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Abstract
A major risk of using language models in prac-
tical applications is their tendency to hallucinate
incorrect statements. Hallucinations are often at-
tributed to knowledge gaps in LMs, but we show
that LMs sometimes produce hallucinations that
they can separately recognize as incorrect. To
do this, we construct three question-answering
datasets where LMs often state an incorrect an-
swer which is followed by an explanation with
at least one incorrect claim. Crucially, we find
that GPT-3.5, GPT-4, and LLaMA2-70B-chat
can identify 67%, 87%, and 94% of these in-
correct claims, respectively. We show that this
phenomenon doesn’t disappear under higher tem-
peratures sampling, beam search, and zero-shot
chain-of-thought prompting. These findings re-
veal that LM hallucinations can snowball: early
mistakes by an LM can lead to more mistakes that
otherwise would not be made.1

1. Introduction
Language models are increasingly being deployed to inter-
face with humans in open-ended information-seeking and
problem-solving settings. Despite their diverse capabilities
and extreme fluency, a major open challenge is that LMs
still hallucinate by making up facts or citing sources that do
not exist (Maynez et al., 2020; Liu et al., 2023), often while
sounding extremely plausible.

Hallucination is commonly attributed to knowledge gaps in
LMs (Zheng et al., 2023), motivating mitigation strategies
through retrieval over knowledge bases (Lewis et al., 2020;
Shuster et al., 2021; Peng et al., 2023). But do LMs only
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Figure 1. GPT-4 mistakenly claims that 9677 is not prime, followed
by an incorrect explanation that 13 × 745 = 9677. We refer to this
factorization as a snowballed hallucination, as GPT-4 appears to
“know” that 13 is not a factor of 9677 when asked separately. Thus,
hallucinations are not necessarily reflective of a model’s lack of
“knowledge,” but may be induced by an earlier hallucination for
consistency.

hallucinate when they do not “know” a fact? We present a
setting where LMs often generate hallucinations that they
immediately recognize as wrong when presented in isolation.
Specifically, after an LM answers a question incorrectly, it
usually justifies that answer by making incorrect assertions
that it separately acknowledges as incorrect (Figure 1).

To study this behavior empirically, we automatically con-
struct three question-answering (QA) datasets. These
datasets span different domains: determining whether a
number is prime, whether there is a U.S. senator satisfying
two given constraints, and whether two cities are connected
given a set of flights between cities. Empirically, we find
that GPT-3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023)
commit to an answer (Yes/No) with the first token over
95% of the time, and LLaMA-2-70B-chat often commit to
an answer within the first few tokens; these answers are of-
ten incorrect, and then followed by an incorrect explanation.
Increasing the temperature when sampling from the model
or using beam search doesn’t alleviate this behavior. Yet,
when presented with the incorrect explanation alone, we

1

https://github.com/Nanami18/Snowballed_Hallucination
https://github.com/Nanami18/Snowballed_Hallucination


How Language Model Hallucinations Can Snowball

Dataset Original Question Verification Question

Primality
Testing

  User: Is 10733 a prime number?
Æ GPT-4: No... It can be factored into 3 × 3577.

  User: Is 10733 divisible by 3? Answer
with either Yes or No.
Æ GPT-4: No

Senator
Search

  User: Was there ever a US senator that represented the state of New
Hampshire and whose alma mater was the University of Pennsylvania?
Æ GPT-4: Yes... His name was John P. Hale

  User: Was John P. Hale’s alma mater
University of Pennsylvania?
Æ GPT-4: No... [it] was Bowdoin

Graph
Connectivity

  User: Current flight information (the following flights are one-way
only, and all the flights available are included below):
There is a flight from city F to city K
There is a flight from city H to city A
[... 10 other rules cut for space ...]
Question: Is there a series of flights that goes from city B to city E?
Æ GPT-4: Yes... the route is as follows: ... City K to City G...

  User: [...flight information given in the
context...]
Based on the above flight information, is
City K to City G a valid flight?
Æ GPT-4: No, based on the above flight
information, there is no direct flight from
City K to City G.

Table 1. Original Question: An example from each dataset and GPT-4’s (incorrect) response, with the snowballed hallucination
underlined. Verification Question: The corresponding query used to probe whether GPT-4 recognizes its claim is incorrect, with its
refutation of the hallucination underlined.

find that the LM is likely able to recognize it as incorrect.

We refer to this phenomenon as hallucination snowballing.
We hypothesize that LMs produce snowballed hallucinations
for consistency with earlier hallucinations (rather than due
to a “knowledge gap” in the model), as they recognize the
snowballed hallucination is incorrect when presented in
isolation (i.e., in a separate interaction session). We observe
this phenomenon both in empirical testing of the leading
closed models, GPT-3.5 and GPT-4, and in the leading open
model, LLaMA2-70b-chat.

