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Abstract

Step-by-step verifiers—also known as process reward models (PRMs)—are a key ingredient
for test-time scaling, but training them requires expensive step-level supervision. This work
aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step
in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM,
a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required
by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of
long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers—using only
1% of the process labels in PRM800K—across several challenging benchmarks. Specifically,
ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME ’24 under best-
of-N selection and reward-guided search. In an out-of-domain evaluation over subsets of
GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained
with the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget,
ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge,
outperforming it by 7.2% on a subset of ProcessBench. This work highlights the value of
generative, long CoT PRMs that can scale test-time compute for verification while requiring
minimal supervision for training.
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Figure 1: Left: Verifier F1-score on ProcessBench (Zheng et al., 2024). ThinkPRM-14B, trained on 8K process labels or 1K
synthetic examples, outperforms discriminative PRMs trained on about 100x more data. Right: Verifier-guided search accuracy
on MATH-500 with Llama-3.2-3B-Instruct as generator. ThinkPRM-1.5B, trained using the same 8K labels, outperforms
LLM-as-a-judge and discriminative verifiers in reward-guided search on MATH-500. The LLM-as-a-judge in both figures uses
the same base model as ThinkPRM.

1 Introduction

Reasoning with large language models (LLMs) can substantially benefit from utilizing more test-time compute
(Jaech et al., 2024; Guo et al., 2025; Akyürek et al., 2024). This typically depends on a high-quality process
reward model (PRM)—also known as a process verifier—that scores (partial) solutions for selecting promising
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paths for search or ranking (Cobbe et al., 2021; Li et al., 2023; Wu et al., 2024; Brown et al., 2024). PRMs have
typically assumed the form of discriminative classifiers, trained to discern correct from incorrect reasoning
(Uesato et al., 2022; Zhang et al., 2025). However, training discriminative PRMs requires access to process
labels, i.e., step-level annotations, which either require extensive human annotation (Lightman et al., 2023;
Zheng et al., 2024), gold step-by-step solutions (Khalifa et al., 2023), or compute-intensive rollouts (Luo
et al., 2024; Chen et al., 2024a). For instance, training reasonably performing math PRMs requires hundreds
of thousands of step-level annotations (Lightman et al., 2023; Wang et al., 2023b).

Generative verification either via LLM-as-a-judge (Wang et al., 2023a; Liu et al., 2023b; Zheng et al., 2023) or
GenRM (Zhang et al., 2024a) treats verification as a generation problem of a rationale followed by a decision.
However, LLM-as-a-judge is known to perform poorly compared to specialized reward models (Lambert et al.,
2024; Zhang et al., 2024b; Chen et al., 2024c), as general-purpose LLMs frequently fail to recognize reasoning
errors (Huang et al., 2023; Zhang et al., 2024a; Ye et al., 2024). Moreover, GenRM is limited to outcome
verification via short chain-of-thoughts (CoTs), fundamentally limiting its ability for test-time scaling.
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Figure 2: ThinkPRM enables scaling verification
compute with more CoT tokens.

This paper builds on the insight that generative step-by-step
verification can greatly benefit from scaling up the verifier’s
inference compute—specifically, by enabling it to think through
a CoT. Specifically, we repurpose open-weight large reasoning
models (LRMs) as the foundation for generative PRMs through
lightweight training. This training uses uses synthetic data (Kim
et al., 2023; Zhu et al., 2023; Wang et al., 2024), utilizing as
few as 8K step labels, and yieldinga ThinkPRM —a PRM
that not only surpasses LLM-as-a-judge, but also outperforms
discriminative PRMs trained on two orders of magnitude more
data across a variety of test-time scaling scenarios.

We obtain ThinkPRM by training four reasoning models,
namely R1-Distill-Qwen{1.5B,7B,14B} (Guo et al., 2025), and
QwQ-32B-Preview (Team, 2024), and extensively evaluate it
both as a standalone verifier on ProcessBench (Zheng et al.,
2024), and combined with a generator under Best-of-N and
verifier-guided beam search. ThinkPRM-14B outperforms a
discriminative PRM based on the same base model in terms of
accuracy while using far fewer supervision signals as in Figure 1
left. In addition, ThinkPRM-1.5B demonstrates strong performance on MATH-500 (Hendrycks et al., 2021)
under guided beam search, shown in Figure 1 right. Lastly, as shown in Figure 2, ThinkPRM can effectively
utilize more verification compute than LLM-as-a-judge, by forcing it to think for more tokens. All these
results are obtained while training only on 8K step labels.

Our work highlights the promise of long CoT PRMs that verify reasoning with reasoning, effectively scaling
both generator and verifier compute. Our main findings are as follows: ThinkPRM outperforms strong
PRM baselines in best-of-N and guided-search setups on two math reasoning benchmarks: MATH-500 and
AIME 2024, and surpasses LLM-as-a-judge baselines under the same base model by thinking longer during
verification (§4). Moreover, ThinkPRM generalizes under two types of domain shift. First, it outperforms
baselines on out-of-domain tasks such as scientific reasoning and code generation. Second, despite being
trained only on short solutions, it generalizes to long-form reasoning without explicit step delimiters (§5.3).
Third, ThinkPRM outperforms self-consistency (Wang et al., 2022) when using the same compute budget,
especially under high sampling regimes (§5.4). Finally, fine-grained filtering of synthetic data based on step
supervision is crucial for training high-quality PRMs (§5.7).

2 Background and Related Work

Discriminative PRMs. Discriminative PRMs are trained as classifiers that directly predict numerical
correctness scores for each solution step, and typically rely on extensive step-level annotations (Uesato et al.,
2022; Lightman et al., 2023; Zhang et al., 2025). Given a solution prefix, discriminative PRMs encode the

2



Under review as submission to TMLR

?
Step 1: …
Step 2: …
Step 3: …

<think>
…
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…
..
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</think>
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. . .
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Figure 3: Collecting verification chains for finetuning. First, we prompt a reasoning model, in our case QwQ-32B-Preview to
critique a given solution to a problem. Then, we sample multiple verification chains, which we judge against gold process labels
from PRM800K, only keeping chains that match the gold process labels.

solution text and employ a classification head to produce step-level scores, usually optimized with binary cross-
entropy. An overall correctness score for a solution is obtained by aggregating these step-level scores (Beeching
et al.). PRMs are effective and straightforward but they do not utilize the language-modeling head of the base
language model, making training expensive and labor-intensive (Yuan et al., 2024). Additionally, they offer
limited interpretability and utilize fixed compute, restricting their dynamic scalability at test-time (Zhang
et al., 2024a; Mahan et al., 2024). Thus, there is a need for data-efficient PRMs that can scale with more
test-time compute.

Generative Verification. Generative verification (Zheng et al., 2023; Zhu et al., 2023; Zhang et al., 2024a)
frames verification as a language-generation task, producing step-level decisions as tokens (e.g., “correct” or
“incorrect”), typically accompanied by a chain-of-thought (CoT). One can train generative verifiers using the
standard language modeling objective on verification rationales rather than on binary labels. This approach
leverages the strengths of LLMs in text generation, making generative verifiers inherently interpretable and
scalable (Zhang et al., 2024a; Mahan et al., 2024; Wang et al., 2023a; Ankner et al., 2024). However, prior
work on generative verifiers has relied mainly on short verification CoT (e.g., few hundred tokens) (Zhang
et al., 2024a), which highly limits their scalability. Thus, there is a need for verifiers that can “think” longer
through verification, utilizing test-time compute effectively. While LLM-as-a-Judge has been employed for
step-level verification (Zheng et al., 2024). it tends to be sensitive to prompt phrasing, and prone to invalid
outputs, such as infinite looping or excessive overthinking (Bavaresco et al., 2024)—issues we further confirm
in this work. Prior results with reasoning models like QwQ-32B-Preview (Team, 2024) show promise, but
their practical utility in test-time scaling remains limited without additional training (Zheng et al., 2024).

Test-Time Scaling with PRMs. Test-time scaling techniques, such as Best-of-N selection (Charniak
& Johnson, 2005) and tree-based search (Yao et al., 2023; Chen et al., 2024c; Wan et al., 2024), leverage
additional inference-time compute to improve reasoning performance. Central to these approaches is the
quality of the verifier used to score and select solutions. A major advantage of generative PRMs is that they
uniquely support simultaneous scaling of both generator and verifier compute (Zhang et al., 2024a; Kalra &
Tang, 2025). In particular, our work shows that generative PRMs trained based on long CoT models (Jaech
et al., 2024; Guo et al., 2025) enable both parallel and sequential scaling of verifier compute.

