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Figure 1: We conduct a series of robustness tests based on data distribution corruptions from micro to macro
levels, to study the behavior of contrastive and supervised learning beyond accuracy. Our results reveal that
contrastive learning is usually more robust than supervised learning to downstream corruptions (∆D

CL < ∆D
SL),

while shows opposite behaviors to pre-training pixel- and patch-level corruptions (∆P
CL > ∆P

SL) and pre-
training dataset-level corruptions (∆P

CL < ∆P
SL), where ∆ is the accuracy drop from uncorrupted settings.

Abstract

Prior work on self-supervised contrastive learning has primarily focused on evaluating the
recognition accuracy, but has overlooked other behavioral aspects. In addition to accuracy,
distributional robustness plays a critical role in the reliability of machine learning models.
We design and conduct a series of robustness tests to quantify the behavioral differences
between contrastive learning and supervised learning to downstream and pre-training data
distribution changes. These tests leverage data corruptions at multiple levels, ranging from
pixel-level distortion to patch-level shuffling and to dataset-level distribution shift, includ-
ing both natural and unnatural corruptions. Our tests unveil intriguing robustness behaviors
of contrastive and supervised learning: while we generally observe that contrastive learn-
ing is more robust than supervised learning under downstream corruptions, we surprisingly
discover the robustness vulnerability of contrastive learning under pixel and patch level cor-
ruptions during pre-training. Furthermore, we observe the higher dependence of contrastive
learning on spatial image coherence information during pre-training, e.g., it is particularly
sensitive to global patch shuffling. We explain these results by connecting to feature space
uniformity and data augmentation. Our analysis has implications in improving the down-
stream robustness of supervised learning, and calls for more studies on understanding con-
trastive learning.

1 INTRODUCTION

In recent years, self-supervised contrastive learning (CL) has demonstrated tremendous potential in
learning generalizable representations from unlabeled datasets (Chen et al., 2020b; He et al., 2020;
Grill et al., 2020; Caron et al., 2020; Chen & He, 2021; Zhong et al., 2021b). Current state-of-the-art
CL algorithms learn representations from ImageNet (Deng et al., 2009) that match or even exceed
the accuracy of their supervised learning (SL) counterparts on ImageNet and downstream tasks.

However, beyond accuracy, little attention is paid on comparing other behavioral differences be-
tween contrastive learning and supervised learning, and even less work investigates the robustness
during pre-training. Robustness is an important aspect to evaluate machine learning algorithms. For
example, robustness to long-tail or noisy training data allows the learning algorithm to work well
in a wide variety of imperfect real-world scenarios (Wang et al., 2017). Robustness of the model
output across training iterations enables anytime early-stop (Hu et al., 2019) and smoother continual
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learning (Shen et al., 2020). Robustness to input corruptions at test-time plays an important role in
reliable deployment of trained models in safety-critical applications, as signified by the existence
of adversarial examples (Goodfellow et al., 2015; Salman et al., 2020) and the negative impact of
domain shift (Zhao et al., 2019).

In this paper, we investigate whether CL and SL behave robustly to data distribution changes. In
particular, how does changes in data affect behaviors of algorithms? And do CL and SL behave
similarly? To this end, we design a wide-spectrum of corruptions as shown in Figure 1 to alter data
distribution and conduct comprehensive experiments, with different backbones, CL algorithms and
datasets. The corruptions are carefully selected to be multi-level, targeting both human-recognizable
and unrecognizable structural information, and are rooted in prior literature: pixel-level corrup-
tions distorts intensity distribution, patch-level shuffle corrupts spatial structure (Ge et al., 2021;
Neyshabur et al., 2020; Zhang et al., 2017; Hendrycks & Dietterich, 2019), and dataset-level class
imbalance (Liu et al., 2022; 2019; Samuel & Chechik, 2021) and GAN (generative adversarial net-
work) synthesis (Jahanian et al., 2021) shift the overall distribution.

Our main results consist of two sets of experiments: The first set investigates the downstream ro-
bustness of pre-trained models towards corruptions of downstream data. The second set studies the
robustness under pre-training data corruptions – when the accuracy degradation of an algorithm to
some corruption is large, it suggests that the algorithm may leverage such information as learning
signal. Note that our work is inspired by Zhang et al. (2017) and Ribeiro et al. (2020) and follows a
similar empirical exploratory analysis, rather than a regular adversarial robustness paradigm.

We deliver a set of intriguing new discoveries. We generally observe that CL is consistently
more robust than SL to downstream corruptions. Meanwhile, contrastive learning on corrupted
pre-training leads to diverging observations: CL is more robust to dataset-level corruption than SL,
but much less so to pixel- and patch-level corruptions. Moreover, we discover the higher dependence
of contrastive learning on spatial information during pre-training, such that a global patch shuffling
corruption harms feature learning greatly.

To understand why pre-trained CL models are more robust to downstream corruptions, we ana-
lyze the learning dynamics through feature space metrics and find that CL yields larger overall and
steadily-increasing per-class feature uniformity and higher stability than SL. The instance-level CL
objective might capture richer sets of features not limited to semantic classes. Therefore, the per-
class uniformity or intra-class variation is not compressed as hard as in SL. This allows the CL
models to generalize to unseen corrupted downstream data better than SL. Such hypothesis aligns
well with several recent attempts to understand CL (Zhao et al., 2021; Chen et al., 2021a; Liu et al.,
2022). An immediate consequence of our insight is an improvement to supervised pre-training by
adding a uniformity regularization term to explicitly promote intra-class variance, where the test-
time data corruption robustness is improved.

As for CL’s vulnerability to pre-training data corruptions such as patch shuffling, we speculate that
CL is more dependent on the spatial structure of images, and the introduction of high-frequency
noise undermines the long-scale spatial coherence of natural images. For example, with global
patch shuffling, the random resized cropping used in CL is no longer a proper data augmentation.
We verify our intuition by manipulating data pre-processing and analyzing attention maps. We find
that corrupting after standard data augmentation recovers a substantial amount of robustness, making
CL comparably robust to SL.

We summarize our contributions as follows. (1) We design extensive distributional robustness
tests to study the behavioral differences of CL and SL systematically. (2) We discover diverging
robustness behaviors between CL and SL, and even among different CL algorithms. (3) We offer
analyses and explanations for such observations, and show a simple way to improve the downstream
robustness of supervised learning. We claim our paper as an empirical study. We hope our findings
can serve as an initial step to fully understand CL’s behaviors beyond accuracy and inspire more
future studies to explore such aspects through theoretical analysis.

2 RELATED WORK

Self-Supervised Learning (SSL) and Contrastive Learning (CL). Remarkable progress has been
made in self-supervised representation learning from unlabeled datasets (Chen et al., 2020b; He
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et al., 2020; Grill et al., 2020; Caron et al., 2020; Chen & He, 2021). This paper focuses on a
particular kind of SSL algorithm, contrastive learning, that learns augmentation invariance with a
Siamese network. To prevent trivial solution, contrastive learning pushes negative examples apart
(MoCo (He et al., 2020; Chen et al., 2020d; 2021b), SimCLR (Chen et al., 2020b;c)), makes use of
stop-gradient operation or asymmetric predictor without using negatives (BYOL (Grill et al., 2020),
SimSiam (Chen & He, 2021), DINO (Caron et al., 2021)), or leverages redundancy reduction (Bar-
lowTwins (Zbontar et al., 2021)) and clustering (DeepCluster-v2 and SwAV (Caron et al., 2020)). In
addition to augmentation invariance, generative pre-training (Ramesh et al., 2021; Bao et al., 2022;
He et al., 2022) and visual-language pre-training (Radford et al., 2021) are promising ways to learn
transferable representations.

There is a growing body of literature on understanding SSL. Wang & Liu (2021) decomposes the
contrastive objective into alignment (between augmentations) and uniformity (across entire feature
space) terms. Uniformity can be thought of as an estimate of the feature entropy, which we use to
study the feature space dynamics during training. Wang & Isola (2020) makes connection between
uniformity and the temperature parameter in contrastive loss, and finds that a good temperature can
balance uniformity and tolerance of semantically similar examples. Zhao et al. (2021) discovers that
SSL transferring better than SL can be due to better low- and mid-level features, and the intra-class
invariance objective in SL weakens transferability by causing more pre-training and downstream task
misalignment. Ericsson et al. (2021) studies the downstream task accuracy of a variety of pre-trained
models and finds that SSL outperforms SL on many tasks. Cole et al. (2022) investigates the impact
of pre-training data size, domain quality, and task granularity on downstream performance. Chen
et al. (2021a) identifies three intriguing properties of CL: a generalized version of the loss, learning
with the presence of multiple objects, and feature suppression induced by competing augmentations.
Our work falls into the same line of research that attempts to understand SSL better. However, we
investigate from the angle of robustness behavior comparison between SSL/CL and SL.

Robustness and Data Corruption. The success of learning algorithms is often measured by
some form of task accuracy, such as the top-1 accuracy for image classification (Deng et al., 2009;
Krizhevsky et al., 2009; Coates et al., 2011; Wah et al., 2011), or the mean average precision for ob-
ject detection (He et al., 2020; Zhong et al., 2021a; 2020). Beyond accuracy, robustness is another
important measure (Hendrycks & Dietterich, 2019), and there are benchmarks and metrics proposed
for SL (Nado et al., 2021). Robustness is becoming more studied for SSL. Chuang et al. (2022) tries
to improve CL’s robustness to noisy positive views. Goyal et al. (2022) reveals that vision models
are more robust and fair when pre-trained on uncurated images without supervision . Albuquerque
et al. (2020) leverages SSL’s robustness to out-of-domain examples to facilitate domain generaliza-
tion in multi-task learning . We use “robustness” to refer to the ability of learning algorithms to cope
with systematic train or test data corruptions. Under the supervised setting, deep models are shown
to train successfully (albeit not to generalize) under pixel shuffling corruption and random labels,
even though they are not human-recognizable anymore (Zhang et al., 2017).