While prompting strategies that encourage the LM to reason
before stating an answer improve accuracy on the task, ef-
fective prompts might not transfer across different models
and on different datasets. We found that prompting GPT-3.5
and GPT-4 with “Let’s think step by step” (Kojima et al.,
2023) substantially lowers the hallucination rate on the sim-
pler tasks we present in §3.1, but same prompt doesn’t lead
to improvement on LLaMA-2-70B-chat. Furthermore, the
prompt does not remedy the issue on the harder datasets we
introduce in §4.2.

While we demonstrate the issue of hallucination snowballing
by leveraging recent LMs’ tendency to state and then justify
their answers, our results point to a broader issue of LM be-
havior that they might prioritize consistency over factuality.
Rather than committing to its previously generated context,
we believe that LMs should acknowledge their initial mis-
take, and then revise their answer. We have indeed observed
GPT-4 doing this in a limited number of cases; amplifying
this behavior would be beneficial, as well as developing new
methods that could allow LMs to backtrack and address
previous incorrect commitments.

2. Why Do We Expect Hallucination
Snowballing?

In this section, we explain why we hypothesize that LMs are
susceptible to hallucination snowballing. We predict that
snowballing will occur on questions with two key properties:

1. Initial committal: The prompt leads the LM to first
state an answer (before outputting the explanation).
This applies to many yes/no questions.

2. Inherently sequential: Transformers cannot find the
answer within one timestep because of their limited
reasoning abilities within a single step.

We now discuss how these properties may lead to snow-
balled hallucination.

Initial committal. Speakers often state the final Yes/No
answers to questions before explaining their answer. We
therefore hypothesize that LMs and especially instruction-
tuned LMs (Wei et al., 2021; Sanh et al., 2021; Ouyang et al.,
2022; Wang et al., 2022) will reflect this answer format
where the answer comes before the explanation. Indeed,
on our datasets (presented in §3.1), we observe that GPT-
4 and GPT-3.5 immediately commit to an answer to the
question: the first token is Yes or No 95.67% and 98.40%
of the time for GPT-4 and GPT-3.5 respectively. In the
remaining cases, the model often commits to an answer
within the first few tokens of the response (e.g., “There is
no record of a U.S. Senator ...”). Crucially, once the LM
generates Yes or No, that token remains in the context, and
coherence would require commitment to that choice through
the subsequent justification. Thus, the model produces an
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answer to a complex question in a single timestep, and it
then continues by generating an explanation for that answer,
which inevitably will be incorrect.

Inherently sequential. Furthermore, transformers cannot
solve inherently sequential reasoning problems like primal-
ity testing or graph connectivity within a single timestep,2 as
documented in recent theoretical results (Merrill & Sabhar-
wal, 2023).3 Our graph connectivity and primality datasets
are concrete instantiations of these problems. Because the
transformer must use one step to answer a question that
requires multiple timesteps to answer correctly, it will nec-
essarily sometimes commit to an incorrect answer. We
hypothesize that this leads the LM to hallucinate supporting
incorrect facts that it otherwise would not generate.

3. Experiments
We design three QA datasets with the properties described
in §2 to probe hallucination snowballing, and evaluate
GPT-3.5, GPT-4, and LLaMA-2-70B-chat. We first check
whether the LM returns the correct answer to the given ques-
tion, and we show that when the model returns the wrong
answer, it frequently provides an incorrect explanation for
that wrong answer. We automatically extract the incorrect
claim in the explanation and ask the same LM to check
whether its claim is correct.

See Table 1 for a representative example from each dataset.

For evaluating GPT-3.5 and GPT-4, we accessed the model
through the official OpenAI API (equivalent to https:
//platform.openai.com/playground) between
April and May 2023. However, the models being deployed
were constantly updated, therefore rerunning the experiment
might result in different numbers. For reference, we also in-
cluded results rerun on March 2024 in the appendix. Overall,
the new numbers still support observations and conclusions
in the paper.

2Technically, this holds only for inputs above a certain hardness
level, i.e., the size of the prime number for primality testing, or the
size of the graph for graph connectivity.

3Merrill & Sabharwal (2023) show that, with a single gen-
eration step, bounded-precision transformers cannot solve any
problem outside the complexity class TC0, which corresponds
to a highly parallelizable subclass of both L (log-space) and P
(polynomial-time). Graph connectivity is an L-complete prob-
lem, which means it cannot be in TC0 unless TC0 = L, i.e., all
of L can be parallelized to a surprisingly high degree. Primality
testing was shown to be in P (Agrawal et al., 2004) but cannot
be in TC0 unless it is also in L; i.e., we can test if n is prime
with O(log log n) bits of overhead. In summary, unless standard
complexity-theoretic conjectures are false, graph connectivity and
primality testing are outside TC0 and thus are too inherentially
sequential for transformers to solve in a single generation step (cf.
Merrill & Sabharwal, 2023).

