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Abstract

While reinforcement learning with verifiable rewards (RLVR) is effective to im-
prove the reasoning ability of large language models (LLMs), its reliance on human-
annotated labels leads to the scaling up dilemma, especially for complex tasks.
Recent self-rewarding methods investigate a label-free alternative to unlock the
reasoning capabilities of LLMs, yet they frequently encounter the non-negligible
training collapse issue, as the single-view supervision signal easily forms the
self-consistent illusion, yielding the reward hacking. Inspired by the success of
self-supervised learning, we propose Co-rewarding, a novel self-supervised RL
framework that improves training stability by seeking complementary supervision
from another views. Specifically, we instantiate Co-rewarding in two ways: (1) Co-
rewarding-I is a data-side instantiation that derives reward signals from contrastive
agreement across semantically analogous questions; and (2) Co-rewarding-II is a
model-side instantiation that maintains a slowly-updated reference teacher with
pseudo labels to realize self-distillation. Intuitively, such instantiations introduce
different levels of discrepancy to increase the difficulty of training collapse on triv-
ial reasoning solutions. Empirically, Co-rewarding exhibits stable training across
various setups, and outperforms other self-rewarding baselines by +3.31% im-
provements on average on multiple mathematical reasoning benchmarks, especially
by +7.49% on Llama-3.2-3B-Instruct. Notably, Co-rewarding reaches or even
surpasses RLVR with ground-truth (GT) label in several cases, such as a Pass@1
of 94.01% on GSM8K with Qwen3-8B-Base remarkably higher than GT. Our code
is publicly available at https://github.com/tmlr-group/Co-rewarding.

1 Introduction

Large language models (LLMs) [1, 2, 3] have demonstrated remarkable general-purpose capabilities
in a wide range of linguistic tasks [4, 5, 6, 7]. To further elicit their reasoning ability in complex
scenarios, reinforcement learning with verifiable rewards (RLVR) [8, 9] is developed for post-training
with externally verifiable signals like program execution results [10] or mathematical equivalence [8].
Despite the impressive improvement, the reliance on high-quality ground-truth (GT) labels of RLVR
remains as a major bottleneck [11, 12] in the spirit of the scaling law, which subsequently motivates
the emerging exploration of self-rewarding methods with unlabeled data [13, 14, 15].

One prominent line of such label-free methods leverages the internal signals (e.g., entropy [16, 17]
and self-certainty [13]) to strengthen the confidence of the model in reasoning. Another critical line
seeks the answer-level consensus [14, 18] to construct pseudo labels as reward basis. while effective
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Figure 1: Illustration of Co-rewarding framework: Unlike single-view methods that rely only on
internal reward signal on original question (a), Co-rewarding introduces complementary supervision.
On the data side (b), paraphrased questions yield pseudo-labels for cross-reference. On the model
side (c), teacher model isolated from current policy provides stabilized pseudo-labels for updates.

initially, these self-rewarding approaches frequently exhibit non-negligible training collapse [19]
(indicated as Figure 3), which limits the scalability of such label-free training manners.

The collapse phenomenon stems from reward hacking [20] under self-consistent illusion: the reward
signal is internally produced by the policy model from a single-view data perspective, which is
easily trapped by trivial solutions along with training (see Figure 7). Specifically, for entropy-
or certainty-based rewards, the policy model may concentrate probability mass on a small set of
tokens and produce repetitive strings that minimize entropy or maximize self-certainty [19]. And for
consensus-based rewards, the policy model can converge to a consistent yet incorrect answer that
attains high consensus across rollouts [18]. Overall, the policy model continually reduces uncertainty
without sustained gains in correctness, inflating the reward but eroding exploration and diversity. It
ultimately collapses when a persistent hacking strategy emerges.

To this end, we introduce Co-rewarding, a self-supervised RL framework that seeks complementary
supervision from another views, inspired by self-supervised learning [21, 22, 23]. Conceptually, one
fundamental characteristic of self-rewarding methods lies on that supervision intertwined with current
policy on single-view outputs, for which we propose to seek reasoning invariance across different
views (see Figure 1). Specifically, we investigate two initiations of Co-rewarding: (1) Co-rewarding-I:
a data-side initiation that constructs rewards via contrastive agreement across semantically analogous
questions, each providing pseudo labels for the other; and (2) Co-rewarding-II: a model-side initiation
that introduces an extra teacher with dynamically updated policy and provides stable pseudo-labels
insulated from current online policy. By introducing cross-view supervision on data and decoupling
the reward signal from the current policy, Co-rewarding effectively mitigates training collapse and
yields stable self-supervised RL training. Experiments across multiple datasets validate the stability
and superiority of Co-rewarding, compared to several recent baselines across several LLM families
including Qwen3/2.5 and Llama. Notably, both Co-rewarding-I and -II reach or exceed training with
ground-truth labels in several settings, such as achieving up to 94.01% Pass@1 on GSM8K.

2 Co-rewarding

2.1 Conceptual Philosophy: Invariance beyond the Single-view

At the core of self-rewarding methods lies a fundamental tension: the model derives supervisory
signals from its own outputs, inevitably intertwining supervision with policy and risks collapse. True
reasoning competence, however, cannot be reduced to the mere correctness of isolated answers. It
should instead reflect invariance that extends beyond the single-view output for consistency. This calls
for training signals that remain valid across different data views or persist throughout the temporal
evolution of the model, providing a more reliable basis on which self-supervised RL can rely. In this
aspect, stability arises from invariance that prevents reasoning against superficial variations in data
and guides the model towards increasingly valid reasoning trajectories throughout training.
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This philosophy yields our Co-rewarding framework, whose core idea is to ground self-supervised
RL in invariance rather than the suspicious single-view feedback. We instantiate it in two orthogonal
ways: by enforcing analogy-invariance on the data side (Co-rewarding-I) and by disentangling
supervision through temporal invariance on the model side (Co-rewarding-II).

2.2 Two Initiations of Co-rewarding Framework

Co-rewarding-I: on the Data Side. Inspired by contrastive learning, such as SimCLR [21] and
InfoNCE [24], where two views of the same data are encouraged to have similar representations,
we hypothesize an analogy-invariance inductive property of LLMs in eliciting reasoning capacity:
questions that share the same mathematical essence but differ in surface form (e.g., via paraphrasing,
background substitution, or reformatting) should elicit the comparably valid and similar reasoning
results. This forms the foundation for a self-referential training signal: contrastive agreement among
different question variants can serve as an optimization proxy. Co-rewarding-I defines contrastive
agreement as a principle that aligns model reasoning outputs, treating consistent inter-view agreement
as a signal for valid inference. This complements single-view self-rewarding strategies by introducing
a form of collective validity verification with broader input consideration.

Building upon the discussed contrastive agreement, we initiate our Co-rewarding-I as illustrated in
Figure 1. Formally, its learning objective can be formulated based on GRPO:

JCo-rewarding-I(θ) = Ex∈D,{yi}G
i=1∼πθold (·|x)

Rθ(Â)︸ ︷︷ ︸
Joriginal(θ)

+ Ex′∈D′,{yi
′}G

i=1∼πθold (·|x′)Rθ(Â
′)︸ ︷︷ ︸

Jrephrased(θ)

,
(1)

where the relative advantages are estimated by the cross-refereed supervision as follows:

Âi =
r(y′v, yi)−mean({r(y′v, yi)}Gi=1)

std({r(y′v, yi)}Gi=1)
, Â′

i =
r(yv, y

′
i)−mean({r(yv, y

′
i)}Gi=1)

std({r(yv, y′i)}Gi=1)
. (2)

Specifically, given a set of original questions, we utilize the rephrased version that keeps the semantical
equivalence for the model to respond, and then collect the self-generated pseudo-labels based on the
majority voting mechanism [18] as follows to supervise learning on the counterparts,

yv ← argmax
y∗

G∑
i=1

1[ans(yi) = ans(y∗)], y′v ← argmax
y∗

G∑
i=1

1[ans(y′i) = ans(y∗)]. (3)

The overall pipeline can be viewed as a dual-path structure with cross-reference in the reward shaping
process, it may also be compatible with other self-generated feedbacks [25] on the output-side
information due to the generality of the core idea. While in the current version, we choose the
majority voting mechanism in the implementation for the empirical effectiveness and simplicity.

We summarize the pseudo code of Co-rewarding-I in Algorithm 1. Our contrastive objective operates
on self-generated reasoning answers, encouraging the model to align its reasoning results to different
questions that share the similar semantic intent. Formally, for each input question, the signal of
Co-rewarding-I increases when the model’s output is consistent with the majority answer obtained
from its analogical counterparts, and decreases when it diverges. This contrastive agreement promotes
semantic invariance, implicitly increasing the difficulty of reaching trivial solutions to obtain the
reward (e.g., achieving the arbitrary answers but consistent on single input) by involving data-side
analogy. We leave a more intuitive case study in the Appendix E.10 to present the rephrased questions.