Adversarial robustness (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018; Shafahi
et al., 2019; Chen et al., 2020a) is a related but different concept, which refers to the model’s abil-
ity to defend against adversarial attacks. An adversarial attack (Szegedy et al., 2014; Goodfellow
et al., 2015) is a perceptually indistinguishable perturbation to a single image that fools the model.
Adversarial training (Madry et al., 2018; Shafahi et al., 2019) is a technique to achieve adversarial
robustness. Self-supervised perturbation is explored in adversarial attack and training (Naseer et al.,
2020; Kim et al., 2020). Hendrycks et al. (2019) shows that SSL models possess better adversarial
robustness. Fan et al. (2021) improves the adversarial robustness transferability of CL. Our defini-
tion of robustness differs from adversarial robustness – we use robustness to analyze the tolerance of
learning methods to systematic data corruptions (rather than per-image imperceptible perturbation).

There are many types of data corruptions in prior work. The most common data corruptions, such
as random resizing and cropping, flipping, and color jittering, appear as data augmentation in SL
and SSL (He et al., 2016; 2020; Chen et al., 2020b). The learned representation is encouraged
to be invariant to such corruptions. Hendrycks & Dietterich (2019) proposes a set of corruptions
complementary to ours. Block shuffling (our image global shuffling) has been used to study what
is transferred in transfer learning (Neyshabur et al., 2020) and as negative views with diminished
semantics in contrastive learning (Ge et al., 2021). Cole et al. (2022) tampers data quality in SimCLR
and SL training by salt-and-pepper noise, JPEG, resizing, and downsampling, and tests on clean
data. We use a broader set of data corruptions and test on the corrupted data as well. A recent
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work (Jahanian et al., 2021) studies generative models as an alternative data source for contrastive
learning. They focus on comparison with real data, while we emphasize the behavior difference of
SSL and SL in response to the generative data source. Feature backward-compatibility (Shen et al.,
2020) is related to our stability analysis of feature dynamics. Recently, Goyal et al. (2021a) studies
the effectiveness of SSL on uncurated class-imbalanced data. Liu et al. (2022) also notices that SSL
tends to be more robust to class imbalance than SL. We bring extra insights over them. We consider
both pre-training and downstream robustness and compare CL vs. SL behaviors, while Goyal et al.
(2021a) only focuses on downstream and compares dataset scale. Our investigation suggests that
pre-train behavior can be opposite to downstream. Liu et al. (2022) only studies class imbalance,
but we also consider image structural corruptions.

3 METHOD

We define distributional robustness as robustness against various distribution shifts of input images
by carefully-designed data corruptions, and evaluate the distributional robustness of different algo-
rithms by observing the impact. We refer to the behavior of a learning algorithm as how it learns
the representations and how such learning evolves throughout training. To what extent will such
corruptions influence the performance? Will there be consistent trends that depend on the type of
the corruptions? And will there be a behavioral difference between CL and SL?

3.1 ROBUSTNESS TESTS

The common way of using CL or SL models is through the pre-training and fine-tuning paradigm
(Chen et al., 2020b; He et al., 2020; Zhong et al., 2021a;b). A neural backbone is pre-trained on a
large-scale dataset such as ImageNet (Deng et al., 2009) or composite dataset of images scrapped
from Internet with mixed quality (Radford et al., 2021), and transferred to initialize downstream
models or inference. Therefore, it is crucial to consider the impact of data corruptions in both
the pre-training and the downstream phases. Since data corruption destroys certain information by
design, both settings on the corrupted data are expected to yield degraded performance. Specifically,
we perform the following two complementary types of tests.

Robustness Test I: Downstream data corruption. In this test, the pre-training algorithm is run
on the clean version of the pre-training dataset. For a given downstream dataset, we evaluate the
pre-trained model’s accuracy on its original version and various corrupted versions. This assesses
the robustness of the algorithm by looking at the pre-trained model’s robustness behaviors.

Robustness Test II: Pre-training data corruption. To assess the algorithm’s robustness to pre-
training data corruptions, we run the pre-training algorithm on the corrupted version of the dataset,
and then evaluate the final model’s accuracy on either the corrupted test set or the original test set.
The test set can be in-domain (the same domain as the train set) or out-domain (a different domain
from the train set).

Robustness Metric. In both cases, the robustness is measured by the degradation in accuracy caused
by certain data corruption. An algorithm is more robust if the degradation is smaller. Denote Doriginal
as the original dataset and Dcorrupted as the corrupted dataset. For an algorithm Alg ∈ {CL,SL}, we
define ∆(Alg) as Acc(Alg,Doriginal)−Acc(Alg,Dcorrupted)

Acc(Alg,Doriginal)
. The essential question we are asking is whether

∆(CL) is consistently larger or smaller than ∆(SL) across different data corruptions.

We use two methods to obtain the test accuracy in the above equation. The first is linear evaluation,
where we train a linear classifier on top of the learned representations on the train split and evaluate
on the test split. The second is KNN evaluation following Wu et al. (2018), where the prediction
is the exponential-distance weighted average of the K nearest neighbors in the train split of any test
data point, measured by the normalized feature vectors. The KNN evaluation effectively leverages
an non-parametric classifier, therefore no classifier training is required.

3.2 DATA CORRUPTION TYPES

There is a natural hierarchy of data corruptions ranging conceptually from micro-level to macro-
level. We describe our choices below (also illustrated in Figure 1). Note that our data corruption is
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different from data augmentation randomly applies transform on a per-image basis. In our case, a
fixed random transformation (e.g., the γ in gamma distortion or the permutation order in shuffling)
is decided first and then applied consistently across all images. We effectively transform the entire
dataset with the corruption method.

We emphasize that our purpose is not only to study human-recognizable distortions, but to evaluate
pre-training algorithms’ behavior under various distortions. To this end, our collection of corrup-
tions is designed to be representative and comprehensive: while some of them are practical (natural
corruptions, imbalance), others are purposefully introduced to distort certain structural information
(shuffling). A similar flavor of behavior study was seen in Zhang et al. (2017).

Pixel-Level Corruption. The pixel intensity distribution is altered, but neither the spatial layout of
each image nor the overall data distribution is changed. Here, we deliberately pick gamma distortion
and selected ImageNet-C corruptions (Hendrycks & Dietterich, 2019) since they are not part of the
conventional data augmentation pipeline.
• Gamma distortion: Gamma distortion remaps each RGB pixel intensity (∈ [0, 255]) according

to x → ⌊255 × (x/255)γ⌋, where γ > 0 is a tunable parameter. Larger or smaller γ shifts the
intensities darker or brighter, respectively. Due to quantization error, there will be part of the
intensity information lost during the process.

• ImageNet-C: ImageNet-C (Hendrycks & Dietterich, 2019) focuses on natural, human-
recognizable corruptions such as noises, blurring, weathers, etc. We pick shot noise, defocus
blur, and JPEG compression in our pre-training robustness experiments.

Patch-Level Corruption. Inspired by Zhang et al. (2017), we consider random shuffling. Note that
patch shuffling is not commonly used in the standard augmentation pipeline. We are curious about
what behaviors CL and SL will exhibit when patch shuffling destroys certain structural coherence.
• Global shuffling: We break down the image into patches and shuffles the patches according to a

fixed random order. Specifically, given the image size s× s and the patch size p× p, the image is
divided into s/p× s/p patches. Global shuffling destroys the global spatial structure of an image
but preserves the local structure. The image becomes less structured with a smaller patch size.

• Local shuffling: Inversely to global shuffling, local shuffling randomly permutes the pixels inside
each local p×p patch by a fixed random order, but keeps the global ordering of patches. It damages
the local image structure while preserving the overall global structure. The image becomes less
structured with a larger patch size.

Dataset-Level Corruption. We hereby consider corruptions happening at the whole dataset distri-
bution level, as the previous two corruptions only change the images but not the overall distribution.
• Synthesized data: Synthesized data is popularizing (e.g., DALL·E 2 (Ramesh et al., 2022)) and

studied to replace real data (Jahanian et al., 2021). We utilize GAN (Karras et al., 2020) to
generate a synthesized dataset DGAN and replace Doriginal. We then measure and compare ∆(Alg)
between these two datasets. Oftentimes, the generated distribution is not perfectly aligned with
the real distribution, therefore training with the generative data source may lead to degradation in
accuracy of clean data or downstream performance.

• Class imbalance: Real-world data often follows a long-tail distribution, where a few common
semantic classes have lots of examples while many tail classes have few examples (Kang et al.,
2020; Samuel & Chechik, 2021). However, benchmark datasets such as CIFAR and ImageNet
are curated and class-balanced. We consider the widely-used variant of ImageNet, ImageNet-LT
(long-tail) (Liu et al., 2019), with maximally 1280 images and minimally 5 images per class. For
comparison, we construct ImageNet-UF (uniform), a class-balanced subset of ImageNet which
contains the same number of images as ImageNet-LT (115K). We test whether moving from pre-
training on ImageNet-UF to ImageNet-LT would lead to different behaviors between CL and SL.

3.3 EXPERIMENT SETUP

Datasets. We pre-train on CIFAR-10 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009) and
its variants to evaluate the distributional robustness of CL and SL to pre-training data corruptions.
We use CIFAR-10/100 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011), and fine-grained
classification datasets (Cars (Krause et al., 2013) and Aircrafts (Maji et al., 2013)) to analyze the
performance of the pre-trained models on the corrupted downstream tasks. For fair comparisons, we
use the same data augmentation across methods when we need to train any model.
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Table 1: Robustness Test I: downstream pixel- and patch-level corruptions with ResNet-50 backbone. Models
pre-trained on original ImageNet are downloaded from corresponding official websites (‘IN Acc:’ reference
ImageNet Val accuracy). We consider 5 downstream datasets. For each dataset, we report the averages of 6
corruption settings: gamma distortion γ = {0.2, 5}, global and local shuffling (p = {4, image size/4}). The
image size is 32 for C-10/100, 96 for STL-10, and 256 for the rest; the corrupted images are resized to 224
as input to the network. We compute the KNN accuracy (K=50 for C-10/100 and STL-10, K=5 for others) on
corrupted test sets and report ∆ relative to the uncorrupted versions. Avg ∆ is the average over the 5 datasets
(darker shades indicate higher drops). This table only shows ∆. Please refer to Appendix B.4 for more detailed
accuracies. Contrastive learning models generally show lower accuracy drops and therefore higher downstream
robustness than supervised models.

