in a clockwise direction. Costs are incurred if the agent451

leaves the safety zone defined by the two yellow boundaries, i.e., c(s) = I[|x| > xlim], where x is452

the position on the x-axis. In the Run task, agents earn rewards for navigating an avenue located453

between two non-physical, penetrable safety boundaries that incur costs upon breach. Additional454

costs are applied if agents surpass an agent-specific velocity threshold.455

B.2 Dataset Collection456

The dataset collection process is the same as [29], and we include it for completeness. In the data457

collection process, we use various algorithms and distinct cost thresholds tailored to each envi-458
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Algorithm 5 Consistent RTG and CTG

Require: Trajectories dataset T , context length K
1: Set T K = ∅
2: for τ ∈ T do
3: for t = 1, . . . , T −K do
4: Set τ t = {τ.st, τ.at, τ.rt, τ.ct, . . . , τ.st+K , τ.at+K , τ.rt+K , τ.ct+K}
5: Set τ t.Rt+K ← τ.Rt+K and τ t.Ct+K ← τ.Ct+K

6: for i = t+K − 1, . . . , t do
7: Set τ t.Ri ← τ.ri + τ t.Ri+1 and τ t.Ci ← τ.ci + τ t.Ci+1

8: end for
9: T K ← T K ∪ {τ t}

10: end for
11: end for
Ensure: Sliced trajectories dataset T K

Table 3: Description of the experimental datasets: Max TS denotes the maximum length of an
episode, while Act. Space and State Space represent the dimensions of action and state, respectively.
MaxCost, MinCost, MaxReward, and MinReward represent the cumulative reward and cumulative
cost obtained by each trajectory. Traj. indicates the number of trajectories in the dataset.

Bench. Task Max TS Act. Space State Space MaxCost MinCost MaxReward MinReward Traj.

BulletSafetyGym

CarCircle 300 2 8 100 0 534.306 3.484 1450
CarRun 200 2 7 40 0 574.653 204.287 651
AntRun 200 8 33 150 0 955.481 0 1816

DroneCircle 300 4 18 100 0 996.389 207.79 1923
DroneRun 200 4 17 140 0 682.83 10.557 1990

ronment. The algorithms utilized for dataset acquisition include CPO, FOCOPS, PPOLagrangian,459

TRPOLagrangian, DDPGLagrangian, SACLagrangian, and CVPO. Notably, PPOLagrangian, TR-460

POLagrangian, DDPGLagrangian, and SACLagrangian are composite methods combining PPO [1],461

TRPO [35], DDPG [26], SAC [15], and PID Lagrangian [37] techniques, respectively. Among these462

algorithms, the first four belong to the category of On-Policy algorithms, while DDPGLagrangian463

and SACLagrangian fall under Off-On-Policy algorithms. On the other hand, CVPO is classified as464

an Off-Policy algorithm. Table 2 outlines the hyperparameters utilized for collecting datasets across465

different tasks, and Table 3 presents detailed information about the constructed datasets.466

B.3 Hyperparameters467

We list the hyperparameters for CQDT here as well as the hyperparameters employed in the training468

of CPQ. Specifically, within CPQ, we utilize the Qr and Qc functions for trajectory relabeling. The469

hyperparameters for CPQ training are listed in Table 4. Meanwhile, the hyperparameters for CDT470

and CQDT training are comprehensively detailed in Table 5.471

C Result Details and Discussions472

C.1 Ablation Study473

In assessing the impact of various components within CQDT, we conducted two ablation studies.474

