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ABSTRACT

Learning scalable humanoid whole-body controllers is crucial for applications in
animation and embodied intelligence. While popular model-free reinforcement
learning methods are capable of learning controllers to track large-scale motion
databases, they require an exorbitant amount of samples and long training times.
Conversely, learning a robust world model has emerged as a promising alternative
for efficient and generalizable policy learning. In this work, we learn a neural
dynamics model and propose a novel framework SuperDyno that combines su-
pervised learning and reinforcement learning for scalable humanoid controller
learning. Our method achieves significantly higher sample efficiency and lower
tracking error compared to prior approaches, scaling seamlessly to datasets with
tens of thousands of motion clips. We further show that medium-sized neural
dynamics models can serve as a differentiable neural simulator for accurate pre-
diction and effective policy optimization. We also demonstrate the effectiveness
of our framework on sparse reward tasks and the transferability of learned neural
dynamics model to diverse tasks. 1

1 INTRODUCTION

How to learn a robust humanoid whole-body controller capable of achieving diverse motion skills
has emerged as a crucial problem for applications like character animation (Peng et al., 2018) and
enabling agile loco-manipulation for embodied intelligence (Luo et al., 2024). The task of motion
tracking, where a policy learns to imitate selected motion capture clips, is a natural way to acquire
the motor skills necessary to perform human-like actions. Most popular method use model-free
deep reinforcement learning (RL) algorithms like Proximal Policy Optimization (PPO) due to recent
advances in GPU-based parallel simulation. However, these model-free RL algorithms are sample
inefficient, require long training time, and are sensitive to hyper-parameter settings, reward, and
feature designs. For example, the state-of-the-art method motion tracker that has scaled up to the
AMASS dataset (Mahmood et al., 2019) - PHC (Luo et al., 2023a) needs to be trained on an A100
GPU for around one week. The data amount required by model-free methods scales rapidly with
the complexity of problems and the diversity of motions. This makes imitating motion from a large
dataset, such as AMASS (ten thousand clips, 40 hours of motion), with a single policy difficult.

On the other hand, model-based approaches are generally regarded as being more efficient (Deisenroth
et al., 2013), which incorporate approximate models, or the so-called “world models", to predict
the future states of the system given its history states and actions. Common usages of these learned
models include planning to control (Nagabandi et al., 2018; Hansen et al., 2022) or training model-
free algorithms with generated data (Ha & Schmidhuber, 2018; Sekar et al., 2020). However, the
performance of these methods heavily depends on the accuracy of learned models, and how to learn
accurate dynamics models for planning is still an open question. We argue that one key property
of the learned neural network dynamics model is differentiability. The differentiable world models
bridge the gap between the simulation and control policy, through which the gradients of the loss
function can be back-propagated, thus allowing the training objectives to supervise the policy directly.
This can also be called as first-order method for policy learning. Some prior works (Fussell et al.,

1Our project website: https://dynamics-humanoid.github.io/dynamics-humanoid/
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2021; Yao et al., 2022) utilize such property of neural dynamics to track complex human motions,
but “perform less efficiently in learning large-scale motion dataset".

Figure 1: Our method can effectively scale up to ten thou-
sands of motions. By learning a neural dynamics model, the
training objective can directly supervise the joint actions with
∇as.

In this work, our aim is to create an ef-
ficient humanoid controller that scales
up to ten thousand motion clips. We
propose a novel model-based learning
framework that interleaves between rein-
forcement learning and supervised learn-
ing (SL). Different from some previ-
ous first-order methods (Georgiev et al.,
2024), we train the policy and neural dy-
namics model simultaneously without
the need of collecting huge amount of
offline data. In order to keep the pol-
icy learning harder and harder motions
efficiently, we utilize a hard negative
mining strategy during the training pro-
cess, making the policy pay attention to
harder motions. We find that a single
policy that achieves a high success rate
on motion imitation with much higher
sample efficiency and lower tracking er-
ror compared with previous SOTA can
be achieved by our framework. We systematically analyze the impact of different settings within our
framework, showing the right recipe to scale up efficiently. Besides, to demonstrate the power of
this framework, we show the qualitative results on other challenging sparse reward tasks. At last, we
explore the scaling law of the learned world model with different numbers of motions and prove the
transferability of the neural dynamics model.