3 ThinkPRM

Our goal is verbalized PRM that, given a problem-solution pair, verifies every step in the solution via an
extended chain-of-thought (CoT) such as the one shown in Figure 29 in Appendix G. This section introduces
issues with LLM-as-a-judge verification and proposes a data collection process (shown in Figure 3) to curate
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high-quality synthetic verification CoTs for training such PRM. The rest of the paper addresses the following
research questions:

• RQ1: How well do LRMs perform under LLM-as-a-judge for process-level verification? §3.1
• RQ2: Can lightweight finetuning on synthetic verification CoTs improve the reliability and effectiveness

of these models as process verifiers? §3.2
• RQ3: How does a finetuned verbalized PRM (ThinkPRM) compare to discriminative PRMs and

LLM-as-a-Judge baselines under different test-time scaling scenarios? §4

3.1 LLM-as-a-judge PRMs are suboptimal

This section highlights limitations we observe when using off-the-shelf reasoning models as process verifiers,
suggesting the need for finetuning. For evaluation, we use ProcessBench (Zheng et al., 2024), which includes
problem-solution pairs with problems sourced from existing math benchmarks, along with ground-truth
correctness labels. We report the binary F1-score by instructing models to verify full solutions and judge
whether there exists a mistake. We use two most challenging subsets of ProcessBench: OlympiadBench (He
et al., 2024) and OmniMath (Gao et al., 2024), each comprised of 1K problem-prefix pairs. For LLM-as-a-
judge, we use the same prompt template as in Zheng et al. (2024), shown in Figure 27, which we found to
work best overall. Table 3 shows LLM-as-a-judge F1 scores and a sample output by QwQ-32B-Preview is
displayed in Figure 26 in Appendix F.

We observe different issues with LLM-as-a-judge verification. First, the verification quality is highly sensitive
to the instruction wording: slight change in the instruction can affect the F1-score by up to 3-4 points. First,
a substantial number of the generated chains include invalid judgments, i.e., chains without an extractable
overall label as clear in Figure 5. Such invalid judgements are caused by the following. In some cases, final
decision was in the wrong format than instructed e.g., the model tries to solve the problem rather than verify
the given solution—a behavior likely stemming from the model training. Second, we noted multiple instances
of overthinking (Chen et al., 2024b; Cuadron et al., 2025), which prevents the model from terminating within
the token budget, and infinite looping/repetitions, where the model gets stuck trying alternative techniques
to verify the solutions.

Figure 4 (left) shows a histogram of verification CoT lengths generated by R1-Qwen-14B in the LLM-as-a-
judge setting. Accurate CoTs tend to be shorter, typically under 3K tokens, while inaccurate CoTs are more
evenly distributed and spike sharply around 7K-8K tokens, highlighting the prevalence of overthinking and
looping in long chains. We show examples of these behaviors in Appendix B. In the next section, we mostly
fix these issues via lightweight finetuning over synthetic verification CoTs.

3.2 Finetuning on synthetic data boosts LLM-as-a-judge verification

Inspired by recent work on reducing overthinking in long CoT models that by training (Yu et al., 2024; Kang
et al., 2024), we aim to improve LLM-as-a-judge performance via finetuning on high-quality verification data.
Collecting real data would be expensive, so we rely on filtered synthetic data (Zelikman et al., 2022; Singh
et al., 2023; Dong et al., 2023; Zhang et al., 2024b; Wang et al., 2024) also known as rejection sampling
finetuning. To keep our approach simple, we refrain from more expensive training techniques, such as
reinforcement learning or preference-based learning.

Synthetic data collection. As training data, we sample synthetic verification CoTs from QwQ-32B-
Preview, prompting it to verify each step in a solution prefix, using the instruction shown in Figure 13. The
problems and corresponding step-by-step solutions come from the PRM800K dataset (Lightman et al., 2023),
which provides both model-generated solutions and human-verified step-level labels.

The sampling process continues until we obtain 1K verification CoTs which correspond to 8K step labels
in total. For data filtering, we use the following criteria: (i) the CoT must follow the expected format
(i.e., include an extractable decision label for each step inside \boxed{} as shown in Figure 12, and (ii) the
generated step judgements match the gold step labels from PRM800K, and (iii) the CoT length is within a
maximum budget—to avoid the excessive overthinking behavior we observed in Figure 4 (left). The filtering
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Figure 4: Verifier performance on ProcessBench in light of CoT lengths. On the left, LLM-as-a-judge produces excessively long
chains including repetition, infinite looping, and overthinking, leading to worse verifier performance since the output never
terminates. Training on collected syntehtic data substantially reduces these issues as shown in the ThinkPRM plot on the right.

process ensures our training data is of sufficient quality. Note that process-based filtering is crucial for the
performance of the resulting PRM as we show in §5.7. We ensure that our 1K synthetic verification traces
do not overlap with any problems used in the evaluation datasets (e.g., MATH-500, AIME ’24, GPQA,
LiveCodeBench), verified via string match filtering as we detail in ??. Data collection is illustrated in Figure 3,
data statistics are in §A.1 and a training example is in Figure 12.

Notably, our filtering relies only on step-level annotations, not on gold verification rationales or CoTs—making
this pipeline scalable and low-overhead. In the absence of gold step-level annotations, one can obtain silver
labels via Monte Carlo rollouts (Wang et al., 2023b; Chen et al., 2024a). While we train only on math data,
the resulting PRM remains robust under other domains such as science QA and code generation as we show
in §4.2. We then proceed to train our models on the 1K collected chains. Our training is very lightweight;
finetuning QwQ-32B-Preview takes only 4.5 hours on a single A100 80GB GPU. Refer to §C.1 for training
details.

Finetuning on synthetic verification CoTs substantially improves the verifier. ThinkPRM trains
on the 1K chains and is evaluated on ProcessBench and compared to LLM-as-a-judge under the same base
model. Figure 6 shows verifier accuracy of different models before and after our finetuning. We note a
substantial boost in F1 across all models, with the 1.5B model gaining most improvement by over 70 F1
points, and the 14B model performing best. Looking at the ratio of invalid judgements in Figure 5, we also
note a significant reduction in invalid labels with all models, except for QwQ, where it slightly increases.
Lastly, the reduction in overthinking and infinite looping behavior discussed in the last section is evident, as
in Figure 4 (right), where ThinkPRM generations maintain a reasonable length (1K-5K) tokens while being
substantially more accurate.

4 Test-time Scaling Experiments

This section aims to answer RQ3 introduced in §3 by comparing ThinkPRM to baselines under different
scaling scenarios. We study how ThinkPRM performs under different generation budgets (i) best-of-N
selection (Wu et al., 2024; Brown et al., 2020) and (ii) guided beam search (Snell et al., 2024; Beeching et al.).
We also explore how ThinkPRM performs when verifier compute is scaled either in parallel by aggregating
decisions over multiple verification CoTs or sequentially through longer CoTs by forcing the model to double
check or self-correct its verification.
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4.1 Experimental Setup

In the remainder of the the paper, we will mainly use our finetuned verifiers based on R1-Distill-Qwen-1.5B
and R1-Distill-Qwen-14B as these provide the best tradeoff between size and performance. We will refer to
these as ThinkPRM-1.5B and ThinkPRM-14B, respectively.

Baselines. We compare ThinkPRM to DiscPRM, which uses the same base model as ThinkPRM,
finetuned with binary cross-entropy on the entire PRM800K dataset, totaling 712K process labels, which is
two orders of magnitude larger than our training data. Details on finetuning DiscPRMs are in §C.2. We
also compare to unweighted majority voting, which merely selects the most frequent answer across the
samples (Wang et al., 2022), and to LLM-as-a-Judge using the same base model as ThinkPRM, prompted
as in §3.1.

Tasks and Models. We show results on two math reasoning tasks, namely 100 problems from MATH-500
(Hendrycks et al., 2021) covering all difficulty levels (see §E.5 for more details), and American Invitational
Mathematics Examination (AIME) problems for 2024. Since ThinkPRM was finetuned only on math
data, we study the out-of-domain generalization on two tasks: scientific reasoning and code generation.
For scientific reasoning, we use the physics subset of GPQA-Diamond (Rein et al., 2024), consisting of 86
PhD-level multiple choice questions. For code generation, we use a 200-problem subset from the v5 release of
LiveCodeBench (Jain et al., 2024).

Over MATH-500, we show results with ThinkPRM-1.5B and ThinkPRM-14B on two different generator
models: Qwen-2.5-14B and Llama-3.2-3B-Instruct. The former model is used for best-of-N and the latter for
beam search as search is compute intensive. Showing results with different generators guarantees that our
conclusions are not specific to a certain model family or size. For the more challenging tasks, namely AIME
’24 and GPQA, we use a more capable model, namely Qwen-2.5-32B-Instruct. For code generation, we use
Qwen-2.5-Coder-7B (Hui et al., 2024). Implementation and hyperparemter details on how we select the final
answer with best-of-N and beam search are in Appendix E.

Scaling verifier compute. Compared to DiscPRMs, generative reward models enable an extra dimension
of scaling to squeeze more performance: scaling the verifier compute. Specifically,ThinkPRM allows for
two types of scaling. First, we use parallel scaling (Mahan et al., 2024; Brown et al., 2024), by sampling K
independent CoTs and averaging their scores. We will refer to this scaling using “@K” throughout the rest of
the paper. Second, and more specific to long reasoning models, we use sequential scaling e.g., by enabling the
model to double-check its initial verification (Xiong et al., 2025; Kumar et al., 2024; Ye et al., 2024). Inspired
by Muennighoff et al. (2025), we use a trigger phrase such as “Let’s verify again” to elicit self-correction of
earlier verification. See §E.4 for more details.
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Figure 7: Best-of-N on AIME ’24 and MATH-500. Compared to LLM-as-a-judge, DiscPRM, and (unweighted) majority vote,
ThinkPRM-14B exhibits best accuracy scaling curve.
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4.2 Results

ThinkPRM outperforms DiscPRM and LLM-as-a-Judge. Under best-of-N selection with MATH-500
shown in Figure 7 (right), ThinkPRM leads to higher or comparable reasoning accuracy to DiscPRM under
all sampling budgets. The trend holds on the more challenging AIME ’24, shown in Figure 7 left. Additionally,
Figure 1 (right) shows beam search results on MATH-500, with ThinkPRM 1.5B surpassing DiscPRM and
LLM-as-a-Judge.