3.1. Datasets

We design three QA datasets, each containing 500 yes/no
questions that we expect are not answerable by transform-
ers in one timestep. To aid evaluation, the questions are
designed so that an incorrect answer would be justified with
easily verifiable claims.

For each dataset, we fix one specific label for all examples,
so that if the model chooses the incorrect answer (e.g., that
9677 is not prime), it would produce a specific claim to
support it (e.g., an incorrect factorization). This enables us
to systematically examine model-written justifications for
incorrect answers.

Primality testing For this dataset, we query the pri-
mality of 500 randomly chosen primes between 1,000 and
20,000; the correct answer is always Yes. When the model
answers incorrectly, we expect it to justify its answer with
an incorrect factorization.

Senator search This dataset consists of 500 questions
of the form “Was there ever a US senator that represented
the state of x and whose alma mater was y?” where x is
a U.S. state and y is a U.S. college. For these questions,
the correct answer is always No. When the model answers
incorrectly, we expect it to falsely claim that a particular
senator both represented x and attended y.

To create the dataset, we consider all U.S. states and a
manually constructed list of twelve popular U.S. colleges
(see §A for the full list); for each possible pair, we generate
a question following the template, and manually remove
pairs where the answer is Yes.

Graph connectivity For each of the 500 questions in
this dataset, we present 12 flights among 14 cities, and ask if
there is a sequence of flights from a particular city to another.
The problem always corresponds to the same underlying
directed graph structure (see §A.1), where flights are edges
and cities are nodes. For each instance in the dataset, we
randomly assign letters from the English alphabet to name
the nodes. To formulate the query, we sample a source
city s and destination city t in different subgraphs, with the
additional constraint that s corresponds to a source node,
and t a leaf node, so that 1-step heuristics cannot be used to
solve the problem.

We formulate the problem as a flight-finding question in nat-
ural language so that it sounds more natural: in the prompt,
we list the twelve flights (“There is a flight from city F to
city K; there is a flight from city G to city N, ...”), followed
by the question “Is there a series of flights... from s to t?”.
Note the correct answer is always No. When the model
answers incorrectly, we expect it to justify its answer with a
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(c) LLaMA-2-70B-chat

Figure 2. Percentage of hallucination and percentage of snowballed hallucination (both calculated with respect to the entire dataset) for
GPT-3.5 and GPT-4. The precise numbers for this plot are available in Table 6 and Table 7 in the Appendix.

flight that does not exist.

3.2. Inference Setup

Language models. We run all experiments on GPT-3.5
(gpt-3.5-turbo), GPT-4, and LLaMA2-70B-chat with
greedy decoding.

Our experiments are zero-shot (i.e., we do not show the
model any example QA pairs in the prompt). We focus on
the model behavior under the direct prompt (see §A for full
examples), which is the most common way users interact
with LMs. See §5 for experiments with the zero-shot chain-
of-thought style prompting method.

For each dataset, we perform a two-stage evaluation. First,
we evaluate the model’s accuracy (i.e., how many of the
questions it answers correctly). When either model is incor-
rect, we find that it always generates a justification. In the
second stage, we assess whether the model can identify the
incorrect step in the explanation.

For a given question, we evaluate the model’s response by
examining whether the output begins with either Yes or
No. In cases where the response does not fall into these
categories, we manually determine the answer conveyed by
the model.

3.3. LM Recognition of Snowballed Hallucinations

We probe whether LMs recognize their snowballed hallu-
cinations by verifying the model’s incorrect claims in the
output against the model itself. Note that our recognition
procedure relies on heuristics gained from manual exami-
nation of the model output, and these heuristics might not
work on other models (e.g., a different model might not
provide factors when supporting the claim that a number is

not prime).

Graph Connectivity For each sample where the model
thinks there is a series of connecting flights (where answer
starts with Yes), we manually extract the list of flights from
the model’s output and identify the invalid or disconnected
flight path.

We then, in a new session, ask the model to verify whether
the extracted flights are valid based on the flight informa-
tion, and if consecutive flights are indeed connected. We
manually assess the verification output to check if the model
correctly detects the error. See Appendix Table 3 for how we
prompt the model and an example of successful verification.

Primality Testing For each sample where the model an-
swers that the number is not prime, we extract the factors the
model uses to justify it. The extraction is done by putting
the output in the context and asking “What are the factors
proposed in the above text? List them out.” We use GPT-3.5
for extraction with one-shot demonstration (for its fast infer-
ence speed); we manually checked 30 examples and found
that it can always extract the correct factors.

We then, in a new session, ask the model to verify each
extracted factor individually. See Appendix Table 4 for an
example of successful verification.