To summarize, our contributions are as follows: (1) we propose an efficient and well-scalable
humanoid controller SuperDyno that can imitate more than 99%of the AMASS dataset, accompanied
with a neural dynamics model with fairly good prediction ability within only 80 hours on a single
A6000 GPU; (2) we present a novel model-based framework with supervised learning that is capable
of solve sparse reward locomotion tasks, and provide the right recipe to utilize; (3) we demonstrate
the good transferability of our policy brought by the neural dynamics model, and also investigate its
scaling law on policy learning.
2 RELATED WORK

Using a simulated character to track reference motion has a long history in the vision and graphics
community (Peng et al., 2018; 2021; Won et al., 2020; Chentanez et al., 2018; Gong et al., 2022;
Winkler et al., 2022; Yuan & Kitani, 2020a; Luo et al., 2021; 2022; 2023a) and recently making
its way into robotics (He et al., 2024a;b; Cheng et al., 2024). This task involves in controlling a
humanoid to track kinematic motions in simulation or the real world. The source of the motion can be
either keyframe animation (Peng et al., 2018) or motion capture (Chentanez et al., 2018). Tracking
the reference motion can also be done at the style level (Peng et al., 2018) or per-frame level (Won
et al., 2020). From tracking a single sequence of motion (Peng et al., 2018), to thousands (Won
et al., 2020; Fussell et al., 2021), to tens of thousands of motion sequences (Luo et al., 2023a), the
community has come a long way for the motion tracking task despite the diversity and complexity of
the humanoid motion datasets. However since physics simulation is often not differentiable, popular
methods rely on model-free RL to optimize policies. Due to the sample complexity of RL methods,
(Luo et al., 2023a; Won et al., 2020) takes billions of samples and weeks of wall clock time to train.
Although there have been attempts to use supervised learning (Fussell et al., 2021) and differentiable
simulators (Ren et al., 2023), these methods struggle to scale to large-scale datasets.

3 METHODOLOGY

In Sec 3.1, we first set up the our problem formulation; then in Sec 3.2, we introduce our supervised
learning based framework with differentiable neural dynamics model.
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Figure 2: Overview of Our Framework.

3.1 PROBLEM FORMULATION

Similar to prior work (Luo et al., 2021; Peng et al., 2018), we formulate the task as a Markov
Decision Process (MDP) defined by the tupleM =< S,A, T ,G,R, γ > where st ∈ S and at ∈ A
are continuous states and actions , T : S ×A 7→ S is the transition function determined by physics
simulator, G denotes the space of goals,R : S ×A× G 7→ R is a reward function associated with a
particular goal g, and γ is the discount factor. The objective of our goal is to derive a parameterized
goal-conditioned policy πθ : S × G 7→ A that maximizes the expectation of the discounted cumulative
reward:

max
θ

J(πθ) = max
θ

Eπθ,s0∼ρ0
[

T∑
t=0

γtR(st, at, g)] (1)

where ρ0 is the initial state distribution. Following (Luo et al., 2023a), we define the reference pose
as q̂t ≜ (θ̂t, p̂t), consisting of 3D joint rotation θ̂t ∈ RJ×6 and position p̂t ∈ RJ×3 of all J links on
humanoid (we use the 6 DoF rotation representation (Zhou et al., 2019)). From reference poses q̂1:T ,
we can compute the reference velocities ˆ̇q1:T through finite difference, where ˆ̇q1:T ≜ (ŵt, v̂t) consist
of angular ŵt ∈ RJ×3 and linear velocities v̂t ∈ RJ×3. As a notation convention, we use ·̂ to denote
the ground truth kinematic quantities from Motion Capture (MoCap), ·̃ to represent the prediction of
dynamics model and normal symbols without accents for values from the physics simulation. For
other representation details, please refer to Appdx. A.1.