Co-rewarding-II: on the Model Side. On the data side, our Co-rewarding-I provides complementary
supervision by involving question analogy, while its pseudo-labels are still generated by the current
online policy and may depend on rephrasing quality; consequently, supervision remains partially
entangled with the policy. Inspired by self- or weakly supervised methods [26, 27] like the representa-
tive BYOL [22], DINO [23], and Co-teaching [28], which share the common intuition of introducing
an auxiliary network to provide supervision beyond the current model, we initiate Co-rewarding-II
from another view of complementary supervision: a model-side strategy that sources pseudo-labels
from a teacher reference, which disentangle the self-supervision reward from the online policy. To
avoid the heavy cost of adding and maintaining another LLM in training, Co-rewarding-II reuses
the GRPO reference model as the teacher to generate the rollouts and produce pseudo-labels. In
particular, the teacher is dynamically updated as an exponential moving average (EMA) of the student
policy to ensure pseudo-label quality improving as the policy improves.
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Intuitively, we illustrate Co-rewarding-II in Figure 1. Its learning objective can be formulated as:

J (k)
Co-rewarding-II(θ) = E

x∈D,{yi}Gi=1 ∼ π
(k)
θold

(·|x),︸ ︷︷ ︸
policy student rollout

{ỹj}G̃j=1 ∼ π̃
(k)
ref (·|x)︸ ︷︷ ︸

reference teacher rollout

Rθ(Â
(k)), (4)

where {yi}Gi=1 are policy rollouts and {ỹj}G̃j=1 are reference teacher rollouts at the k-th training step,
and the estimated advantageR(Â(k)) is computed as follows:

Â
(k)
i =

r(ỹ
(k)
v , yi)−mean({r(ỹ(k)v , yi)}Gi=1)

std({r(ỹ(k)v , yi)}Gi=1)
, ỹ(k)v = argmax

y∗

G̃∑
j=1

1[ans(ỹj) = ans(y∗)], (5)

where the pseudo label ỹ(k)v is obtained via majority voting from reference rollouts, and the reference
model is updated via an EMA with the policy to play a role of a slowly updated teacher:

π̃
(k)
ref ← α(k) · π̃(k−1)

ref + (1− α(k)) · π(k)
θold

, α(k) = 1− (αend − αstart)

2

(
1 + cos

(
πk

K

))
(6)

where α(k) ∈ (0, 1) is the EMA weight, updated according to a cosine annealing schedule from
αstart to αend, such that the teacher is updated rapidly at the beginning and progressively more slowly,
thereby evolving smoothly and remaining temporally decoupled from the current online policy.

We summarize the pseudo code of Co-rewarding-II in Algorithm 2. This design can be interpreted
as a kind of self-distillation, in which a slowly updated teacher supervises a faster-moving student.
Such a paradigm breaks the single-step on-policy feedback loop inherent in existing self-rewarding
methods [13, 17, 18], raises the cost of exploiting trivial low-entropy shortcuts or spurious consensus,
and offers a stable reward source without introducing an additional LLM or optimizer. In this way, it
effectively prevents training collapse by implicitly seeking a temporal invariance for true reasoning.

Remark 1. Overall, the two instantiations of Co-rewarding embody our core idea from different
perspectives: I leverages data-side analogy-invariance to provide cross supervision, while II employs
model-side self-distillation to stabilize learning. Together, they reflect that stable self-supervised
reasoning elicitation can emerge from both the diversity of data perspectives and the disentanglement
of supervision signals. Moreover, Co-rewarding offers a flexible framework, in which key components,
such as pseudo-labeling strategies, data rephrasing techniques, teacher model update rules, and policy
optimization, can be seamlessly substituted with other advanced approaches [9].

3 Experimental Results

Superior Performance of Co-rewarding over self-rewarding baselines. Table 1 and Table 4
report the experimental results trained on MATH and DAPO-14k, respectively. We observe that both
Co-rewarding-I and Co-rewarding-II occupy more darker cells in the tables, demonstrating stronger
performance than other self-rewarding SoTA baselines. Specifically, Co-rewarding-I achieves an
average relative performance gain of +3.46% over the best baselines across three mathematical
benchmarks and models in Table 1, while Co-rewarding-II achieves a larger average relative gain of
+7.29% in Table 4. Additional results experimental are provided in Appendix E.

Surpassing GT-Reward in certain benchmarks. Surprisingly, we observe that both Co-rewarding-I
and Co-rewarding-II outperform GT-Reward in certain cases. On GSM8K, they together achieve an
average relative improvement of +2.94% over GT-Reward in Table 1, while Co-rewarding-II further
delivers a larger gain of +5.44% in Table 4. Co-rewarding also shows advantages on the coding
benchmark CRUX in several cases. Notably, Co-rewarding-II achieves a remarkably high Pass@1 of
94.01% with Qwen3-8B-Base on GSM8K. These findings highlight the potential of self-supervised
RL to elicit stronger reasoning abilities, particularly with Co-rewarding mitigating training collapse.

Importance of stability for performance gain. As shown in Table 4, self-rewarding baselines exhibit
noticeably limited performance gain in certain cases, such as Self-Certainty with Qwen3-4B-Base on
GSM8K. Figure 2 further reflects this by showing that baselines improve quickly at the beginning but
soon collapse on GSM8K and AMC, whereas Co-rewarding sustains steady progress. This collapse
restricts the baselines to effective training on only a small portion of the data, preventing further
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Table 1: Main Results (%) of Co-rewarding and baselines trained on MATH. Cell background
colors indicate relative performance: darker colors denote better results within each model group.

Training Set: MATH Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Before RL 72.4 27.82 20.93 23.41 54.75 50.89 52.92
- GT-Reward [8] 82.6 87.26 54.22 30.52 63.25 52.78 57.11

- Self-Certainty [13] 80.2 80.74 50.75 27.20 64.38 50.98 54.17
- Entropy [17] 80.2 87.19 49.54 29.38 62.00 51.81 54.86
- Majority-Voting [18] 79.8 89.76 49.09 30.52 63.38 51.80 56.93
- Co-rewarding-I (Ours) 81.2 93.70 51.20 30.81 66.00 55.79 59.95
- Co-rewarding-II (Ours) 80.8 92.42 53.46 30.23 62.83 60.70 57.50

Qwen3-4B-Base
Before RL 71.2 26.15 21.08 11.00 38.88 46.43 47.23
- GT-Reward [8] 78.6 89.76 51.20 26.07 55.38 47.80 53.96

- Self-Certainty [13] 71.6 71.79 38.86 22.37 57.00 48.15 48.93
- Entropy [17] 77.0 88.10 47.44 25.59 52.88 50.44 49.90
- Majority-Voting [18] 77.4 90.07 45.33 26.54 57.50 48.78 54.35
- Co-rewarding-I (Ours) 78.8 91.28 46.08 26.64 56.50 50.35 53.26
- Co-rewarding-II (Ours) 78.0 88.86 45.93 26.25 55.00 51.30 53.88

Llama-3.2-3B-Instruct
Before RL 39.2 65.73 10.54 9.86 25.37 57.32 31.14
- GT-Reward [8] 47.0 77.94 22.14 9.57 31.87 47.51 34.32

- Self-Certainty [13] 43.4 74.91 18.83 9.95 25.87 54.88 33.34
- Entropy [17] 43.4 66.19 20.18 11.66 24.62 54.70 33.52
- Majority-Voting [18] 46.8 78.77 20.48 11.00 31.25 47.96 33.18
- Co-rewarding-I (Ours) 50.2 79.45 23.80 11.28 29.88 48.89 33.77
- Co-rewarding-II (Ours) 49.8 79.30 22.59 10.80 30.63 49.90 33.61

improvements with continued training. These observations underscore the importance of avoiding
training collapse in self-supervised RL to unlock further performance gains.

Each part contributes to Co-rewarding. Table 5 summarizes the ablations. For Co-rewarding-I,
replacing cross supervision with training only on original or rephrased data yields comparable results,
but both underperform the full method. This indicates that the quality of original and rephrased data
is similar, while the cross supervision across views provides the crucial gains. For Co-rewarding-II,
removing the EMA update of the reference teacher model causes clear degradation, highlighting the
necessity of teacher updates for improving pseudo-label quality.

Co-rewarding alleviates collapse and provides stable self-supervised RL. We use 5,000 questions
from the MATH test split as a validation set to monitor training process. Figure 3 shows the all three
self-rewarding baselines collapse on both MATH and DAPO-14k. Co-rewarding-I remains stable
on MATH but still collapses on DAPO-14k, suggesting that its stability depends on the property of
training data. A plausible explanation is that MATH contains more questions with rich background
descriptions than DAPO-14k, which makes rephrasing more effective in amplifying differences
between original and rephrased data, thereby strengthening contrastive agreement. In contrast, Co-
rewarding-II consistently maintains stability across datasets, as its design decouples supervision from
the online policy and thus breaks the entanglement between supervision signals and the policy itself.

4 Conclusion

In this work, we introduced Co-rewarding, a self-supervised RL framework that elicits the reasoning
capability of LLMs through complementary supervision. Unlike prior self-rewarding methods that
entangle rewards with single-view outputs and risk collapse, Co-rewarding establishes stability by
decoupling the reward signal from the current online policy with the single-view output. Specifically,
Co-rewarding-I leverages contrastive agreement across semantically analogous questions, while
Co-rewarding-II employs a dynamically updated teacher to provide insulated pseudo-labels. Together,
these designs construct cross-referable reward signals without explicit labels, aligning RL with
invariances in reasoning rather than the mere correctness of isolated outputs. We hope this work will
inspire further exploration into self-supervised RL for reasoning to advance the development.
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A Preliminary

Problem Setups. Given a LLM πθ parameterized by θ and a dataset D of question–answer pairs
(x, a), the model generates a response y ∼ πθ(· | x) autoregressively. Let y = (y1, . . . , yn), where
each token is sampled as yt ∼ πθ(· | x, y<t) given the generated prefix y<t. We consider the LLM
outputs a stepbystep reasoning trace and a final answer. A verifiable reward function r(a, y) compares
the extracted answer ans(y) with the ground truth a as follows:

r(a, y) =

{
1 If ans(y) is correct with answer a,
0 If ans(y) is incorrect with answer a.