Senator Search For each sample where the model pre-
dicts there is a senator who went to the specified college,
we extract the name of the senator given by the model, by
putting the output in the context and asking “What is the
senator mentioned in the above text? Just give the name”.
Again, we use GPT-3.5 and manually observed perfect ex-
traction on 30 examples.
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In a new session, we then ask the model if that senator
attended the college in the question and has represented the
state in the question. See Appendix Table 5 for an example
of successful detection.

3.4. Results

Question-answering accuracy Figure 2 shows that all
the model we tested obtain very low accuracy across the
board. With the exception of GPT-3.5 on the Senator
Search dataset, all models achieve less than 50% accuracy.
(See Appendix Table 6 for a breakdown of the error rate by
dataset.)

Hallucination detection Here, we check whether the
model can identify that the incorrect claim is wrong when it
is presented alone. As shown in Figure 2, GPT-3.5 detects
67.37% of incorrect claims in explanations (i.e., snowballed
hallucinations), GPT-4 detects 87.03%, and LLaMA2-70B-
chat detects 93.67%. Notice that when the model fails the
verification (an example in Appendix Table 14), we do not
consider it a snowballed hallucination.

Overall, we find that these strong language models are all
extremely susceptible to hallucination snowballing, leading
to simple mistakes they can reliably detect as incorrect.

4. Zero-shot Chain-of-thought Prompting
In Section §3, we showed that when a yes/no question is
given to an LM, it attempts to immediately answer it, even
if that requires multiple reasoning steps. This leads to an
incorrect answer that then leads to a snowballed hallucina-
tion when the model tries explaining its incorrect answer. A
natural solution to this problem is using chain-of-thought
style prompting, which improves LM performance on prob-
lems that require reasoning (Wei et al., 2022). To investigate
this, we conduct experiments using the zero-shot chain-of-
thought prompt “Let’s think step by step” (Kojima et al.,
2023). We focus on this zero-shot prompt since it is gener-
ally applicable to a given task and it does not require having
labeled examples. Since the outputs generated in this sec-
tion typically do not follow a rigid structure, we manually
inspect them to determine the correctness of the response
and the presence of snowballed hallucination. We determine
whether a snowballed hallucination has occurred by locating
the evidence that the model used to support a previous incor-
rect statement (if it exists) and then asking the verification
questions described in §3.3.

4.1. “Let’s think step by step” can Alleviate Hallucination

For each task, we append “Let’s think step-by-step” at the
end of the original question (shown in Table 1). As shown
in Figure 3, both models can solve the Senator Search task

perfectly, achieve ≤10% error rate on Primality Testing,
and ≤30% on Graph Connectivity. Despite the large im-
provement in accuracy, the model sometimes hallucinates
while outputting the reasoning chain, which causes snow-
balled hallucination in future steps. For example, in the
below output,

[.... previous steps omitted ....]

Step 3: From city E, we have three options: a
flight to city N, a flight to city B, or a flight to city
C.

Step 4: The only option that could potentially lead
us to city M is the flight from city E to city C.

[.... rest of the output omitted ....]

GPT-3.5 incorrectly states that there are three options in
step three (there are only two), inducing the snowballed
hallucination “or a flight to city C” (GPT-3.5 can verify
that E → C is not a valid flight in a separate session). As
shown in Figure 3, chain-of-thought prompting leads to
mixed results on different datasets with LLaMA-2-70B-chat.
However, the absolute number of snowballed hallucinations
is substantially reduced when chain-of-thought prompting
is used with GPT-3.5 and GPT-4, despite the similarly high
snowballed hallucination rate. This result demonstrates
the effectiveness of chain-of-thought prompting for certain
models on our datasets.

4.2. Does “Let’s think step by step” Work on Composite
Questions?

The “Let’s think step by step” prompt performed well on
the three datasets from §3.1 with GPT-3.5 and GPT-4, but
these datasets have simple structures and don’t require com-
plex reasoning. In contrast, real-world text generation may
involve solving multiple concurrent reasoning problems.
We hypothesize that “Let’s think step by step” will not be
as effective as preventing hallucination on such composite
questions.

To further examine if ”Let’s think step by step” can be a
reliable way to solve the snowballed hallucination problem,
we develop three additional datasets. Each of these new
datasets is a composite version of its counterpart from §3.1.
Below we describe the details of these new datasets.

Primality Testing We randomly choose 1500 primes be-
tween 1000 and 20000, and group them into 500 questions
in the format of “Are any of the following numbers not
prime: 2171, 2843, 1289?”.

Senator Search For each of the 500 questions, we sample
one university from the aforementioned list in Section §3.1
and three US states, then ask a question in the format of
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Figure 3. Error rate and snowballed hallucination rate (hatch pattern) for GPT-3.5 and GPT-4, when using the original prompt versus
“Let’s think step by step”. See Appendix Table 10 and Table 11 for the exact numbers.