3.2 SL-BASED MOTION IMITATION WITH DIFFERENTIABLE NEURAL DYNAMICS MODEL

Usually we have our policy gradient as follows:

∇θJ(πθ) = Eπθ,s0∈ρ0 [∇θ

(
T∑

t=0

γtR(st, at, g)

)
]

= Eπθ,s0∈ρ0
[

T∑
t=0

γt∇θR(st, at, g)]

(2)

Different from the situation where we have no access to the transition functions of the physics
simulator, by learning a neural dynamics model fw(st, at), we can expand the policy gradients
further as follows:

∇θR(st, at, g) = ∇stR∇θst +∇at
R∇θπθ(at|st) (3)

∇θst = ∇st−1fw∇θst−1 +∇at−1fw∇θat−1 (4)
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where ∇st−1
fw,∇at−1

fw are exactly the Jacobian matrix of the learned neural dynamics model.
With these two components, we can back-propagate through time and hopefully have much more
efficient policy optimization process.

3.2.1 NEURAL NETWORK DYNAMICS MODEL

The neural dynamics model fw(st, at) plays a key role in our policy optimization as it “controls" the
direction of optimization (by multiplying the policy gradient with its own Jacobian matrix). Here we
describe two important factors of the dynamics model based on our experience.

Injecting Physics Prior. A straightforward parameterization of fw would be taking the current state
st and action at as input, and output the next state prediction s̃t+1. But this function can be difficult
to learn when the states st and st+1 are too similar and the action has seemingly little effect on the
output. Prior work (Nagabandi et al., 2018) proposes to predict the change of state over the time
step instead, which equals to s̃t+1 = st + fw(st, at). However, one problem introduced by such
modeling is that there exist little constraint during the optimization for different physics variables
like velocity and position, possibly resulting in predictions disobey the physical laws. Although
this phenomenon will decrease as the data amount increases, the cost brought by the massive data
collection is not comparable to the corresponding improvement in its performance. To this end, we
propose to introduce human physics knowledge prior into the dynamics modeling. More specifically,
our neural dynamics model only predicts the partial state ṽt and w̃t. Then we integrate them into the
current state to get the next state. Denote the integration operation as Φ:

w̃t+1, ṽt+1 = fw(st, at) (5)

Φ :=

{
p̃t+1 = ṽt+1∆t+ p̃t
θ̃t+1 = exp(w̃t+1

∆t
2 )⊗ θ̃t

(6)

=⇒ s̃t+1 = Φ(fw, st) (7)

In the integration we transform the rotation from 6 DoF representation into quaternions, and ⊗
represents the quaternion-vector product.

Autoregressive Training. Another key factor influences the performance of neural dynamics model
is the training manner. In our framework, we construct the training data by sliding a window of size
Tw over collected trajectories. We propagate the neural dynamics model forward Tw times to make
multi-step open-loop predictions. Then we calculate the Tw-step errors in the world frames as the
loss objective:

Lw =

Tw−1∑
t=0

∥s̃t+1 − Φ(fw, st)∥2 (8)

With the strong temporal characteristics shown by motion data, another popular choice of learning
dynamics is to train with teacher forcing (Williams & Zipser, 1989). Actually teacher forcing can
be viewed as a special case of autoregressive training with Tw = 1, which boosts training with
higher parallelization. However through our experiments in Sec. 5d, we find that teacher forcing is
unsuitable for our usage. Please refer to the discussion in Sec. 4.2.

3.2.2 POLICY OPTIMIZATION

As the supervision signal can directly back-propagate through the neural dynamics model, we opt to
use supervised learning to optimize the policy. As the same as training the dynamics model, we also
train the policy model autoregressively. More specifically, we take out the initial states and reference
states from the data buffer by sliding a window of size Tπ . Then we rollout the current policy in the
neural dynamics model for Tπ times to make multi-step close-cloop predictions. Lastly we calculate
the Tπ-step errors in the local frames as the loss objective:

Lθ =

Tπ−1∑
t=0

∥s̃t+1 − Φ(fw(st, πθ), st)∥2 (9)