(7)

Then, the general objective of training LLM for reasoning via RLVR [8, 9] can be formulated with
the policy model πθ as follows:

max
πθ

E(x,a)∈D, y∼πθ(x)[r(a, y)− β ·KL[πθ(y|x)||πref(y|x)]], (8)

where πref is an initial reference policy, and β is a coefficient controlling the KL divergence to prevent
excessive deviation from the reference model. Intuitively, the training target is to maximize the
reward in passing specific reasoning questions while maintaining the general capability of LLM.

Group Relative Policy Optimization (GRPO). In practice, we adopt GRPO [8], a widely used and
representative optimization method for objective Eq. (8) that estimates the advantage by normalizing
the reward across multiple sampled outputs for the same question. Specifically, for a given question x,
GRPO samples G outputs from the old policy πold as {yi}Gi=1 ∼ πold(·|x). It then computes a reward
for each output yi via a deterministic reward function, forming a group of rewards {r(a, yi)}Gi=1 to
estimate the advantage Âi as follows:

Âi =
r(a, yi)−mean({r(a, yi)}Gi=1)

std({r(a, yi)}Gi=1)
. (9)

Then, the target policy is optimized by maximizing the advantage while ensuring the policy model
remains close to the reference policy:

JGRPO(θ) = E(x,a)∈D,{yi}G
i=1∼πθold (·|x)

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

(
min

[
ci,t(θ)Âi,t, clip(ci,t(θ), 1− ϵ, 1 + ϵ)Âi,t

]
− βDKL(πθ||πref)

)
︸ ︷︷ ︸

Rθ(Â)

,

(10)

where

ci,t(θ) =
πθ(yi,t|x, yi,<t)

πθold(yi,t|x, yi,<t)
, DKL(πθ||πref) =

πθ(yi,t|x, yi,<t)

πref(yi,t|x, yi,<t)
− log

πref(yi,t|x, yi,<t)

πθ(yi,t|x, yi,<t)
−1. (11)

Note that the clip(·, 1− ϵ, 1 + ϵ) in Eq. (10) is used to ensure that updates do not deviate excessively
from the old policy by bounding the policy ratio between 1− ϵ and 1+ ϵ in a risk functionR(Â). We
also provide a comprehensive discussion on additional training variants for RLVR, such as DAPO [9]
and Dr. GRPO [29], which we leave in Appendix B.

B Related Work

Large Language Model Reasoning. LLMs have shown impressive performance on vast tasks that
require reasoning, including solving mathematical problems [30], writing code [10], and logical
questions [31]. One of the key techniques that has improved LLM reasoning is Chain-of-Thought
(CoT) prompting [32]. CoT encourages the model to generate intermediate reasoning steps before
producing the final answer, which has been shown to enhance performance on tasks like arithmetic,
commonsense reasoning, and symbolic reasoning. Subsequent work has extended CoT by integrating
it with various strategies, including compositional generalization [33, 34] and employing structural
reasoning approaches [35, 36, 37]. In addition, CoT serves as a fundamental framework for techniques
like fine-tuninig [38], argentic workflow [39], and paving the way for inference-time scaling [40].
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Algorithm 1 Co-rewarding-I

1: Input: policy model πθ, learning rate η, training dataset D, rephrased training dataset D′, total
iterations K.

2: Output: trained policy model πθ.
3: for all iteration k = 1, . . . ,K do
4: Sample mini-batch inputs B ⊆ D and B′ ⊆ D′.
5: for all input question x ∈ B and x′ ∈ B′ do
6: Sample rollouts {yi}Gi=1 ∼ πθold(· | x).
7: Sample rollouts {y′i}G

′

i=1 ∼ πθold(· | x′).
8: Obtain pseudo labels by Eq. (3).
9: Estimate relative advantages by Eq. (2).

10: Compute the objective by Eq. (1).
11: Update θ ← θ − η∇θJCo-rewarding-I(θ).
12: end for
13: end for

Algorithm 2 Co-rewarding-II

1: Input: policy model πθ, learning rate η, training dataset D, total iterations K.
2: Output: trained policy model πθ.
3: for iteration k = 1, . . . ,K do
4: Sample mini-batch B ⊆ D.
5: for all x ∈ B do
6: Sample rollouts {yi}Gi=1 ∼ π

(k)
θold

(· | x).
7: Update the reference teacher by Eq. (6).
8: Sample rollouts {ỹj}G̃j=1 ∼ π̃

(k)
ref (· | x).

9: Obtain pseudo label from {ỹj}G̃j=1 by Eq. (5).
10: Estimate the relative advantage by Eq. (5).
11: Compute the objective by Eq. (4).
12: Update θ ← θ − η∇θJ (k)

Co-rewarding-II(θ).
13: end for
14: end for

RL for Large Language Models. Several RL algorithms have been developed primarily for
alignment tasks. Specifically, DPO [41], CPO [42], and their variants [43, 44, 45, 46, 47] rely
on pairs of outputs labeled by human preference [48, 49]. In contrast, KTO [50] and BCO [51]
require only a single binary label (like or dislike) for each output. Besides, the PRM [52, 53] and
Step-KTO [54] offer step-by-step guidance by incorporating feedback at each reasoning step rather
than focusing solely on the final outputs. Recently, the follow-up work of GRPO improves the
optimization objective, e.g., DAPO [9], Dr. GRPO [29], REINFORCE++ [55], CPPO [56], and
GPG [57]. Another line of research generalizes GRPO to broader applications such as multimodal
reasoning [58, 59, 57, 60, 61] and logical reasoning [31].

RL without External Reward. RL methods have shown promising scaling capabilities to enhance
the reasoning abilities of LLMs [62], yet they are often limited by the availability of training data for
reward signals [63, 64]. Notably, Wang et al. [65] demonstrate that RL can effectively bootstrap LLM
reasoning with as little as a single training example, highlighting the potential to minimize or even
eliminate reliance on external reward signals during training. Recent efforts leverage distinct strategies
for reward assignment. For instance, SIRLC [66] and AZR [67] utilize an LLM-as-the-judge approach
to assign rewards. In contrast, methods like SRT, TTRL, and their variants [18, 14, 68, 15] employ
self-consistency [25] to generate pseudo-rewards, reducing dependence on external annotations.
Meanwhile, INTUITOR, RLSC, and RENT [13, 69, 17] harness the internal confidence scores of
LLMs as intrinsic reward signals. Additionally, EMPO and its variants [16, 70] promote reasoning by
minimizing entropy during the reasoning process, further diversifying the approaches to incentivize
robust LLM reasoning performance from internal signals.
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C Pseudo Code of Co-rewarding

To intuitively present the pipeline of Co-rewarding, we summarize the pseudo codes of Co-rewarding-I
and Co-rewarding-II in Algorithm 1 and Algorithm 2, respectively.

D Additional Experimental Details

D.1 Setups

Backbone Models and Baselines. We employ a diverse set of LLMs from different families and
scales in our experiments, including the Qwen2.5 series (Qwen2.5-3B/7B) [3], the Qwen3 series
(Qwen3-1.7B/4B/8B-Base) [71], and the Llama3 series (Llama-3.2-3B-Instruct) [72]. Beyond the
vanilla GRPO that utilized the GT label for rewarding, we compare our Co-rewarding against several
recent state-of-the-art (SoTA) self-reward reasoning approaches, denoted as Self-Certainty [13],
Entropy [17] and Majority Voting [18]. The details of all baselines are summarized in Appendix D.2.

Implementation Details. We implement our algorithms based on the VeRL framework [73], and
experiments are conducted on 4 × H100-80GB GPUs. For our experiments, we totally use three
training sets: MATH [74] (7,500 questions), DAPO-14k [9] (en-version of DAPO-Math-17k, about
14.1k questions), and OpenRS [75] (7,000 questions). During RL training, we use a global batch
size of 128, set the number of rollouts to G = G̃ = 8 per question for both I and II, and adopt
AdamW with a learning rate of 3× 10−6. In Co-rewarding-I, question rephrasing is performed by the
open-source Qwen3-32B model. In Co-rewarding-II, the EMA weight is scheduled from αstart = 0.99
to αend = 0.9999 using cosine annealing. More implementation details are reported in Appendix D.3.

Evaluation Details. To provide a comprehensive evaluation of model capabilities, we utilize a diverse
set of benchmarks spanning mathematical reasoning, code generation, instruction-following, and
general multi-task abilities. Specifically: (1) Mathematical reasoning: MATH500 [53], GSM8K [76],
and AMC [77]. (2) Code generation: LiveCodeBench [78] release v6 and CRUX [79]. (3) Instruction-
following and multi-task abilities: IFEval [80] and MMLU-Pro [81]. Additional evaluation details
are provided in Appendix D.4.

D.2 Details of Baselines

We compare our proposed Co-rewarding-I and II against GT-reward and several recent state-of-the-art
(SoTA) self-reward approaches:

• GT-Reward [8]: Originally introduced by DeepSeek-R1 [62], GT-Reward supervises training
using ground-truth (GT) answers, determining whether model rollouts are correct or not, to guide
RL optimization.

• Self-Certainty [13]: This method maximizes self-certainty, defined as the KL-divergence between
the uniform distribution and the model’s decoding distribution, serving as reward to encourage
more confident predictions.

• Entropy [17]: This method minimizes the entropy of the model’s rollout distribution, using
negative entropy as reward to maximize model confidence.

• Majority-Voting [18]: By generating multiple rollouts per question, Majority-Voting selects the
most frequent answer as a pseudo-label to supervise training.

For all methods, we adopt the widely used GRPO as the policy optimization algorithm.

D.3 More Implementation Details

The detailed training configurations are summarized in Table 2, and all baseline methods are trained
under the same setup for fairness. For the training system prompt, we adopt the official default prompt
provided by VeRL3, shown below:

Let’s think step by step and output the final answer within \boxed{}.