Pre-train Alg IN Acc C-10 C-100 STL-10 Car-196 Air-70 Avg ∆ ↓
Sup 76.1 31.5% 45.3% 31.0% 51.2% 39.9% 39.8%
BYOL 72.3 29.3% 43.0% 29.0% 42.9% 33.8% 35.6%
SimSiam 68.3 27.8% 40.8% 29.3% 41.5% 32.6% 34.4%
MoCo-v2 71.1 31.3% 45.2% 31.0% 39.7% 31.3% 35.7%
SimCLR-v2 71.0 31.5% 45.4% 30.8% 43.0% 31.7% 36.5%
BarlowTwins 73.5 26.7% 39.8% 29.7% 43.0% 34.4% 34.7%
DeepCluster-v2 75.2 28.2% 41.1% 28.5% 43.2% 38.9% 36.0%
SwAV 74.9 26.8% 39.3% 28.6% 41.4% 36.3% 34.5%

Table 2: Robustness Test I: downstream pixel- and patch-level corruptions with ViT backbone. We show KNN
accuracies and the ∆’s on three datasets. Similar to Table 1, ViT CL models are also more robust than the two
SL models, especially to gamma distortion. The generative method, MAE (He et al., 2022), is slightly more
robust than CL to patch shuffling on CIFAR, but inferior on STL10 and more vulnerable to gamma distortion.
We include average ∆ for each algorithm across all datasets for a clearer comparison.

Alg Dataset Orig γ0.2 γ2.5 G4x4 G24x24 L4x4 L24x24 Avg ∆

ViT (Sup) STL10 98.85 91.71 (7.2%) 91.39 (7.5%) 88.96 (10.0%) 43.69 (55.8%) 45.95 (53.5%) 70.89 (28.3%) 27.1%
Alg Avg ∆: CIFAR10 94.23 71.42 (24.2%) 82.37 (12.6%) 64.09 (32.0%) 52.58 (44.2%) 52.54 (44.2%) 59.63 (36.7%) 32.3%

36.1% CIFAR100 79.86 48.70 (39.0%) 60.87 (23.8%) 40.95 (48.7%) 29.84 (62.6%) 28.91 (63.8%) 35.31 (55.8%) 49.0%
DeiT (Sup) STL10 98.64 97.58 (1.1%) 98.01 (0.6%) 92.92 (5.8%) 46.99 (52.4%) 45.60 (53.8%) 73.22 (25.8%) 23.3%
Alg Avg ∆: CIFAR10 95.37 90.66 (4.9%) 92.78 (2.7%) 73.24 (23.2%) 59.48 (37.6%) 53.10 (44.3%) 59.65 (37.5%) 25.0%

28.7% CIFAR100 78.23 68.98 (11.8%) 73.00 (6.7%) 49.86 (36.3%) 34.81 (55.5%) 29.49 (62.3%) 36.12 (53.8%) 37.7%
DINO STL10 98.91 98.31 (0.6%) 98.17 (0.7%) 95.30 (3.7%) 50.36 (49.1%) 52.35 (47.1%) 79.96 (19.2%) 20.1%
Alg Avg ∆: CIFAR10 96.68 92.85 (4.0%) 94.65 (2.1%) 77.99 (19.3%) 64.63 (33.2%) 60.79 (37.1%) 68.04 (29.6%) 20.9%

24.9% CIFAR100 83.88 75.76 (9.7%) 79.21 (5.6%) 56.81 (32.3%) 40.80 (51.4%) 36.62 (56.3%) 44.82 (46.6%) 33.7%
MoCo-v3 STL10 97.89 97.11 (0.8%) 96.75 (1.2%) 91.24 (6.8%) 48.86 (50.1%) 47.70 (51.3%) 74.88 (23.5%) 22.3%
Alg Avg ∆ CIFAR10 96.16 91.90 (4.4%) 94.17 (2.1%) 75.30 (21.7%) 61.14 (36.4%) 57.60 (40.1%) 64.43 (33.0%) 22.9%

27.1% CIFAR100 82.32 73.25 (11.0%) 77.42 (6.0%) 53.07 (35.5%) 37.75 (54.1%) 33.00 (59.9%) 40.79 (50.4%) 36.2%
MAE STL10 90.74 83.54 (7.9%) 87.42 (3.7%) 72.54 (20.1%) 46.35 (48.9%) 46.20 (49.1%) 60.15 (33.7%) 27.2%
Alg Avg ∆ CIFAR10 77.06 71.00 (7.9%) 72.04 (6.5%) 61.25 (20.5%) 55.06 (28.5%) 53.31 (30.8%) 56.99 (26.0%) 20.0%

25.4% CIFAR100 53.70 47.72 (11.1%) 49.46 (7.9%) 37.18 (30.8%) 30.93 (42.4%) 29.36 (45.3%) 34.18 (36.4%) 29.0%

Models and Algorithms. We benchmark a variety of self-supervised contrastive learning algo-
rithms. These methods are carefully sampled to be representative. They include contrastive learning
with negatives: SimCLR-v2 (Chen et al., 2020b;c), MoCo-v2 (He et al., 2020; Chen et al., 2020d);
without negatives: SimSiam (Chen & He, 2021), the momentum based, BYOL (Grill et al., 2020);
with redundancy reduction: BarlowTwins (Zbontar et al., 2021); and with clustering assignments:
DeepCluster-v2 (Caron et al., 2020), SwAV (Caron et al., 2020). We test both CNN (standard
ResNet-18/50 (He et al., 2016)) and Vision Transformer (ViT) (Dosovitskiy et al., 2021) backbones.
For transformers, we leverage pre-trained models on ImageNet (Deng et al., 2009) from ViT (Doso-
vitskiy et al., 2021), DeiT (Touvron et al., 2021), DINO (Caron et al., 2021), MoCo-v3 (Chen et al.,
2021b), and MAE (He et al., 2022) (which makes an interesting comparison as it is based on recon-
struction rather than contrasting).

4 RESULTS

4.1 CL IS MORE ROBUST TO DOWNSTREAM DATA CORRUPTIONS THAN SL

We show the results of downstream robustness tests on various datasets with frozen ResNet-50
(He et al., 2016) in Table 1 and ViT (Dosovitskiy et al., 2021) in Table 2. Model checkpoints are
obtained from VISSL (Goyal et al., 2021b) and the official code bases. They are pre-trained on
the clean version of ImageNet. We employ pixel-level and patch-level corruptions and report KNN
accuracy. The raw accuracy numbers are in Appendix B.4.

For pixel-level corruption, we pick gamma distortion with γ = {0.2, 5}. For patch-level corruption,
we choose a small patch size and a large patch size for local and global shuffling each. In both
tables, CL methods have demonstrated higher robustness (lower average ∆) than SL. The same
observation holds if we unfreeze the backbone and fine-tune fully with an additional linear layer as
shown in Appendix B.5. Interestingly, not all CL methods are equally robust; even within the same
method, models trained with different hyper-parameters (such as epochs) exhibit different levels of
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robustness (Appendix B.4, B.5). With ResNet-50, we notice SimSiam, SwAV, and BarlowTwins to
behave slightly more robust than others.

Table 3: Robustness Test II: pre-training pixel- and patch-level corruptions of CIFAR10 with ResNet18, and
full ImageNet with ResNet50. We use linear evaluation. We discover that SL is more robust than CL in this
scenario. While CL methods obtain average ∆ about 20%, SL achieves 16.7% for CIFAR10 and 7.9% for
ImageNet, which is lower than the best CL methods here (MoCo v2 and BYOL).

C10 orig γ0.2 G4x4 G8x8 L4x4 L8x8 Avg ∆ ↓ IN orig γ0.2 G4x4 L64x64 Avg ∆ ↓
Sup 89.53 87.36 (2.4%) 76.06 (15.0%) 65.88 (26.4%) 65.94 (26.3%) 77.49 (13.4%) 16.7% 71.79 69.59 (3.1%) 62.59 (12.8%) 66.24 (7.7%) 7.9%
MoCo-v2 88.73 85.84 (3.3%) 67.18 (24.3%) 60.51 (31.8%) 63.35 (28.6%) 76.90 (13.3%) 20.3% 64.06 61.07 (4.7%) 35.02 (45.3%) 57.63 (10.0%) 20.0%
BYOL 88.39 82.72 (6.4%) 67.47 (23.7%) 60.63 (31.4%) 62.64 (29.1%) 75.15 (15.0%) 21.1% 64.19 62.67 (2.4%) 35.00 (45.5%) 58.72 (8.5%) 18.8%
Barlow 88.89 80.49 (9.4%) 68.34 (23.1%) 61.13 (31.2%) 62.53 (29.7%) 75.28 (15.3%) 21.7% N/A
DINO 84.75 69.27 (18.3%) 64.26 (24.2%) 55.83 (34.1%) 58.57 (30.9%) 68.96 (18.6%) 25.2% N/A

Table 4: Robustness Test II: pre-training pixel-level natural corruptions of CIFAR10 with ResNet18 backbone,
and full ImageNet (Deng et al., 2009) with ResNet50 backbone following (Hendrycks & Dietterich, 2019). We
select MoCo-v2 (Chen et al., 2020d) to compare with SL on linear evaluation, and we pick shot noise, defocus
blur, and JPEG compression as natural corruptions. On both datasets, SL achieves lower average ∆, which
aligns with unnatural corruptions during pre-training.