It is worth noting that compared with previous RL-based methods in motion imitation, although we
don’t incorporate any discriminator loss like Adversarial Motion Prior (AMP) (Peng et al., 2021) into
the policy optimization, it is totally compatible with our framework.
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(a) MoCap Motion Imitation (b) Noisy Motion Imitation

(c) Sparse Reward Task: Speed (d) Sparse Reward Task: Trajectory Following

(e) Neural Dynamics Model Open-Loop Prediction

Figure 3: Qualitative results. (a) Imitating hard MoCap - forward flip. (b) Imitating noisy motion dataset
H36M, which is estimated from video. (c, d) Solving sparse reward tasks with high-quality. (e) Prediction
visualization of neural dynamics model. The red one is reference motion, the blue one is our policy’s tracking
and the orange one is the open-loop prediction of dynamics model.

3.2.3 SCALABLE TRAINING FRAMEWORK

Based on the literature above, we establish our supervised-learning-based motion tracking framework
with a neural dynamics model. During training, we first collect a number of simulated trajectories
then update the neural dynamics model for Nw times and the policy model for Nπ times in tandem
as illustrated in Algo. 1. However, naively utilizing such framework will lead to less efficient
performance on large scale dataset. We describe two additional key designs that enable the policy to
scale on AMASS efficiently in this section. The overview of our system is shown in Fig. 2.

Parallel Efficient Trajectory Collection. To allow for enough data to be collected we set up a
training environment that closely resembles an RL gym similar in style to some previous works
(Luo et al., 2022). We use reference state initialization (RSI) (Peng et al., 2018) during training and
randomly select a starting point of a motion clip for imitation. To avoid the data buffer D being filled
with bad quality trajectories at start, we follow PHC (Luo et al., 2023a) and terminate the episode
when the joints are more than 0.5 meters globally on average from the reference motion. Unlike
PHC, we only terminate the episode after the minimum episode length has been obtained since we
need to train the model autoregressively. Prior works like SuperTrack (Fussell et al., 2021) and
ControlVAE (Yao et al., 2022) propose to dump the samples into the data buffer once any episode
terminates. However, collecting in this way will be very inefficient under the situation that we have
many environments and need to learn on a large dataset, as all other environments are paused during
the process of data dumping and post-processing, which is attributed to the asynchronous termination
between different environments. So to collect more high quality trajectories with less time, we
propose Cycled Synchronous Early Termination (CSET), which is designed especially for situations
where we need to collect as many complete trajectories with minimum length as possible. For the
trajectory reaching the termination distance, we will keep propagating it in the next epoch until the
length reaches a multiple of the roll-out steps per epoch. This strategy greatly improves the sampled
data quality and massively shortens the data collection time. In our default setting, it only takes ∼1.5
seconds to collect enough data while it takes more than 7 seconds for previous sampling methods.
The training speed of our framework gets doubled with this design.

Hard Negative Mining. When learning from a large motion dataset, it is essential to train on harder
sequences in the later stages of training to gather more informative experiences. We use a similar
hard negative mining procedure as in PHC (Luo et al., 2023a). At the start, we assign equal chance to
each motion in the dataset. During the training process, we adjust the sampled probability of different
motions according to the failed times of current policy on imitating it by evaluating over the entire
dataset pi =

Nfailed,i∑
i Nfailed,i

.
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Algorithm 1 : SuperDyno

1: Input: Reference motion dataset Q̂, initialized empty data buffer B, and randomly initialized
fw, πθ

2: while not converged do
3: τ ← roll out current policy πθ in the environment with Q̂, with Cycled Synchronous Early

Termination
4: Store τ into B
5: for i = 1 to Nw do
6: Take out states and actions from B with sliding window Tw

7: Propagate fw forward and train fw with Lw (Eq. 8)
8: end for
9: for i = 1 to Nπ do

10: Take out states and targets from B with sliding window Tπ

11: Roll out πθ in fw and train with Lπ (Eq. 9)
12: end for
13: end while

4 EXPERIMENTS

We evaluate our efficient and scalable humanoid controller’s ability to imitate large scale high-quality
MoCap sequences in Sec. 4.1. In Sec. 4.2, we exhaustively ablate on different settings of our
framework and demonstrate the capability of our key designs. In Sec. 4.3, we investigate into the
transferability and scaling law of the neural dynamics model. Lastly, we try to evaluate the prediction
ability of the learned neural dynamics model.

