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ABSTRACT

Despite the success of graph neural networks (GNNs), their vulnerability to ad-
versarial attacks poses tremendous challenges for practical applications. Existing
defense methods suffer from severe performance decline under some unknown
attacks, due to either limited observed adversarial examples (adversarial train-
ing) or pre-defined heuristics (graph purification or robust aggregation). To ad-
dress these limitations, we analyze the causalities in graph adversarial attacks and
conclude that causal features are desirable to achieve graph adversarial robust-
ness, owing to their determinedness for labels and invariance across attacks. To
learn these causal features, we innovatively propose an Invariant causal DEfense
method against adversarial Attacks (IDEA). We derive node-based and structure-
based invariance objectives from an information-theoretic perspective. IDEA
is provably a causally invariant defense across various attacks. Extensive ex-
periments demonstrate that IDEA significantly outperforms all baselines under
both poisoning and evasion attacks on five benchmark datasets, highlighting its
strong and invariant predictability. The implementation of IDEA is available at
https://anonymous.4open.science/r/IDEA_repo-666B.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved immense success in numerous tasks and applications,
including node classification (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019b;a),
cascade prediction (Cao et al., 2020), recommendation (Fan et al., 2019), and fraud detection (Ma
et al., 2021; Cheng et al., 2022). However, GNNs have been found to be vulnerable to adversarial
attacks (Dai et al., 2018; Zügner et al., 2018; Bojchevski & Günnemann, 2019), i.e., imperceptible
perturbations on graph data can easily mislead GNNs into misprediction (Jin et al., 2020a; Chen et al.,
2020; Zügner & Günnemann, 2019b; Lin et al., 2020; Zügner et al., 2018). For example, in credit
scoring, attackers add fake connections with high-credit customers to deceive GNN (Jin et al., 2020a),
leading to loan fraud and severe economic losses. This vulnerability poses significant security risks,
hindering the deployment of GNNs in real-world scenarios. Therefore, defending against adversarial
attacks is crucial for practical utilization of GNNs, and has attracted substantial research interests.

Existing defense methods (Jin et al., 2020a) mainly include graph purification, robust aggregation,
and adversarial training, showing effectiveness against specific attacks. Graph purification purifies
adversarial perturbations based on low rank (Jin et al., 2020b; Entezari et al., 2020), local smooth-
ness (Li et al., 2022c), or sparsity (Jin et al., 2020b). Robust aggregation assigns high weight to
edges, also based on local smoothness (Jin et al., 2021; Zhang & Zitnik, 2020). Adversarial training
employs a min-max optimization scheme (Kong et al., 2022; Li et al., 2022b), iteratively generating
adversarial examples to maximize the loss and update GNN to minimize the loss on these examples.

However, these approaches all have limitations that prevent broad protection across various attacks.
Graph purification and robust aggregation both rely on specific heuristic priors, but these priors may
be ineffective for some attacks (Chen et al., 2022b; Tao et al., 2023a), causing the methods to fail. As
shown in Figure 1 (a), graph purification methods including ProGNN (Jin et al., 2020b), STABLE (Li
et al., 2022c), and GARNET (Deng et al., 2022) perform well under MetaAttack (Zügner et al.,
2018) (light green and dark green), however, they suffer severe performance degradation when faced
with G-NIA (Tao et al., 2021b) (red). On the other hand, robust aggregation methods including
SimPGCN (Jin et al., 2021), Elastic(Liu et al., 2021), and Soft-Median (Geisler et al., 2021) also
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Figure 1: Limitation of existing methods: Defenses suffer performance degradation under various
attacks and on clean graph. 5% and 20% denote perturbation rates of MetaAttack.

exhibit weaknesses against TDGIA (Zou et al., 2021) and G-NIA. Moreover, modifying graph
structure (ProGNN) or adding noise (RGCN) can even degrade clean graph performance, as shown in
Figure 1(b) using GCN as a reference. As for adversarial training, its effectiveness is limited to the
observed examples (Bojchevski & Günnemann, 2019). As shown in Figure 1 (a), adversarial training
FLAG (Kong et al., 2022) also exhibits unsatisfactory performance under TDGIA. Due to limited
space, we discuss further literature in Appendix A.