“Which of the following states have ever had senators who
went to Princeton University: North Carolina, Minnesota,
or Florida?”. We make sure none of the states have had a
senator who attended the university in the question and no
three-state tuple is used more than once.

Graph Connectivity For each of the 500 questions, We
randomly sample three city pairs from the flight graph using
the same criteria as in §3.1, and ask the model questions
in the format of “For each of the following pairs of cities,
check if there is a series of flights from the source city to the
target city: city A to city I, city N to city F, city A to city E.”

4.3. “Let’s think step by step” Struggles on the
Composite Datasets

We follow the same setup as in §4.1 by appending “Let’s
think step by step.” after each question for GPT-3.5 and
GPT-4.4 As shown in Figure 4, both the error rates and
snowballed hallucination rates are high. Across the board,
both models answer incorrectly (hallucinate) on more than
half of the questions, and in over 65% of the cases those hal-
lucination snowball. By manually investigating the model
outputs, we found that the LM struggles here with the initial
committal problems anticipated in §2, showing that “Let’s
think step by step” is not a reliable solution to avoid snowball
hallucinations.

While we only test “Let’s think step by step” here, the fact
that a simple modification to the questions can lead to severe
performance degradation shows that relying on the model’s
zero-shot reasoning ability might not be a general solution.
One obvious approach is to use few-shot chain-of-thought

4We don’t experiment with LLaMA-2-70B-chat here since
the performance of “Let’s think step by step” prompt is already
mediocre in §3.

prompting to avoid the initial committal issue by specifying
the reasoning pattern in the demonstrations. However, doing
few-shot prompting requires understanding what kind of
reasoning is necessary for the given task beforehand, which
is not always feasible, especially on complex questions.

5. Towards a Robust Solution for Snowballing
Hallucinations

As shown in §4.1, chain-of-thought prompting remedies
hallucination snowballing in the case where the task requires
relatively few reasoning steps. However, we found in §4.3
that it breaks down in contexts where the full response
involves resolving multiple reasoning problems. In this
section, we discuss other potential solutions to hallucination
snowballs involving modifications to the training setup and
algorithmic details.

Increasing the temperature During decoding, the tem-
perature t controls the sharpness of the output distribution,
with higher t spreading probability mass away from the
model’s most likely prediction for each next word. Our ex-
periments in §3 used greedy decoding, which is equivalent
to t = 0. At t = 0.6 and t = 0.9, both error rates and
snowballed hallucination rates remain similarly high, in all
the models we tested (Figure 5).

Top-k and nucleus sampling Using sampling methods
such as top-k sampling or nucleus sampling (Holtzman et al.,
2020) would not help since they only narrow the range of
tokens to be considered, and thus can only increase the
probability that the model will immediately commit to an
answer.

Beam search In §2 we hypothesize that hallucination
snowballing may occur since once a model generates a
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Figure 4. Error rate and snowballed hallucination rate (hatch pattern) for GPT-3.5 and GPT-4, when using “Let’s think step by step”
prompt on the composite datasets. See Appendix Table 12 and Table 13 for the exact numbers.

few tokens committing to an answer, they remain in the
context and influence later generations. One potential way
around this is beam search, i.e., maintaining a set of high-
probability sequences at each timestep rather than a single
sequence. In theory, if some sequences in the beam after
the initial incorrect tokens do not commit to an answer
(or commit to the right answer), their continuations may
eventually have higher probability than those that initially
commit incorrectly and later produce incorrect reasoning as
a result.

We tested beam search (with the number of beams set to 10)
on LLaMA-2-70B-chat only, as GPT-3.5 and GPT-4 don’t
provide either an implementation of beam search or output
logits, which are necessary for implementing beam search
ourselves. We found that beam search leads to a decreased
error rate on the Primality Testing dataset but a increased
error rate on the Senator Search dataset, and did not change
the aggregate results. For more details, see Table 8 and
Table 9.

Learning strategies A more general way to further reduce
snowballing might be to change aspects of the pretraining or
instruction tuning phases. In particular, a greater emphasis
on having the model produce a reasoning chain before gen-
erating an answer could be a good way to accommodate its
computational limitations and avoid committing to wrong
answers that force hallucinations.

In addition, we hypothesize that the large text corpora being
used in pre-training are unlikely to contain data that can
help the model to learn correct backtracking behavior. For

example, a human can make and revise multiple errors dur-
ing the drafting of a response to a question, but the revision
history will not be included in the final answer. This biases
the model to treat previously generated content to be correct,
and double down on previous hallucinations. Finetuning on
data with backtracking patterns might improve a model’s
performance on the tasks we present. This could be accom-
plished by, for example, giving a question, followed by a
wrong solution, and then issuing a phrase like “Sorry, that
was incorrect” or adding special backtracking tokens be-
fore giving the correct solution. This solution is related to
the “Review your previous answer and find problems with
your answer.” prompt from Kim et al. (2023).