ThinkPRM surpasses off-the-shelf PRMs. We compare ThinkPRM-1.5B to two strong off-the-shelf
PRMs, namely RLHFFlow-Deepseek-PRM (Xiong et al., 2024) and MATH-Shepherd-PRM (Wang et al.,
2023b). These PRMs are trained on even more data than PRM800K and are larger than 1.5B. We show results
under verifier-guided search on MATH-500 in Figure 8, with ThinkPRM-1.5B’s scaling curve surpassing
all baselines and outperforming RLHFFlow-Deepseek-PRM, the best off-the-shelf PRM among the ones we
tested, by more than 7% across all beam sizes.

ThinkPRM excels on out-of-domain tasks. As for OOD performance on GPQA-physics (Figure 10
left), ThinkPRM scales better than DiscPRM—which drops substantially at N=32—outperforming it by 8%.
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Figure 10: Best-of-N on two out-of-domain tasks: science QA (GPQA-Physics) and code generation (LiveCodeBench). Although
ThinkPRM was only finetuned on math, it exhibits superior OOD performance than the baselines, especially at larger sampling
budgets, where the baselines fall short. Discriminative PRMs struggle despite being trained on orders of magnitude more process
labels.

On LiveCodeBench (Figure 10 right), ThinkPRM also outperforms DiscPRM by 4.5%. On LiveCodeBench,
Qwen2.5-7B-Math-PRM (Zhang et al., 2025)—a discriminative PRM trained on substantial amount of process
labels obtained from LLM-as-a-judge data and Monte Carlo rollouts—struggles when applied out-of-domain.
Our results shed light on the fragility of discriminative PRMs under domain shifts in contrast with generative
PRMs.

Scaling ThinkPRM compute boosts performance. Under verifier-guided search (shown in Figure 8),
parallel scaling with ThinkPRM-1.5B@4 boosts the accuracy by more than 5% points, and yields the best
accuracy on MATH-500. In addition, parallel scaling with ThinkPRM-14B@4 and ThinkPRM-14B@8
boosts best-of-N performance on MATH-500 as shown in Figure 19 in §E.6. Now we move to sequential scaling
of verifier compute by forcing ThinkPRM to recheck its own verification. Since this can be compute-intensive,
we only run this on 200 problems from OmniMath subset of ProcessBench, and observe how verification
F1 improves as we force the model to think for longer as shown in Figure 2. ThinkPRM exhibits better
scaling behavior compared to LLM-as-a-judge, which drops after 16K tokens, and outperforms DiscPRM-14B
by 15 F1 points. In summary, ThinkPRM is consistently better than LLM-as-a-judge under parallel and
sequential scaling.

Parallel scaling vs. sequential scaling. Is it preferable to scale verifier compute in parallel or sequentially?
We investigate this by comparing the two modes of scaling under the same token budget. Figure 20 in §E.6
shows performance of best-of-N with Qwen-2.5-14B under parallel and sequential scaling with K = 2, 4 under
both parallel scaling and sequential scaling. Overall, the performance of both methods is fairly close, but we
observe a slight advantage to parallel scaling under certain budgets.

5 Analysis and Discussion

5.1 Training data efficiency

A major strength of ThinkPRM is training data efficiency compared to discriminative versions. Here, we
study the training scaling behavior of ThinkPRM-14B by training it over 500 and 1K examples in total
collected using the pipeline in §3.2, which roughly corresponds to 4K and 8K process labels from PRM800K
in total. We compare that to DiscPRM-14B trained with 1K, 10K, 50K and 98K examples, where 98K
corresponds to training on the full PRM800K train set that includes 712K step labels. Figure 1 (Left) contrasts
the training data scaling behavior of ThinkPRM-14B with that of DiscPRM-14B, where ThinkPRM-14B’s
performance scales substantially better with two orders of magnitude fewer process labels. This primarily
stems from ThinkPRM’s utilization of text generation and reasoning abilities of the underlying models.
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While we train ThinkPRM using only 1K data points, we investigate whether it will benefit from training
on more data. Using the pipeline, we collect and filter additional verification CoTs and obtain a total of 65K
chains. We then finetune R1-Distill-Qwen-1.5B and R1-Distill-Qwen-14B on these for a single epoch while
keeping all other training hyperparameters fixed. We then compare the resulting models to the 1K-trained
version of ThinkPRM under best-of-N selection on MATH-500. Figures 21 and 22 in §E.7 show a performance
boost from training on the 65K examples compared to only 1K. This suggests that ThinkPRM can utilize
more training data when available.

5.2 Effect of Verification CoT Length on PRM Quality

We study whether the length of verification chains of thought affects the quality of the resulting generative
verifier. Specifically, we compare ThinkPRM trained on the full, long synthetic CoTs with a variant trained
on short, compressed versions of the same 1K CoTs. To obtain the short CoTs, we instruct gpt-4o-mini to
rewrite each original CoT into a concise version that preserves only the essential reasoning. We then train
R1-Qwen-1.5B and R1-Qwen-14B on these short CoTs and evaluate verification F1 on ProcessBench. Table 1
reports the comparison.

Long CoT (ThinkPRM) Short CoT

Model OlympiadBench OmniMath OlympiadBench OmniMath

R1-Qwen-1.5B 87.3 75.7 64.8 66.7
R1-Qwen-14B 87.3 85.7 55.3 60.8

Table 1: Verification F1 when training R1 models on long versus short CoTs.

The substantial performance drop when training on short CoTs emphasizes how ThinkPRM benefits from
extended reasoning. Since verification is a complex task, throwing more reasoning effort at it via thinking
improves performance. These results support the value of using long verification CoTs for training.

5.3 Reasoning traces without clear step boundaries

So far, we have used ThinkPRM to verify short CoTs with clear steps delimiters. Here, we investigate whether
ThinkPRM can still verify long CoTs that involve extended reasoning, backtracking, and self-correction. As
a generator, we use Qwen3-1.7B (Yang et al., 2025) with thinking mode. Although ThinkPRM was only
trained on short solutions from PRM800K, we find that it can still verify long CoTs and outperforms the
baselines as shown in Figure 11 left. Inspecting ThinkPRM’s outputs, we found that it extracts and verifies
individual steps embedded in the long CoT—an example is in Figure 30.

5.4 Compute-matched comparison to self-consistency

Under a fixed test-time compute budget for best-of-N, how does ThinkPRM compare to simply sampling
more solutions from the generator and applying majority voting? To investigate this, we conduct a compute-
matched analysis on MATH-500 and GPQA-Physics. Figure 11 mid and right plot solution accuracy as a
function of sampling FLOPs for MATH-500 and GPQA-physics. At low sampling budgets, best-of-N with
ThinkPRM performs comparably to self-consistency, but as the compute budget increases, ThinkPRM has
a clear advantage. These findings agree with recent work on outcome reward models (Singhi et al., 2025).

5.5 ThinkPRM with Monte Carlo step labels

To train ThinkPRM, we have relied on manual step labels from PRM800K. Since automatic labels e.g., via
Monte Carlo rollouts Luo et al. (2024) are cheaper, we validate whether we can train ThinkPRM using
automatic labels. We train ThinkPRM-1.5B using 1K synthetic chains based on labels from Math-shepherd
dataset (Wang et al., 2023b). Performance on ProcessBench is shown in Table 5, where training ThinkPRM
with automatic labels yields very comparable performance to training with manual labels, showing that our
training pipeline is agnostic to step-labeling strategy.
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Figure 11: Left: Best-of-N with Qwen3-1.7B on the full MATH-500 test set, showing how ThinkPRM generalizes well to
verifying long reasoning traces. Mid and Right: Compute-matched comparison between best-of-N with ThinkPRM and
self-consistency or majority vote.

5.6 ThinkPRM helps with difficult reasoning problems

ThinkPRM’s reasoning ability should enable it to tackle verification of hard problems. To check if this is the
case, we analyze performance of ThinkPRM vs. DiscPRM in light of problem difficulty over MATH-500 and
GPQA-physics (how we estimate difficulty for GPQA-Physics is explained in §E.11), shown in Figure 24. The
generators here are Qwen-2.5-14B for MATH-500 and Qwen-2.5-32B-Instruct for GPQA-Physics. Primarily,
ThinkPRM improves reasoning on the difficult problems (levels 3, 4, 5 in MATH-500 and 2, 3, 4 in
GPQA-Physics) substantially more than DiscPRM.

5.7 Filtering based on process vs. outcome labels

In §3.2, we describe our process-based filtering strategy, which selects verification CoTs based on agreement
between generated step-level decisions and gold process labels. To validate its effectiveness, we compare it to
outcome-based filtering, as in GenRM (Zheng et al., 2024), which retains chains solely based on final answer
correctness—keeping a CoT if its final answer is correct and the final step is \boxed{correct}, or if the
answer is incorrect and the final step is \boxed{incorrect}, thereby ignoring intermediate step labels. We
obtain 65K and 128K CoTs using process- and outcome-based filtering, respectively. Figure 9 shows that
finetuning R1-Distill-Qwen-1.5B on process-filtered data yields significantly better verification performance,
despite using fewer examples, which reflects the importance of our process-based filtering in training strong
PRMs.