To address the above limitations issues, we innovatively propose an invariant causal defense per-
spective. Specifically, we first design an interaction causal model (Zhang et al., 2022a) to capture
causalities between nodes in graph adversarial attacks, addressing non-IID characteristics of graph
data. Then we find that the causal features exhibit good properties: (1) Causal features determine
labels, implying their strong predictability for labels; (2) The causalities between causal features
and labels are invariant across attacks, indicating their invariant predictability across attacks. We
conclude that causal features are advantageous to achieve graph adversarial robustness.

To learn these causal features, we propose an Invariant causal DEfense method against adversarial
Attacks, namely IDEA. By analyzing distinct characteristics of causal features, we derive node-based
and structure-based invariance objectives from an information-theoretic perspective. Node-based
invariance objective minimizes the conditional mutual information between label and attack given
causal feature, based on that the causality between causal feature and label remains unchanged across
attacks. While structure-based invariance objective is specially designed considering graph structure.
IDEA is proved to be a causally invariant defense, under the linear causal assumptions. Extensive
experiments demonstrate that IDEA attains state-of-the-art defense performance under all five attacks
on all five datasets. This emphasizes that IDEA’s strong and invariant predictability across attacks.

The primary contributions of this paper can be mainly summarized as:

1. New perspective: We introduce an innovative invariant causal defense perspective and design an
interaction causal model to capture the causalities in graph adversarial attack, offering a novel
perspective on graph adversarial field.

2. Novel methodology: We propose IDEA method to learn causal features to achieve graph adver-
sarial robustness. We design two invariance objectives to learn causal features by modeling and
analyzing the causalities in graph adversarial attacks.

3. Experimental evaluation: Comprehensive experiments on five benchmarks demonstrate that
IDEA significantly outperforms all baselines against both evasion and poisoning attacks, high-
lighting the strong and invariant predictability of IDEA.

2 PRELIMINARY

In this section, we introduce the widely-used node classification task and graph neural networks. We
also introduce the goal of graph adversarial attack and graph adversarial robustness.

GNN for Node Classification. Given an attributed graphG = (V, E , X), we denote V = {1, 2, ..., n}
as node set, E ⊆ V × V as edge set, and X ∈ Rn×d as the attribute matrix with d-dimensional
attributes. The class set K contains K = |K| classes. The goal is to assign labels for nodes based on
the node attributes and network structure by learning a GNN classifier fθ (Jin et al., 2020b;a). The
objective is: minθ

∑
i∈Vtrain

[L(fθ(G)i, Yi)], where Yi denotes the ground-truth label of node i.
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Graph adversarial attacks. The graph adversarial attack aims to find a perturbed graph Ĝ that
maximizes the loss of GNN model (Jin et al., 2020a):

max
Ĝ∈B(G)

∑
i∈V

[L(fθ∗(Ĝ)i, Yi)] s.t., θ∗ = arg min
θ

∑
i∈V

[L(fθ(Gtrain)i, Yi)]. (1)

Here, Ĝ is the perturbed graph chosen from the admissible perturbed graph set B(G), where the
perturbing nodes, edges, and node attributes should not exceed the corresponding budget (Jin et al.,
2020a). Gtrain = G in evasion attacks, and Gtrain = Ĝ in poisoning attacks.

Graph adversarial robustness. Defense methods aim to improve graph adversarial robustness,
defending against any adversarial attack. The goal can be formulated as:

min
θ

max
Ĝ∈B(G)

∑
i∈V

[L(fθ(Ĝ)i, Yi)]. (2)

Existing defense methods suffer performance degradation under various attacks or on clean graphs.
Adversarial training (Kong et al., 2022) generalizes poorly to unseen adversarial attacks. While graph
purification and robust aggregation are designed based on specific heuristic priors, such as local
smoothness (Wu et al., 2019; Jin et al., 2020b; Zhang & Zitnik, 2020; Li et al., 2022c; Jin et al., 2021)
and low rank (Jin et al., 2020b; Entezari et al., 2020). They are only effective when attacks satisfy
these priors. Hence, there is an urgent need to design a defense method that performs well both on
clean graphs and across various attacks.