6. Related Work
Hallucinations Hallucination in text generation is a well-
studied problem (Rohrbach et al., 2018; Maynez et al., 2020;
Raunak et al., 2021) that has recently become more promi-
nent due to LMs’ tendency to produce plausible-sounding
falsehoods. Hallucinations are often attributed to knowledge
gaps in LMs (Zheng et al., 2023), and several works have
shown the promise of using retrieval over knowledge bases
to mitigate them (Lewis et al., 2020; Shuster et al., 2021;
Peng et al., 2023). Our work demonstrates hallucination can
be induced from context, thus motivating further mitigation
techniques.

Hallucination snowballing is likely the result of exposure
bias: LMs were only exposed to gold history during train-
ing, but during inference, conditions on possibly erroneous
previous predictions. Prior work linked this to compound-
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(c) LLaMA-2-70B-chat

Figure 5. Error rate and snowballed hallucination rate (hatch pattern) from GPT-3.5 and GPT-4, when using different values for temperature
at decoding-time. See Table 8 and Table 9 for the exact numbers.

ing hallucinations in machine translation (Wang & Sennrich,
2020) and open-ended text generation (Arora et al., 2022).
We go beyond demonstrating error propagation by show-
ing that the propagated errors (which we call snowballed
hallucinations) are recognized by the LM itself.

Our observations are related to previous findings that LMs
hallucinate when given questions that contain false presup-
positions (Kim et al., 2021; 2022; Yu et al., 2022) or that
are otherwise misleading (Lin et al., 2022), in that faulty
context misguides the LM. However, our work differs in
that our questions are not intentionally misleading, showing
that this failure mode may be triggered even on innocent
information-seeking queries to the LM.

LM (in)consistency Our findings add to a growing body
of work demonstrating the extent to which LMs are inconsis-
tent across different prompts on the same issue. For instance,
allowing an LM to generate intermediate steps (Nye et al.,
2021; Wei et al., 2022; Press et al., 2022) enables it to reach
a different answer than it otherwise would. Other work has
shown that simply prepending “Professor Smith was given
the following instructions” to a prompt can improve perfor-
mance, despite providing no valuable information about the
problem itself (Lin et al., 2022).

7. Conclusion
We identify a new category of hallucination in state-of-the-
art LMs, which we term snowball hallucination. Whereas
prior work tends to attribute hallucination to knowledge
gaps in LMs, snowball hallucinations arise in explanations
of previous incorrect claims, and are separately recognized
by the LM as incorrect. Our findings suggest that snowball
hallucination cannot be fully fixed by alternative decoding

strategies or prompting, motivating future work on remedial
actions at all levels of model training and deployment.

Impact Statement
This paper presents work whose goal is to advance the field
of language modeling by analyzing the hallucination behav-
ior of the most commonly used models. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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Graph Connectivity: Current flight information (the following flights are one-way only, and all the flights available are
included below):
There is a flight from city F to city K
There is a flight from city H to city A
There is a flight from city B to city F
There is a flight from city N to city H
There is a flight from city B to city M
There is a flight from city N to city G
There is a flight from city M to city J
There is a flight from city G to city L
There is a flight from city H to city E
There is a flight from city G to city C
There is a flight from city M to city I
There is a flight from city F to city D

Question: Is there a series of flights that goes from city B to city E?

Table 2. Input example for the Graph Connectivity task. Figure 6 describes the underlying graph structure for this example. We use the
same graph structure in all examples, and vary the source and target cities and the labels of the nodes. The cities are literally called “City
A”, “City B”, and so on.

A. Dataset Details
A.1. Graph Connectivity

In this dataset, the list of flights can be represented by a directed graph. We generated the flight information to ensure all
the graphs share a specific connection pattern, with the node names randomly chosen among the 26 letters in the English
alphabet. For an illustration of the underlying graph structure, see Figure 6.

A.2. Senator search

The twelve colleges used in the datasets are: MIT, University of Chicago, Johns Hopkins University, California Institute of
Technology, Duke University, Northwestern University, Dartmouth College, Brown University, Vanderbilt University, Rice
University, University of Washington. We constructed this list by taking a list of top universities in the U.S. and excluding
from it universities which also appeared on The U.S. News & World Report’s list of Top 10 Colleges for Members of
Congress.

B. Additional Results
We provide the detail breakdown of the question-answering accuracy in Table 6 and the hallucination detection accuracy in
Table 7.

spacing, margins, page numbering, etc.) should be kept the same as the main body.
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Figure 6. The underlying graph structure corresponds to example in Table 2.