CIFAR10 Orig Shot Defocus JPEG Avg ∆ ↓ ImageNet Orig Shot Defocus JPEG Avg ∆ ↓
Sup 89.53 88.04 90.9 87.08 0.9% 71.79 69.34 66.89 70.44 4.0%
MoCo-v2 88.73 82.02 88.08 78.59 6.5% 64.06 52.99 54.76 55.73 14.9%

4.2 CL IS LESS ROBUST TO PRE-TRAINING PIXEL-LEVEL AND PATCH-LEVEL CORRUPTIONS

Contrary to downstream corruptions where CL demonstrates consistent higher robustness, whether
CL is more robust than SL depends on the type of corruption during pre-training. Extensive experi-
ments show that SL is more robust to pixel- and patch-level corruptions.

Table 3 shows the impacts of gamma distortion and patch shuffling on CL and SL during pre-
training. We train SL for 30 epochs and CL for 200 epochs (except for DINO which is trained for
600 epochs) for comparable clean data accuracy via linear evaluation. The ∆ of SL due to gamma
distortion is 2.4% which outperforms all the tested CL methods. For pre-training patch shuffling
corruption, all CL methods behave similarly and less robustly than SL, except for the L8x8 case
where Sup and MoCo-v2 are comparable. We also extend to natural pixel-level corruptions for
MoCo-v2 and SL as shown in Table 4. While SL achieves 0.9% and 4.0% average ∆ on CIFAR10
and full ImageNet respectively, MoCo-v2 obtains worse average ∆(6.5%, 14.9%). This aligns with
previous observations from gamma distortion and shuffle. Additional experiments involving ViT
backbone, longer training, ImageNet-100 are included in Appendix B.1, B.2 and B.3, which cover
wider corruption settings and all report the same observations.

4.3 CL IS MORE ROBUST TO PRE-TRAINING DATASET-LEVEL CORRUPTIONS

To investigate pre-training distribution shift caused by synthesized data, we adopt a class-conditional
StyleGAN2-ADA (Karras et al., 2020) trained on CIFAR-10 to generate a synthesize copy of same
size. We train MoCo-v2 for 200 epochs and SL for 50 epochs (both ResNet-18 backbones) with
different train/test data settings, reporting performance differences in Table 5. When training on
the synthesized data and testing on the original CIFAR-10, MoCo-v2 only has 2.58%∆, greatly
outperforming the supervised method with 8.44%∆. Evaluating on a GAN-synthesized test set
yields similar observation – MoCo-v2 shows almost no drop while Sup drops 6%. Testing on out-
domain CIFAR-100 delivers the same behavior.

Table 6 shows the impact of class imbalance. We use ImageNet-LT (long-tail) dataset to simu-
late the real-world long-tail class distribution (Liu et al., 2019), and we sample a balanced subset
of ImageNet named ImageNet-UF (uniform), with the same size as ImageNet-LT. We train with
ResNet-50 backbone and compare the recognition accuracy on the ImageNet-LT validation split of
the fine-tuned linear classifiers on ImageNet-UF. Despite a gap between the baseline top-1 accu-
racy of MoCo-v2 and SL, we observe that the decline of MoCo resulting from pre-training on the
long-tail rather than the uniform version is much smaller than SL. In fact, the MoCo performance
appears to be insensitive to class balance or imbalance (the top-1 ∆ is only 0.71%). This is con-
trary to SL, which shows a larger drop. The difference is more salient by looking at the low-shot
(< 20 images per class), medium-shot, and many-shot (> 100 images per class) accuracy sepa-
rately. Supervised pre-training on the long-tail version sacrifices the low-shot accuracy for a higher
many-shot accuracy, whereas MoCo-v2 pre-training shows insignificant difference among the shots.
Our observation is consistent with a contemporary work (Liu et al., 2022).
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Table 5: Robustness Test II: pre-training synthesized
data. C10/C100 refer to CIFAR-10/100. Interest-
ingly, at absolute scale, MoCo shows higher down-
stream transfer accuracy to CIFAR-100 than SL, even
through the 10 pre-training classes are only a small
subset of the CIFAR-100. In all three evaluation set-
tings, MoCo-v2 demonstrates much more robustness
(on average, ∆MoCo = 0.93%) than Sup (∆Sup =
7.71%) to the distribution shift of synthesized data.

Alg Data C10 Test C10 GAN Test C100 Test Avg ∆ ↓
Sup Orig C10 87.8 88.3 16.08 -

GAN C10 80.0 (8.88%) 82.8 (6.23%) 14.79 (8.02%) 7.71%
MoCo-v2 Orig C10 82.6 85.1 45.47 -

GAN C10 82.2 (0.48%) 85.4 (-0.35%) 44.27 (2.64%) 0.93%

Table 6: Robustness Test II: pre-training class imbal-
ance. We compare MoCo and SL on ImageNet-LT
(long-tail) (Liu et al., 2019) and ImageNet-UF (uni-
form). We train a linear classifier on ImageNet-UF and
report accuraccies on ImageNet-LT-Val (20K images).
Low-shot refers to classes with less than 20 images,
many-shot with more than 100, and med-shot in be-
tween. MoCo shows less sensitivity to pre-train data
imbalance than Sup with smaller ∆ and variance.
Alg Data Top-1 Low Med Many
Sup ImageNet-UF 46.37 44.85 45.88 47.52

ImageNet-LT 44.90 (3.17%) 40.99 (8.61%) 43.48 (5.23%) 48.05 (-1.12%)
MoCo-v2 ImageNet-UF 32.36 30.63 31.66 33.84

ImageNet-LT 32.13 (0.71%) 30.99 (-1.18%) 31.45 (0.66%) 33.36 (1.42%)

Discussion. We try to balance diversity and setup unity under computation budget. Within each
table, the setup is consistent, allowing comparison of SL and CL; across tables, we intentionally
evaluate if the observation is generalizable across backbones and datasets. For example, Tables 1
and 2 are the same corruptions but varying backbones; Table B.3 extends the same observation
from small-scale in Table 3 to larger-scale. The ∆ metric could be unreliable when the original
uncorrupted accuracy differs too much across methods. We overcame it by: (1) controlling the
original accuracy to be relatively close, (2) testing multiple datasets, backbones, and corruption
settings to draw consistent conclusions from more data points.

5 ANALYSIS

5.1 CL’S HIGHER DOWNSTREAM ROBUSTNESS IS RELATED TO A MORE UNIFORM AND
STABLE FEATURE SPACE DURING TRAINING
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Figure 2: Class-wise test accuracy of MoCo and SL on
original CIFAR-10 during training. MoCo has more
steady class-wise accuracy curves and smaller mean
feature semantic fluctuation (T V) than SL.
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Figure 3: Above: Solid black line – uniformity of the
overall feature space. Dashed lines – class-wise feature
uniformities of the 10 classes. While the overall unifor-
mity of all methods grows, the uniformity of each class
of Sup or SupCon is shrinking as training progresses. In
the end, the overall uniformity of MoCo is the largest.
Below: Solid black line – d(ft,D0,D0), i.e., the intra-
class variance of class 0. Dashed lines – feature dis-
tances between Di(i ̸= 0) and D0. The intra-class vari-
ance behavior of MoCo (increasing) is the opposite to
that of Sup or SupCon (decreasing).

The robustness discrepancy between CL (e.g.,
MoCo) and SL is not only reflected in the final
trained models, but is in fact also attributed in
the training process. To analyze how the feature
space evolves during training, we measure the
following three metrics: 1. Feature Seman-
tic Fluctuation. We monitor the classification
ability of the feature extractor by the accuracy
of a KNN probe. We define feature seman-
tic fluctuation of class i as the total variation
of per-class accuracy of class i (as a function
of epoch t) averaged over all epochs: T Vi =

1
T−1

∑T−2
t=0 |Acc(i)t+1 − Acc(i)t |. We further de-

fine the mean feature semantic fluctuation as
the mean of T Vi over all classes. Larger se-
mantic fluctuation indicates less stable feature
space. 2. Feature Uniformity. We can mea-
sure the uniformity of all the features or class-
wise features as the log-mean of Gaussian po-
tentials of the normalized features: U(ft,D) =

− logEx0,x1∼D

[
e−2∥ft(x0)−ft(x1)∥2

2

]
. Here ft

is the network at epoch t, D is the dataset,
and x0 and x1 are images sampled from the
dataset. The use of this measure to study con-
trastive learning is exemplified in (Wang &
Isola, 2020). Intuitively, a greater U means
more uniformly distributed features on the unit
sphere, while a smaller value means more con-
centrated features. 3. Feature Distance. We
also measure the average feature squared ℓ2 distance between two classes. A larger distance could
mean more linear separability. Denoting Di and Dj as feature matrices of two classes, the fea-
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Table 7: Uniformity regularization directly influences supervised pre-training’s downstream robustness
(ResNet-18, CIFAR-10, 200 epochs). Positive uniformity term leads to higher KNN evaluation accuracy on
corrupted data with no loss on original accuracy. Subtracting the uniformity term leads to the opposite.

Pre-train Loss Metric Orig γ5 L4x4 G4x4
Sup Acc, Unif 94.18, 1.98 72.85, 1.64 37.85, 0.98 39.70, 0.90
Sup+0.01Unif Acc, Unif 94.21, 2.69 74.47, 2.03 42.22, 1.11 44.34, 1.30
Sup−0.01Unif Acc, Unif 94.56, 1.12 71.50, 0.77 36.15, 0.41 37.88, 0.46

ture distance is calculated as: d(ft,Di,Dj) = Ex0∼Di,x1∼Dj

[
∥ft(x0)− ft(x1)∥22

]
. Note that if

Di = Dj , it actually measures the intra-class variance of class i.