Joint Relabeling. This is denoted as Ablation ➀, aiming to study whether our adopted relabeling475

strategy in Algorithm 2 is necessary. We compare it with an alternative relabeling approach which476

does not take both the reward and cost into consideration together. Instead, the alternative relabeling477

approach relabels the RTG and CTG similar to what QDT does, which relabels them separately. For478

a trajectory τ , the alternative approach obtains V τ
r and V τ

c the same as Algorithm 2, then for each479

t = T + 1, ..., 2, it relabels τ·Rt−1 → τ·rt−1 +max(τ·Rt, V
τ
r (τ·st)) when V τ

r (sL) ≥ τ·RL, and it480

relabels τ·Ct−1 → τ·ct−1+min(τ·Ct, V
τ
c (τ·st)) when V τ

c (st) ≤ τ·Ct. The main difference between481

such a relabeling strategy and our adopted strategy for CQDT is the separate consideration for reward482

and cost relabeling. Our result reveals that with such a relabeling process, CQDT performance is483

notably worse in scenarios such as AntRun and DroneCircle, which exhibit poor CPQ performance484
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Table 4: Parameters utilized in training CPQ. range(x : y, z) means the cost limitation begins at x
and increases by z each step until it approaches y.

CarCircle CarRun AntRun DroneCircle DroneRun
state_dim 8 7 33 18 17
action_dim 2 2 8 4 4
max_action 1.0 1.0 1.0 1.0 1.0

actor_hidden_size [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
critic_hidden_size [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
V AE_hidden_size 400 400 400 400 400
sample_action_num 10 10 10 10 10

Qr number 2 2 2 2 2
Qc number 2 2 2 2 2
episode_len 300 200 200 300 200
batchsize 2048 2048 2048 2048 2048

update_steps 100000 100000 100000 100000 100000
vae_lr 0.001 0.001 0.001 0.001 0.001
critic_lr 0.001 0.001 0.001 0.001 0.001
actor_lr 0.0001 0.0001 0.0001 0.0001 0.0001

cost_limitation (10 : 100, 10) (5 : 45, 5) (15 : 150, 15) (10 : 110, 10) (15 : 135, 15)

Table 5: Parameters utilized in training CDT and CQDT. Shared parameters are denoted in black
fonts, while the independent parameters of CQDT are marked in blue fonts.

CarCircle CarRun AntRun DroneCircle DroneRun
state_dim 8 7 33 18 17
action_dim 2 2 8 4 4
max_action 1.0 1.0 1.0 1.0 1.0

embedding_dim 128 128 128 128 128
seq_len 10 10 10 10 10

episode_len 300 200 200 300 200
num_layers 3 3 3 3 3
num_heads 8 8 8 8 8

attention_dropout 0.1 0.1 0.1 0.1 0.1
residual_dropout 0.1 0.1 0.1 0.1 0.1

embedding_dropout 0.1 0.1 0.1 0.1 0.1
action_head_layers 1 1 1 1 1
target&cost_return [500, (0 : 120, 10)] [575, (0 : 50, 5)] [900, (0 : 200, 20)] [900, (20 : 120, 20)] [600, (0 : 200, 20)]
target&cost_return [(0 : 600, 50), 90] [(70 : 700, 70), 35] [(0 : 1100, 100), 130] [(300 : 1400, 100), 90] [(0 : 1000, 100), 120]

batchsize 2048 2048 2048 2048 2048
learning_rate 0.0001 0.0001 0.0001 0.0001 0.0001
update_steps 100000 100000 100000 100000 100000
weight_decay 0.0001 0.0001 0.0001 0.0001 0.0001

when cost return and reward return are considered independently. This indicates that the accuracy of485

value function predictions significantly influences model performance during the relabeling process,486

while our proposed CQDT method effectively minimizes the negative impacts caused by inaccuracies487

in value function predictions.488

PF Augmentation. The second study, denoted as Ablation ➁, evaluates CQDT without the PF-based489

augmentation step [30]. Our results reveal that the PF-based augmentation is essential for ensuring490

the model’s security under various target cost settings. For instance, in the CarRun task, the absence491

of the PF augmentation technique results in a policy that exceeds cost limitations.492

C.2 Detailed Results from Value Function Experiment493

In this section, we explore the utilization of diverse value functions for state value estimation,494

substituting RTG and CTG in the original trajectories. We then retrain our CQDT model with the495

replaced dataset and analyze the differences in results. We systematically investigate the incorporation496

of Qr and Qc as value functions for state value estimation in CPQ, BCQ-Lagrangian (BCQL), and497