3https://github.com/volcengine/verl
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Table 2: Detailed training settings.

Settings Co-rewarding-I Co-rewarding-II
Batch Size 128 128
Max Prompt Length 512 512
Max Response Length 3072 3072
Train Steps 170-220 300-330
Learning Rate 3e-6 3e-6
# Policy Rollout G 8 8
# Reference Rollout G̃ - 8
Clip Ratio 0.2 0.2
Warmup Style Cosine Cosine
Warmup Steps Ratio 0.1 0.1
KL Loss Coefficient 0.005 0.001
Optimizer AdamW (β1 = 0.9, β2 = 0.999, ϵ = 10−8)
Training Temperature 1.0 1.0
Evaluation Temperature 0.8 0.8
EMA αstart - 0.99
EMA αend - 0.9999

In addition, the semantically analogical questions used in Co-rewarding-I are generated by Qwen3-
32B through a rewriting prompt. The exact rewriting instruction is provided as follows:

You are given a math problem. Please rewrite it using different wording and a
different real-world scenario, while keeping the underlying mathematical
meaning and answer exactly the same.

Guidelines:
1. Do not change the math logic or the final answer.
2. Use different words and a new context to make it look like a different problem.
3. Avoid copying phrases or sentence structures from the original.
4. Make sure the rewritten question is natural, clear, and solvable.
5. Output ONLY between the following markers, and strictly in this format (no extra

explanation):

### RESULT_START
ORIGINAL:
<original question>
REWRITE:
<rewritten question>
### RESULT_END

D.4 More Evaluation Details

We conduct the evaluation across a diverse set of benchmarks, spanning mathematical reasoning, code
generation, instruction-following, and general multi-task abilities. Specifically: (1) Mathematical
reasoning: We evaluate on MATH500 [53], GSM8K [76], and AMC [77]. For MATH500 and
GSM8K, we report pass@1 accuracy using the lighteval library4. For AMC, we use the ttrl5

library and report avg@8 as the metric. (2) Code generation: We assess coding ability using
LiveCodeBench [78] release v6 and CRUX [79]. LiveCodeBench is evaluated with its official
evaluation library6, and CRUX is evaluated via the ZeroEval library7; for both datasets, we report
pass@1 accuracy. (3) Instruction-following and multi-task abilities: We evaluate on IFEval [80] and

4https://github.com/huggingface/lighteval
5https://github.com/ruixin31/Spurious Rewards/tree/main/code/ttrl
6https://github.com/LiveCodeBench/LiveCodeBench
7https://github.com/WildEval/ZeroEval
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Table 3: Statistics and usages of datasets used in our experiments.

Dataset Name # Data Size Usage
MATH-Train [74] 7,500 Training Set
MATH-Test [74] 5,000 Validation Set
DAPO-14k [9] 14,109 Training Set
Open-RS [75] 7,000 Training Set

MATH500 [53] 500 Evaluation Benchmark
GSM8K [76] 1,319 Evaluation Benchmark
AMC [77] 83 Evaluation Benchmark
LiveCodeBench [78] 1,055 Evaluation Benchmark
CRUX [79] 800 Evaluation Benchmark
MMLU-Pro [81] 12,032 Evaluation Benchmark
IFEval [80] 541 Evaluation Benchmark

Table 4: Main Results (%) of Co-rewarding and baselines trained on DAPO-14k. Cell background
colors indicate relative performance: darker colors denote better results within each model group.
Additional Results of Qwen3-8B-Base trained on OpenRS refer to Table 7.

Training Set: DAPO-14k Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Before RL 72.4 27.82 20.93 23.41 54.75 50.89 52.92
- GT-Reward [8] 86.6 87.19 61.75 30.52 63.75 53.11 60.27

- Self-Certainty [13] 82.0 77.63 49.85 27.77 60.75 50.58 54.24
- Entropy [17] 79.4 80.82 45.48 30.14 62.00 51.56 54.57
- Majority-Voting [18] 78.6 91.66 50.00 30.33 61.62 51.54 55.65
- Co-rewarding-I (Ours) 78.4 88.02 51.20 29.38 62.50 50.17 55.39
- Co-rewarding-II (Ours) 80.6 94.01 54.37 31.66 67.12 53.31 59.83

Qwen3-4B-Base
Before RL 71.2 26.15 21.08 11.00 38.88 46.43 47.23
- GT-Reward [8] 83.6 85.14 52.86 18.58 56.88 47.70 55.35

- Self-Certainty [13] 68.4 44.81 35.39 25.88 50.12 45.58 48.84
- Entropy [17] 76.6 82.79 43.37 26.35 50.75 48.20 50.22
- Majority-Voting [18] 73.4 64.06 40.81 26.16 53.00 48.91 51.06
- Co-rewarding-I (Ours) 73.8 75.89 43.83 26.25 50.12 46.84 51.51
- Co-rewarding-II (Ours) 77.8 91.89 48.49 26.64 54.87 48.90 52.83

Llama-3.2-3B-Instruct
Before RL 39.2 65.73 10.54 9.86 25.37 57.32 31.14
- GT-Reward [8] 49.4 78.17 25.90 10.33 31.37 53.10 33.83

- Self-Certainty [13] 42.4 74.71 17.32 11.18 28.38 54.50 33.51
- Entropy [17] 44.0 65.85 17.32 9.95 25.00 55.78 31.95
- Majority-Voting [18] 42.8 70.96 17.62 10.14 29.50 54.07 32.95
- Co-rewarding-I (Ours) 46.0 70.58 20.93 9.57 27.25 53.04 32.61
- Co-rewarding-II (Ours) 49.8 78.62 19.73 10.43 32.25 51.92 34.46

MMLU-Pro [81], using the lm-evaluation-harness library8 for both. Overall, we summarize the
statistics of the datasets used in this paper in Table 3.

E Additional Experimental Results

E.1 Further Analysis

Code generalization with preserved general performance. Although trained solely on math-
oriented datasets, the models show improvements on coding benchmarks, suggesting a cross-domain

8https://github.com/EleutherAI/lm-evaluation-harness

15



Qwen3-8B-Base
20

40

60

80

100

120

G
SM

8K
 P

as
s@

1 
(%

)

Before RL
Ground Truth
Self-Certainty

Entropy
Majority-Voting
Co-rewarding-II

0 100 200 300
Step

0

20

40

60

80

G
SM

8K
 P

as
s@

1 
(%

)

Qwen3-8B-Base on GSM8K

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Qwen3-4B-Base
10

20

30

40

50

60

70

A
M

C
 A

vg
@

8 
(%

)

Before RL
Ground Truth
Self-Certainty

Entropy
Majority-Voting
Co-rewarding-II

0 100 200 300
Step

0

10

20

30

40

50

A
M

C
 A

vg
@

8 
(%

)

Qwen3-4B-Base on AMC

Ground Truth
Co-rewarding-II
Self-Certainty
Entropy
Majority-Voting

Figure 2: Performance and Stability on GSM8K and AMC. The gains of Co-rewarding arise from
its training stability, which supports continuous improvements throughout learning.
Table 5: Ablation study of Co-rewarding. For Co-rewarding-I, ablations train only on original or
rephrased data. For Co-rewarding-II, ablation removes EMA updates of the reference teacher.

Methods MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Co-rewarding-I 81.2 93.70 51.20 30.81 66.00 55.79 59.95
- Majority-Voting w/ Original 79.8 89.76 49.09 30.52 63.38 51.80 56.93
- Majority-Voting w/ Rephrased 79.2 91.51 50.75 31.66 60.38 52.24 57.26

Co-rewarding-II 80.6 94.01 54.37 31.66 67.12 53.31 59.83
- w/o Updating Reference 78.0 88.40 51.66 30.62 63.75 52.48 58.01

Llama-3.2-3B-Instruct
Co-rewarding-I 50.2 79.45 23.80 11.28 29.88 48.89 33.77
- Majority-Voting w/ Original 46.8 78.77 20.48 11.00 31.25 47.96 33.18
- Majority-Voting w/ Rephrased 44.0 78.85 21.23 10.04 17.25 47.84 33.72

Co-rewarding-II 49.8 78.62 19.73 10.43 32.25 51.92 34.46
- w/o Updating Reference 45.0 76.72 17.92 10.05 30.63 51.33 33.94
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Figure 3: Performance curves comparison
on validation set. Top: Qwen3-1.7B-Base
and Qwen2.5-7B trained on the MATH set.
Bottom: Qwen3-8B-Base and Llama-3.2-
3B-Instruct trained on the DAPO-14k set.
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Figure 4: Reward (left) and response length (right) of
Qwen3-8B-Base and Llama-3.2-3B-Instruct trained on
DAPO-14k. Due to different reward scale from other
methods, Entropy reward is plotted on the right y-axis
of left panels, where the reward is the negative entropy.
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Figure 5: Performance curves on validation set. Left to Right: {Qwen2.5-3B, Qwen3-4B-Base,
Qwen3-8B-Base, Llama-3.2-3B-Instruct} trained on MATH, Qwen3-4B-Base trained on DAPO-14k.

generalization from math to code in self-supervised reasoning elicitation. Moreover, Co-rewarding
preserves general instruction-following and multi-task ability on MMLU-Pro and IFEval. As shown
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Table 6: Supplement Results (%) of Co-rewarding and baselines trained on MATH. Cell
background colors: darker colors denote better results within each model group.