5.8 Limitations of Generative PRMs

While generative PRMs are more powerful and data-efficient than their discriminative counterparts, they
come with some limitations that we highlight as avenues for future work. First, overconfidence is a known
issue in LLMs (Liu et al., 2023a; Stechly et al., 2023; Zhou et al., 2024) and, in the case of PRMs, it can
cause the predicted PRM scores to cluster near extremes: close to either 0 or 1. One reason is that we
are using probabilities of certain tokens such as “yes” or “no”, which by nature will be either very high or
very low. Future work should explore more reliable techniques to extract calibrated scores from generative
reward models. Another limitation is due to autoregressive nature of LLMs, leading them to prematurely
commit to an earlier judgment. For example, we observe a phenomenon we term step label interference,
where verification errors for earlier steps impact verification of later steps. For example, if the PRM judges a
particular step as incorrect, it becomes more likely to label subsequent steps as incorrect even if it is not.

Conclusion

We introduced ThinkPRM, a generative process reward model trained with minimal synthetic supervision
for scalable step-by-step verification. With just 8K process labels, ThinkPRM significantly outperforms
LLM-as-a-judge and even surpasses discriminative PRMs trained on orders of magnitude more data. These
results highlight the benefits of generative PRMs in interpretability, scalability, and data efficiency.
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Synthetic training sample

Problem: Find the area in square feet of a square with a perimeter of 32ft.
Solution:
Step 1: A square has four equal sides, so the perimeter is four times the length of one side.
Step 2: I can write an equation to relate the perimeter and the side length: 4s = 32, where s is the side length in feet.
Step 3: To solve for s, I can divide both sides by 4: s = 32/4 = 8.
Step 4: Now I know the side length of the square is 8 feet.
Step 5: The area of a square is the side length squared, so the area is s2 = 82 = 64.
Step 6: The area is in square feet, so the units are ft2.
Step 7: The answer is 64 ft2

<think>
Alright, let’s verify step by step the solution provided for finding the area of a square with a perimeter of 32 feet.
Step 1: “A square has four equal sides, so the perimeter is four times the length of one side."
Critique: This statement is accurate. A square indeed has four sides of equal length, and the perimeter is the sum of all
sides. Therefore, perimeter (P) equals 4 times the side length (s), or P = 4s.
The step is \\boxed{correct}
Step 2: “I can write an equation to relate the perimeter and the side length: 4s = 32, where s is the side length in feet."
Critique: Given that the perimeter is 32 feet, setting up the equation 4s = 32 is correct. It properly represents the
relationship between the perimeter and the side length of the square.
The step is \\boxed{correct}
Step 3: “To solve for s, I can divide both sides by 4: s = 32/4 = 8."
Critique: This step correctly solves for s by dividing both sides of the equation by 4. The calculation 32 divided by 4
equals 8 is accurate.
The step is \\boxed{correct}
Step 4: “Now I know the side length of the square is 8 feet."
Critique: Based on the previous step, s = 8 feet, which is correctly stated here.
The step is \\boxed{correct}
Step 5: “The area of a square is the side length squared, so the area is s2 = 82 = 64."
Critique: The formula for the area of a square is indeed s squared. Calculating 8 squared equals 64 is correct.
The step is \\boxed{correct}
Step 6: “The area is in square feet, so the units are ft2."
Critique: Since the side length is in feet, the area will be in square feet (ft2). This is the correct unit for area.
The step is \\boxed{correct}
Step 7: “The answer is 64 ft2"
Critique: This is the final answer, correctly stating the area as 64 square feet.
The step is \\boxed{correct}
</think>
Is the solution correct? Yes

Figure 12: Training example from our sampled 1K synthetic chains.

A Training data

A.1 Sampling

Figure 3 shows the prompt used with QwQ-32B-Preview to sample verification chains for training. We use the
problem-prefix pairs from PRM800K train split (Lightman et al., 2023), which is based on MATH (Hendrycks
et al., 2021). We sample 4 verification chains for each prefix in the dataset with temperature T = 0.1 until
we have 1K verification CoTs that (1) follow the desired format i.e., the model generated an extractable
label for every step in the prefix and (2) the verbalized step labels match the gold labels in the PRM800K
dataset annotation, (3) at most 4096 tokens long, and are (4) roughly balanced with respect to final answer
correctness.

Roughly 20% of the initial samples satisfied criteria 1 and 2 in our case, which means that about 5K samples
in total are needed to obtain 1K filtered samples. Table 2 shows the statistics of the final dataset. We also
show an example from the 1K training CoTs in Figure 12.
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A.2 Preprocessing

From the sampled verification CoTs, we extract boxed predictions (e.g., \boxed{correct} or
\boxed{incorrect}) for each reasoning step. Then we filter the data as follows:

• CoTs with missing or malformed verification decisions are discarded.

• CoTs where verification decisions don’t match ground truth labels are filtered out. Precisely, we require
all step-by-step verification decisions to match the ground truth labels.

Then we clean the data as follows:

• We standardize boxed notation formats.

• Content after the last verification decision is removed.

• Special tokens (e.g., <think> and </think>) are added to designate verification reasoning.

A.3 Contamination Control

To avoid test data leakage, we ensured that none of the 1K verification traces used for training ThinkPRM
overlap with the test problems in MATH-500, AIME ’24, ProcessBench (OlympiadBench; OmniMath),
GPQA-Physics, or LiveCodeBench. We applied exact-match between PRM800K problem texts and each
evaluation set. We also verified that AIME ’24 problems are not present in PRM800K, which only includes
pre-2023 math problems.

Correctness Distribution
# correct 486 (48.6%)
# incorrect 514 (51.4%)

Step label distribution
# correct 7474 (92.3%)
# Incorrect 625 (7.7%)

Prefix statistics
# unique questions 869
average steps per prefix 9.5
min # steps 1
max # steps 53

Verification Chain Statistics
Average verification chain length (tokens) 1037.0
Min verification chain length (tokens) 207
Max verification chain length (tokens) 3669

Table 2: Statistics of the 1K finetuning dataset.
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Data generation prompt

You are given a math problem and a proposed multiple-step solution (with a step on each line):

[Math Problem]
{problem}

[Solution]
{solution}

Review and critique the proposed solution steps and determine whether each step is correct. If the solution is incomplete,
only critique the steps that are provided. Your output must be in the following format:

Let’s verify step by step:
Step 1: <critique>...The step is \boxed{correct/incorrect}
Step 2: <critique>...The step is \boxed{correct/incorrect}
. . .
Step n: <critique>...The step is \boxed{correct/incorrect}

Once you find an incorrect step, you should stop since you don’t need to analyze the remaining steps.

Figure 13: Prompt used to generate synthetic verification chains as described in §3.2.

B LLM-as-a-Judge Limitations

We show examples of failures from QwQ-32B-Preview and Deepseek-R1-Distill-Qwen-14B when used for
LLM-as-judge verification in Figures 15 and 17.

C Training details

C.1 Training ThinkPRM

We train our models on the filtered 1K chains using LoRA (Hu et al., 2022) with rank r = 32 and α = 16.
Specifically, we finetune Qwen-14B-Instruct and R1-Deepseek (14B) for 3 epochs, and QwQ-32B-Preview
for 5 epochs using LoRA. We use an effective batch size of 16 and a fixed learning rate of 4 × 10−4 without
warmup is used. Training took 1.5 hours for the 14B models and 4.5 hours for QwQ-32B-Preview on a single
A100 80GB GPU. Without particularly found QwQ to be hard to train with LoRA and still generates a
relatively high percentage of invalid judgments after training. Full training of the model will likely resolve
these issues but that would require more compute than we have.

The R1-Distill-Qwen{1.5B,7B} models use full training with the following parameters. The 1.5B model We
trained for 3 epochs with an effective batch size of 32, using a constant learning rate of 6 × 10−5 without
decay or warmup. We train both models using four RTX A6000 48GB GPU using data parallel. Training the
1.5B model on the 1K chains took about half an hour and the 7B model about two hours.

C.2 Training Discriminative Verifiers

We train R1-Qwen-14B for 1 epoch over the entire PRM800K dataset using two A100 80GB GPUs with a
batch size of 8 and a learning rate of 6 × 10−5. We use a constant learning rate scheduler with no warmup.
Following prior work (Wang et al., 2023b; Zhang et al., 2025) We train the model using binary cross-entropy
to maximize the probability of the tokens “+" and “-" for correct and incorrect steps, respectively. The
R1-Qwen-1.5B model is trained with the same infrastructure with a batch size of 64 and a learning rate of
1 × 10−4 with a warm up ratio of 10%.
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QwQ-32B-Preview stuck in a loop

Okay, so I need to analyze each step of the proposed solution to the math problem. The problem is: If f(x) = 3x−2
x−2 , what is

the value of f(−2) + f(−1) + f(0)? The proposed solution is given, and I have to check if each step is correct.

First, let me read through the problem and the solution carefully.

The function is f(x) = 3x−2
x−2 . They want the sum of f(−2) + f(−1) + f(0).

Looking at the solution steps:

Step 0: They plug in x = −2 into the function and calculate 3(−2)−2
−2−2 = −8

−4 = 2.

Step 1: They mention that plugging x = −2 into the denominator gives zero, which would be division by zero.

Step 2: They generalize that we should avoid plugging in values that make the denominator zero.

Step 3: Similarly, plugging x = −1 into the denominator also gives zero.

Step 4: Plugging x = 0 into the denominator also results in division by zero.