BEAR-Lagrangian (BEARL). The algorithmic details of CPQ are outlined in Algorithm 3. Combining498

BCQ and BEAR with the Lagrangian approach, which utilizes adaptive penalty coefficients to enforce499

constraints, results in the formulation of BCQ-Lagrangian and BEAR-Lagrangian.500

Implementation Details of BCQ For details regarding the BCQ, please refer to Algorithm 6. BCQ501

requires a tuple dataset B = {(s, a, r, s′)} and returns policy π and reward critic Q. Here, π is502
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defined based on n sampled action ai, where503

π(s) = arg max
ai+ξϕ(s,ai,Φ)

Qθ1(s, ai + ξϕ(s, ai,Φ)), {ai ∼ Gw(s)}ni=1. (7)

Algorithm 6 BCQ Training

Require: Dataset B, iteration number M , target network update rate τ , mini-batch size N , max
perturbation Φ, number of sampled actions n, minimum weighting λ.

1: Initialize Q-networks Qθ1 , Qθ2 , perturbation network ξϕ, and VAE Gω = {Eω1 , Dω2}, with
random parameters θ1, θ2, ϕ, ω, and target networks Q′

θ1
, Q′

θ2
, ξ′ϕ with θ′1 ← θ1, θ′2 ← θ2,

ϕ′ ← ϕ.
2: for t = 1, . . . ,M do
3: Sample mini-batch of N transitions (s, a, r, s′) from B
4: µ, σ = Eω1(s, a), ã = Dω2(s, z), z ∼ N (µ, σ)
5: ω ← argminω

∑
(a− ã)2 + KL(N (µ, σ) ∥ N (0, 1))

6: Sample n actions: {ãi}ni=1 ∼ Gω(s
′)

7: Perturb each action: {ãi = ai + ξϕ(s
′, ai,Φ)}ni=1

8: Set value target y = r +maxi[λminj=1,2 Qθ′
j
(s′, ãi) + (1− λ)maxj=1,2 Qθ′

j
(s′, ãi)]

9: θ ← argminθ
∑

(y −Qθ(s, a))
2 and ϕ← argmaxϕ

∑
Qθ1(s, a+ ξϕ(s, a,Φ))

10: Update target networks: θ′i ← τθi + (1− τ)θ′i, ϕ
′ ← τϕ+ (1− τ)ϕ′

11: end for
Ensure: Policy π follows (7), reward critic Q = Qθ1

Implementation Details of BEAR For BEAR algorithm, we put its details in Algorithm 7. BEAR504

takes a tuple dataset B = {(s, a, r, s′)} as its input. It operates based on the maximum mean505

discrepancy (MMD) distance as follows506

MMD2({x1, · · · , xn}, {y1, · · · , ym}) =
1

n2

∑
i,i′

k(xi, xi′)−
2

nm

∑
i,j

k(xi, yj) +
1

m2

∑
j,j′

k(yj , yj′).

(8)

Algorithm 7 BEAR Training

Require: Dataset B, target network update rate τ , iteration number M , sampled actions for MMD
n, ratio parameter λ

1: Initialize Q-ensemble {Qθi}Ki=1, actor πϕ, Lagrange multiplier α, target networks {Q′
θi
}Ki=1, and

a target actor π′
ϕ with ϕ′ ← ϕ, θ′i ← θi

2: for t = 1, . . . ,M do
3: Sample mini-batch of transitions (s, a, r, s′) ∼ B
4: Sample p action samples, {ai ∼ π′

ϕ(s
′)}pi

5: Define y(s, a) = maxai
[minj=1,...,K Q′

θj
(s′, ai) + (1− λ)maxj=1,...,K Q′

θj
(s′, ai)]

6: ∀i, θi ← argminθi((Qθi(s, a)− (r + γy(s, a)))2)
7: Sample actions {ai ∼ πϕ(s)}mi=1 and {aj ∼ B(s)}nj=1, where B(s) represents the set of

actions appearing the the dataset B
8: Update ϕ, α by minimizing

πϕ := max
π∈∆|S|

Es∼BEa∼π(·|s)