Training Set: MATH Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen2.5-3B
Before RL 53.6 19.48 10.69 9.95 18.50 29.83 32.50
- GT-Reward [8] 65.4 82.18 32.98 13.93 32.12 33.66 36.74

- Self-Certainty [13] 64.2 80.52 28.92 10.90 29.00 32.22 33.88
- Entropy [17] 63.2 80.44 29.67 9.05 29.00 32.94 35.35
- Majority-Voting [18] 64.6 82.41 33.13 14.03 36.38 35.19 35.50
- Co-rewarding-I (Ours) 65.4 84.53 30.57 16.40 36.88 33.86 36.38
- Co-rewarding-II (Ours) 65.2 81.72 32.38 22.25 40.25 32.74 30.79

Qwen2.5-7B
Before RL 69.4 24.71 15.81 3.79 26.38 38.19 44.76
- GT-Reward [8] 76.4 88.02 45.63 15.92 45.12 41.49 41.12

- Self-Certainty [13] 72.8 84.31 38.55 12.04 54.12 37.24 43.30
- Entropy [17] 72.2 81.43 39.61 16.49 51.88 40.33 42.79
- Majority-Voting [18] 74.4 84.53 40.96 15.45 51.00 38.60 43.35
- Co-rewarding-I (Ours) 74.6 89.61 41.27 15.73 55.58 42.86 40.51
- Co-rewarding-II (Ours) 73.6 89.31 42.77 8.25 47.50 41.82 37.45

Qwen3-1.7B-Base
Before RL 57.0 19.56 8.43 4.45 7.50 33.65 33.00
- GT-Reward [8] 69.6 81.57 35.54 13.74 35.25 36.16 39.12

- Self-Certainty [13] 58.2 40.25 23.04 9.86 18.00 32.96 35.13
- Entropy [17] 63.6 71.79 31.63 13.74 31.37 35.37 36.67
- Majority-Voting [18] 65.2 81.57 34.78 13.08 34.25 35.45 36.00
- Co-rewarding-I (Ours) 67.6 83.01 32.22 13.50 32.38 35.56 35.53
- Co-rewarding-II (Ours) 66.2 80.89 33.28 14.40 32.88 36.94 37.59

Table 7: Supplement Results (%) of Co-rewarding and baselines trained on OpenRS. Cell
background colors: darker colors denote better results within each model group.

Training Set: Open-RS Mathematics Code Instruction Multi-Task
Methods MATH500 GSM8K AMC LiveCode CRUX IFEval MMLU-Pro

Qwen3-8B-Base
Before RL 72.40 27.82 20.93 23.41 54.75 50.89 52.92
- GT-Reward [8] 80.20 89.76 54.97 39.00 63.00 52.94 55.49

- Self-Certainty [13] 82.60 85.22 50.00 37.00 64.62 52.12 56.03
- Entropy [17] 80.60 87.41 48.95 38.00 61.25 52.53 56.80
- Majority-Voting [18] 78.00 84.23 51.96 36.75 58.00 51.13 54.92
- Co-rewarding-I (Ours) 78.20 92.65 50.60 28.91 63.12 53.11 57.21
- Co-rewarding-II (Ours) 80.00 90.90 53.01 39.75 62.75 52.92 56.55

Qwen3-4B-Base
Before RL 71.20 26.15 21.08 11.00 38.88 46.43 47.23
- GT-Reward [8] 78.80 85.22 49.55 33.50 55.12 46.41 50.12

- Self-Certainty [13] 73.20 33.43 35.84 32.50 49.50 46.47 48.24
- Entropy [17] 76.80 87.57 42.62 35.00 53.87 47.61 52.42
- Majority-Voting [18] 76.00 64.14 44.58 32.25 50.25 46.35 48.75
- Co-rewarding-I (Ours) 72.80 83.93 39.41 26.54 53.25 48.11 50.82
- Co-rewarding-II (Ours) 76.60 89.23 42.32 34.00 51.50 48.45 51.80

in Table 8, Co-rewarding-II outperforms other self-rewarding baselines in 12 of 14 MMLU-Pro
categories, demonstrating that its gains do not come at the expense of broader general-domain
performance. More detailed results of MMLU-Pro and IFEval refer to Appendix E.8 and E.9.

Co-rewarding attempts to balance exploration-exploitation. Figure 4 shows reward and response
length curves. Entropy and Majority-Voting quickly reach the highest reward, indicating reward
hacking rather than genuine reasoning improvement. In contrast, GT-Reward and Co-rewarding
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Table 8: Detailed performance of MMLU-Pro with Qwen3-8B-Base
trained on DAPO-14k. More results refer to Appendix E.8.

MMLU-Pro (Qwen3-8B-Base)
Methods biology business chemistry computer sci. economics health history
- GT-Reward 77.96 70.85 60.42 61.95 71.33 59.79 51.44

- Self-Certainty 75.73 58.05 50.53 56.83 69.31 54.77 50.40
- Entropy 74.76 59.70 51.33 56.10 67.90 55.87 48.04
- Majority-Voting 75.32 61.47 54.24 58.29 69.67 58.20 49.34
- Co-rewarding-I 76.85 61.22 53.45 59.02 66.82 55.62 48.29
- Co-rewarding-II 76.71 68.69 64.58 61.71 68.25 56.85 51.71

Methods law math other philosophy physics psychology engineering
- GT-Reward 31.52 73.28 56.28 52.71 61.97 67.30 46.14

- Self-Certainty 30.43 63.06 51.63 46.29 51.73 66.42 41.07
- Entropy 28.97 63.96 51.51 48.90 53.04 66.80 42.32
- Majority-Voting 31.16 64.62 52.27 48.90 53.27 66.92 40.97
- Co-rewarding-I 30.34 66.17 51.73 48.90 55.19 66.42 39.63
- Co-rewarding-II 31.16 72.17 52.49 52.10 63.21 68.17 47.16
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Figure 6: Pseudo label
accuracy comparison.

exhibit smoother, gradually increasing rewards, reflecting stable training. The response length
curves further illustrate this difference: GT-Reward lengthens responses to explore correct reasoning
paths; Majority-Voting collapses to short outputs, restricting exploration; and Entropy collapses
its probability mass onto a small set of tokens, repeatedly generating them until truncation. Co-
rewarding instead maintains moderate response lengths throughout training, suggesting a balanced
exploration–exploitation trade-off. Additional curves for other LLMs are provided in Appendix E.3.

EMA is essential in Co-rewarding-II for improving pseudo-label quality. Figure 6 compares
pseudo-label accuracy across Co-rewarding-II, “w/o Updating Reference”, and Majority-Voting.
Co-rewarding-II steadily improves accuracy as training progresses, while “w/o Updating Reference”
remains nearly flat, underscoring the role of EMA updates in allowing the teacher to co-evolve with
the policy and generate higher-quality pseudo labels. By contrast, Majority-Voting briefly improves
but then collapses to near zero, evidencing reward hacking through consistent yet incorrect outputs.

Case Study of the model reasoning with different learning methods. Figure 7 provides a concrete
example to illustrate the qualitative difference between self-rewarding baselines and our Co-rewarding.
Majority-Voting exhibits reward hacking by boxing an incorrect answer “0” to pursue consensus,
even though the reasoning steps are correct. Entropy produces repetitive outputs as its decoding
probability distribution collapses onto a narrow set of tokens during entropy minimization. In contrast,
Co-rewarding generates coherent step-by-step reasoning and correctly boxes the final answer, showing
its capacity to overcome reward hacking and elicit genuine reasoning.

E.2 More Results on Other Training Sets and LLMs

Table 6 reports additional results of Qwen2.5-3B and Qwen3-1.7B-Base and Qwen3-4B-Base trained
on MATH, while Table 7 extends the experiments of Qwen3-8B-Base and Qwen3-4B-Base to another
training set OpenRS [75]. It can be observed that Co-rewarding occupies relatively darker areas.
Across models and training sets, Co-rewarding-I and II achieve an average relative improvement of
+2.23% on GSM8K, with notably high pass@1 scores of 92.65% and 90.90% for Qwen3-8B-Base
trained on OpenRS, respectively. Moreover, thanks to its stability, Co-rewarding-II delivers more
reliable gains than self-rewarding baselines, which occasionally suffer lower performance on certain
models or benchmarks, e.g., Self-Certainty on Qwen3-1.7B-Base in Table 6 or Majority-Voting on
Qwen3-4B-Base in Table 7. These results further demonstrate the effectiveness of Co-rewarding.

E.3 More Curves of Reward, Response Length and Pseuo Label Accuracy

Figure 8 supplements the reward and response curves of Qwen3-4B-Base trained on DAPO-14k. The
trends are consistent with Qwen3-8B-Base and Llama-3.2-3B-Instruct in Figure 4: Majority-Voting
and Entropy rapidly increase rewards at early stage and quickly peak, a clear sign of reward hacking.
In contrast, GT-Reward and Co-rewarding-II exhibit smoother, steadily rising rewards, indicating gen-
uine learning of reasoning ability. Moreover, Co-rewarding-II maintains moderate response lengths
on Qwen3-4B-Base, further demonstrating its generality in balancing the exploration–exploitation
trade-off during reasoning training, which is a core principle of RL [82].

Additionally, the right panel of Figure 8 presents the pseudo-label accuracy of Qwen3-4B-Base,
showing trends consistent with Qwen3-8B-Base and Llama-3.2-3B-Instruct in Figure 6. As training
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Figure 7: Case study: An example comparing the generations from Majority-Voting, Entropy, and our
proposed Co-rewarding. The results clearly reveal the reward hacking behavior exhibited by Majority-
Voting and Entropy, while ours generate the correct answer. Full results refer to Appendix E.11.

Table 9: Performance (%) of test-time training (TTT). Since self-supervised methods are label-free,
they can be leveraged during inference for test-time training to further enhance performance.