Implementation Details. In the parallel trajectory collection stage, we simulate 1024 environments
with minimum episode length as 32, which produces ∼15000 samples per second, and store them
into a large cyclic data buffer of around 150000 samples. Both our policy model and neural dynamics
model are grounded as vanilla MLPs. In our default setting, we update the neural dynamics model 8
times and then update the policy model 4 times each epoch. For full details of the hyper-parameters
used please refer to Table. 2. Each of our experiments are conducted on a single NVIDIA A6000 GPU.
But by decreasing the batchsize for a little bit, our framework can be trained on a single NVIDIA
RTX 3090, which is more friendly to the demand for computation. Once trained, the policy runs at
>30 FPS. Physics simulation is carried out in NVIDIA’s Isaac Gym (Makoviychuk et al., 2021). The
control policy is run at 30 Hz, while simulation runs at 60 Hz. For evaluation, we do not consider
body shape variation and use the mean SMPL body shape.

Dataset&Metrics. We train our method on the training split of the AMASS (Mahmood et al., 2019)
dataset. We follow PHC and remove sequences that are noisy or involve interactions of human objects,
resulting in 11313 high-quality training sequences and 140 test sequences. To evaluate our policy
fairly, we use the same metrics as in PHC. We report the success rate (Succ), deeming imitation
unsuccessful when, at any point during imitation, the body joints are on average >0.25m from the
reference motion. Succ measures whether the humanoid can track the reference motion without
losing balance or significantly lags behind. We also report the root-relative mean per-joint position
error (MPJPE) Empjpe and global MPJPE Eg−mpjpe (in mm), measuring the ability to imitate the
reference motion both locally and globally. To show physical realism, we compare acceleration Eacc

(mm/frames2) and velocity Evel (mm/frame) difference between simulated and MoCap motion.

4.1 EXPERIMENTS ON HUMANOID WHOLE-BODY CONTROL

4.1.1 MOTION TRACKING ON AMASS

Through the experiments in this subsection, we try to demonstrate the effectiveness of our framework
on learning large scale motions. We compare with the SOTA motion imitator PHC (Luo et al., 2023a)
and use the official implementation. Table. ?? reports our motion imitation results on the AMASS
train and test dataset. Our method outperforms PHC on almost all metrics across training and test
datasets, even within far less time, which is around 3 days while PHC takes a whole week. We
achieve higher success rate, constantly much lower error on MPJPE, velocity and acceleration, which
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Table 1: Quantitative results on imitating MoCap motion sequences (* indicates removing
sequences containing human-object interaction). AMASS-Train* and AMASS-Test* contains 11313
and 140 high-quality MoCap sequences respectively. FT represents “future tracks".

AMASS-Train* AMASS-Test*
Method Succ↑ Eg−mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Time↓ Succ↑ Eg−mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓

PHC 98.9 37.5 26.9 3.3 4.9 7 days 96.4 47.4 30.9 6.8 9.1
PHC+ 100 26.6 21.1 2.7 3.9 7+ days 99.2 36.1 24.1 6.2 8.1

PULSE 99.8 39.2 35.0 3.1 5.2 None(distillation) 97.1 54.1 43.5 7.0 10.3
Ours* 99.2 27.7 15.5 2.1 2.7 3 days 98.5 32.1 23.9 5.5 7.1