. . .

Wait no! The original function is given as f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

No! The problem says: If f(x) = numerator
denominator =?

...

Figure 14: Degeneration behavior from QwQ-32B-Preview with LLM-as-judge verification. Problem and solution are omitted for
brevity.
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Deepseek-R1-Distill-Qwen-14B stuck in a loop

Okay, so I need to review and critique the solution step by step for the given math problem. The problem is to find the exact
value of the continued fraction expression:
1 + 1/(1 + 2/(1 + 1/(1 + 2/(1 + ...))))
The solution provided is split into 16 steps, each enclosed in a tag. I need to go through each step, analyze it, and see if there
are any errors or if the logic holds. After that, I’ll determine if the solution is correct by outputting "yes" or "no" in a box.
Let me start by understanding the problem. It’s a continued fraction that alternates between 1 and 2 in the numerators. The
expression is:
x = 1 + 1/(1 + 2/(1 + 1/(1 + 2/(1 + ...))))
So, the pattern repeats every two steps: 1, then 2, then 1, then 2, etc. The solution starts by denoting the expression as x and
then tries to find a relationship by substituting the inner expression back into x.
Wait, the original expression is x = 1 + 1/(1 + 2/(1 + 1/(1 + 2/(1 + ...)))). So, the part after the first 1 is 1 + 2/(1 + 1/(1 +
2/(1 + ...))). But that part isn’t x, because x starts with 1 + 1/(...). So, maybe the substitution isn’t directly x. Let me think.
Wait, perhaps the inner part is similar but not exactly x. Let me denote the inner part as y. So, y = 1 + 2/(1 + 1/(1 + 2/(1 +
...))). But then, the expression for y would involve another similar structure. Hmm, maybe the solution is oversimplifying here.
...

Wait, actually, when you multiply both sides by (1 + 2/x), the left side is x*(1 + 2/x) = x + 2.
The right side is [1 + 1/(1 + 2/x)]*(1 + 2/x) = 1*(1 + 2/x) + [1/(1 + 2/x)]*(1 + 2/x) = (1 + 2/x) + 1 = 2 + 2/x.
So, the correct equation after multiplying both sides by (1 + 2/x) is:
x + 2 = 2 + 2/x.
But in step 6, they have:
x + 2 = 1 + 1/(1 + 2/x) + 2/x + 4/x2
Which seems to be incorrect. They seem to have distributed the multiplication incorrectly.
Wait, let me see. If you have x*(1 + 2/x) = [1 + 1/(1 + 2/x)]*(1 + 2/x) + [2/x*(1 + 2/x)]
But that doesn’t make sense because when you multiply both sides by (1 + 2/x), you should only have:
Left side: x*(1 + 2/x)
Right side: [1 + 1/(1 + 2/x)]*(1 + 2/x)
Which simplifies to x + 2 = 2 + 2/x.
But in the solution, step 6 says:
x*(1 + 2/x) = 1 + 1/(1 + 2/x) + 2/x*(1 + 2/x)
Which seems to be adding an extra term, 2/x*(1 + 2/x), which is not correct. So, step 6 is incorrect.
Therefore, the solution has an error in step 6. Instead of correctly multiplying both sides, they incorrectly expanded the
right-hand side, leading to an incorrect equation.
Because of this mistake, the subsequent steps are likely incorrect as well. So, the entire solution is flawed from step 6 onwards.
...
Wait, let me compute the continued fraction numerically to check.
Let me compute the continued fraction up to a certain depth.
Let me compute it step by step:
Start with the innermost part and work outwards.
...

So, it seems to converge to approximately 2.414, which is 1 + sqrt(2) ≈2.4142.
Wait, but according to my earlier solving, x should be sqrt(2) ≈1.414, but the numerical computation suggests it converges to
approximately 2.414, which is 1 + sqrt(2). So, which one is correct?
Wait, perhaps I made a mistake in setting up the equation.
Wait, let’s re-examine the original expression:

...

But when I tried to solve it earlier, I set x = 1 + 1/(1 + 2/x), which led to x = sqrt(2). But the numerical computation
suggests it converges to 1 + sqrt(2). So, perhaps my initial substitution was incorrect.
Wait, perhaps I need to define it differently. Let me try to define the continued fraction properly.
Wait, let’s solve the system:
From x = 1 + 1/y and y = 1 + 2/x.
Substitute y = 1 + 2/x into x = 1 + 1/y:
x = 1 + 1/(1 + 2/x)
Multiply both sides by (1 + 2/x):

...

Alternatively, perhaps I need to define y differently. Let me try to define y as the expression starting with 1 + 1/(...):
y = 1 + 1/(1 + 2/(1 + 1/(1 + 2/(1 + ...))))
But then, y = x, which brings us back to the original substitution.
...

Which is the same equation as before, leading to x = sqrt(2). But the numerical computation suggests it’s approaching 1 +
sqrt(2). So, perhaps my initial substitution is incorrect.
Alternatively, perhaps the continued fraction is structured such that after the first 1 + 1/(...), the denominator is another
continued fraction similar to x but shifted.
...

Figure 15: Degeneration behavior from Deepseek-R1-Distill-Qwen-14B with LLM-as-judge verification. Problem and solution are
omitted for brevity.
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Problem and solution from ProcessBench

Problem: Let a, b be positive reals with a > b > 1
2 a. Place two squares of side lengths a, b next to each other, such that the

larger square has lower left corner at (0, 0) and the smaller square has lower left corner at (a, 0). Draw the line passing through
(0, a) and (a + b, 0). The region in the two squares lying above the line has area 2013. If (a, b) is the unique pair maximizing
a + b, compute a

b .

Solution:
We begin by finding the equation of the line through (0, a) and (a + b, 0). The slope is:

m =
0 − a

(a + b) − 0
= −

a

a + b

Using point-slope form from (0, a):

y = a −
a

a + b
x

Area above the line in the larger square:
At x = a, the height is:

y = a −
a2

a + b
=

ab

a + b

So the area is a trapezoid:

Area1 =
1
2

(
a +

ab

a + b

)
a =

a3 + 2a2b

2(a + b)

Area above the line in the smaller square:
This is a triangle with height ab

a+b and base b:

Area2 =
1
2

·
ab

a + b
· b =

ab2

2(a + b)

Total Area:

Total = Area1 + Area2 =
a3 + 2a2b + ab2

2(a + b)
=

a(a2 + 2ab + b2)
2(a + b)

=
a(a + b)2

2(a + b)
=

a(a + b)
2

We are given:

a(a + b)
2

= 2013 ⇒ a(a + b) = 4026

Express b in terms of a:

b =
4026

a
− a

Apply the constraints a > b > 1
2 a:

• a > b ⇒ a > 4026
a − a ⇒ a2 > 2013 ⇒ a >

√
2013

• b > 1
2 a ⇒ 4026

a − a > 1
2 a ⇒ a2 < 2684 ⇒ a <

√
2684

So
√

2013 < a <
√

2684. To maximize a + b = 4026
a , we minimize a, so let a =

√
2013. Then b =

√
2013, satisfying the

constraints.
a

b
= 2

Figure 16: An example of problem and solution from OmniMath subset of ProcessBench.
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Incorrect verification

Okay, so I need to review and critique the given solution step by step. Let me go through each step carefully.
Step 0: The solution starts by identifying key points and properties. It mentions that J is the excenter opposite to A, which is
correct. A1 is where the excircle touches BC, and B1, C1 are where it touches the extensions of AC and AB. Then, it says
A1B1 is perpendicular to AB and intersects at D. E is the foot of the perpendicular from C1 to DJ.
Hmm, this seems okay, but I wonder if they’ve correctly identified all the properties. Maybe they should have mentioned more
about the excenter’s properties, like the fact that it’s the intersection of external angle bisectors. But maybe that’s assumed
knowledge.
Step 1: They note that since A1B1 is perpendicular to AB, D is the projection of A1 onto AB. So, D lies on AB and A1D is
perpendicular to AB.
Wait, is that necessarily true? If A1B1 is perpendicular to AB, and they intersect at D, then yes, D is the foot of the
perpendicular from A1 to AB. That seems correct.
Step 2: They examine the excircle and the triangle, mentioning that the excircle is tangent to BC at A1, and the tangents
from A1 to B1 and C1 form right angles with the radii. Then, DJ is a line through the excenter and the intersection point of
the perpendiculars from A1 and B1 to AB.
Hmm, I’m not sure about this part. The line DJ is through the excenter J and point D, which is the foot from A1. But does
it involve perpendiculars from A1 and B1? I think the solution might be conflating different properties here. The excenter is
equidistant from all sides, but DJ is just a line from D to J, not necessarily involving perpendiculars from both A1 and B1.
Maybe this is a misstatement.
Step 3: They state that since E is the foot of the perpendicular from C1 to DJ, angle C1ED is 90 degrees. Then, they argue
that angles BEA1 and AEB1 are equal due to symmetry and properties of the cyclic quadrilateral.
Wait, why is E symmetrically placed? The solution says it’s because of the properties of the excircle and right angles, but I’m
not entirely convinced. Just because E is a foot of a perpendicular doesn’t automatically make it symmetric with respect to
A1B1. Maybe there’s a better reason, like cyclic quadrilaterals or similar triangles, but this step feels a bit hand-wavy.
Step 4: They conclude both angles are 45 degrees because of symmetry and right angles, forming a cyclic quadrilateral. But
I’m not sure if the cyclic quadrilateral part is clearly established. Also, 45 degrees seems specific—does the problem necessarily
lead to that?
Wait, maybe I should draw a diagram to visualize. If A1B1 is perpendicular to AB, and E is the foot from C1 to DJ, which is
connected to the excenter. Hmm, maybe the angles are indeed 45 degrees because of the right angles and the properties of the
excentral triangle, but I’m not entirely certain.
Overall Thoughts: The solution seems to have some correct steps but might be making assumptions without sufficient
justification. For example, in Step 3, the symmetry argument isn’t fully explained. Also, in Step 2, the description of DJ might
not be accurate. The conclusion of 45 degrees might be correct, but the reasoning feels a bit rushed.
Final Answer After considering the steps, I think the solution might have some gaps in justification but arrives at the correct
answer. So, I’ll say yes, but with some reservations.
yes

Figure 17: Incorrect verification by Deepseek-R1-Distill-Qwen-14B for the problem-solution pair in Figure 16.
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D Results on ProcessBench before and after finetuning

Table 3 shows the performance numbers of LLM-as-a-Judge and ThinkPRM on ProcessBench.