3 METHODOLOGY

We first model the causalities between causal features and other variables in graph adversarial attacks.
Based on this causal analysis, we propose an Invariant causal DEfense method against Attacks (IDEA)
method to learn causal features.

3.1 INTERACTION CAUSAL MODEL

To model the non-IID characteristics in graph data, namely the interactions (e.g. edges) between
samples (e.g. nodes), we design an interaction causal model with explicit variables 1 to capture the
causality between different samples (Zhang et al., 2022a) under graph adversarial attacks.

Figure 2 (left) illustrate an example involving two connected nodes i and k. We inspect the causal
relationships among variables: input data Gi (node i’s ego-network), label Yi, causal feature Ci,
perturbation Ti, attack domain Di, and those variables of neighbor node k.

We introduce the latent causal feature Ci as an abstraction that causes both input ego-network Gi and
label Yi. For example, in credit scoring, Ci represents the financial situation, which determines both
Gi (including personal attributes and friendships) and credit score Yi. Besides, the causal feature Ci
influences neighbor Gk due to network structure, aligning with GNN studies (Kipf & Welling, 2017;
Veličković et al., 2018). We model graph adversarial attack with perturbation Ti and attack domain
Di which is a latent factor that determines Ti, as shown in Figure 2 (left). Attack domain Di refers
to attack categories based on their characteristics, such as attack type or attack strength. Here, Di

and Ti are considered as non-causal features Ni associated to attack, and we strive to exclude their
influence. Perturbation Ti may impact the neighbor ego-network Gk due to edges between nodes.

We analyze these causalities and find that: (i) Causal feature C determines label Y , indicating
causal feature’s strong predictability for label; (ii) The C − Y causality remains unchanged
across attack domains, indicating the causal feature maintains invariant predictability across
attack domains. These properties make causal features beneficial in enhancing graph adversarial
robustness. Specifically, strong predictability enables good performance on clean graphs, while
invariant predictability maintains performance under attacks. Meanwhile, the impact of attacks
including Di and Ti should be eliminated. Based on the above intuition, we aim to design a method
to learn causal feature C and reduce the influence of non-causal feature to defend against attacks.

1Note that the explicit variable Xi refers to the event of one specific sample i, and the generic variable X is
the event of all samples.
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Figure 2: Left: Interaction causal model. Right: Causality and conditional independences.

3.2 IDEA: INVARIANT CAUSAL DEFENSE METHOD AGAINST ADVERSARIAL ATTACK

We propose IDEA to learn causal features. Our approach involves designing invariance objectives
based on the distinctive properties of causal features and approximating losses accordingly.

3.2.1 INVARIANCE OBJECTIVE

To learn causal features, we design invariance objectives by analyzing the causality and conditional
independences with the d-separation (Pearl, 2010; 2009) in Figure 2 (right). The observations are:

1. Ci → Yi: Causal feature C determines label Y . (first path in Figure 2 (right)).
2. Yi 6⊥⊥ Di | Gi: Y and attack domain D are associated given G (second path in Figure 2 (right)),

since G is a collider2 between Y and D.
3. Yi ⊥⊥ Di | Ci: The C − Y causality remains unchanged across attack domain D, i.e., C has

invariant predictability for Y across various attack domains.
4. Yi 6⊥⊥ Di | Gk: Yi and Di are associated given the neighbor’s ego-network Gk (third path in

Figure 2(right)), since Gk is a collider of Yi and Di, where Gk is also influenced by attacks.
5. Yi ⊥⊥ Di | Ck: Given neighbor’s Ck, Yi and Di are still independent.

Based on these observations, we analyze the characteristics of C and propose three goals from the
perspective of mutual information I to learn causal feature C. Let Φ represent the feature encoder.