[
min

j=1,...,K
Qθj (s, a)

]
s.t. Es∼B [MMD(B(s), π(·|s))] ≤ ϵ,

(9)

where the MMD distance is defined as in (8)
9: Update Target Networks: θ′i ← τθi + (1− τ)θ′i, ϕ

′ ← τϕ+ (1− τ)ϕ′

10: end for
Ensure: Policy πϕ and reward critics {Qθj}
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C.3 Detailed Analysis of Stitching Capability Verification507

We conduct a comprehensive evaluation of the cost and reward stitching abilities of the CQDT model.508

We summarize the parameters for testing the stitching ability in Table 6. To rigorously assess the cost509

stitching capabilities, we generate a suboptimal dataset by excluding the top X% of trajectories with510

the lowest cost returns from a set of trajectories that exhibit similar reward returns. Specifically, we511

group trajectories based on their RTG, then remove the trajectories with the lowest CTG in each group.512

In detail, we divide the trajectories into Max Return
10 groups, where Max Return denotes the highest513

return among all trajectories. Within each group, we remove trajectories with the lowest X% CTG.514

For the assessment of reward stitching capabilities, we similarly remove the top X% of trajectories515

with the highest reward returns from the trajectories. Figures 9 and 10 present visualizations of the516

datasets used to validate the reward and cost stitching abilities.517

Figure 9: Visualization of the dataset used to validate reward stitching ability.

C.4 Detailed Results from Zero-Shot Adaptation and Robustness Evaluation Experiment518

We study the robustness and the zero-shot adaptation ability of CQDT in this section. Figure 11519

depicts a fixed target cost, illustrating how variations in target return impact performance, providing520

a measure of robustness. Meanwhile, Figure 12 showcases a fixed target return, demonstrating521

how changes in target cost influence the actual performance, serving as an evaluation of zero-shot522

adaptation ability. For the raw experiment data, we include them in Table 8 and 9.523
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Figure 10: Visualization of the dataset used to validate cost stitching ability.

Robustness Validation. During the robustness validation phase, CQDT’s performance initially524

benefits from maintaining a constant target cost while gradually increasing the target return, leading525

to an augmentation in cumulative reward without violating cost constraints. However, once the target526

return reaches a certain threshold, further increases do not result in a proportional rise in cumulative527

reward. This phenomenon occurs because the target return setting guides CQDT’s prediction process528

but does not alter the intrinsic training process, which the model architecture and the training dataset529

determine. If the target return setting significantly exceeds the cumulative reward of the optimal530

trajectory in the training dataset, CQDT’s performance may not experience substantial improvements.531

Despite CQDT’s stitching ability, which allows cumulative rewards to increase when the target return532

setting exceeds the maximum threshold in the dataset, the positive effect of this ability is limited.533

Zero-shot Adaptation Validation. In the zero-shot adaptation validation experiment, where the534

target return remains constant while the target cost varies, the analysis of cumulative rewards across535

five tasks reveals an initial increase followed by stabilization. As the target cost setting gradually536

increases, the constraints on cost become more relaxed, thereby enhancing the strategy’s ability to537

maximize cumulative rewards during the learning process. However, when the target cost setting538

exceeds the maximum cumulative cost threshold in the dataset, further increases in the target cost do539

not enhance the strategy’s ability to maximize cumulative rewards, leading to no further increase in540

cumulative rewards obtained during the test phase.541
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Figure 11: Results of robustness verification to different reward returns. Each column represents a task.
The x-axis denotes the target return. The first row shows the evaluated reward, and the second row
shows the evaluated cost, both under different target return. The dashed line represents the predefined
cost limitation.

Figure 12: Results of zero-shot adaptation to different cost returns. Each column represents a task.
The x-axis denotes the target cost return. The first row and the second row display the evaluated
reward and cost under different target costs, respectively. The dashed line represents the predefined
cost limitation, while the solid line indicates the maximum cost of trajectories included in the dataset.

