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Abstract

Digitized histopathology slides contain a wealth of information, only a fraction of which is being

used in clinical routine. Deep learning can extract subtle visual features from digitized slides and

thus can infer clinically relevant endpoints from raw image data. While classification and

regression methods are well established in this domain, end-to-end prediction of patient survival

still remains a comparably novel approach. To account for different follow-up times and

censored data, previous approaches have largely used discretized survival data. Here, we

demonstrate and validate EE-Surv, a powerful yet algorithmically simple method to predict

survival directly from whole slide images which we validate in colorectal and gastric cancer, two

clinically relevant and markedly different tumor types. We experimentally show that our method

yields a highly significant prediction of survival and enables explainability of predictions. Our

method is publicly available under an open-source license and can be applied to any type of

disease.
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Introduction

For virtually every patient with a malignant tumor, histopathological tissue slides stained with

hematoxylin and eosin (H&E) are available. These slides are increasingly being digitized in

clinical routine, yielding gigapixel images which are accessible for computational analysis. In

recent years, Deep Learning applications on histopathology images resulted in a high

performance in classical tasks such as tissue segmentation, object detection and quality control.

In addition Deep Learning has been used for more challenging “end-to-end” tasks such as

disease subtyping and mutation detection [1–5]. In particular, end-to-end prognostication of

survival is of high clinical relevance in treatment selection and follow-up of cancer patients.

Unlike for simple classification tasks, there is no standard method available for prediction of

survival from histopathology images. Some previous studies have used Deep Learning for

tissue segmentation and using the results to fit survival prediction models [6]; other studies have

used Deep Learning to predict discretized survival from whole slide images [7] and some recent

studies have aimed at specific tumor types (colorectal cancer [8], brain cancer [9], liver cancer

[10] and mesothelioma [11]). Additionally, most of the proposed algorithms for survival prediction

from histopathological images utilise a high number of preprocessing steps, like clustering the

extracted tiles [12,13], generating regions of interest (ROI) [14]. However, to date, these

approaches remain insular and there is no validated consensus method for survival prediction

from raw histology slides. In any survival analysis, there are two main quantities. The survival

Function , which is the probability of survival beyond time and the hazard function𝑆(𝑡) 𝑡 ℎ(𝑡)

which is the probability of an event occurring in the time interval. Hazard function consists of two

main parts; the baseline hazard function and the risk function. So in general, while the survival

function describes the absence of an interested event, the hazard function indicates the

occurrence of the event.

In this study, we aimed to develop and validate a simple, versatile and efficient method for

survival prediction directly from histopathology images. We present EE-Surv and applied this

method to colorectal and gastric cancer, two clinically relevant but markedly distinct tumor types.

We demonstrate a high end-to-end prediction performance as well as explainability and

algorithmic efficiency of our method which can be applied to any tumor type.
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Methods

Data Sets

In this study, we used digitized diagnostic whole slide images of two cohorts (N=413 patients

with colorectal cancer, TCGA-CRC [15] and N=362 patients with gastric cancer, TCGA-STAD

[16]) from The Cancer Genome Atlas Program (TCGA). Supplementary figure 1 shows the

summary of these data sets. We excluded all patients for which survival data or slides were not

available. Each patient in these cohorts has a record of time and an event indicator ( ,δ ∈ {0 ;  1}

in the following time, 0 : event did not happen, 1: event happend). In both cohorts, we evaluate

the predictive performance of EE-Surve by three-fold patient-level cross-validation, ensuring

that no data from a patient in the training set was ever part of the test set in the same

cross-validation run.

EE-Surv

EE-Surv is an End-To-End deep learning model to predict survival directly from histopathology

whole slide images (WSIs) with a minimum amount of pre- and post processing. Figure 1

illustrates the general workflow of EE-Surv. The pre- and post-processing are a standard

approach in the field which has been previously used in classification problems [5], thereby

keeping EE-Surv as simple as possible. All source codes for preprocessing are available at

https://github.com/KatherLab/preProcessing and all source codes for EE-Surv are available at

https://github.com/KatherLab/Survival .

Image pre-processing

Due to the large size of WSIs, it has been discussed in previous studies that tessellation of

WSIs and generating smaller tiles is a useful initial step [17–19]. In our EE-Surv model the input

is normalised; smaller tiles of 512 512 3 are resized to the shape required by our model for× ×

training. Tiles are extracted from the whole slides without using any manual annotations.