Model LLM-as-a-Judge ThinkPRM

OlympiadBench OmniMath OlympiadBench OmniMath

Random baseline 39.1 32.7 39.1 32.7

R1-Qwen-1.5B 5.0 (51.4 %) 5.4 (55.1 %) 76.3 (1.4 %) 75.7 (2.4 %)

R1-Qwen-7B 44.8 (18.2 %) 45.7 (20.9 %) 73.4 (1.1 %) 74.0 (1.4 %)

R1-Qwen-14B 72.8 (13.3 %) 67.8 (18.6 %) 87.3 (2.3 %) 85.7 (2.3 %)

QwQ-32B-preview 50.6 (7.9 %) 55.5 (10.9 %) 73.1 (15.1 %) 73.2 (7.9 %)

Table 3: Average F1-score on OlympiadBench and OmniMath subsets of ProcessBench (Zheng et al., 2024) comparing LLM-as-a-
Judge to ThinkPRM finetuned on 1K examples. Random baseline for OlympiadBench is 39.1% and for OmniMath is 32.7%.
Percentage of bad outputs (repetitions, invalid label formatting, overthinking, etc.) are shown in red. LLM-as-a-judge with
reasoning models suffer from issues that limits their utility as generative verifiers.

E Evaluation details

This section includes exact details on the test-time scaling shown in §4.2

E.1 Predicting verification labels

Following prior work (Snell et al., 2024; Beeching et al.), we aggregate scores from DiscPRM by using the
score of the last step. For ThinkPRM, we first prompt the model to generate the verification chain up to a
maximum of 8192 tokens, then we force decode the string “Is the solution correct?” and use P (“yes")

P (“yes")+P (“no")
as the solution score.

E.2 Best-of-N selection

We sample solutions using a temperature of T = 0.8 for Llama-3.2-3B-Instruct and T = 0.4 for Qwen-2.5-14B.
We instruct all models to think step by step and put the final answer in \boxed{}. All our Best-of-N
experiments use weighted majority voting, which scores final answers based on the sum of the verifier scores
of their solutions (Uesato et al., 2022; Wu et al., 2024; Sun et al., 2024)except for our experiments on AIME
’24, where we use the verifier score directly to rank the solution, as we found this to perform better for all
verifiers.

E.3 Verifier-guided beam search

Under verifier-guided beam search, we sample candidate next steps and score them with the process verifier,
then selects top-K out of these to further expand and so on. Our implementation is based on (Snell et al.,
2024; Beeching et al.), which maintains N beams in total, and samples M candidate next steps per beam.
We set M = 4 for all experiments and run search for a maximum of 20 steps per beam. To sample next steps,
we use T = 0.6 and use double newlines as the step delimiter.

E.4 Sequential scaling of verifier compute

We achieve budget forcing (Muennighoff et al., 2025) by triggering the model to think again for R rounds,
where each round uses a unique trigger phrase that incites the model to revisit or double-check its earlier
verification. We use different trigger phrases for each round since we found that using the same phrase causes
the model to repeat what it did in the last round.

We do a maximum of R = 4 thinking rounds, and use the phrases “Let me double check", “Let’s verify again",
and “Did I miss something?”, for rounds 2, 3, and 4 respectively. We do not investigate deeply into optimizing
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the trigger phrase, but we note that performance may depend on these and we use the same phrases for both
ThinkPRM and LLM-as-a-judge to ensure fair comparison.

E.5 MATH-500 test examples

As running on all 500 examples from MATH-500 will require a lot of compute, we run all our experiments on
100 randomly sampled subsets from MATH-500 (Hendrycks et al., 2021). We pick the 100 problems such
that they cover different difficulty levels, as shown in Figure 18.
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Problem Level
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Difficulty levels in the MATH-500 split we use

Figure 18: Histogram of difficulty levels in our 100-problem
subset from MATH-500.
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Figure 19: Scaling of verifier compute by parallel sampling
of multiple verification CoTs and averaging their scores. Par-
allel scaling (ThinkPRM-14B@4 and ThinkPRM-14B@8)
further boosts performance curve compared to scoring based
on a single CoT (ThinkPRM-14B).

E.6 Additional results on scaling verifier compute

Figure 19 shows results of ThinkPRM-14B of parallel scaling verifier compute by sampling K = 4 and K = 8
CoTs with temperature T = 0.6 and aggregating their scores. Parallel scaling indeed lifts up the accuracy
curve of ThinkPRM-14B compared to standard K = 1 with greedy decoding. However, performance plateaus
rather quickly and K = 8 remains comparable to K = 4, while slightly better at smaller sampling budgets.
Figure 20 compares parallel to sequential scaling under the same token budget. While there is no clear winner,
parallel scaling seems to perform slightly better at best-of-8.

E.7 Scaling training data of ThinkPRM

Here, we show results when training ThinkPRM-14B and ThinkPRM-1.5B using synthetic data from all
PRM800K. The goal is to show that ThinkPRM can still benefit from training on more synthetic data.
Here, we train both R1-Distill-Qwen-1.5B and R1-Distill-Qwen-14B on a total of 65K verification CoTs we
obtained by sampling and filtering as explained in §3.2. Figures 21 and 22 show best-of-N performance with
ThinkPRM-1.5B and ThinkPRM-14B respectively when trained on 65K and compares it to training on 1K
examples. Interestingly, ThinkPRM benefits from additional training, and can further improve the accuracy
curve compared to the 1K-trained version on MATH-500. We note, however, that while training on more
math data boosts performance on MATH-500, we observe some performance drop on out-of-domain tasks
due to the distribution shift.
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Figure 20: Parallel vs. sequential scaling of ThinkPRM compute under the same generation budget with Qwen-2.5-14B generator.
Parallel scaling (model@K) is done by independently sampling K verification CoTs and aggregating their scores. Sequential
scaling is done by prompting the model K times to revise its own verification for K thinking rounds. Both setups generate up
until 8192 tokens per generation. We do not observe a clear winner although parallel scaling seems slightly better especially at
larger sampling budgets.
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Figure 21: Best-of-N results with ThinkPRM-1.5B compar-
ing the version trained on 1K examples (used throughout the
paper) and a version trained on 65K examples. ThinkPRM
benefits from training on more synthetic data as the perfor-
mance can further improve with more training.
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Figure 22: Best-of-N results with ThinkPRM-14B compar-
ing the version trained on 1K examples (used throughout the
paper) and a version trained on 65K examples. ThinkPRM
benefits from training on more synthetic data as the perfor-
mance can further improve with more training.
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Figure 23: Best-of-N performance on MATH-500, GPQA-Physics, and LiveCodeBench with 95% confidence intervals (bootstrap
n = 100). Despite wider intervals due to limited test set size, ThinkPRM-14B consistently outperforms DiscPRM-14B and
LLM-as-a-Judge, especially at larger sampling budgets.

E.8 Results on the Full MATH-500 Dataset

In addition to the 100-problem subset used in several main-text analyses, we report best-of-N results on the
full MATH-500 test set. All results use Qwen-2.5-14B as the generator, and we evaluate a range of
verifiers under identical decoding and sampling budgets.

Table 4 shows that ThinkPRM-14B consistently outperforms all baselines across best-of-8, best-of-16,
and best-of-32 settings. Notably, ThinkPRM-14B improves over strong off-the-shelf PRMs such as Math-
Shepherd and Qwen-2.5-Math-PRM, despite being trained with substantially fewer step-level labels. These
results confirm that the gains observed on smaller subsets extend to the full MATH-500 benchmark and are
not an artifact of limited evaluation size.

Verifier N=8 N=16 N=32

Majority 58.6 69.0 73.2
DiscPRM-14B 71.4 73.2 75.0
Math-Shepherd-7B 68.6 74.0 76.0
Qwen-2.5-Math-PRM-7B 72.6 76.8 78.8
ThinkPRM-14B 73.6 77.2 80.2

Table 4: Best-of-N accuracy (%) on the full MATH-500 dataset using Qwen-2.5-14B as the generator. ThinkPRM-14B achieves
the strongest performance across all sampling budgets.

E.9 Bootstrapped Confidence Intervals for MATH-500, GPQA, and LiveCodeBench

To assess statistical robustness on small-scale evaluations, we report bootstrapped 95% confidence
intervals for the best-of-N accuracy curves on three benchmarks: MATH-500 (100 problems), GPQA-
Physics (86 problems), and LiveCodeBench (200 problems). These results are visualized in Figure 23,
from left to right.