Ours(FT)* 99.0 20.3 16.1 1.9 2.6 3 days 98.1 27.0 20.2 5.0 6.4
PHC+*(env 3072) 98.4 30.9 23.6 2.4 3.6 2 days 97.8 30.5 23.5 5.6 8.0
Ours+*(env 1024) 98.8 16.9 13.3 2.3 2.7 2 days 97.9 26.5 19.5 5.6 6.5

reflects the advantage of supervised learning based framework. Also, we only use one single model
in contrast to the multiplicative policy model in PHC. Besides, we implement “future tracks" on top
of our method, which is shown in the last row of the main table. In “future tracks", the input state
of policy model not only includes the next frame target, but also several future frame targets more,
which means st = (spt , s

g
t , s

g
t+∆t, · · · , s

g
t+n∆t). Specifically in our experiments, we set ∆t = 10

frames and n = 2. As shown by the results, the performance gets improved by incorporating more
future goals into the conditions. One of our explanation is that more informative gradients can
back-propagate through time after we explicitly compute the losses within the future frames. And the
policy model is optimized to take actions considering future goals. It is also worth noting that we
run PHC with the default setting, in which the environment number is 1536, while ours is just 1024.
Some qualitative results are shown in Fig. 3.
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Figure 4: Sample efficiency comparison. It takes at
least three times more samples for PHC to achieve 90%
success rate than our method.

Sample Efficiency. We argue that another ad-
vantage of our framework is the superior sample
efficiency, which is related to the required num-
ber of transition pairs from the physics simulator
to achieve similar performance. We show the
success rate curve comparison between PHC
and our method below in Fig. 4. We expect our
sample efficiency to be actually much higher
because our method can exhibit similar perfor-
mance with fewer environments as proved by
our experiments in Fig. 6b. Although physics
simulation is becoming faster with the advance-
ment of modern GPU hardware, our model-
based learning process mainly consumes the synthetic data by learning a world model to approximate
the environment. We expect our method to be extended to field with scarce data like real-world
robotics.

4.1.2 GENERALIZABLE ON SPARSE REWARD TASKS

While our focus is on the task of whole-body motion tracking, we argue that our framework is also
feasible for other sparse reward tasks, which can be proved theoretically as in Sec. 3.2. Following
PULSE (Luo et al., 2023b), we study two popular downstream tasks – reaching a certain x-directional
speed (between 0 m/s and 5m/s), and following a trajectory with obstacles around. For the task of
speed, denote v⃗∗ as the target velocity vector and h∗

0 as the falling threshold of root height, the loss
function is defined simply as:

Lspeed = wv|v⃗∗ − v⃗|2 + wh max(h∗
0 − h0, 0) (10)

For the task of trajectory following, given p∗ ∈ R2 as the next target position on the xy−plane and
p0 as the xy coordinate of root, the loss function is defined as:

Ltraj = wp|p∗ − p0|2 + wh max(h∗
0 − h0, 0) (11)

To make behaviors more human-like, we learn the policy based on PULSE. Another choice is
incorporating AMP into training. We provide the qualitative results in the Fig. 3. What makes us
excited is that prior model-based methods like SuperTrack (Fussell et al., 2021) rely on explicit
trajectory following datasets while we do not. We also find that we can speed up training by utilizing
the learned neural dynamics model from whole-body motion tracking.
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Figure 5: Ablation study on different settings of our framework.

4.2 ABLATION STUDY

In this section, we study the effects of different settings of our framework using the whole-body
tracking task.

Window size. Our window-based training scheme allows the gradient back-propagate through
time to learn long range predictions more stably than other single-step based method. For effective
policy training, a larger window is necessary for learning motions that require long-term awareness.
However, the policy’s action quality over extended time horizons also depends on the dynamics
model’s ability to maintain accurate long-term predictions, which is hard to achieve if the window is
too short for the dynamics model. On the other hand, if the dynamics model’s training window is too
large, the predicted states may diverge from target states, potentially leading the model to disregard
the actions taken. Fig. 5a and 5b provide the effect of changing the relative training window size
of the neural dynamics model and policy. We find that a policy window of 32 and dynamics model
window of 8 are the most stable and efficient across all the experiments we tried.