We train ResNet-18 (He et al., 2016) on the original CIFAR-10 (Krizhevsky et al., 2009) train split
and measure the above metrics on the test split. Figure 3 shows the dynamics of feature uniformity
and distances of MoCo-v2 (He et al., 2020; Chen et al., 2020d), supervised contrastive (SupCon)
(Khosla et al., 2020), and supervised learning. We are interested in SupCon, because it bridges CL
and SL by leveraging a similar contrastive loss. As illustrated, the overall feature uniformity of
MoCo-v2 (Chen et al., 2020d) is greater than 2.5 and approaching 3, while the overall uniformity of
SupCon and supervised methods range from 1.25 to 2.2. This means that features from CL methods
are more uniformly distributed on the unit sphere. By looking at the class-wise feature uniformity
and distance, we notice that SL tends to compress (and maybe over-compress) the features of each
class. Figure 2 shows that the accuracy of a KNN probe during supervised learning also fluctuates
more dramatically. We can interpret it as that the classes are competing with each other, and SL
cannot improve the performance on all classes at the same time like CL methods.

We hypothesize that uniformity is the key to CL’s higher downstream robustness, because, intu-
itively, a more uniform feature space may capture richer characteristics of images and gives the pre-
trained model a higher chance to extract useful representation from downstream images, corrupted or
not. We test this hypothesis by checking whether SL can benefit from an extra uniformity-promoting
loss term. Table 7 briefly demonstrates that adding (or subtracting) the uniformity regularization pro-
duces a more (or less) uniform test feature space. This experiment suggests that we could improve
SL by leveraging loss functions from CL and potentially get the best of both worlds.

5.2 CL’S LOWER PRE-TRAINING ROBUSTNESS MAY RELATE TO HIGHER DEPENDENCY ON
IMAGE SPATIAL COHERENCE

The diverging robustness behaviors of CL to pre-training corruptions can stem from its higher de-
pendence on image spatial structure. While little previous work examines corruptions during pre-
training and its reliance on spatial information, we hypothesize that a high-frequency corruption
signals applied globally to the data will harm the long-scale coherence. Such effect is intuitively
straight-forward since the authentic spatial information will be eroded and the weighted importance
will decrease with the introduction of corruptive information. Table B.8 demonstrates how shuf-
fling interferes with data augmentation in the CIFAR-10 pre-training case. While standard shuffling
produces largest avg ∆ = 22.0%, reversing the order of corruption and augmentation greatly ame-
liorates the ∆ of CL and produces comparable robustness to SL with ∆ = 6.0%. As we perform
augmentation such as random resized crop after shuffling, we may select crop windows that cap-
ture pieces from different shuffled patches and do not reside in natural image statistics. To better
view the destructive effect, Figure C.4 shows the attention maps of global shuffling comparing to
the original. Contrastive pre-training with shuffled data leads to less dense and inaccurate attentions,
essentially fails to learn good representations, which verifies CL’s worse robustness. This also hints
that contrastive learning is not really general – on certain types of images it fails. How to design
general CL algorithms that work on all kinds of images remains an interesting question.

6 CONCLUSION

Our paper systematically studies the distributional robustness of CL and SL through a diverse set
of multi-level data corruptions. We discover interesting robustness behaviors of CL to different
corruptions. Our analysis of the feature space gives insight that uniformity might be the key to
higher downstream robustness, while analyzing augmentation process and attention maps disclose
the high dependence of contrastive learning on spatial information. Our results favor the current use
of CL or a combination of CL and SL in visual representation learning, and calls for more research
into understanding the behavior and the learning mechanism of CL.
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A ADDITIONAL IMPLEMENTATION DETAILS

Table A.1 below lists the experiment configurations for each pre-training robustness table of the
main paper. We train our own ResNets (He et al., 2016) on CIFAR-10 (Krizhevsky et al., 2009) and
ImageNet variants (Deng et al., 2009). ImageNet-LT/UF are the long-tail and uniformly-subsampled
versions. ImageNet-100 is a 100 class subset of full ImageNet-1K. We mainly list Sup and MoCo-
v2 (Chen et al., 2020d) hyper-parameters here. The other CL methods follow their recommended
hyper-parameter values in the Solo-Learn package (da Costa et al., 2022).

Table A.1: Implementation details for the pre-training results in the main paper.
Config Tables 3,5 Table 6 Table B.3
Pre-train dataset CIFAR-10 ImageNet-LT/UF ImageNet-100
# of categories 10 1000 100
Train image size 32 224 224
Train data size 50K 115K 130K
Network ResNet-18 ResNet-50 ResNet-18
Backbone out dim 512 2048 512
Sup epochs 50 200 50
Sup lr 0.1 cos 0.015 cos 0.015 cos
Sup batch size 512 128 128
MoCo epochs 200 200 200
MoCo lr 0.06 cos 0.015 cos 0.03 cos
MoCo batch size 512 128 256
MoCo dim 128 128 128
MoCo temp. 0.1 0.2 0.2
MoCo momentum 0.99 0.999 0.999
MoCo queue size 4096 65536 65536
Evaluation Linear Linear Linear

Augmentation
crop+flip+

color(.4,p=.8)
+gray(p=.2)

crop+flip+
color(.4,p=.8)+gray(p=.2)+

gauss(.1,.2,p=.5)

B ADDITIONAL RESULTS

B.1 PRE-TRAINING ROBUSTNESS TEST WITH TRANSFORMER BACKBONE

In the main paper, we compare pre-training robustness with a CNN backbone in Table 3, and show
Vision Transformer (ViT) downstream robustness test results in Table 2. Here, we supplement ViT
pre-training robustness test results. Specifically, we leverage MoCo-v3 (Chen et al., 2021b), the
ViT version of MoCo, and Supervised ViT. The results are in Table B.1. We find that the MoCo-
v3 degradation is larger with patch shuffling, but smaller with gamma distortion. Interestingly, the
impact of patch shuffling is much smaller than a CNN (despite the Orig performance gap between
ViT and CNN). We suspect that this is due to the unique patching and attention network structure
of ViT. Essentially, if we do not take into consideration the data augmentation, with the right patch
size, the shuffling within a small patch does not affect the learning of ViT much, and the global
ordering of patches also does not matter much, because of learned positional embeddings and global
attention.

Table B.1: Pre-training robustness with ViT on CIFAR10: MoCo-v3 vs. Sup. For the ViT architecture, since
the input size (32x32) is smaller than that of a standard ViT, we use a customized small ViT (image size=32,
patch size=4, dim=512, depth=6, heads=8, mlp dim=512, dropout=0.1, emb dropout=0.1).

Method Orig G4x4 G16x16 L4x4 L16x16 Avg ∆ γ = 0.1
Sup ViT 50ep 67.92 59.01 47.97 57.76 67.95 - 52.96
∆ - 13.12% 29.37% 14.96% -0.04% 14.35% 22.03%
MoCo-v3 200ep 62.78 53.36 41.58 53.52 61.77 - 51.41
∆ - 15.0% 33.77% 14.75% 1.61% 16.28% 18.11%
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B.2 PRE-TRAINING ROBUSTNESS TEST WITH LONGER EPOCHS

In Table 3 of the main paper, we mostly report results of short pre-training schedules: Sup 30 epochs
and CL 200 epochs, in order to make the baseline results comparable. We report CIFAR-10 longer
training epochs in Table B.2. Training longer does not change our observation that MoCo appears
less robust to patch- and pixel-level corruptions than SL during pre-training on this dataset.

Table B.2: Pre-training robustness: Sup 50ep vs. MoCo-v2 400ep, ResNet-18, CIFAR-10.
Method Orig G4x4 G8x8 L4x4 L8x8 Avg ∆ γ = 0.1
Sup 50ep 92.23 81.14 71.33 71.72 81.95 - 89.11
∆ - 12.02% 22.67% 22.24% 11.15% 17.02% 3.38%
MoCo-v2 400ep 91.43 70.99 64.25 66.56 81.51 - 83.94
∆ - 22.36% 29.73% 27.20% 10.85% 22.54% 8.19%

B.3 PRE-TRAINING ROBUSTNESS ON IMAGENET-100

Table B.3: Robustness Test II: pre-training pixel- and patch-level corruptions of ImageNet100. We focus our
comparison on MoCo-v2 and SL to train on corrupted ImageNet100, which is a 100-class subset of ImageNet
and substantially larger than CIFAR. SL still shows higher robustness to our pixel-level and patch-level corrup-
tions, in agreement with Table 3.

IN-100 Orig γ0.2 γ5 G2x2 G4x4 G8x8 L128x128 L64x64 L32x32 Avg ∆ ↓

Sup 77.08 73.60
(4.5%)

70.28
(8.8%)

67.26
(12.7%)

62.84
(18.5%)

58.20
(24.5%)

75.28
(2.3%)

72.68
(5.7%)

68.52
(11.1%) 6.65%

MoCo-v2 74.38 66.80
(10.2%)

62.74
(15.6%)

44.90
(39.6%)

35.84
(51.8%)

30.94
(58.4%)

69.34
(6.8%)

63.68
(14.4%)

54.24
(27.1%) 28.0%

B.4 DOWNSTREAM ROBUSTNESS TEST WITH KNN: ACCURACY NUMBERS

Table B.4 shows the detailed accuracy numbers for computing the summary statistics in Table 1 of
the main paper.

B.5 DOWNSTREAM ROBUSTNESS TEST WITH FULL FINE-TUNING

Table 1 in the main paper and Table B.4 above are generated with the KNN evaluation proto-
col. We also experiment with full fine-tuning on the downstream datasets. The results are in
Table B.5. Since different pre-trained checkpoints are optimized with different optimizers (SGD
for Sup, SimSiam(Chen & He, 2021), MoCo-v2(Chen et al., 2020d), and SimCLR-v2(Chen et al.,
2020c); LARS(You et al., 2017) for BYOL(Grill et al., 2020), BarlowTwins(Zbontar et al., 2021),
DeepCluster2, and SwAV(Caron et al., 2020)), we use SGD (lr 0.002 cosine) for Sup, SimSiam,
MoCo, and SimCLR, and AdamW (lr 0.001 cosine) (Loshchilov & Hutter, 2019) for others during
fine-tuning. All models are fine-tuned for 10 epochs. We find this strategy of using different opti-
mizers is able to make the baseline results on original images comparable across methods. We note
that fine-tuning drastically improves the accuracy on downstream datasets, while the general obser-
vation that CL methods are more robust to downstream corruption than SL still holds, except for
BarlowTwins which is slightly worse than SL. Another interesting observation here is that different
CL methods actually yield different robustness behaviors, although they are all doing some form of
contrastive learning and have similar baseline accuracies.