LLMs Methods AMC
avg@8 pass@8 avg@16 pass@16 avg@32 pass@32 avg@64 pass@64

Qwen2.5-7B

Before-TTT 15.81 46.99 17.55 66.27 16.34 74.70 17.32 75.90

Self-Certainty 41.57 74.70 39.23 74.70 39.68 78.31 39.95 87.95
Entropy 38.70 56.63 39.76 68.67 39.57 79.52 39.34 81.93
Majority-Voting 43.67 63.86 43.67 67.47 43.49 78.31 44.35 85.54
Co-rewarding-I 44.88 60.24 45.33 60.24 45.44 71.08 45.76 73.49
Co-rewarding-II 43.22 69.88 41.34 75.90 40.36 78.31 41.64 87.95

Qwen3-8B-Base

Before-TTT 20.93 61.45 21.31 73.49 19.58 79.52 20.97 86.75

Self-Certainty 49.85 78.31 50.68 78.31 50.41 84.34 49.55 89.16
Entropy 48.64 74.70 49.92 80.72 49.96 87.95 50.23 89.16
Majority-Voting 50.90 73.49 50.00 72.29 50.60 80.72 51.36 85.54
Co-rewarding-I 52.86 68.67 53.46 74.70 53.24 81.93 53.58 84.34
Co-rewarding-II 48.64 72.29 48.19 73.49 50.19 83.13 49.28 91.57
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Figure 8: Curves of reward (Left), response length (Middle), and pseudo label accuracy (Right)
of Qwen3-4B-Base trained on DAPO-14k. Entropy reward is plotted on the right y-axis due to its
different reward scale. Note that entropy minimization is to maximizing the negative entropy.

progresses, Co-rewarding-II steadily improves pseudo-label accuracy, while “w/o Updating Reference”
remains around 25%. Majority-Voting briefly increases accuracy but soon collapses to zero, clearly
indicating reward hacking. This highlights our design philosophy of pairing a fast policy student with
a slowly updated teacher, which decouples supervision from the online policy while enabling the
teacher to co-evolve with the student, thereby sustaining improvements in pseudo-label quality.

E.4 More Results of Validation Performance Curves

As a supplement to Figure 3, Figure 5 presents validation performance curves for Qwen2.5-3B,
Qwen3-4B-Base, Qwen3-8B-Base, Llama-3.2-3B-Instruct trained on MATH, as well as Qwen3-4B-
Base trained on DAPO-14k. Self-Certainty and Entropy collapse rapidly across all settings, as their
supervision signals are tied to internal confidence or entropy and are easily exploited. Majority-Voting
also collapses in several cases, reflecting that sampling pseudo labels from outputs cannot prevent
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Table 10: Detailed MMLU-Pro performance on Qwen3-4B-Base and Llama-3.2-3B-Instruct
traind on DAPO-14k. Results are reported for each of the 14 categories in MMLU-Pro.

Qwen3-4B-Base
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 73.50 63.49 59.71 56.34 65.05 42.93 50.86

- Self-Certainty 71.41 54.37 45.93 50.73 63.27 35.91 50.12
- Entropy 70.99 56.02 50.44 48.29 63.15 34.37 48.41
- Majority-Voting 70.43 55.77 52.83 53.41 62.79 38.09 50.61
- Co-rewarding-I 73.92 59.82 50.71 54.15 64.93 41.49 49.76
- Co-rewarding-II 72.66 59.95 55.65 53.41 64.10 39.73 50.61

Methods history law math other philosophy physics psychology
- GT-Reward 44.88 26.34 69.80 48.81 44.69 57.04 65.79

- Self-Certainty 39.63 24.43 59.44 43.94 40.08 47.04 59.65
- Entropy 40.68 26.43 60.99 45.13 43.69 50.89 61.90
- Majority-Voting 40.94 23.43 64.17 43.39 44.09 50.73 63.66
- Co-rewarding-I 40.94 23.25 63.73 44.91 42.69 50.58 60.78
- Co-rewarding-II 42.26 24.79 67.58 44.59 41.88 54.19 62.91

Llama3.2-3B-Instruct
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 54.81 36.25 25.18 33.41 42.65 21.57 39.36

- Self-Certainty 55.23 32.95 27.21 31.95 42.77 20.54 39.12
- Entropy 52.86 31.05 23.94 32.93 41.71 20.43 38.02
- Majority-Voting 56.07 32.95 22.79 30.98 44.19 18.99 39.61
- Co-rewarding-I 51.88 34.22 22.88 34.88 44.67 19.09 38.63
- Co-rewarding-II 56.21 34.35 27.03 35.61 43.01 19.92 40.34

Methods history law math other philosophy physics psychology
- GT-Reward 30.18 22.71 34.20 34.74 32.06 28.33 50.38

- Self-Certainty 30.45 24.98 33.38 31.60 29.86 28.56 50.50
- Entropy 33.86 21.89 32.35 33.01 29.46 24.25 47.50
- Majority-Voting 32.02 25.25 34.35 34.20 29.86 24.79 48.25
- Co-rewarding-I 33.86 23.25 32.12 33.01 31.86 25.40 48.75
- Co-rewarding-II 32.28 24.34 35.83 36.26 33.27 28.18 49.12

hacking. By contrast, Co-rewarding-I maintains stability across MATH-trained models through
data-side contrastive agreement, while Co-rewarding-II consistently provides stability across all
models and datasets by disentangling supervision with a slowly updated teacher, making hacking
substantially harder and optimization more reliable.

E.5 Results of Test-time Training (TTT)

Thanks to the label-free nature of self-supervised methods, which do not require GT labels, they are
naturally compatible with test-time training (TTT), enabling further refinement of the model during
inference. Table 9 reports the TTT results on the challenging competition-level benchmark AMC
across Co-rewarding and other self-rewarding baselines. We observe that Co-rewarding matches or
even surpasses existing methods, achieving the best results on 11 out of 18 metrics. These findings
broaden the applicability of self-supervised RL: beyond post-training for reasoning elicitation, it can
also be leveraged at inference time to further improve performance on specific benchmarks.

E.6 More Results of Benchmark Performance Curves

As a supplement to Figure 3 and Figure 2, Figure 9 presents performance curves on MATH500,
GSM8K, AMC, and CRUX with Qwen3-8B-Base, Qwen3-4B-Base, and Llama-3.2-3B-Instruct.
Consistent with earlier findings, Self-Certainty, Entropy, and Majority-Voting rapidly collapse across
benchmarks and models, while Co-rewarding-II and GT-Reward sustain continued and stable im-
provements. These results underscore the link between performance and training stability: stable
training enables models to continue improving by effectively learning knowledge from more data.
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Figure 9: Performance curves on benchmarks of MATH500, GSM8K, AMC and CRUX across
Qwen3-8B-Base, Qwen3-4B-Base, and Llama-3.2-3B-Instruct trained on DAPO-14k.
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Figure 10: Curves of voting accuracy of Majority-Voting, Co-rewarding-I and its ablations with
Qwen2.5-3B, Qwen3-1.7B-Base and Qwen3-8B-Base trained on MATH.

E.7 Voting Accuracy Analysis of Co-rewarding-I

To demonstrate the stability and efficiency of Co-rewarding-I, we compare its voting accuracy against
that of Majority-Voting in Figure 10 and Figure 11. These experiments are conducted on Qwen2.5-
3B, Qwen3-1.7B-Base and Qwen3-8B-Base models, all trained on the MATH dataset. Across all
settings, the Majority-Voting method exhibits reward hacking, where its performance sharply declines
after reaching an early peak, particularly on more difficult questions (levels 2 to 5). In contrast,
Co-Rewarding-I maintains a stable voting accuracy on both original and rephrased data. Ultimately,
it achieves the highest overall voting accuracy across all models and dataset configurations.

E.8 More Results of MMLU-Pro Evaluation

As a complement to Table 8, Table 10 and Table 11 report detailed MMLU-Pro results for models
trained on DAPO-14k and OpenRS, respectively. We observe that Co-rewarding consistently preserves

21



0 50 100 150 200
Step

20

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen3-1.7B-Base: Majority-Voting

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150 200
Step

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen3-1.7B-Base: w/ Original Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150 200
Step

20

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen3-1.7B-Base: w/ Rephrased Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150 200
Step

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen3-1.7B-Base: Co-rewarding-I

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

20

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen2.5-3B: Majority-Voting

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

20

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen2.5-3B: w/ Original Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

20

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen2.5-3B: w/ Rephrased Data

Level 1
Level 2
Level 3
Level 4
Level 5

0 50 100 150
Step

30

40

50

60

70

80

90

Vo
tin

g 
A

cc
ur

ac
y 

(%
)

Qwen2.5-3B: Co-rewarding-I

Level 1
Level 2
Level 3
Level 4
Level 5

Figure 11: Voting accuracy of Majority-Voting, Co-rewarding-I and its ablated variants across
different difficulty levels of questions Top: Qwen3-1.7B-Base. Bottom: Qwen2.5-3B.

general-domain performance across diverse subjects, indicating that though trained on math-oriented
datasets, its improvements do not come at the cost of broader capabilities from other domains.

E.9 More Results of IFEval Evaluation

The aim of IFEval is used to evaluate the instruction-following ability of LLMs. In Table 1, Table 4,
Table 6 and Table 7, we report average IFEval performance due to space constraints. Specifi-
cally, the evaluation of IFEval includes four metrics: {prompt level strict acc, inst level strict acc,
prompt level loose acc and inst level loose acc}, which apply different levels of answer matching.
As a supplement, complete results are provided in Table 12, Table 13, and Table 14. The results show
that Co-rewarding not only preserves the inherent instruction-following ability of base models but
also often surpasses GT-Reward across multiple models. This further confirms that Co-rewarding’s
gains on mathematical and coding benchmarks are achieved without sacrificing general-domain
instruction-following ability.