Confidence intervals are computed via bootstrap resampling (n = 100) over test problems, with shaded
regions indicating the 2.5th to 97.5th percentile range. While evaluation sets are relatively small, the observed
performance trends remain consistent across tasks. We focus here on best-of-N—our primary test-time
scaling setup—but note that trends align with our beam search results reported in the main text.

E.10 Results with automatic labels

Table 5 shows performance when filtering training data based on manual labels (PRM800K) vs automatic
labels (Math-Shepherd) (Wang et al., 2023b). ThinkPRM still performs well even with automatic labels,
and comparably to manual labels.
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Model OlympiadBench OmniMath
ThinkPRM-1.5B (PRM800K) 76.3 75.7
ThinkPRM-1.5B (Math-shepherd) 75.8 76.5

Table 5: Comparison of ThinkPRM-1.5B trained on PRM800K vs Math-shepherd step labels.

E.11 Verifier performance in terms of problem difficulty
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Figure 24: ThinkPRM helps with challenging reasoning problems compared to DiscPRM. The generator model here is Qwen-
2.5-14B for MATH-500 and Qwen-2.5-32B-Instruct for GPQA.

Each problem in MATH is annotated based on 1 of 5 difficulty levels so we just use that information. For
GPQA-Physics problems, we first compute the pass@1 rate of Qwen2.5-32B-Instruct for every problem by
sampling 32 solutions for each problem. Then, we bin the pass@1 rates into four different bins and use the
bin assignment for each problem as the difficulty level. As discussed in §5.6, Figure 24 show how ThinkPRM
helps more with verifying hard problems compared to DiscPRM.

Prompt OlympiadBench OmniMath

QwQ-32B
Single Yes/No 50.6 (7.9 %) 55.5 (3.2 %)

Bad-step-index 65.4 (18.3 %) 69.0 (16.8 %)

Decision-for-each-step 40.1 (6.4 %) 36.6 (9.2 %)

R1-Qwen-14B
Single Yes/No 72.8 (13.3 %) 67.8 (18.6 %)

Bad step index 77.7 (17.0 %) 76.6 (17.9 %)

Decision-for-each-step 73.3 (14.6 %) 71.4 (14.7 %)

Table 6: F1-score on OlympiadBench and OmniMath subsets from ProcessBench with different prompts. Ratio of invalid
judgments is shown in red.
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Example problem-solution pair from ProcessBench

Problem:
In quadrilateral ABCD, m∠B + m∠D = 270◦. The circumcircle of △ABD intersects CD at point E, distinct from D. Given
that BC = 4, CE = 5, and DE = 7, compute the diameter of the circumcircle of △ABD.

Solution:

Step 0: To solve this problem, we will use several properties of geometry, particularly related to circles and quadrilaterals. Let’s
break down the steps: First, we understand the given information. We have a quadrilateral ABCD where ∠B + ∠D = 270◦.
The circumcircle of △ABD intersects CD at point E, distinct from D. Additionally, BC = 4, CE = 5, and DE = 7.

Step 1: Next, we apply properties of cyclic quadrilaterals and circles. Since E lies on the circumcircle of △ABD, E is also part
of the circumcircle of □ABCD (assuming ABCD is cyclic, which will be justified later). In a cyclic quadrilateral, opposite angles
sum up to 180◦. Given ∠B +∠D = 270◦, it suggests an error in our initial understanding or misinterpretation, since angles can-
not sum to more than 360◦ in a quadrilateral. However, if we consider the context, let’s assume a correction was intended for the
sake of explanation: Correct interpretation: If we adjust for logical consistency, perhaps the intention was to imply that one of the
angles at B or D is 90◦ (since this would fit the property of cyclic quadrilaterals better, aligning with the geometry principles in-
volved). For this explanation, let’s proceed with an assumption that either ∠B or ∠D is 90◦, aiming for a coherent solution path.

Step 2: We then use the Power of a Point Theorem. The Power of a Point Theorem states that for a point P outside a circle,
the product of the lengths of the two segments from P to the circle equals the product of the lengths of the other two segments
when considering tangents or secants from that point. However, in this case, E is not outside but on the circumference of the
circle, and we apply it differently: Given BC = 4 and CE = 5, DE = 7, and knowing E is part of the circumcircle, we can
apply the property of intersecting chords in a circle, which states that the product of the lengths of the segments of one chord
is equal to the product of the lengths of the segments of the other chord. Thus, in this scenario, we consider BC and CD as
intersecting chords, where CD = BC + CE = 4 + 5 = 9.

BC · CD = CE · DE

Substituting the known values:

4 · 9 = 5 · DE

36 = 5 · DE

Thus,

DE =
36
5

= 7.2.

Step 3: This discrepancy suggests a reevaluation of the given values or a misunderstanding in their application within the
context provided. However, for the purpose of demonstrating the method:

Step 4: Finally, we find the diameter of the circumcircle of △ABD. The key to finding the diameter involves rec-
ognizing that the circumcircle’s radius or diameter is crucial for calculating distances involving points A, B, and D.
However, without specific details about how E relates to these points geometrically beyond being on the circle, or ad-
ditional information such as the length of another segment or angle measures, directly calculating the diameter becomes complex.

Step 5: The question’s focus on E and its relation to BC, CE, and DE might suggest looking at the properties of chords in
a circle or applying trigonometric relationships based on the angles given initially. However, due to the discrepancy noted
and the complexity introduced by the misinterpretation of the angle condition, a direct calculation for the diameter of the
circumcircle of △ABD isn’t straightforward with the information provided.

Step 6: Given the complexities and discrepancies in the original problem statement, particularly with the angles summing to
270◦ in a quadrilateral, the solution path becomes less clear. The explanation provided aimed to creatively interpret and apply
geometric principles under the constraints of the given information. However, the direct calculation for the diameter of the
circumcircle of △ABD requires additional, precise information about the positions and relationships of the points A, B, C, D,
and E within the quadrilateral and its circumcircle.

Figure 25: An example problem and solution from the OlympiadBench (He et al., 2024) in ProcessBench (Zheng et al., 2024).

F More details on LLM-as-judge verification

The instruction used for LLM-as-judge verification in §3.1 is shown in Figure 27, which we refer to as
Single-label. Table 6 shows performance of QwQ-32B-Preview and Qwen-Deepseek-R1-14B with two more
instructions. Bad-step-index refers to instructing the model to find the index of the first incorrect step and
then if a step is found generate a single yes/no label regarding the solution correctness. Decision-for-each-
step instructs the model to critique and produce a boxed label for each step. This instruction is shown in
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Example from QwQ-32B-Preview

Let’s verify step by step:
Step 0: The initial step seems to correctly identify the given information in the problem. It mentions the quadrilateral
ABCD with angles at B and D summing to 270◦, and the circumcircle of △ABD intersecting CD at E, distinct from
D. The lengths BC = 4, CE = 5, and DE = 7 are also noted. This step is accurate in summarizing the problem
statement.

Step 1: This step attempts to apply properties of cyclic quadrilaterals but seems to get confused about the sum of
angles in quadrilateral ABCD. It is mentioned that in a cyclic quadrilateral, opposite angles sum to 180◦, but the given
sum of angles ∠B and ∠D is 270◦, which indeed seems inconsistent. However, the step then suggests assuming that one
of the angles is 90◦ for the sake of explanation, which is an adjustment to proceed with the solution. This part is a bit
problematic because it alters the given information, but perhaps there was a misinterpretation in the problem statement.

Step 2: Here, the Power of a Point Theorem is applied to points related to the circle. However, there is confusion
in calculating the length of CD. It states that CD = BC + CE = 4 + 5 = 9, but since E is a point on CD distinct
from D, and DE is given as 7, this suggests that CD = CE + DE = 5 + 7 = 12, not 9. This is an error in calculation.
Furthermore, the application of the Power of a Point Theorem seems misapplied because E is on the circle, not outside
it, so the theorem should be applied differently, possibly considering intersecting chords.

Step 3: Recognizing the discrepancy in the previous step, the solution acknowledges the need for reevaluation, which is
a good practice. However, without correcting the earlier mistake in calculating CD, the subsequent steps may be built
on incorrect foundations.

Step 4: This step aims to find the diameter of the circumcircle of △ABD, which is the main goal of the
problem. It notes that the diameter is related to the circumradius, but without specific details about the triangle’s
sides or angles, it’s challenging to compute directly. The solution hints at the need for more information, which is accurate.

Step 5: The insight here is that the relationship between E and the other points might provide the necessary
information through chord properties or trigonometric relationships. However, due to the earlier discrepancies, this step
does not lead to a concrete calculation.

Step 6: The conclusion reflects on the complexities and discrepancies in the problem and the solution approach. It
acknowledges that the direct calculation for the diameter is not straightforward with the given information, which is a
fair assessment.

Overall, while the solution attempt shows an understanding of relevant geometric principles, there are significant errors
in calculation and application of theorems, particularly in Step 2. These errors propagate through the subsequent steps,
leading to an inconclusive solution. Therefore, the solution is not correct.