B.6 VARIANCE OF PRE-TRAINING RESULTS

We repeat MoCo-v2 on the original CIFAR-10 200ep three times: The KNN evaluation mean and
std is 82.44±0.18. Repeating MoCo-v2 on the global 8x8 shuffling corrupted CIFAR-10 gives KNN
evaluation mean and std 59.24 ± 0.40. The linear evaluation variance is similar. The randomness
has a smaller order than the gap between MoCo and Sup results.

B.7 PRE-TRAIN ON CORRUPTED CIFAR-10, BUT TEST ON UNCORRUPTED IMAGES

In the main paper, we show the results when both the pre-training and evaluation datasets are cor-
rupted in the same consistent way. In the following Table B.7, we report the accuracy numbers
obtained from KNN evaluation on the original uncorrupted images. Since these models are pre-
trained on the pixel- or patch-level corrupted dataset, the results reflect the transfer capability of the
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Table B.4: Robustness to downstream data corruption with KNN evaluation. This table contains the detailed
top-1 accuracy numbers constituting Table 1 in the main paper. The shades of yellow in the last column indicate
the size of the numbers. Suffix ‘-b’ of an algorithm refers to pre-trained model from another source.
Pre-train Alg Dataset Orig γ = 0.2 γ = 5 G-small G-large L-small L-large Avg ∆