E.10 Original Questions vs. Rephrased Questions

To provide an intuitive illustration, we present several examples of original questions with their
rephrased versions in Table 15. We observe that such rephrasings are reasonable and effective, as they
preserve the same underlying mathematical essence while presenting the problems in a substantially
different surface form. This reflects the high quality of our rephrased data and forms the basis of
Co-rewarding-I: by leveraging contrastive agreement across data-invariant variants, the model is
encouraged to elicit more robust reasoning ability.

E.11 Complete Case Study

As a supplement to Figure 7, we present the complete generation outputs of this case study. The
full outputs clearly reveal the reward hacking behaviors of existing self-rewarding baselines. Self-
Certainty and Entropy fall into repetitive outputs—for example, Self-Certainty repeatedly generates
“Understanding,” and Entropy repeatedly produces “Simplify the next fraction” until truncated at
the maximum length. This arises because their decoding probability mass collapses onto a small
subset of tokens, leading the model to loop over them. Majority-Voting shows another form of reward
hacking by boxing an incorrect answer “0” to maximize consensus across rollouts and thereby secure
the highest reward. In contrast, both Co-rewarding and GT-Reward yield the correct final answer
along with a coherent step-by-step reasoning path.
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Table 11: Detailed MMLU-Pro performance on Qwen3-8B-Base and Qwen3-4B-Base trained
on OpenRS. Results are reported for each of 14 categories in MMLU-Pro.

Qwen3-4B-Base
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 70.99 59.82 52.30 54.63 65.05 39.01 51.22

- Self-Certainty 69.87 54.50 44.08 49.27 63.63 37.36 50.24
- Entropy 70.71 58.68 49.03 51.22 63.39 37.46 49.63
- Majority-Voting 69.60 55.77 47.17 53.17 63.39 36.02 48.78
- Co-rewarding-I 69.04 55.39 47.79 53.41 63.86 38.39 50.61
- Co-rewarding-II 70.85 58.81 53.27 53.90 66.11 37.15 52.81

Methods history law math other philosophy physics psychology
- GT-Reward 39.63 24.98 65.58 47.84 40.68 54.50 62.53

- Self-Certainty 39.63 24.25 58.11 46.65 40.88 46.42 61.40
- Entropy 39.90 22.16 62.18 45.02 43.09 50.19 59.90
- Majority-Voting 40.68 22.52 60.25 46.10 41.08 48.42 60.65
- Co-rewarding-I 40.68 24.25 62.18 44.37 44.49 49.58 61.65
- Co-rewarding-II 41.21 25.89 64.91 45.24 39.28 52.27 59.40

Qwen3-8B-Base
Methods biology business chemistry computer sci. economics engineering health
- GT-Reward 74.76 63.24 55.48 63.17 68.96 41.38 57.09

- Self-Certainty 75.03 63.62 53.62 55.61 68.96 39.83 57.09
- Entropy 75.73 64.39 54.51 58.29 65.05 41.69 55.87
- Majority-Voting 76.15 60.20 54.15 56.34 69.91 38.91 55.75
- Co-rewarding-I 76.43 65.78 57.07 62.20 69.43 43.14 56.60
- Co-rewarding-II 76.84 64.25 54.68 62.43 68.12 42.00 58.06

Methods history law math other philosophy physics psychology
- GT-Reward 50.92 30.25 67.58 52.49 51.10 57.20 67.67

- Self-Certainty 49.34 28.88 68.02 51.62 52.10 56.89 66.42
- Entropy 50.39 30.43 65.28 51.41 47.09 54.50 66.67
- Majority-Voting 48.03 28.88 63.43 53.68 48.10 52.50 64.66
- Co-rewarding-I 50.13 29.97 68.54 52.92 50.70 56.66 65.54
- Co-rewarding-II 51.44 30.06 65.80 51.51 52.10 57.58 65.78

Question:

m
n is the Irreducible fraction value of

3 +
1

3 + 1
3+ 1

3

, what is the value of m+ n?

Co-rewarding-I Answer:

To solve the problem, we need to simplify the given expression step by step and then find the
irreducible fraction form. The expression is:

3 +
1

3 + 1
3+ 1

3

.

First, we simplify the innermost fraction:

3 +
1

3
=

9

3
+

1

3
=

10

3
.

Now substitute this back into the expression:

3 +
1

3 + 1
10
3

= 3 +
1

3 + 3
10

.
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Table 12: Detailed IFEval Performance on Qwen2.5-3B/7B, Qwen3-1.7B/4B/8B-Base and Llama-
3.2-3B-Instruct traind on MATH. Results are reported for loose and strick settings respectively.

Methods IFEval
Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose

Qwen2.5-3B Qwen2.5-7B
Before RL 29.83 22.55 27.17 31.89 37.70 38.19 29.57 34.57 41.85 46.76
- GT-Reward 33.66 25.51 31.42 35.85 41.85 41.49 31.79 39.56 43.65 50.96

- Self-Certainty 32.22 24.40 29.76 34.65 40.05 37.24 28.47 34.38 40.05 46.04
- Entropy 32.94 24.77 30.50 35.13 41.37 40.33 30.13 37.87 43.29 50.00
- Majority-Voting 35.19 26.25 32.72 37.53 44.24 38.60 29.21 35.86 41.61 47.72
- Co-rewarding-I 33.86 23.84 31.61 36.09 43.88 41.73 32.35 39.37 44.48 50.72
- Co-rewarding-II 32.74 23.29 29.02 36.33 42.33 41.82 31.79 40.29 43.88 51.31

Qwen3-1.7B-Base Qwen3-4B-Base
Before RL 33.65 25.69 30.86 36.45 41.60 46.43 36.04 44.18 48.68 56.83
- GT-Reward 36.16 27.35 31.79 40.64 44.84 47.80 37.34 46.77 49.40 57.67

- Self-Certainty 32.96 24.58 29.20 36.69 41.36 48.15 39.37 46.76 49.52 56.95
- Entropy 35.37 26.61 31.42 39.44 44.00 50.44 40.67 48.61 52.52 59.07
- Majority-Voting 35.45 26.06 32.16 38.72 48.84 48.78 37.89 47.50 50.36 59.65
- Co-rewarding-I 35.56 27.91 31.23 39.32 43.76 50.35 40.67 49.35 51.56 59.83
- Co-rewarding-II 36.94 27.17 33.64 40.05 46.88 51.30 41.40 49.54 53.12 61.15

Qwen3-8B-Base Llama3-2-Instruct
Before RL 50.32 40.11 50.27 51.07 59.83 57.32 46.77 55.27 60.19 67.03
- GT-Reward 52.78 41.96 51.76 54.44 62.95 47.41 37.34 42.88 52.52 57.31

- Self-Certainty 50.98 39.74 49.54 52.88 61.75 54.88 43.81 52.68 58.15 64.87
- Entropy 51.81 40.67 51.20 52.76 62.59 54.70 43.81 52.68 57.67 64.63
- Majority-Voting 51.80 39.74 51.02 53.60 62.83 47.96 37.34 43.44 52.88 58.18
- Co-rewarding-I 55.79 43.99 57.11 55.63 66.42 49.14 39.37 45.66 53.12 58.39
- Co-rewarding-II 60.70 55.64 65.59 56.00 65.59 49.90 39.93 45.66 54.68 59.35

Table 13: Detailed IFEval performance on Qwen3-4B/8B-Base and Llama-3.2-3B-Instruct
traind on DAPO-14k. Results are reported for loose and strict settings in IFEval, respectively.

Methods IFEval
Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose

Qwen3-4B-Base
Before RL 46.43 36.04 44.18 48.68 56.83
- GT-Reward 47.70 37.52 45.84 49.76 57.67

- Self-Certainty 45.58 35.67 43.99 47.84 54.80
- Entropy 48.20 37.71 46.58 50.48 58.03
- Majority-Voting 48.91 39.19 47.69 50.24 58.51
- Co-rewarding-I 46.84 36.41 45.66 48.80 56.47
- Co-rewarding-II 48.90 39.56 46.21 51.44 58.39

Qwen3-8B-Base
Before RL 50.32 40.11 50.27 51.07 59.83
- GT-Reward 53.11 41.59 52.13 54.56 64.15

- Self-Certainty 50.58 41.04 49.54 51.68 60.07
- Entropy 51.56 41.59 49.91 53.48 61.27
- Majority-Voting 51.54 41.22 51.02 52.64 61.27
- Co-rewarding-I 50.17 40.67 48.24 52.16 59.59
- Co-rewarding-II 53.31 41.40 53.23 54.20 64.39

Llama3.2-3B-Instruct
Before RL 57.32 46.77 55.27 60.19 67.03
- GT-Reward 53.10 42.33 49.91 57.19 62.95

- Self-Certainty 54.50 44.55 51.76 58.03 63.67
- Entropy 55.78 45.29 53.23 59.11 65.47
- Majority-Voting 54.07 42.33 52.50 56.83 64.63
- Co-rewarding-I 53.04 42.33 51.02 55.76 63.07
- Co-rewarding-II 51.92 41.59 48.24 56.00 61.87

Next, simplify the fraction inside the denominator:

3 +
3

10
=

30

10
+

3

10
=

33

10
.

Now substitute this back into the expression:
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Table 14: Detailed IFEval Performance on Qwen3-8B/4B-Base trained on Open-RS. Results are
reported for loose and strict settings in IFEval, respectively.