• Predictive goal: maxΦ I (Φ(G), Y ) to guide Φ(G) to have strong predictability for Y in (1).
• Node-based Invariance goal: minΦ I (Y,D | Φ(G)). By comparing the conditional indepen-

dences regarding Gi in (2) and Ci in (3), we propose this goal to guide Φ(G) learning C and
excluding the influence of attack, to obtain invariant predictability across different attack domains.

• Structural-based Invariance goal: minΦ I (Y,D | Φ(G)N ). Through comparing Gk in (4) and
Ck in (5), we propose this goal to guide Φ(G)N learning the causal feature for neighbor N .

To sum up, the objective can be formulated as:

max
Φ

I
(

Φ(Ĝ∗), Y
)
−
[
I
(
Y,D | Φ(Ĝ∗)

)
+ I

(
Y,D | Φ(Ĝ∗)N

)]
s.t. Ĝ∗ = arg min

Ĝ∈B(G)
I
(

Φ(Ĝ), Y
)
,

(3)

Here, attack domain D is used to expose the difference of attack influence on feature, mitigate thereby
learning the causal features that are invariant across attacks. The objective guides IDEA to learn
causal feature with strong predictability and invariant predictability across attack domains, as well as
exclude the impact of attacks. The capability of this objective relies on the diversity of attack domain
D (Section 3.2.3). However, two challenges persist in solving Eq. 3: i) The objective is not directly
optimizable since estimating mutual information of high-dimensional variables is difficult. ii) It is
unknown that how to design attack domain D. Intuitively, diverse D can expose the difference of
attack influence on features and promote learning inviarant causal feature.

To address the challenge i), section 3.2.2 presents the loss approximations for our proposed objectives.
To tackle the challenge ii), section 3.2.3 introduces a domain learner to learn the attack domain.

2A collider is causally influenced by two variables and blocks the association between the variables that
influence it. Conditioning on a collider opens the path between its causal parents (Pearl, 2010; 2009). In our
case, Ci and Ti are associated conditioned on Gi, making Yi and Di associated, conditioned on Gi.
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3.2.2 LOSS APPROXIMATION

Let Z = Φ(Ĝ∗) denote the representation to learnC. The predictive goal is I(Z, Y ) = Ep(y,z) log p(y|z)
p(y)

.
Unfortunately, it is challenging to directly compute the distribution p(y|z). To overcome this, we
introduce q(y|z) as a variational approximation of p(y|z). Similar to (Alemi et al., 2017; Li et al.,
2022a), we derive a lower bound of predictive goal: Ep(x,y)Ep(z|x) log q (y | z), where x is the input
ego-network. Consequently, we can maximize I(Z, Y ) by maximizing the lower bound.

The lower bound involves two distributions, p(z|x) and q(y|z) that need to be solved. For p(z|x), we
employ neural network h as a realization of Φ to learn representation. We assume a Gaussian distri-
bution p(z | x) = N

(
z | hµ(x), hΣ(x)

)
, where hµ and hΣ output the mean and covariance matrix,

respectively (Li et al., 2022a; Alemi et al., 2017). Subsequently, we leverage a re-parameterization
technique (Kingma & Welling, 2014) to tackle non-differentiability: z = hµ(x) + εhΣ(x), where ε is
a standard Gaussian random variable. In general, encoder h contains GNN and re-parameterization,
outputting z = h(x, ε). For q(y|z), we use a neural network g as classifier to learn the variation
distribution q(y|z). With p(z|x) and q(y|z), we obtain the predictive loss LP :

min
g,h
LP
(
g, h, Ĝ∗

)
= min

g,h

∑
i∈Vl

L(g(h(Ĝ∗)i), Yi). (4)

For the node-based invariance goal, the conditional mutual information is defined as:

I(Y,D|Z) = Ep(z)
[
Ep(y,d|z)

[
log

p(y, d | z)
p(d | z)p(y | z)

]]
= Ep(z)

[
Ep(y,d|z)[log p(y | z, d)− log p(y | z)]

]
.