Update ratio of policy and dynamics. Different from some previous model-based methods (Naga-
bandi et al., 2018; Georgiev et al., 2024) which collect massive offline data and train the dynamics
model separately, our neural dynamics model is learned accompanied with the policy model. In each
epoch, we update the neural dynamics for Nw times and policy for Nπ times. As our performance
depends on whether the neural dynamics model could offer correct gradients, we set Nw a little
bit larger than Nπ. Although averaged rewards increase faster with larger Nw, it might hurt the
performance for two reasons. firstly, setting Nw too large will cause the training process inefficient.
Actually training the dynamics model offline is equal to setting Nw as total training steps to some
extent. Secondly, the dynamics model will be overfit on the current dynamics distribution in the data
buffer, rather than bounding the model to learn only the subspace of possible dynamics – within the
neighborhood of policy model. Ablation experiments are shown in the Fig. 5c, and our default setting
is Nw

Nπ
= 2.

Autoregressive training. We want to emphasize that autoregressive training is so crucial for our
framework that the performance could degrade severely if we use the popular teacher forcing instead,
which is as shown in the Fig. 5d. We believe this is related to our continuous and random state/action
spaces, which increases the challenge for stable open-loop dynamics prediction. while autoregressive
training is an effective strategy to stabilize it.

4.3 A GLIMPSE INTO PROPERTIES OF NEURAL DYNAMICS MODEL

Except for accelerating and improving the policy optimization process, we are interested in more
wonderful properties of neural dynamics model. In this section, through the lens of motion tracking,
we investigate into the scaling law and efficient transferability of the dynamics model.

4.3.1 SCALING LAW ON POLICY LEARNING.

As scaling has been a key driver behind the rapid advancements across many fields in deep learning,
we are pleased to have a glimpse on the scaling law of neural dynamics model. In this subsection,
we simply explore the “data" dimension of scaling. In experiments shown by Fig. 6, we train the
neural dynamics model with our framework on different number of motion clips in AMASS-Train∗,
then utilize this pre-trained dynamics model to learn a new policy on 100 randomly selected motions
in AMASS-Test∗. We can find that more diverse motion data will make the dynamics model more
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Figure 6: Scaling law on policy learning.

efficient. In experiments shown by Fig. 6b, we train our policy and dynamics model from scratch
with different number of simulated environments. We find that our method can perform similarly
with much fewer environments, which proves the opinion about sample efficiency in Sec. 4.1.1.

4.3.2 GENERALIZATION & TRANSFER LEARNING

Unlike RL methods which can often struggle to generalize and transfer to new tasks and new
environments (Bengio et al., 2020), the policy and dynamics model in our framework can easily
generalize because the dynamics model explicitly models the environment dynamics.
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Figure 7: Transfer learning from AMASS to H36M.

Different Motion Dynamics. We test the transfer-
ablity of our policy and dynamics model by pre-
training them on AMASS-Train∗ and then finetun-
ing them on the popular H36M dataset (Ionescu
et al., 2013). We use the subset H36M-Motion∗ as
splited in PHC (Luo et al., 2023a), which contains
140 high-quality MoCap sequences. We compare
averaged rewards in the Fig. 7. Dynamics model
transfer means we use the learned dynamics model
to train a new policy from scratch while policy trans-
fer means we finetune the policy and the dynamics
model at the same time. We can find that a learned
neural dynamics model could speed up the policy
learning.

4.3.3 EVALUATING THE PREDICTION OF DYNAMICS MODEL.

At last, one important question to be explored is how is the prediction ability of the learned neural
dynamics model. We argue that the neural dynamics model doesn’t have the necessity to predict a
whole long trajectory accurately, but being very useful as long as the prediction error is below the
threshold within the policy optimization horizon. Therefore, we provide the open-loop prediction
visualization of dynamics model in the Fig. 3. We can find that the neural dynamics model is stable
and accurate within the horizon of policy training, though it still fails on longer prediction.

5 DISCUSSIONS

Limitations. While our proposed framework can efficiently imitate human motion and expose
well-scalability, it still does not achieve 100% success rate on AMASS. We find that some highly
dynamic motions with large velocity and angle velocity are still challenging, because the dynamics
distributions are very different from the rest. Besides, it is relatively harder for our method to discover
the behavior such as stepping to prevent from falls than model-free RL, which might be mitigated by
combing with more exploratory methods. Furthermore, the modeling of our neural dynamics model
is not perfect as we did not consider the changes within the environment. So it is still hard for our
model to learn in the highly discontinuous environments such as stairs and rough slopes.