Input: Current flight information (the following flights are one-way only, and all the flights available are included below):
There is a flight from city G to city B
There is a flight from city H to city K
There is a flight from city L to city M
There is a flight from city F to city H
There is a flight from city G to city J
There is a flight from city B to city I
There is a flight from city L to city A
There is a flight from city H to city N
There is a flight from city B to city D
There is a flight from city J to city C

Question: Is there a series of flights that goes from city F to city I?

Output: Yes, there is a series of flights that goes from city F to city I. The route is as follows:

1. City F to City H
2. City H to City K
3. City K to City G
4. City G to City B
5. City B to City I

Verification Question: Current flight information (the following flights are one-way only, and all the flights available are
included below):
There is a flight from city G to city B
There is a flight from city H to city K
[... 10 other rules cut for space ...]

Based on the above flight information, is City K to City G a valid flight?

Verification Answer:
No, based on the above flight information, there is no direct flight from City K to City G.

Table 3. Graph Connectivity dataset verification example, with GPT-4.

12



How Language Model Hallucinations Can Snowball

Input: Is 9791 a prime number?

Output: No, 9791 is not a prime number. It can be factored into 13 × 751.

Verification Q1: Is 9791 divisible by 13? Answer with either Yes or No.

Verification A1: No

Verification Q2: Is 9791 divisible by 751? Answer with either Yes or No.

Verification A2: No

Table 4. Primality Testing dataset verification example, with GPT-4.

Input: Was there ever a US senator that represented the state of New Hampshire and whose alma mater was University
of Pennsylvania?

Output: Yes, there was a U.S. Senator who represented the state of New Hampshire and whose alma mater was the
University of Pennsylvania. His name is John P. Hale, who served as a Senator from 1847 to 1853 and again from 1855
to 1865. He graduated from Bowdoin College in 1827 and later attended the University of Pennsylvania Law School.

Verification Q1: Has John P. Hale represented the state of New Hampshire as US senator?

Verification A1: Yes, John P. Hale represented the state of New Hampshire as a U.S. Senator. He served in the Senate
from March 4, 1847, to March 3, 1853, and again from March 4, 1855, to March 3, 1865.

Verification Q2: Was John P. Hale’s alma mater University of Pennsylvania?

Verification A2: No, John P. Hale’s alma mater was Bowdoin College in Brunswick, Maine.

Table 5. Senator Alma Mater dataset verification example, with GPT-4.

Task Average
Model Graph Connectivity Primality Testing Senator Search

GPT-3.5 410/500 (82.0%) 339/500 (67.8%) 153/500 (30.6%) 60.13%
GPT-4 442/500 (88.4%) 374/500 (74.8%) 435/500 (87.0%) 83.40%
LLaMA2-70b 487/500 (97.4%) 248/500 (49.6%) 265/500 (53.0%) 66.67%
GPT-3.5 (03/2024) 485/500 (97.0%) 473/500 (94.6%) 371/500 (74.2%) 88.60%
GPT-4 (03/2024) 381/500 (76.2%) 494/500 (98.8%) 263/500 (52.6%) 75.90%

Table 6. Number of mistakes out of the number of samples, the percentage here is the error rate.

Task Average
Model Graph Connectivity Primality Testing Senator Search

GPT-3.5 396/410 (96.6%) 125/339 (36.9%) 98/153 (68.6%) 67.37%
GPT-4 417/442 (94.3%) 346/374 (92.5%) 323/435 (74.3%) 87.03%
LLaMA2-70b 474/487 (97.3%) 215/248 (86.7%) 257/265 (97.0%) 93.67%
GPT-3.5 (03/2024) 464/485 (95.7%) 470/473 (99.4%) 363/471 (77.1%) 90.70%
GPT-4 (03/2024) 356/381 (93.4%) 478/494 (96.8%) 237/263 (90.1%) 93.40%

Table 7. Number of snowballed hallucinations out of number of hallucinations generated in the original output.
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Model Graph Prime Senator Average

GPT-3.5 (t = 0.0) 410/500 (82.0%) 339/500 (67.8%) 153/500 (30.6%) 60.13%
GPT-3.5 (t = 0.6) 407/500 (81.4%) 310/500 (63.2%) 155/500 (31.0%) 58.53%
GPT-3.5 (t = 0.9) 403/500 (80.6%) 312/500 (62.4%) 163/500 (32.6%) 58.53%

GPT-4 (t = 0.0) 442/500 (88.4%) 374/500 (74.8%) 435/500 (87.0%) 83.40%
GPT-4 (t = 0.6) 438/500 (87.6%) 365/500 (75.4%) 423/500 (84.6%) 82.53%
GPT-4 (t = 0.9) 437/500 (87.4%) 377/500 (73.0%) 423/500 (84.6%) 81.67%

LLaMA2-70b (t = 0.0) 487/500 (97.4%) 248/500 (49.6%) 265/500 (53.0%) 66.67%
LLaMA2-70b (t = 0.6) 459/500 (91.8%) 286/500 (57.2%) 315/500 (63.0%) 70.67%
LLaMA2-70b (t = 0.9) 429/500 (85.8%) 314/500 (62.8%) 267/500 (53.4%) 67.33%
LLaMA2-70b (beam search) 459/500 (91.8%) 176/500 (35.2%) 365/500 (73.0%) 66.67%

Table 8. Number of mistakes out of the number of samples, the percentage here is the error rate, with different decoding methods.