Table 6: Parameter Settings for the Stitching Ability Validation Experiment

CarCircle CarRun AntRun DroneCircle DroneRun
κ 90 35 130 90 120

Target Return 500 575 900 900 600
Target Cost 90 35 130 90 120

Indeed, while CQDT consistently outperforms CDT in both robustness and zero-shot adaptation542

experiments, the challenge of selecting appropriate target return and target cost values remains543

common to both approaches. Optimal choices for these parameters should align with the specific544

characteristics of the task training dataset. Setting a larger target return and a smaller target cost545

may not be advisable; a more viable approach involves tailoring these targets based on the inherent546

properties of the task-specific training data. This task-specific customization ensures a more effective547

and contextually appropriate utilization of the reinforcement learning framework.548

Table 7: Settings of variables cX-r[01-10] and c[01-10]-rX in robustness validation and zero-shot
adaptation experiments across different tasks. During the evaluation stage, the settings for Target
Return and Target Cost correspond to the actual values in the environment, rather than the normalized
values.

Task Experiment 1 2 3 4 5 6 7 8 9 10

CarCircle
Robustness c90r100 c90r150 c90r200 c90r250 c90r300 c90r350 c90r400 c90r450 c90r500 c90r550
Zero-shot c20r500 c30r500 c40r500 c50r500 c60r500 c70r500 c80r500 c90r500 c100r500 c110r500

CarRun
Robustness c35r70 c35r140 c35r210 c35r280 c35r350 c35r420 c35r490 c35r560 c35r630 c35r700
Zero-shot c0r575 c5r575 c10r575 c15r575 c20r575 c25r575 c30r575 c35r575 c40r575 c45r575

AntRun
Robustness c130r0 c130r100 c130r200 c130r300 c130r400 c130r500 c130r600 c130r700 c130r800 c130r900
Zero-shot c0r900 c20r900 c40r900 c60r900 c80r900 c100r900 c120r900 c140r900 c160r900 c180r900

DroneCircle
Robustness c90r300 c90r400 c90r500 c90r600 c90r700 c90r800 c90r900 c90r1000 c90r1100 c90r1200
Zero-shot c20r900 c30r900 c40r900 c50r900 c60r900 c70r900 c80r900 c90r900 c100r900 c110r900

DroneRun
Robustness c120r0 c120r100 c120r200 c120r300 c120r400 c120r500 c120r600 c120r700 c120r800 c120r900
Zero-shot c0r600 c20r600 c40r600 c60r600 c80r600 c100r600 c120r600 c140r600 c160r600 c180r600
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Table 8: Experimental data from the CQDT, encompassing both the Zero-shot adaptation experiment
(c[01-10]-rx) and the Robustness validation experiment (cx-r[01-10]) across diverse tasks. In the
Robustness validation experiment, the target return is systematically varied while maintaining a
constant target cost. Conversely, in the Zero-shot adaptation experiment, the target return is held
constant while adjusting the size of the target cost. Selection criteria for cx-r[01-10] and c[01-10]-rx
in different tasks are detailed for each scenario, with specific task names and corresponding the above
table.

CarCircle CarRun AntRun DroneCircle DroneRun
reward cost reward cost reward cost reward cost reward cost

cX-r01 0.216±0.145 0.197±0.106 0.611±0.389 0.949±0.251 0.779±0.113 0.843±0.188 0.806±0.098 0.961±0.272 0.008±0.017 0.000±0.008

cX-r02 0.335±0.068 0.316±0.079 0.634±0.463 0.964±0.150 0.799±0.124 0.878±0.314 0.852±0.070 1.020±0.280 0.040±0.053 0.000±0.150

cX-r03 0.422±0.045 0.412±0.261 0.690±0.510 0.990±0.124 0.839±0.080 0.934±0.243 0.861±0.058 1.022±0.256 0.189±0.431 0.000±0.050

cX-r04 0.484±0.055 0.549±0.252 0.666±0.436 0.956±0.301 0.846±0.090 0.999±0.185 0.863±0.069 1.025±0.631 0.615±0.328 0.576±0.124