Conclusion and Future Works. We introduce SuperDyno, a scalable and efficient framework, which
is mainly designed for physics-based motion imitation, but also feasible for other goal-conditioned
tasks. Our controller is much more efficient than previous methods, showing better performance,
much lower tracking error with fewer samples, even within less time. Also the learned neural
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dynamics can effectively serve for future prediction. Future directions include 1) incorporating terrain
and scene awareness and updating the dynamics modeling to enable human-object interaction; 2)
adapting the current framework to real robots; 3) combining with model-free methods to discover
novel behaviors, etc.
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A APPENDIX

A.1 OTHER REPRESENTATIONS DETAILS

State. We follow the same setting in PHC. The simulation state st ≜ (spt , s
g
t ) consists of humanoid

proprioception spt and goal state sgt . Proprioception spt ≜ (qt, q̇t, β) contains the 3D body pose qt,
velocity q̇t, and (optionally) body shape β. When trained with different body shape, β contains
information about the length of the limb of each body link. Our goal state sgt is defined as the
difference between the next step reference quantitives and their simulated counterpart:

sgt ≜ (θ̂t+1 ⊖ θt, p̂t+1 − pt, v̂t+1 − vt, ŵt − wt, θ̂t+1, p̂t+1)

Before being input to the policy network, sgt and spt are normalized with respect to the humanoid’s
current facing direction and root position (Won et al., 2022; Luo et al., 2021).

Loss Function. For the neural dynamics model, we share a common loss function to train the
dynamics, which is set as:

Lw =

Tw∑
t=0

(wpos∥p̃t − pt∥+ wvel∥q̃t ⊖ qt∥+ wvel∥ṽt − vt∥+ wang∥w̃t − wt∥)

The weights wpos, wvel, wrot, wangfor different physics variables are tweaked to give roughly equal
contribution from all losses at the beginning of training and ⊖ represents quaternion difference.

For the policy optimization, our loss function is defined similar to the neural dynamics model. But
the difference is that our loss is computed in the local frame, which means the states are transformed
into local observation:

Lπ =

Tπ∑
t=0

(wlpos∥p̂′t−p′t∥+wlvel∥q̂′t⊖q′t∥+wlvel∥v̂′t−v′t∥+wlang∥ŵ′
t−w′

t∥+wact∥at∥+wheight∥ĥ0−h0∥)

Also we set the weights wpos, wvel, wrot, wang, wheight to balance the loss of different parts, and set
wact smaller by two orders of magitude.

Action. Following PHC, we use a proportional derivative (PD) controller at each DoF of the humanoid
and the action at specifies the PD target. With the target joint set as qdt = at, the torque applied at
each joint is τ i = kp ◦ (at − qt)− kd ◦ q̇t. This is different from the residual action representation
(Yuan & Kitani, 2020b; Park et al., 2019; Luo et al., 2021) used in prior motion imitation methods,
where the action is added to the reference pose:qdt = q̂t + at to speed up training. We do not use any
external forces or meta-PD control.

Humanoid. Our humanoid controller can support any human kinematic structure, and we use the
SMPL kinematic structure. The SMPL body contains 24 rigid bodies, of which 23 are actuated,
resulting in an action space of at ∈ R23×3. The body proportion can very based on a body shape
parameter β ∈ R10.

A.2 HYPER-PARAMETERS IN THE EXPERIMENTS

Table 2: Hyper-parameter settings used in our framework.

Trajectory Collection

Minimum Episode Length 36
Termination Distance (m) 0.5
Maximum Episode Length 512

Action Noise Scale 0.05

Neural Dynamics Model

Hidden Layers 2
Hidden Units 512

Activation SiLU
Batchsize 4096

Learning Rate 2e-3
Window Tw 8

Policy Model

Hidden Layers 2
Hidden Units [1024,512]

Activation SiLU
Batchsize 4096

Learning Rate 1e-5
Window Tπ 32
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