Sup cifar10 86.4 76.4 (11.7%) 67.6 (21.8%) 61.2 (29.2%) 49.6 (42.6%) 46.9 (45.7%) 53.6 (38.0%) 31.5%
Sup cifar100 65.1 52.4 (19.6%) 44.1 (32.3%) 37.4 (42.6%) 25.7 (60.5%) 23.4 (64.1%) 30.8 (52.8%) 45.3%
Sup stl10 96.6 92.2 (4.6%) 82.6 (14.5%) 80.8 (16.3%) 40.7 (57.8%) 43.4 (55.1%) 60.3 (37.5%) 31.0%
Sup cars196 26.8 23.3 (13.2%) 18.1 (32.5%) 12.7 (52.7%) 4.4 (83.6%) 4.1 (84.9%) 16.0 (40.4%) 51.2%
Sup aircraft70 40.3 37.9 (6.0%) 38.8 (3.6%) 25.2 (37.4%) 8.0 (80.3%) 10.0 (75.2%) 25.5 (36.7%) 39.9%
Sup-b cifar10 84.9 77.0 (9.3%) 68.9 (18.9%) 57.7 (32.0%) 46.5 (45.2%) 44.0 (48.2%) 51.9 (38.9%) 32.1%
Sup-b cifar100 63.2 53.3 (15.7%) 45.4 (28.1%) 33.0 (47.8%) 21.4 (66.1%) 18.9 (70.0%) 28.0 (55.7%) 47.2%
Sup-b stl10 96.0 92.8 (3.3%) 83.6 (12.9%) 77.9 (18.9%) 36.0 (62.5%) 41.5 (56.7%) 60.4 (37.0%) 31.9%
Sup-b cars196 28.8 26.8 (7.0%) 22.0 (23.8%) 12.1 (58.1%) 1.8 (93.7%) 2.4 (91.6%) 15.8 (45.2%) 53.2%
Sup-b aircraft70 46.9 47.0 (-0.3%) 46.0 (1.9%) 29.8 (36.4%) 7.7 (83.5%) 10.8 (76.9%) 29.8 (36.5%) 39.2%
BYOL cifar10 87.5 80.3 (8.3%) 72.4 (17.3%) 64.0 (26.8%) 50.7 (42.1%) 48.4 (44.7%) 55.6 (36.5%) 29.3%
BYOL cifar100 67.4 58.1 (13.8%) 49.8 (26.0%) 39.7 (41.1%) 26.1 (61.3%) 24.5 (63.6%) 32.1 (52.3%) 43.0%
BYOL stl10 94.9 92.4 (2.6%) 85.0 (10.4%) 78.1 (17.7%) 41.5 (56.3%) 43.8 (53.8%) 63.0 (33.6%) 29.0%
BYOL cars196 22.5 22.3 (0.8%) 18.7 (17.0%) 12.6 (44.1%) 2.5 (88.9%) 2.3 (89.6%) 18.6 (17.2%) 42.9%
BYOL aircraft70 38.2 39.5 (-3.3%) 38.6 (-1.2%) 24.0 (37.2%) 8.0 (79.2%) 10.5 (72.6%) 31.1 (18.5%) 33.8%
SimSiam cifar10 83.6 77.6 (7.2%) 68.7 (17.8%) 61.5 (26.5%) 50.4 (39.8%) 48.4 (42.2%) 55.6 (33.5%) 27.8%
SimSiam cifar100 59.9 52.7 (12.1%) 44.8 (25.1%) 36.1 (39.7%) 24.8 (58.6%) 23.2 (61.2%) 31.1 (48.0%) 40.8%
SimSiam stl10 92.1 89.6 (2.7%) 81.1 (12.0%) 74.2 (19.4%) 39.1 (57.6%) 43.8 (52.5%) 62.7 (31.9%) 29.3%
SimSiam cars196 17.1 15.9 (6.9%) 13.9 (18.5%) 10.3 (39.4%) 2.0 (88.6%) 2.5 (85.2%) 15.3 (10.2%) 41.5%
SimSiam aircraft70 32.8 34.1 (-3.7%) 32.6 (0.8%) 20.9 (36.3%) 6.8 (79.3%) 10.8 (67.2%) 27.6 (15.9%) 32.6%
MoCo cifar10 81.4 74.0 (9.1%) 66.1 (18.9%) 60.2 (26.0%) 49.5 (39.2%) 47.2 (42.0%) 54.0 (33.7%) 28.1%
MoCo cifar100 56.6 48.2 (14.8%) 41.9 (26.0%) 35.3 (37.7%) 23.5 (58.5%) 23.1 (59.3%) 30.0 (46.9%) 40.5%
MoCo stl10 90.1 88.1 (2.2%) 77.5 (13.9%) 73.5 (18.5%) 39.9 (55.7%) 42.8 (52.5%) 60.0 (33.4%) 29.4%
MoCo cars196 13.1 12.8 (2.5%) 11.3 (14.2%) 8.8 (32.9%) 2.3 (82.6%) 2.6 (80.5%) 12.1 (8.2%) 36.8%
MoCo aircraft70 25.2 26.7 (-6.1%) 23.4 (7.2%) 17.3 (31.5%) 8.1 (67.9%) 10.0 (60.2%) 21.2 (15.7%) 29.4%
MoCo-b cifar10 83.6 76.1 (9.0%) 67.1 (19.7%) 57.2 (31.5%) 47.2 (43.5%) 45.6 (45.5%) 51.0 (38.9%) 31.3%
MoCo-b cifar100 59.5 49.9 (16.1%) 42.4 (28.7%) 32.9 (44.7%) 21.4 (64.0%) 21.1 (64.5%) 27.9 (53.0%) 45.2%
MoCo-b stl10 95.3 92.8 (2.6%) 85.1 (10.6%) 76.0 (20.2%) 38.9 (59.2%) 40.4 (57.6%) 60.9 (36.1%) 31.0%
MoCo-b cars196 13.8 13.7 (1.3%) 12.1 (12.8%) 7.9 (42.7%) 1.8 (86.9%) 1.9 (86.3%) 12.7 (8.4%) 39.7%
MoCo-b aircraft70 26.8 28.1 (-4.9%) 26.4 (1.5%) 17.2 (35.8%) 6.9 (74.4%) 8.6 (67.8%) 23.3 (13.2%) 31.3%
SimCLR2 cifar10 85.4 79.2 (7.3%) 67.5 (21.0%) 58.0 (32.1%) 45.6 (46.6%) 45.8 (46.4%) 54.8 (35.8%) 31.5%
SimCLR2 cifar100 63.5 55.2 (13.1%) 44.6 (29.8%) 33.2 (47.7%) 21.2 (66.7%) 22.4 (64.7%) 31.4 (50.6%) 45.4%
SimCLR2 stl10 91.9 89.3 (2.9%) 81.7 (11.2%) 69.8 (24.1%) 38.4 (58.2%) 40.8 (55.6%) 61.5 (33.1%) 30.8%
SimCLR2 cars196 17.7 16.9 (4.6%) 15.6 (11.9%) 9.8 (44.5%) 1.6 (91.2%) 2.4 (86.7%) 14.3 (19.1%) 43.0%
SimCLR2 aircraft70 31.2 32.0 (-2.4%) 32.0 (-2.3%) 20.1 (35.7%) 7.1 (77.4%) 10.2 (67.2%) 26.7 (14.6%) 31.7%
BarlowTwins cifar10 83.8 77.8 (7.1%) 70.0 (16.4%) 62.0 (26.0%) 51.6 (38.5%) 50.0 (40.3%) 56.9 (32.1%) 26.7%
BarlowTwins cifar100 63.7 56.0 (12.1%) 48.1 (24.5%) 38.8 (39.2%) 26.5 (58.5%) 26.6 (58.2%) 34.2 (46.3%) 39.8%
BarlowTwins stl10 94.5 91.6 (3.0%) 83.7 (11.4%) 74.6 (21.1%) 40.0 (57.7%) 44.8 (52.6%) 63.7 (32.6%) 29.7%
BarlowTwins cars196 23.4 23.6 (-1.1%) 20.7 (11.4%) 11.8 (49.6%) 2.7 (88.4%) 2.4 (89.8%) 18.7 (19.9%) 43.0%
BarlowTwins aircraft70 39.2 43.1 (-9.7%) 40.4 (-2.9%) 22.5 (42.7%) 7.7 (80.3%) 9.4 (76.1%) 31.4 (19.9%) 34.4%
DeepCluster cifar10 87.2 80.5 (7.7%) 70.6 (19.0%) 64.3 (26.2%) 52.5 (39.7%) 50.3 (42.3%) 57.3 (34.3%) 28.2%
DeepCluster cifar100 65.0 56.2 (13.6%) 47.3 (27.1%) 39.6 (39.1%) 27.7 (57.4%) 25.6 (60.6%) 33.5 (48.5%) 41.1%
DeepCluster stl10 94.8 92.4 (2.6%) 84.6 (10.8%) 79.2 (16.5%) 41.9 (55.8%) 45.0 (52.6%) 64.0 (32.5%) 28.5%
DeepCluster cars196 22.7 20.9 (7.8%) 19.3 (15.0%) 13.8 (39.3%) 2.9 (87.2%) 3.8 (83.2%) 16.7 (26.4%) 43.2%
DeepCluster aircraft70 40.3 39.2 (2.8%) 37.6 (6.7%) 24.4 (39.5%) 7.3 (81.8%) 11.2 (72.2%) 27.9 (30.7%) 38.9%
SwAV cifar10 83.5 76.8 (8.1%) 68.8 (17.7%) 63.3 (24.1%) 52.9 (36.6%) 48.6 (41.8%) 55.3 (33.8%) 27.0%
SwAV cifar100 60.1 52.5 (12.7%) 44.3 (26.3%) 38.5 (35.9%) 27.1 (55.0%) 23.8 (60.4%) 31.0 (48.4%) 39.8%
SwAV stl10 94.4 91.8 (2.8%) 84.0 (11.1%) 80.3 (14.9%) 43.0 (54.5%) 44.5 (52.8%) 62.7 (33.6%) 28.3%
SwAV cars196 17.2 16.2 (5.8%) 14.6 (15.0%) 12.0 (30.4%) 3.0 (82.8%) 3.0 (82.5%) 12.6 (26.9%) 40.6%
SwAV aircraft70 31.5 29.7 (5.6%) 30.5 (3.0%) 23.9 (24.2%) 8.3 (73.7%) 10.3 (67.2%) 22.1 (29.7%) 33.9%
SwAV-b cifar10 84.7 78.0 (7.9%) 70.1 (17.2%) 63.4 (25.1%) 52.6 (37.8%) 51.0 (39.8%) 56.7 (33.0%) 26.8%
SwAV-b cifar100 62.7 54.4 (13.2%) 46.5 (25.8%) 39.7 (36.6%) 28.0 (55.3%) 26.5 (57.8%) 33.2 (47.1%) 39.3%
SwAV-b stl10 94.3 91.6 (2.9%) 83.7 (11.3%) 78.5 (16.8%) 44.6 (52.8%) 45.0 (52.4%) 60.9 (35.4%) 28.6%
SwAV-b cars196 19.3 18.0 (6.8%) 16.4 (15.2%) 12.4 (36.1%) 3.1 (84.2%) 3.5 (82.0%) 14.7 (24.2%) 41.4%
SwAV-b aircraft70 33.5 32.8 (2.1%) 30.5 (9.0%) 21.7 (35.2%) 8.0 (76.0%) 11.0 (67.2%) 23.9 (28.7%) 36.3%
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Table B.5: Robustness to downstream data corruption with fine-tuning. We fine-tune the full network and linear
classification layer for 10 epochs. Overall, CL methods are more robust than Sup under this setting except for
BarlowTwins. Suffix ‘-b’ of an algorithm refers to pre-trained model from another source. We include algorithm
average ∆ for each algorithm across all datasets for a clearer comparison.
Pre-train Alg Dataset Orig γ = 0.2 γ = 5 G-small G-large L-small L-large Avg ∆
Alg Avg
Sup cifar10 96.7 96.8 (-0.2%) 94.0 (2.8%) 88.2 (8.8%) 77.5 (19.8%) 72.0 (25.5%) 86.0 (11.0%) 11.3%
Sup cifar100 83.8 83.7 (0.1%) 77.4 (7.6%) 68.8 (17.9%) 53.5 (36.2%) 46.0 (45.1%) 65.2 (22.2%) 21.5%
Sup stl10 97.7 97.2 (0.6%) 92.5 (5.4%) 92.1 (5.7%) 55.5 (43.2%) 56.5 (42.2%) 89.1 (8.8%) 17.6%
Sup cars196 75.1 73.2 (2.6%) 58.4 (22.3%) 40.1 (46.5%) 4.1 (94.6%) 5.0 (93.4%) 56.5 (24.7%) 47.3%
Sup aircraft70 81.5 80.4 (1.3%) 78.8 (3.3%) 66.5 (18.4%) 11.5 (85.9%) 17.6 (78.4%) 72.8 (10.6%) 33.0%
Alg Avg ∆ 26.1%
BYOL cifar10 96.5 96.3 (0.2%) 93.9 (2.7%) 88.8 (7.9%) 80.2 (16.9%) 75.2 (22.0%) 87.4 (9.4%) 9.8%
BYOL cifar100 83.2 82.2 (1.2%) 76.7 (7.8%) 68.3 (17.9%) 54.2 (34.8%) 46.5 (44.1%) 64.4 (22.6%) 21.4%
BYOL stl10 96.2 95.8 (0.5%) 91.8 (4.7%) 91.3 (5.2%) 57.0 (40.8%) 56.2 (41.6%) 88.2 (8.4%) 16.9%
BYOL cars196 80.4 77.2 (4.0%) 62.1 (22.8%) 49.0 (39.1%) 2.8 (96.6%) 3.9 (95.2%) 65.1 (19.0%) 46.1%
BYOL aircraft70 87.7 86.5 (1.4%) 84.1 (4.2%) 76.3 (13.0%) 13.9 (84.1%) 20.2 (76.9%) 80.0 (8.8%) 31.4%
Alg Avg ∆ 25.1%
SimSiam cifar10 95.0 95.1 (-0.1%) 92.1 (3.1%) 87.5 (7.9%) 79.8 (16.1%) 75.4 (20.7%) 86.7 (8.8%) 9.4%
SimSiam cifar100 81.0 80.5 (0.6%) 74.1 (8.5%) 68.5 (15.5%) 56.4 (30.4%) 51.3 (36.6%) 67.1 (17.1%) 18.1%
SimSiam stl10 94.0 93.4 (0.6%) 88.1 (6.3%) 87.1 (7.3%) 64.4 (31.5%) 59.5 (36.7%) 85.8 (8.7%) 15.2%
SimSiam cars196 85.7 85.2 (0.6%) 75.7 (11.6%) 64.4 (24.9%) 4.2 (95.1%) 5.9 (93.1%) 79.3 (7.5%) 38.8%
SimSiam aircraft70 89.7 89.0 (0.8%) 86.9 (3.2%) 82.3 (8.3%) 23.5 (73.8%) 28.9 (67.7%) 86.4 (3.7%) 26.3%
Alg Avg ∆ 21.6%
MoCo-b cifar10 96.8 96.7 (0.2%) 94.5 (2.4%) 89.6 (7.5%) 81.5 (15.9%) 77.4 (20.1%) 89.4 (7.7%) 9.0%
MoCo-b cifar100 84.8 84.1 (0.9%) 78.5 (7.5%) 72.2 (14.8%) 59.0 (30.5%) 53.9 (36.4%) 70.8 (16.5%) 17.8%
MoCo-b stl10 96.3 96.3 (0.0%) 91.8 (4.6%) 91.6 (4.9%) 64.3 (33.2%) 61.0 (36.7%) 90.3 (6.2%) 14.3%
MoCo-b cars196 85.7 84.6 (1.3%) 75.7 (11.7%) 62.8 (26.7%) 3.6 (95.8%) 5.0 (94.2%) 78.5 (8.3%) 39.7%
MoCo-b aircraft70 90.3 89.3 (1.1%) 88.0 (2.5%) 82.5 (8.6%) 22.6 (75.0%) 27.2 (69.9%) 86.9 (3.8%) 26.8%
Alg Avg ∆ 21.5%
SimCLR2 cifar10 96.3 95.8 (0.5%) 93.3 (3.1%) 87.1 (9.6%) 76.8 (20.3%) 72.2 (25.0%) 86.2 (10.5%) 11.5%
SimCLR2 cifar100 84.8 84.2 (0.7%) 78.6 (7.3%) 69.5 (18.1%) 56.7 (33.2%) 51.4 (39.4%) 67.3 (20.7%) 19.9%
SimCLR2 stl10 95.5 95.2 (0.3%) 89.7 (6.0%) 86.5 (9.4%) 54.6 (42.8%) 55.8 (41.6%) 88.0 (7.8%) 18.0%
SimCLR2 cars196 77.9 75.3 (3.4%) 64.9 (16.8%) 47.0 (39.6%) 3.0 (96.2%) 4.5 (94.3%) 68.1 (12.6%) 43.8%
SimCLR2 aircraft70 84.8 83.8 (1.1%) 82.9 (2.2%) 72.5 (14.5%) 20.1 (76.3%) 23.8 (72.0%) 79.4 (6.3%) 28.7%
Alg Avg ∆ 24.4%
BarlowTwins cifar10 96.8 96.7 (0.1%) 94.4 (2.5%) 87.9 (9.2%) 76.4 (21.0%) 70.1 (27.6%) 84.9 (12.3%) 12.1%
BarlowTwins cifar100 83.9 83.6 (0.4%) 76.9 (8.4%) 64.2 (23.5%) 46.1 (45.1%) 39.0 (53.5%) 56.4 (32.8%) 27.2%
BarlowTwins stl10 97.3 96.8 (0.6%) 92.2 (5.2%) 91.2 (6.3%) 52.9 (45.7%) 52.0 (46.6%) 87.1 (10.5%) 19.1%
BarlowTwins cars196 73.5 69.0 (6.3%) 53.2 (27.7%) 38.0 (48.3%) 2.7 (96.4%) 3.4 (95.3%) 57.1 (22.4%) 49.4%
BarlowTwins aircraft70 81.1 77.9 (4.0%) 76.5 (5.7%) 63.8 (21.3%) 11.3 (86.0%) 15.5 (80.9%) 67.7 (16.5%) 35.7%
Alg Avg ∆ 28.7%
DeepCluster2-b cifar10 96.5 96.5 (0.0%) 94.6 (2.0%) 89.9 (6.9%) 80.8 (16.3%) 75.7 (21.6%) 87.7 (9.2%) 9.3%
DeepCluster2-b cifar100 84.7 83.6 (1.3%) 78.3 (7.5%) 71.6 (15.4%) 57.6 (32.0%) 49.2 (41.9%) 66.8 (21.1%) 19.9%
DeepCluster2-b stl10 96.8 96.3 (0.4%) 93.7 (3.2%) 93.1 (3.8%) 62.3 (35.6%) 57.6 (40.4%) 88.9 (8.1%) 15.3%
DeepCluster2-b cars196 81.6 79.4 (2.6%) 68.6 (16.0%) 56.3 (31.0%) 3.4 (95.8%) 4.9 (94.0%) 66.5 (18.5%) 43.0%
DeepCluster2-b aircraft70 87.9 87.2 (0.8%) 85.4 (2.9%) 77.8 (11.5%) 15.4 (82.5%) 20.0 (77.2%) 79.1 (10.1%) 30.8%
Alg Avg ∆ 23.7%
SwAV-b cifar10 96.3 96.4 (-0.2%) 94.0 (2.3%) 89.8 (6.7%) 81.6 (15.2%) 75.9 (21.2%) 87.8 (8.7%) 9.0%
SwAV-b cifar100 83.7 83.1 (0.7%) 77.4 (7.5%) 70.8 (15.4%) 58.1 (30.5%) 49.7 (40.6%) 66.3 (20.8%) 19.3%
SwAV-b stl10 96.3 96.6 (-0.3%) 92.8 (3.7%) 92.7 (3.8%) 63.2 (34.3%) 58.9 (38.9%) 88.6 (8.0%) 14.7%
SwAV-b cars196 82.2 80.1 (2.5%) 70.5 (14.2%) 60.4 (26.5%) 3.8 (95.4%) 5.4 (93.4%) 67.7 (17.6%) 41.6%
SwAV-b aircraft70 89.2 88.2 (1.2%) 87.2 (2.3%) 80.0 (10.4%) 18.2 (79.6%) 22.9 (74.3%) 81.3 (8.9%) 29.5%
Alg Avg ∆ 22.8%
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pre-trained representation from corrupted data to original data. We find that the trend is similar to
evaluating on corrupted data that Sup appears more robust.