cX-r05 0.597±0.028 0.664±0.250 0.792±0.207 0.974±0.140 0.854±0.106 0.979±0.237 0.863±0.055 0.998±0.247 0.580±0.280 0.501±0.141

cX-r06 0.715±0.005 0.764±0.279 0.822±0.184 0.901±0.299 0.844±0.050 0.922±0.232 0.866±0.056 0.994±0.206 0.690±0.130 0.637±0.246

cX-r07 0.786±0.020 0.858±0.271 0.883±0.122 0.911±0.403 0.846±0.064 0.862±0.284 0.875±0.064 1.004±0.418 0.748±0.109 0.824±0.068

cX-r08 0.868±0.022 0.915±0.255 0.991±0.020 0.997±0.203 0.841±0.107 0.899±0.247 0.874±0.057 1.017±0.205 0.725±0.114 0.744±0.148

cX-r09 0.909±0.032 0.963±0.241 0.996±0.009 0.944±0.341 0.826±0.060 0.840±0.183 0.885±0.049 1.050±0.208 0.733±0.143 0.725±0.267

cX-r10 0.900±0.043 0.896±0.257 0.997±0.010 0.676±0.553 0.814±0.077 0.758±0.296 0.892±0.033 1.003±0.108 0.716±0.146 0.672±0.153

c01-rX 0.759±0.079 0.148±0.111 0.978±0.019 0.000±0.120 0.689±0.069 0.015±0.020 0.693±0.012 0.163±0.138 0.596±0.040 0.002±0.013

c02-rX 0.800±0.064 0.237±0.163 0.993±0.007 0.088±0.052 0.727±0.024 0.085±0.155 0.765±0.059 0.258±0.108 0.599±0.029 0.063±0.022

c03-rX 0.824±0.049 0.309±0.041 0.997±0.005 0.168±0.112 0.733±0.014 0.164±0.255 0.814±0.078 0.329±0.104 0.682±0.017 0.199±0.011

c04-rX 0.850±0.067 0.412±0.047 0.997±0.002 0.293±0.167 0.739±0.039 0.289±0.200 0.877±0.054 0.395±0.138 0.691±0.082 0.241±0.084

c05-rX 0.875±0.054 0.498±0.035 0.996±0.010 0.338±0.142 0.772±0.063 0.387±0.275 0.886±0.043 0.493±0.091 0.726±0.082 0.374±0.092

c06-rX 0.894±0.040 0.573±0.069 0.998±0.006 0.494±0.126 0.796±0.058 0.442±0.255 0.885±0.040 0.516±0.109 0.742±0.088 0.496±0.049

c07-rX 0.905±0.041 0.644±0.198 0.994±0.013 0.520±0.140 0.809±0.062 0.485±0.200 0.883±0.055 0.547±0.087 0.732±0.109 0.495±0.116

c08-rX 0.909±0.029 0.686±0.080 0.992±0.019 0.681±0.199 0.819±0.077 0.506±0.345 0.875±0.064 0.553±0.114 0.728±0.136 0.523±0.133

c09-rX 0.915±0.025 0.723±0.169 0.996±0.020 0.780±0.200 0.818±0.096 0.500±0.350 0.875±0.054 0.549±0.159 0.746±0.113 0.631±0.183

c10-rX 0.920±0.023 0.672±0.245 0.998±0.018 0.824±0.196 0.820±0.091 0.526±0.360 0.879±0.040 0.530±0.120 0.756±0.114 0.653±0.140

Table 9: Experimental data from the CDT, encompassing both the Zero-shot adaptation experiment
(c[01-10]-rx) and the Robustness validation experiment (cx-r[01-10]) across diverse tasks. Other
settings are the same as CQDT.