Normalization of the extracted tiles reduces the possibility of having bias among patients from

different studies and/or slide-readers [20,21]. Specifically, we used the Macenko method [22]

which converts the RGB color vector to its corresponding optical density (OD) values and uses

these values to extract the metrics of the stain vector and the saturation of the stains [23].
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Model training

Transfer learning is an established solution to save computational time and power and its high

performance in histopathology has been shown in various studies [24]. Here, we used a

ResNet-50 [25] which is pre-trained on ImageNet [26]. The original output layer has been

replaced by a layer with single output and the linear activation function. Since the number of

extracted tiles per slide varies among patients, we randomly selected 250 tiles per WSI and

assigned the following time and event of the WSI to each tile. We split each cohort into 3 parts

and using k-fold cross validation techniques evaluated the performance of the designed model

[27]. The most important part of training EE-Surv is the Cox proportional Hazard loss function

which we used to optimize the parameters of network while training. The fully connected layer of

the modified network results in a risk prediction for each input image. This risk is the product of

the layer weights and the inputs to this layer . These risks are used in(1024 ×  1)𝑇 (1024 × 1)

Cox proportional hazards layer to minimize the negative partial log likelihood and via

backpropagation optimize the model weights, biases and  the convolutional kernels [9].

Post-processing and statistical analysis

After training the model and generating the risk scores for each tile, we aggregate the scores to

generate one risk score per patient. For statistical analysis, we use patient-level scores and split

the patients at the median, generating a high-risk and a low-risk group. We use Kaplan-Meier

curves to visualize survival differences, test statistical significance with a log-rank test and with a

univariate and multivariate Cox proportional hazard model, the latter including tumor stage and

age. In addition, we used the tile-wise prediction scores to generate slide-level heatmaps and

selected high scoring tiles for a reader study.

Results

Deep Learning can predict survival in colorectal cancer

We trained EE-Surv to predict survival in a multicentric cohort of colorectal cancer patients

(TCGA-CRC) in a cross-validated way. When stratifying the patient prediction scores at the

median, we found that high predicted risk scores corresponded to a poor survival (Figure 2a)

with a highly statistically significant difference between high and low scoring patients (log rank

p-value = 0.0021). In addition, we fitted a univariate Cox proportional hazard model,

demonstrating a hazard ratio (HR) of 0.5038 (0.3227, 0.7864) for prediction of death by patients
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with a low predicted risk score. This was again highly significant (p = 0.00255, Suppl. Table 1a).

To rule out confounding factors we combined the EE-Surv based predicted risk score with two

powerful conventional risk factors, patient age and tumor stage. Again, this multivariable model

showed that EE-Surv can significantly predict risk of death (p = 0.00265, Suppl. Table 1b)

Deep Learning can predict survival in gastric cancer

Compared to colorectal cancer, gastric cancer can have a much more heterogeneous

histological appearance. We assessed the prognostic performance of EE-Surv in a large cohort

of gastric cancer patients (TCGA-STAD). Again, we found that a high predicted risk score was

associated with a significantly shorter survival (log rank p-value = 0.0074), which was

reproducible in a univariate Cox proportional hazard model (HR for death in low-scoring patients

of 0.635 [0.4541, 0.888], p = 0.00795, Suppl. Table 2a). In a multivariable Cox proportional

hazard model that included EE-Surv score, age and tumor stage, the risk prediction by age and

stage were highly significant (p < 0.001 for either, Suppl. Table 2b). However, while EE-Surv

reached a HR of 0.7342 (0.5093, 1.058), this effect was found not to be significant (p = 0.0978)

in multivariable analysis.

Discussion

In this study, we presented and evaluated EE-Surv, an algorithmically simple yet powerful

end-to-end risk prediction tool for digital pathology. Unlike some previous methods, EE-Surv

does not require dichotomization of outcomes and includes censored patients in training by

using a Cox proportional hazard model loss function. Although we use a resnet50 model as the

backbone of EE-Surv, other deep convolutional neural networks and other architectures such as

vision transformers can be used with EE-Surv. All of our source codes are publicly available,

allowing reproduction and extension of our methods. Crucially, we demonstrate the plausibility of