Table B.7: Uncorrupted evaluation results of robustness to pre-training pixel-level gamma distortion and patch-
level corruption (global and local shuffling) with CIFAR-10 and ResNet-18.

Method Orig γ = 0.2 G4x4 G8x8 L4x4 L8x8 Avg ∆
Sup 92.23 82.72 63.03 36.94 61.56 62.51 -
∆ - 10.31% 31.66% 59.95% 33.25% 32.22% 33.48%
MoCo-v2 KNN 82.55 72.01 46.66 32.93 48.91 53.78 -
∆ - 15.40% 43.48% 60.11% 40.75% 34.85% 38.39%

B.8 REVERSING CORRUPTION-AUGMENTATION ORDER

While our study is based on learning corrupted data, we can switch the corruption-augmentation
order for deeper analysis. Table B.8 shows the shuffling case on CIFAR-10 during pre-training. The
standard shuffling corruption on MoCo leads to the largest avg ∆ = 22.0%, while switching the
order brings comparable robustness to supervised learning in terms of avg ∆. This provides insight
on the different dependence between CL and SL on spatial information corrupted by shuffling.

Table B.8: Additional pre-training corruption with Sup no-augmentation and Sup/MoCo augmentation-then-
corrupt variants. SL is able to learn without data augmentation. Contrary to the corrupt-aug version in previous
sections, MoCo and Sup share roughly a similar level of robustness with the aug-corrupt order.

Pre-training Orig. G4x4 G8x8 L4x4 L8x8 Avg ∆

Sup no-aug 87.66 77.37 (11.7%) 71.86 (18.0%) 73.30 (16.4%) 82.34 (6.0%) 13.0%
Sup aug-corrupt 92.23 85.92 ( 6.8%) 80.58 (12.6%) 83.61 ( 9.4%) 89.96 (2.5%) 7.8%
MoCo corrupt-aug 82.55 65.43 (17.1%) 59.49 (27.9%) 59.62 (27.8%) 70.14 (15.0%) 22.0%
MoCo aug-corrupt 82.55 77.63 ( 6.0%) 73.48 (11.0%) 78.12 ( 5.4%) 81.25 (1.6%) 6.0%

B.9 MEASURING THE TASK DIFFICULTY BY H-DIVERGENCE

To demonstrate that different corruptions at different levels of strength have corresponding different
levels of difficulty, we have quantified the H-divergence as shown in Figure B.1.

We follow Lemma 2 from the H-divergence paper (Ben-David et al., 2010) and implement the ob-
jective using PyTorch. Since the objective is straightforward and a convolutional network converges
very fast to zero loss (and H divergence 2), we adopt multilayer perceptron (MLP) with sigmoid
function to observe the progress and differences between data corruptions. We select two differ-
ent strengths for each of our proposed data corruption and observe stronger corruptions are indeed
proportionally farther from the original dataset with higher H divergence. The selected data cor-
ruptions from ImageNet-C (Hendrycks & Dietterich, 2019) cannot be distinguished well by our
MLP. We can resolve it with a deeper convolutional network and longer training, but it suffices to
say that ImageNet-C provides mild corruptions, which also corresponds to the smaller performance
drop shown in Table 4. We do not evaluate dataset level corruptions since class imbalance already
changes class distributions and GAN-synthesized dataset is trained to minimize divergence. To em-
pirically verify the different dynamics of feature space, we have adopted a few metrics to evaluate
the feature distance and uniformity, and quantify them for CL and SL models at each epoch to dis-
cuss the progress throughout pre-training as shown in Figure 2 and Figure 3. As we have mentioned
in Sec. 3.2, we also select a few natural data corruptions from ImageNet-C, which together with
other corruptions contribute to our final conclusions.

C ADDITIONAL VISUALIZATION

C.1 VISUALIZING GRAD-CAM ATTENTION MAPS

Figure C.1 visualizes the Grad-CAM (Selvaraju et al., 2017) attention maps of ResNet-18 models
pre-trained and linearly fine-tuned on either uncorrupted or 4x4 global patch shuffled images. We
discover some difference in terms of the equivariant property: Sup models are largely equivariant
to 4x4 global patch shuffling – the attention is focused on the object parts even after patch shuffling,
whereas the MoCo model pre-trained on 4x4 global shuffled images are not – it is rather focused
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Figure B.1: H-divergence between the original dataset and the corrupted dataset as measured by training a
simple network to distinguish them.

Orig Sup,ori-trained MoCo,ori-trained Sup,G4x4-trained MoCo,G4x4-trained G4x4 shuffled Sup,ori-trained MoCo,ori-trained Sup,G4x4-trained MoCo,G4x4-trained

Figure C.1: Randomly chosen images from ImageNet-100. We consider 4x4 global patch shuffling and visu-
alize the Grad-CAM attention maps of 4 models: Sup trained on original images, MoCo trained on original
images, Sup trained on shuffled images, and MoCo trained on shuffled images. The attention map of the MoCo
model on shuffled images is less equivariant to the patch shuffling.

on distracting parts. The quality of attention maps correlates with the top-1 validation accuracy,
where Sup on 4x4 achieves 65% and MoCo achieves 35%. Intuitively, a model can be more robust
to the global patch shuffling if it possesses such an equivariant property. This shows the robustness
of SL from another aspect, because it can robustly learn the same feature even under the shuffling
disturbance.

To further understand qualitatively how different corruption strategies impact the model’s ability to
learn semantic concepts, we draw the CAMs of models trained under different corruption settings on
the corrupted versions of two ImageNet validation images in Figures C.2 and C.3. Global shuffling
and defocus blur especially hinder the ability of MoCo to learn meaningful semantics.

C.2 VISUALIZING CORRUPTED IMAGES

Please check Figure C.4 for more visual examples of the pixel-level gamma distortion and patch-
level shuffling corruptions we used.
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ori sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

gam0.2 sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

G4x4 sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

L64x64 sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

shot sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

blur sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

jpeg sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

Figure C.2: GradCAM on corrupted versions of a dog image of sup/MoCo models trained under 7 corruptions.
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moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

G4x4 sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

L64x64 sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

shot sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

blur sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

jpeg sup-ori sup-gam0.2 sup-G4x4 sup-L64x64 sup-shot sup-blur sup-jpeg

moco-ori moco-gam0.2 moco-G4x4 moco-L64x64 moco-shot moco-blur moco-jpeg

Figure C.3: GradCAM on corrupted versions of a bird image of sup/MoCo models trained under 7 corruptions.
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Orig = 0.2 = 2.5 G2x2 G4x4 G8x8 G32x32 G96x96/L1x1 L2x2 L4x4 L8x8 L32x32

Figure C.4: Randomly chosen examples from the STL-10 dataset. The original images have resolution 96x96.
We show the resulting images of gamma distortion (γ = 0.2, 2.5), global shuffling (G2x2, weaker – G96x96,
stronger), and local shuffling (L1x1, stronger – L32x32, weaker). G1x1 and L96x96 revert to the original, while
G96x96 and L1x1 are the most random ones (and have similar effect). Gamma distortion reduces information
in pixel intensity. Global shuffling destroys global but preserves local structure, while local shuffling is the
opposite.
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