CarCircle CarRun AntRun DroneCircle DroneRun
reward cost reward cost reward cost reward cost reward cost

cX-r01 0.269±0.127 0.214±0.134 0.704±0.299 0.494±0.220 0.769±0.102 0.889±0.303 0.797±0.069 1.011±0.245 0.047±0.002 0.000±0.042

cX-r02 0.379±0.022 0.318±0.061 0.514±0.489 0.119±0.093 0.765±0.116 0.830±0.385 0.805±0.079 0.959±0.374 0.071±0.016 0.000±0.158

cX-r03 0.453±0.026 0.352±0.086 0.788±0.214 0.741±0.116 0.803±0.073 0.913±0.349 0.831±0.075 1.016±0.484 0.162±0.189 0.000±0.017

cX-r04 0.528±0.009 0.507±0.166 0.990±0.014 0.983±0.274 0.798±0.089 0.872±0.359 0.841±0.077 1.009±0.258 0.546±0.195 0.671±0.137

cX-r05 0.609±0.031 0.575±0.193 0.991±0.002 0.999±0.259 0.782±0.089 0.860±0.310 0.840±0.049 0.985±0.126 0.640±0.343 0.714±0.297

cX-r06 0.700±0.014 0.682±0.188 0.988±0.014 0.979±0.250 0.829±0.055 0.976±0.224 0.839±0.064 1.021±0.168 0.723±0.204 0.701±0.171

cX-r07 0.785±0.029 0.773±0.146 0.988±0.021 0.949±0.309 0.813±0.054 0.868±0.194 0.847±0.080 0.983±0.328 0.732±0.097 0.721±0.245

cX-r08 0.863±0.031 0.847±0.184 0.992±0.017 0.966±0.206 0.776±0.076 0.698±0.278 0.851±0.060 1.009±0.113 0.717±0.068 0.764±0.303

cX-r09 0.889±0.041 0.838±0.164 0.996±0.009 0.957±0.443 0.805±0.030 0.750±0.135 0.856±0.057 1.022±0.084 0.729±0.063 0.694±0.298

cX-r10 0.874±0.054 0.862±0.251 0.993±0.014 0.956±0.587 0.777±0.028 0.638±0.147 0.864±0.043 1.023±0.213 0.731±0.082 0.746±0.300

c01-rX 0.756±0.054 0.161±0.123 0.675±0.322 0.000±0.080 0.681±0.064 0.029±0.010 0.718±0.007 0.165±0.144 0.579±0.036 0.003±0.003

c02-rX 0.800±0.054 0.239±0.103 0.990±0.006 0.083±0.097 0.726±0.022 0.095±0.014 0.765±0.033 0.238±0.037 0.579±0.014 0.000±0.000

c03-rX 0.815±0.049 0.264±0.111 0.992±0.011 0.148±0.032 0.734±0.017 0.194±0.073 0.810±0.070 0.332±0.076 0.668±0.095 0.191±0.191

c04-rX 0.843±0.071 0.380±0.195 0.995±0.020 0.247±0.113 0.740±0.054 0.301±0.178 0.861±0.069 0.413±0.104 0.699±0.028 0.250±0.150

c05-rX 0.862±0.064 0.431±0.194 0.998±0.006 0.373±0.167 0.748±0.054 0.387±0.198 0.864±0.070 0.468±0.115 0.707±0.073 0.375±0.175

c06-rX 0.864±0.065 0.511±0.139 0.997±0.006 0.472±0.148 0.765±0.029 0.446±0.330 0.870±0.058 0.499±0.126 0.738±0.077 0.411±0.111

c07-rX 0.893±0.043 0.580±0.178 0.993±0.013 0.445±0.115 0.773±0.029 0.497±0.370 0.846±0.066 0.483±0.175 0.748±0.097 0.528±0.128

c08-rX 0.889±0.049 0.635±0.123 0.997±0.011 0.630±0.190 0.772±0.034 0.481±0.367 0.847±0.059 0.438±0.146 0.747±0.038 0.518±0.118

c09-rX 0.877±0.069 0.628±0.063 0.993±0.017 0.648±0.192 0.769±0.041 0.495±0.326 0.837±0.061 0.451±0.158 0.754±0.037 0.566±0.167

c10-rX 0.886±0.052 0.646±0.120 0.995±0.021 0.743±0.117 0.768±0.045 0.490±0.392 0.836±0.049 0.424±0.167 0.750±0.051 0.655±0.155
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