Model Graph Prime Senator Average

GPT-3.5 (t = 0.0) 396/410 (96.6%) 125/339 (36.9%) 98/153 (68.6%) 67.37%
GPT-3.5 (t = 0.6) 396/407 (97.3%) 113/310 (36.5%) 103/155 (66.5%) 66.77%
GPT-3.5 (t = 0.9) 399/402 (99.3)% 116/312 (37.2%) 104/163 (63.8%) 66.77%

GPT-4 (t = 0.0) 417/442 (94.3%) 346/374 (92.5%) 323/435 (74.3%) 87.03%
GPT-4 (t = 0.6) 402/438 (91.8%) 324/365 (88.8%) 329/423 (77.8%) 86.13%
GPT-4 (t = 0.9) 398/437 (91.1%) 331/377 (87.8%) 320/423 (75.7%) 84.87%

LLaMA2-70b (t = 0.0) 474/487 (97.3%) 215/248 (86.7%) 257/265 (97.0%) 93.67%
LLaMA2-70b (t = 0.6) 487/495 (98.4%) 252/286 (88.1%) 311/315 (98.7%) 95.07%
LLaMA2-70b (t = 0.9) 408/429 (95.1%) 285/314 (90.8%) 257/267 (96.3%) 94.07%
LLaMA2-70b (beam search) 487/495 (98.4%) 145/176 (82.4%) 315/365 (86.3%) 89.93%

Table 9. Number of snowballed hallucinations out of number of hallucinations generated in the original output, with different decoding
methods.

Task Average
Model Graph Connectivity Primality Testing Senator Search

GPT-3.5 139/500 (27.8%) 2/500 (0.4%) 0/500 (0.0%) 9.40%
GPT-4 21/500 (4.2%) 37/500 (7.4%) 0/500 (0.0%) 3.87%
LLaMA2-70b 436/500 (87.2%) 367/500 (73.4%) 200/500 (40.0%) 66.87%

Table 10. Number of mistakes out of the number of samples, the percentage here is the error rate, using “Let’s think step by step” prompt.

Task Average
Model Graph Connectivity Primality Testing Senator Search

GPT-3.5 123/139 (88.5%) 0/2 (0%) 0/0 (N/A) 44.25%
GPT-4 20/21 (95.2%) 35/37 (94.6%) 0/0 (N/A) 94.90%
LLaMA2-70b 427/436 (97.9%) 313/367 (85.3%) 197/200 (98.5%) 93.90%

Table 11. Number of snowballed hallucinations out of number of hallucinations generated in the original output, using “Let’s think step by
step” prompt.
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Task Average
Model Graph Connectivity Primality Testing Senator Search

GPT-3.5 491/500 (98.2%) 214/500 (42.8%) 198/500 (39.6%) 60.20%
GPT-4 200/500 (40.0%) 352/500 (70.4%) 301/500 (60.2%) 56.87%

Table 12. Number of mistakes out of the number of samples, the percentage here is the error rate, using “Let’s think step by step” prompt
on composite datasets.

Task Average
Model Graph Connectivity Primality Testing Senator Search

GPT-3.5 485/491 (98.8%) 86/214 (40.2%) 120/198 (60.6%) 66.53%
GPT-4 171/200 (85.5%) 279/352 (79.3%) 206/301 (68.4%) 77.73%

Table 13. Number of snowballed hallucinations out of number of hallucinations generated in the original output, using “Let’s think step by
step” prompt on composite datasets.

Input: Was there ever a US senator that represented the state of North Carolina and whose alma mater was Dartmouth
College?

Output: Yes, there was a U.S. Senator who represented the state of North Carolina and whose alma mater was Dartmouth
College. His name was Willis Smith, and he served as a Senator from 1950 to 1953.

Verification Q1: Has Willis Smith represented the state of North Carolina as a US senator?

Verification A1: Yes, Willis Smith represented the state of North Carolina as a U.S. Senator. He served from 1950 until
his death in 1953.

Verification Q2: Was Willis Smith’s alma mater Dartmouth College?

Verification A2: Yes, Willis Smith’s alma mater was Dartmouth College. He graduated from there in 1917.

Table 14. An example of GPT-4 failing the verification test for Senator Search task. Willis Smith was a senator from North Carolina, but
he has never attended Dartmouth College.
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