\boxed{no}

Figure 26: Example verification chain generated by QwQ-32B-Preview in response to the problem-solution pair in Figure 25.
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LLM-as-a-judge prompt

The following is a math problem and a solution (split into steps, enclosed with tags and indexed from 0):

[Math Problem]
{problem}

[Solution]
{prefix}

Your task is to review and critique the solution step by step. Your output must be in the following format:

Step 0: <critique>
Step 1: <critique>
. . .
Step n: <critique>

After your analysis, return yes/no depending on whether the solution is correct.
Please put your final answer (i.e., yes/no) in \boxed{}

Figure 27: Prompt used for LLM-as-a-judge verification in §3.1

Figure 13. We observe high ha variance in verification performance and invalid judgment ratio depending on
the prompt.

We also an example from ProcessBench in Figure 25 and the generated verification chain from QwQ-32B-
Preview in Figure 26.

G Examples from ThinkPRM

Figure 29 shows an example of a verification CoT from ThinkPRM-14B on a problem and solution from the
OmniMath subset in ProcessBench, shown in Figure 28.
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Example verification chain-of-thought

Problem: A solid rectangular prism has dimensions 4 by 2 by 2. A 1 by 1 by 1 cube is cut out of the corner creating
the new solid shown. What is the surface area of the new solid?
Solution:
Step 1: To determine the surface area of the new solid after cutting a 1 by 1 by 1 cube from one corner of a 4 by 2 by
2 rectangular prism, we will follow these steps: First, calculate the surface area of the original rectangular prism. The
original rectangular prism has dimensions 4 by 2 by 2. The surface area Aoriginal of a rectangular prism is given by:

Aoriginal = 2(lw + lh + wh)

where l = 4, w = 2, and h = 2. Substituting these values in, we get:

Aoriginal = 2(4 · 2 + 4 · 2 + 2 · 2) = 2(8 + 8 + 4) = 2 · 20 = 40

Step 2: Second, determine the effect of cutting out the 1 by 1 by 1 cube. When we cut out a 1 by 1 by 1 cube from
one corner, we remove three faces of the cube (one face for each dimension) but add three new faces of the same size.
Each face of the cube is 1 by 1, so the area of each face is 1 square unit.
Step 3: Third, calculate the change in surface area. Removing the three faces of the cube reduces the surface area by
3 × 1 = 3 square units. Adding the three new faces increases the surface area by 3 × 1 = 3 square units. Therefore, the
net change in surface area is:

3 − 3 = 0
Step 4: Finally, calculate the total surface area of the new solid. Since the net change in surface area is zero, the
surface area of the new solid remains the same as the original surface area:

Anew = Aoriginal = 40

Thus, the surface area of the new solid is 40 .

Figure 28: Problem and solution from the OmniMath subset of ProcessBench. The verification CoT output by ThinkPRM is
shown in Figure 29
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Example verification chain-of-thought from ThinkPRM-14B

Verification: <think>
Alright, I’ve got this math problem about finding the surface area of a solid after cutting out a small cube from a larger
rectangular prism. The original prism has dimensions 4 by 2 by 2, and a 1 by 1 by 1 cube is removed from one corner.
The provided solution has four steps, and I need to review each one to see if it’s correct.
Let’s start with Step 1.
Step 1: The solution calculates the surface area of the original rectangular prism. The formula used is Aoriginal =
2(lw + lh + wh), which is correct for a rectangular prism. Plugging in the dimensions l = 4, w = 2, and h = 2, the
calculation goes like this:

Aoriginal = 2(4 · 2 + 4 · 2 + 2 · 2) = 2(8 + 8 + 4) = 2 · 20 = 40
This seems right. So, Step 1 is \\boxed{correct}.
Step 2: Here, the solution talks about the effect of cutting out the 1 by 1 by 1 cube from one corner. It says that
removing the cube takes away three faces but adds three new faces. Each face is 1 by 1, so each has an area of 1 square
unit.
Wait a minute, is this accurate? When you cut out a cube from a corner, you are indeed removing material, but how
does that affect the surface area?
Let me visualize this. Imagine a rectangular prism and cutting out a small cube from one corner. The cube has three
faces exposed to the outside of the prism. When you remove the cube, those three faces are no longer part of the surface
area. However, the removal also creates three new internal faces where the cube was taken out, which are now part of
the surface area.
So, the solution says that removing three faces reduces the surface area by 3 square units and adding three faces
increases it by 3 square units, leading to no net change. That seems logical at first glance.
But is this actually correct? Let me think deeper.
When you remove the cube, you are taking away three 1x1 faces from the original prism, which indeed reduces the
surface area by 3 square units. However, the new faces created are also 1x1, and there are three of them, so that adds 3
square units back. So, the total surface area remains the same.
But I’m not entirely sure. Maybe I should consider if the new faces are actually exposed or if they are somehow internal.
Wait, no. When you cut out the cube from the corner, the three new faces are now part of the exterior of the new solid,
so they should be included in the surface area.
Therefore, the net change is indeed zero, and the surface area remains 40.
Hmm, but I recall that sometimes when you make a cut, the surface area can change in unexpected ways. Maybe I
should double-check this.
Let me consider a simpler example. Suppose I have a cube and I cut out a smaller cube from one corner. How does the
surface area change?
Original cube: surface area is 6s2, where s is the side length.
After cutting out a smaller cube from one corner, I remove three faces of the smaller cube and expose three new faces.
So, the change in surface area is −3s2 + 3s2 = 0, similar to what the solution says.

Alternatively, perhaps I can think about the new solid’s dimensions.
But I think the initial approach is correct.
Therefore, Step 2 is \\boxed{correct}.

Step 3: This step calculates the net change in surface area as zero, which follows from Step 2.

Since the net change is zero, the surface area remains the same as the original.
So, Step 3 is \\boxed{correct}.
Step 4: Concludes that the surface area of the new solid is 40, the same as the original.
Therefore, Step 4 is \\boxed{correct}.
Wait, but I recall that sometimes when you make a cut, especially in certain ways, the surface area can change. But in
this case, it seems to hold up.
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Alternatively, maybe I should consider if the cube is cut from a corner where only two faces are on the exterior.
Wait, no. In a rectangular prism, each corner is where three faces meet, so cutting out a cube from a corner would
remove three faces and expose three new ones.
But perhaps I should consider if the cube is cut from a corner where one of the original faces is larger than 1x1.
Wait, the original prism is 4x2x2, and the cube being removed is 1x1x1, so the faces being removed are indeed 1x1.
So, the calculation seems accurate.
Alternatively, maybe I can think about it in terms of the total surface area.
Alternatively, perhaps I can think about the surface area of the new solid directly.
Let me try that.
The new solid has the original surface area minus the three 1x1 faces that were removed, plus the three new 1x1 faces
that are now exposed.
So, 40 - 3 + 3 = 40.
Alternatively, perhaps I can think about the surface area as the sum of all exterior faces.
But I think the initial approach is correct.
Therefore, the solution is correct.
But the instruction says to review and critique each step, and determine if the whole solution is correct.
So, in this case, all steps seem correct, leading to the conclusion that the surface area remains 40. </think>

Figure 29: Example output by ThinkPRM-14B, where it verifies and labels every step in the provided prefix via a long verification
CoT. The problem and solution are in Figure 28
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Verification of long CoT solution

Problem:
Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in the form (r, θ), where
r > 0 and 0 ≤ θ < 2π.

Solution:
Okay, so I need to convert the rectangular coordinates (0, 3) to polar coordinates. Let me recall how to do this.
From what I remember, polar coordinates are given as (r, θ), where r is the distance from the origin to the point,
and θ is the angle made with the positive x-axis. The formulas to convert between rectangular (x, y) and polar (r, θ)
coordinates are:

x = r cos θ, y = r sin θ

To find r, we use:

r =
√

x2 + y2

To find θ, we use:

θ = arctan
(

y

x

)
But I need to be careful with the quadrant since arctan may be undefined or ambiguous when x = 0.
Given x = 0 and y = 3, compute:

r =
√

02 + 32 =
√

9 = 3
So r = 3. For θ, since x = 0, the expression arctan(y/x) is undefined due to division by zero.
However, because the point lies on the positive y-axis, θ = π

2 . This is the standard angle for points directly above the
origin.
Therefore, the polar coordinates are \boxed{(3, \frac{\pi}{2})}.
Wait, let me check if there’s another way to get this. Since the point is (0, 3), which is on the positive y-axis, the angle
is indeed π

2 .
Could θ be 3π

2 ? No, 3π
2 is the negative y-axis, which is the opposite direction. Since the point is on the positive y-axis,

θ = π
2 .

Let me recall again that when converting from rectangular to polar, θ is calculated as arctan(y/x), but when x = 0, θ is
either π

2 or 3π
2 depending on the sign of y. Here y > 0, so the correct angle is π

2 .
...

ThinkPRM-1.5B:
<think>
Step 1: The student correctly recalls the formulas for converting from rectangular to polar coordinates:

x = r cos θ, y = r sin θ

and
r =

√
x2 + y2, θ = arctan

(
y

x

)
This step is \boxed{correct}.
Step 2: The student computes:

r =
√

02 + 32 = 3
This is \boxed{correct}.
Step 3: The student identifies that θ = arctan(3/0) is undefined but correctly infers that the point lies on the positive
y-axis, hence θ = π

2 . This reasoning is also \boxed{correct}.
...
</think>

Figure 30: Example of verification of long CoT solution from Qwen3-1.7B-thinking using ThinkPRM-1.5B. ThinkPRM extracts
and verifies individual steps embedded in the long CoT.
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