(5)

To approximate p(y | z, d), p(y | z), we also employ two variational distributions qd(y | z, d) and
q(y | z). This allows us to obtain an estimation of I(Y,D|Z):

Î(Y,D|Z) = Ep(z)
[
Ep(y,d|z)[log qd(y | z, d)− log q(y | z)]

]
. (6)

Similar to CLUB (Cheng et al., 2020), we minimize KL-divergence Ep(z,d)KL[p(y | z, d)‖qd(y |
z, d)] to make Î(Y,D|Z) as an upper bound on I(Y,D|Z). We prove that minimizing both estimation
Î(Y,D|Z) and KL-divergence Ep(z,d)KL[p(y | z, d)‖qd(y | z, d)] minimizes our goal I(Y,D|Z).
Proposition 1. The node-based invariance goal I(Y,D|Z) reaches its minimum value if the following
two quantities are minimized: Ep(z,d)KL[p(y | z, d)‖qd(y | z, d)] and Î(Y,D|Z).

The proof is in Appendix B.1. Then we use a neural network gd as classifier to learn qd(y | z, d).
We optimize Ep(z,d)KL[p(y | z, d)‖qd(y | z, d)] by minimizing

∑
i∈V L

(
gd(h(Ĝ∗)i, Di), Yi

)
,

and optimize Î(Y,D|Z) by minimizing
∑
i∈V

[
L
(
g(h(Ĝ∗)i), Yi)− L(gd(h(Ĝ∗)i, Di), Yi

)]
. The

node-based invariance loss LI :
min
g,gd,h

LI
(
g, gd, h, Ĝ

∗, D
)

= min
g,gd,h

∑
i∈V

L
(
gd
(
h(Ĝ∗)i, Di

)
, Yi
)

+ α
[
L
(
g
(
h(Ĝ∗)i

)
, Yi
)
− L

(
gd
(
h(Ĝ∗)i, Di

)
, Yi
)]
,

(7)

where coefficient α is a hyper-parameter to balance the two terms.

The structural-based invariance goal aims to learn the causal feature for the neighbor. Similar to the
above, this goal can be achieved by optimizing the structure-based invariance loss LE :

min
g,gd,h

LE
(
g, gd, h, Ĝ

∗D
)

= min
g,gd,h

∑
i∈V,k∼Ni

L
(
gd
(
h(Ĝ∗)k, Di

)
, Yi
)

+ α
[
L
(
g
(
h(Ĝ∗)k

)
, Yi
)
− L

(
gd
(
h(Ĝ∗)k, Di

)
, Yi
)]
,

(8)

where k is the sampled node from the neighbors Ni of node i.

In summary, the loss function consists of predictive loss and two newly proposed invariance losses:

min
g,gd,h

LP
(
g, h, Ĝ∗

)
+ LI

(
g, gd, h, Ĝ

∗, D
)

+ LE
(
g, gd, h, Ĝ

∗, D
)

s.t. Ĝ∗ = arg max
Ĝ∈B(G)

LP
(
g, h, Ĝ

)
.

(9)
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Figure 3: Overall architecture of our IDEA method. IDEA contains feature encoder, classifier,
domain-based classifier, and domain learner. The black arrows denote the workflow of IDEA during
training, while the red arrows denote how IDEA predicts in the test phase.

3.2.3 DOMAIN CONSTRUCTION

How to design attack domain D remains critical. Straightforward ways such as categorizing by
attack type or strength can yield very few, non-diverse domains. Intuitively, attack domains should
be both sufficiently numerous (Rosenfeld et al., 2021; Arjovsky et al., 2019) and distinct from each
other (Creager et al., 2021; Arjovsky et al., 2019) to reveal the various effects of attacks. To this
end, we leverage a neural network s as domain learner to learn attack domain. Here, s allows for
the adjustable number of domains. We ensure the domain diversity by minimizing the co-linearity
between the samples from different domains. We adopt Pearson correlation coefficient (PCCs) to
measure of linear correlation between two sets of data. The loss function LD:

min
s
LD (s, h) = min

s

∑
D,D′∈D,D 6=D′

PCCs
(
rD, ρ(Ĝ)D

′)
rD =Ei∈VD

[
h(Ĝ∗)i

(
g(h(Ĝ∗)i)− Yi

)]
,VD =

{
i|(s(h(Ĝ∗)i) = D

}
,

(10)

where attack domain D is in the form of one-hot vector to categorize adversarial samples, D is the
attack domain set, VD denotes nodes assigned to domainD by learner s, rD denotes the representation
of VD. The form of rD aids in proving IDEA achieving adversarial robustness (Proposition 2).