EE-Surv-based predictions not only by statistical models, but also by a blinded user study

involving a pathologist. We show that without being explicitly trained on image features with

known association to risk of death, EE-Surv learns to detect these features. One of these

features is infiltration of tumors by lymphocytes, which has been demonstrated to be of

prognostic relevance in colorectal cancer more than a decade ago. [28] Future studies should

focus on external validation of our findings in additional patient cohorts and other clinical

scenarios. Furthermore, before real-world use of our methods, clinical trials evaluating the

usage and the clinical consequences of our proposed algorithm are required. From a technical
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standpoint, different aggregation methods for pooling tile-level predictions on the level of

patients could conceivably further boost performance, although simple aggregation functions

have been shown to perform on par with highly parametrized models. [29] Finally, the necessity

of tesselating gigapixel images in histopathology into smaller image tiles is due to the memory

limitation of graphics processing unit (GPU) memory. The broad availability of GPU devices with

enough memory to train directly on WSI could eliminate this preprocessing step in the future.
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Figures

Figure 1 General Workflow of EE-Surv. The simple workflow of EE-Surv starts with tessellation

of the whole slide images into smaller tiles. Then the extracted tiles are normalized to have the

same color distribution to remove the possible biases. The modified pretrained ResNet-50 is

used to train the network and this will result in a risk score per tile. The average risk score over

the all tiles selected per patient, is used as a final risk score for each patient.
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Figure 2 Kaplan Meier plots for a) TCGA-CRC b) TCGA-STAD. We calculated the median of

generated risk scores for each cohort and based on the median value, splitted the patients into

higher and lower risk groups.
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Supplementary Figures

Supplementary Figure 1 Data set Description. a) shows the number of the patients in the

original data set, number of patients, who has all information required for the training (tiles, time

and event of interest) and finally number of patients which contain all required data for

multivariate cox regression (age and stage of cancer). b) Histogram of the final data set, for the

stage of cancer. c) shows the general survival plot for both cohorts.
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Supplementary Figure 2 Explainability of the EE-Surv. a) An example heatmap from the

TCGA-CRC cohort. In this heatmap, the red color correlated with the high risk score value and

the blue color shows the low risk score value. b) Shows the 5 high score tiles for the first 5 high

score patients for TCGA-CRC. c) Shows the 5 high score tiles for the first 5 high score patients

for TCGA-STAD.
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Supplementary Tables

a.

coxph(formula = Surv(time, event) ~ groups)

Coeff Exp (Coeff) Lower 0.95 Upper 0.95 z Pr (>|z|)

Groups (Lower) -0.6856 0.5038 0.3227 0.7864 -3.017 0.00255 **

Concordance= 0.599  (se = 0.029 )

Likelihood ratio test= 9.41,   p=0.002

b.

coxph(formula = Surv(time, event) ~ age + stage + groups)

Coeff Exp (Coeff) Lower 0.95 Upper 0.95 z Pr (>|z|)

Age 0.0414 1.0423 1.0226 1.0625 4.252 2.12e-05 ***

Stage 0.8405 2.3176 1.7821 3.0141 6.270 3.62e-10 ***

Groups (Lower) -0.7093 0.4919 0.3098 0.7813 -3.005 0.00265 **

Concordance= 0.745  (se = 0.035 )

Likelihood ratio test= 62.27,   p=2e-13

Supplementary Table 1 Cox Proportional hazards model using a) Univariate Cox Regression

b) Multivariate Cox Regression using age, stage of cancer and the groups calculated based on

the generated scores for TCGA-CRC cohort.
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a.

coxph(formula = Surv(time, event) ~ groups)

Coeff Exp (Coeff) Lower 0.95 Upper 0.95 z Pr (>|z|)

Groups (Lower) -0.4541 0.635 0.4541 0.888 -2.654 0.00795 **

Concordance= 0.558  (se = 0.023)

Likelihood ratio test=7.16,  p=0.007

b.

coxph(formula = Surv(time, event) ~ age + stage + groups)

Coeff Exp (Coeff) Lower 0.95 Upper 0.95 z Pr (>|z|)

Age 0.0339 1.0345 1.0156 1.054 3.600 0.000318 ***

Stage 0.6586 1.9321 1.5074 2.476 5.201 1.98e-07 ***

Groups (Lower) -0.3089 0.7342 0.5093 1.058 -1.656 0.097811 .

Concordance= 0.668  (se = 0.027 )

Likelihood ratio test= 42.12 ,  p=4e-09

Supplementary Table 2 Cox Proportional hazards model using a) Univariate Cox Regression

b) Multivariate Cox Regression using age, stage of cancer and the groups calculated based on

the generated scores for TCGA-STAD cohort.
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