Methods IFEval
Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose Average Prompt Strict Prompt Loose Inst. Strict Inst. Loose

Qwen3-8B-Base Qwen3-4B-Base
Before RL 50.32 40.11 50.27 51.07 59.83 46.43 36.04 44.18 48.68 56.83
- GT-Reward 52.53 41.59 51.02 54.56 62.95 47.80 37.34 46.77 49.40 57.67

- Self-Certainty 52.12 41.59 50.83 53.72 62.35 46.47 35.86 44.73 48.56 56.71
- Entropy 52.94 43.25 51.94 53.72 62.83 46.41 36.97 44.73 48.68 55.28
- Majority-Voting 51.13 40.67 49.35 53.36 61.15 46.35 36.41 44.18 48.80 56.00
- Co-rewarding-I 53.11 41.40 53.05 53.95 64.02 46.83 35.86 46.77 47.84 56.83
- Co-rewarding-II 52.92 42.14 52.50 54.08 62.95 48.45 38.26 46.77 50.24 58.51

Table 15: Case studies: Original vs. Rephrased Questions
Original Question Rephrased Question
Sam is hired for a 20-day period. On days
that he works, he earns $60. For each day that
he does not work, $30 is subtracted from his
earnings. At the end of the 20-day period, he
received $660. How many days did he not
work?

A contractor agrees to a job lasting 20 days.
For every day the job is completed on time,
the contractor earns $60. However, for each
day the work is delayed, a fine of $30 is ap-
plied. After the 20-day period, the contrac-
tor’s total earnings are $660. How many days
was the job delayed?

Karen drove continuously from 9:40 a.m. un-
til 1:20 p.m. of the same day and covered a
distance of 165 miles. What was her average
speed in miles per hour?

A traveler set off at 9:40 a.m. and reached
their destination at 1:20 p.m. the same day
after traveling a total of 165 miles. What was
their average speed during the trip in miles
per hour?

Solve for x: 1
2 + 1

x = 5
6 . A tank is partially filled by two different pipes.

One pipe fills half the tank in an hour, and
together with another pipe, they fill five-sixths
of the tank in the same time. If the second
pipe alone fills 1

x of the tank in an hour, find
the value of x.

3 +
1
33
10

= 3 +
10

33
.

To add these, we need a common denominator:

3 +
10

33
=

99

33
+

10

33
=

109

33
.

The fraction 109
33 is already in its simplest form because 109 and 33 have no common factors

other than 1. Therefore, m = 109 and n = 33, and the value of m+ n is:

109 + 33 = 142.

So, the final answer is:

142 .

Co-rewarding-II Answer:

To solve the given expression 3 + 1
3+ 1

3+ 1
3

, we need to simplify it step by step.

First, simplify the innermost fraction:

3 +
1

3
=

9

3
+

1

3
=

10

3
.
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Next, substitute this back into the next fraction:

3 +
1

3 + 1
10
3

= 3 +
1

3 + 3
10

= 3 +
1

30
10 + 3

10

= 3 +
1
33
10

= 3 +
10

33
.

Now, simplify the expression 3 + 10
33 :

3 +
10

33
=

99

33
+

10

33
=

109

33
.

The fraction 109
33 is already in its simplest form because 109 and 33 are coprime (they have

no common factors other than 1).
Thus, the irreducible fraction value of the given expression is 109

33 , where m = 109 and
n = 33. Therefore, m+ n = 109 + 33 = 142.
The value of m+ n is 142 .

GT-Reward Answer:

Alright, I have this problem:
The expression is:

3 +
1

3 + 1
3+ 1

3

And I need to find the irreducible fraction m
n that equals this expression, then determine

m+ n.
First, I need to simplify the expression step by step. It looks like a continued fraction, so I’ll
start by simplifying the innermost part and work my way out.
Let’s denote the entire expression as:

E = 3 +
1

3 + 1
3+ 1

3

**Step 1: Simplify the innermost fraction**
Start with the innermost fraction:

3 +
1

3
Calculate this:

3 +
1

3
=

9

3
+

1

3
=

10

3
So now, the expression becomes:

E = 3 +
1

3 + 1
10
3

Wait, I need to simplify 1
10
3

:
1
10
3

=
3

10

Now, the expression is:

E = 3 +
1

3 + 3
10

**Step 2: Simplify the next fraction**
Now, simplify 3 + 3

10 :

3 +
3

10
=

30

10
+

3

10
=

33

10
So, the expression now is:

E = 3 +
1
33
10
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Simplify 1
33
10

:
1
33
10

=
10

33

Now, the expression is:

E = 3 +
10

33
**Step 3: Combine the terms**
Convert 3 to a fraction with denominator 33:

3 =
99

33

Now, add the fractions:

E =
99

33
+

10

33
=

109

33

So, the expression simplifies to 109
33 .

**Step 4: Ensure the fraction is irreducible**
Check if 109 and 33 have any common divisors. 109 is a prime number (I think), and 33 is
3× 11. Since 109 isn’t divisible by 3 or 11, the fraction 109

33 is already in its irreducible form.
**Step 5: Find m+ n**
Here, m = 109 and n = 33, so:

m+ n = 109 + 33 = 142

Wait, let’s double-check the calculations to ensure no mistakes were made.
**Verification:**
Starting over:

E = 3 +
1

3 + 1
3+ 1

3

Innermost:
3 +

1

3
=

10

3
Next layer:

3 +
1
10
3

= 3 +
3

10
=

33

10

Outermost:
3 +

1
33
10

= 3 +
10

33
=

99

33
+

10

33
=

109

33

Yes, it checks out. Therefore, m+ n = 109 + 33 = 142.
142

Majority-Voting Answer:

To find the value of m
n as the irreducible fraction of the expression 3 + 1

3+ 1

3+ 1
3

, we need to

simplify the expression step by step.
First, let’s simplify the innermost fraction:

3 +
1

3
= 3 +

1

3
=

9

3
+

1

3
=

10

3

Now, substitute this back into the expression:

3 +
1

3 + 1
10
3

= 3 +
1

3 + 3
10
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Next, simplify the fraction 3 + 3
10 :

3 +
3

10
=

30

10
+

3

10
=

33

10

Now, substitute this back into the expression:

3 +
1
33
10

= 3 +
10

33

To add these, we need a common denominator:

3 +
10

33
=

99

33
+

10

33
=

109

33

So, the irreducible fraction value of the expression is 109
33 . Here, m = 109 and n = 33.

Therefore, the value of m+ n is:

m+ n = 109 + 33 = 142

Thus, the value of m+ n is 0 .

Self-Certainty Answer:

Alright, I have this math problem to solve:
**Problem:** I need to solve a math problem. The problem is about understanding how to
solve math problems. I need to understand how to solve this problem so I can understand
more about math.
### Understanding the Problem
First, I need to understand what the problem is. I need to understand math so I can understand
more about numbers and how to solve problems with numbers. Understanding math will help
me understand more about how to understand problems.
### Understanding Math Problems
After understanding the problem, I need to understand more about math problems. Un-
derstanding math problems will help me understand how to understand these problems.
Understanding these problems will help me understand more about how to understand math.
### Understanding Mathematical Concepts
After understanding math problems, I need to understand more about mathematical concepts.
Understanding mathematical concepts will help me understand more about math. Under-
standing these concepts will help me understand more about how math helps me understand
numbers.
### Understanding Mathematical Operations
After understanding mathematical concepts, I need to understand more about mathematical
operations. Understanding mathematical operations will help me understand more about how
to understand these operations. Understanding these operations will help me understand more
about how these operations help me understand math.
### Understanding Mathematical Operations in Math
After understanding mathematical operations, I need to understand ......
### Understanding Mathematical Methods
After understanding mathematical operations, I need to understand more about mathematical
methods. ......
### Understanding How Mathematical Methods Help
......
### Understanding How These Methods Help Me Understand Math
After understanding more about how these methods help me, I need to understand ......
### Understanding How These Methods Help Me Understand Math Problems
After understanding how these methods help me understand math, I need to understand ......
### Understanding How These Methods Help Me Solve Math Problems

28



After understanding how these methods help me understand these math problems, I need to
understand ......
### Understanding How These Methods Help Me Solve These Problems
After understanding how these methods help me solve these problems, I need to understand
more about ......

Entropy Answer:

To find the value of m
n as the irreducible fraction of the expression:

3 +
1

3 + 1
3+ 1

3

Let’s simplify the expression step by step.
1. **Simplify the innermost fraction:**

3 +
1

3

3 +
1

3
=

3× 3

3
+

1

3
=

9

3
+

1

3
=

9 + 1

3
=

10

3
2. **Simplify the next fraction:**

3 +
1

3 + 1
3

= 3 +
1
10
3

3 +
1
10
3

= 3 +
1× 3

10
= 3 +

3

10
=

3× 10

10
+

3

10
=

30

10
+

3

10
=

30 + 3

10
=

33

10

3. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3

= 3 +
1
33
10

3 +
1
33
10

= 3 +
1× 10

33
= 3 +

10

33
=

3× 33

33
+

10

33
=

99

33
+

10

33
=

99 + 10

33
=

109

33

4. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3

= 3 +
1
109
33

3 +
1
109
33

= 3 +
1× 33

109
= 3 +

33

109
=

3× 109

109
+

33

109
=

327

109
+

33

109
=

327 + 33

109
=

360

109

5. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1
360
109

3+
1
360
109

= 3+
1× 109

360
= 3+

109

360
=

3× 360

360
+
109

360
=

1080

360
+
109

360
=

1080 + 109

360
=

1189

360

6. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

1189
360
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......
7. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

3927
1189

......
8. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

12970
3927

......
9. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

42837
12970

......
10. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

141481
42837

......
11. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

467280
141481

......
12. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3

= 3 +
1

1543321
467280

......
13. **Simplify the next fraction:**

3 +
1

3 + 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3+ 1
3+ 1

3

= 3 +
1

5097243
1543321

3 +
1

5097243
1543321

= 3+
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