3.2.4 OVERALL FRAMEWORK

According to the above analysis, the overall loss function of IDEA is formulated as:

min
g,gd,h

LP
(
g, h, Ĝ∗

)
+ LI

(
g, gd, h, Ĝ

∗, s∗
)

+ LE
(
g, gd, h, Ĝ

∗, s∗
)

]

s.t. Ĝ∗ = arg max
Ĝ∈B(G)

LP
(
g, h, Ĝ

)
, s∗ = arg min

s
LD (s, h) .

(11)

The overall architecture of IDEA is illustrated in Figure 3. The IDEA model consists of four parts:
an encoder h to learn the node representation, i.e., causal feature; a classifier g for final classification;
a domain-based classifier gd for invariance goals; and a domain learner s to provide the partition of
attack domain. We also provide the algorithm in Appendix C.

Through theoretical analysis in Proposition 2, IDEA produces causally invariant defenders under the
linear assumption of causal relationship (Arjovsky et al., 2019), enabling graph adversarial robustness.
Proposition 2. Let Y = Cγ + ε where γ is the causal mechanism, ε ∼ N (0, σ2) is Gaussian noise.
Let ρ(Ĝ) = ψ(C,N) where ψ is the mapping from causal feature C and non-causal feature N
to graph representation ρ(Ĝ), and ρ is a powerful graph representation extractor can extract all
information from Ĝ. Encoder Φ comprises ρ and a learner φ with parameter Θφ to learn C. Suppose
a function ψ̃ satisfying ψ̃(ρ(Ĝ)) = C, with parameters Θψ̃ . Assume the rank of Θφ is r. Let Θ>

ψ̃
Θγ

and Θ>φΘω be the parameter of the ground truth defender and learned defender. If Θ>φΘω satisfies
the following conditions in training attack domain set Dtr:
(1) Eq. 3, I

(
Φ(Ĝ), Y

)
−
[
I
(
Y,D | Φ(Ĝ)

)
+ I

(
Y,D | Φ(Ĝ)N

)]
is maximized,

(2)
{
Eρ(ĜD)

[
ρ(ĜD)ρ(ĜD)>

] (
Θ>φΘω −Θ>

ψ̃
Θγ

)}
D∈Dtr

is linearly independent and

dim

(
span

({
Eρ(Ĝ)i

[
ρ(Ĝ)iρ(Ĝ)>i

] (
Θ>φΘω −Θ>

ψ̃
Θγ

)}
i∈V

))
> dim(φ)− r,

then Θ>φΘω = Θ>
ψ̃

Θγ is causal invariant defender for all attack domain set Dall.
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Table 1: Accuracy(%) of targets under evasion attacks. The best and second-best are highlighted.
Parentheses denote IDEA’s relative increase compared to second-best. “-” for out-of-memory (OOM).

Dataset Attack GCN GAT ProGNN STABLE GARNET RGCN SimpGCN Elastic Soft-Median FLAG IDEA

Cora

Clean 85.0 ± 0.5 84.6 ± 0.8 81.9 ± 1.2 83.9 ± 0.6 84.2±0.8 83.6 ± 0.7 83.0 ± 1.2 83.4 ± 1.9 84.3±0.9 85.8 ± 0.6 88.4 ± 0.6 ( ↑ 3.0%)
nettack 83.0 ± 0.5 81.7 ± 0.7 79.9 ± 1.1 21.5 ± 4.8 83.0±1.0 81.7 ± 0.6 82.0 ± 1.2 79.4 ± 1.7 83.5±0.8 84.8 ± 0.6 85.4 ± 0.7 ( ↑ 0.8%)
PGD 44.2 ± 3.4 26.7 ± 7.6 19.6 ± 2.2 32.2 ± 0.2 81.4±1.6 80.5 ± 0.4 9.0 ± 2.2 29.0 ± 5.5 19.5±2.3 60.2 ± 2.4 83.6 ± 2.1 ( ↑ 2.6%)

TDGIA 20.2 ± 2.3 33.7 ± 14.9 15.4 ± 1.7 30.9 ± 2.4 76.1±2.9 79.9 ± 0.9 13.5 ± 1.2 18.0 ± 1.2 16.8±0.4 57.2 ± 3.0 81.2 ± 2.5 ( ↑ 1.6%)
G-NIA 2.3 ± 0.5 5.2 ± 3.1 4.2 ± 0.8 25.8 ± 10.1 6.1±0.9 81.3 ± 0.9 11.5 ± 8.1 11.2 ± 3.7 4.8±0.8 64.8 ± 2.0 85.3 ± 1.2 ( ↑ 4.9%)
AVG 47.0 ± 37.0 46.4 ± 35.2 40.2 ± 37.6 38.9 ± 25.5 66.2±33.7 81.4 ± 1.4 39.8 ± 39.0 44.2 ± 34.6 41.8±38.8 70.6 ± 13.7 84.8 ± 2.7 ( ↑ 4.1%)

Citeseer

Clean 73.6 ± 0.6 74.7 ± 1.0 74.1 ± 0.9 75.2 ± 0.5 71.3±1.0 74.6 ± 0.5 74.9 ± 1.3 74.0 ± 1.3 73.6±0.9 74.7 ± 0.9 82.0 ± 1.9 ( ↑ 9.1%)
nettack 72.6 ± 0.7 72.6 ± 1.8 71.5 ± 0.9 20.8 ± 8.5 70.3±1.1 73.2 ± 0.6 74.5 ± 1.1 71.8 ± 1.5 72.8±0.9 73.6 ± 1.2 78.8 ± 1.6 ( ↑ 5.7%)
PGD 52.7 ± 4.5 54.5 ± 5.3 41.4 ± 4.1 17.7 ± 6.2 65.4±1.1 70.1 ± 1.1 48.2 ± 13.9 39.1 ± 6.0 36.2±1.9 60.1 ± 2.5 76.9 ± 3.4 ( ↑ 9.8%)

TDGIA 23.0 ± 3.8 44.7 ± 11.2 16.9 ± 2.1 15.5 ± 5.3 57.1±2.4 63.8 ± 7.4 28.1 ± 11.1 18.2 ± 3.6 21.6±1.1 57.5 ± 1.7 75.9 ± 3.9 ( ↑ 19.0%)
G-NIA 15.0 ± 3.6 13.6 ± 3.6 22.5 ± 4.8 18.5 ± 6.6 18.2±0.8 32.1 ± 6.4 54.4 ± 16.8 30.2 ± 4.2 14.1±1.0 68.0 ± 0.9 79.4 ± 3.0 ( ↑ 16.8%)
AVG 47.4 ± 27.3 52.0 ± 24.9 45.3 ± 26.7 29.5 ± 25.6 56.4±22.1 62.8 ± 17.7 56.0 ± 19.6 46.6 ± 25.1 43.6±28.1 66.8 ± 7.8 78.6 ± 2.4 ( ↑ 17.7%)

Reddit

Clean 84.9 ± 0.6 88.5 ± 0.3 66.2 ± 3.1 83.6 ± 0.4 85.7±0.3 68.0 ± 1.7 50.2 ± 8.3 72.7 ± 0.6 85.6±0.8 86.9 ± 0.4 90.8 ± 0.3 ( ↑ 2.7%)
nettack 84.8 ± 0.5 87.9 ± 0.4 68.8 ± 3.1 3.6 ± 3.2 86.5±0.4 67.0 ± 1.7 49.5 ± 8.4 71.4 ± 0.7 84.5±0.8 85.5 ± 0.4 89.1 ± 0.5 ( ↑ 1.4%)
PGD 46.0 ± 1.6 30.8 ± 2.5 20.0 ± 5.4 3.6 ± 1.5 81.2±0.8 53.1 ± 2.1 9.8 ± 3.3 19.0 ± 1.0 16.5±0.9 72.1 ± 0.9 81.6 ± 0.9 ( ↑ 0.4%)

TDGIA 24.1 ± 1.6 32.8 ± 3.8 9.0 ± 3.0 3.6 ± 1.4 48.5±1.5 44.3 ± 1.9 5.5 ± 1.6 8.3 ± 0.6 6.3±0.7 73.1 ± 0.7 81.3 ± 0.6 ( ↑ 11.1%)
G-NIA 1.0 ± 0.8 2.5 ± 1.1 4.0 ± 3.6 4.7 ± 2.2 8.8±2.6 5.0 ± 2.0 5.3 ± 3.7 3.3 ± 0.7 1.9±0.9 76.9 ± 1.2 84.2 ± 1.1 ( ↑ 9.5%)
AVG 48.2 ± 37.1 48.5 ± 38.2 33.6 ± 31.5 19.8 ± 35.6 62.1±33.7 47.5 ± 25.7 24.1 ± 23.6 34.9 ± 34.4 39.0±42.4 78.9 ± 6.9 85.4 ± 4.4 ( ↑ 8.2%)

ogbn-
products

Clean 63.9 ± 0.7 69.6 ± 0.4 49.7 ± 2.4 67.6 ± 0.8 71.9±0.6 64.3 ± 0.4 57.7 ± 2.2 57.9 ± 0.9 72.8±0.4 67.6 ± 0.7 76.1 ± 0.4 ( ↑ 4.5%)
nettack 63.3 ± 0.6 62.1 ± 2.1 50.1 ± 3.1 14.9 ± 1.4 72.8±0.7 62.1 ± 0.8 56.1 ± 2.4 52.6 ± 0.9 71.3±0.5 65.8 ± 0.5 74.4 ± 0.6 ( ↑ 2.3%)
PGD 32.2 ± 0.9 25.0 ± 0.8 17.5 ± 1.0 14.3 ± 1.8 57.7±2.7 34.8 ± 0.9 17.8 ± 1.5 21.2 ± 0.5 19.8±0.7 54.0 ± 0.6 67.9 ± 0.6 ( ↑ 17.5%)

TDGIA 23.1 ± 1.0 16.9 ± 1.1 11.0 ± 0.5 16.5 ± 1.9 54.6±2.4 28.0 ± 0.9 16.5 ± 2.2 16.9 ± 0.8 11.7±0.5 49.5 ± 1.0 64.9 ± 0.9 ( ↑ 18.8%)
G-NIA 2.7 ± 1.0 3.6 ± 2.0 2.2 ± 0.8 9.9 ± 5.2 4.4±1.0 7.1 ± 2.6 8.6 ± 4.5 3.3 ± 0.6 0.8±0.3 54.2 ± 0.8 65.6 ± 1.1 ( ↑ 21.0%)
AVG 37.1 ± 26.5 35.5 ± 28.9 26.1 ± 22.4 24.7 ± 24.1 52.3±28.0 39.3 ± 24.1 31.3 ± 23.6 30.4 ± 23.7 35.3±34.2 58.2 ± 8.0 69.8 ± 5.2 ( ↑ 19.8%)

ogbn-
arxiv

Clean 65.3 ± 0.3 65.2 ± 0.1 - - 53.0±0.1 60.2 ± 1.0 - 58.0 ± 0.1 61.1±0.2 61.0 ± 0.7 66.7 ± 0.4 ( ↑ 2.1%)
PGD 41.1 ± 1.0 22.6 ± 1.9 - - 52.3±0.1 37.8 ± 2.0 - 29.9 ± 0.6 19.1±0.4 24.2 ± 2.8 52.9 ± 1.0 ( ↑ 1.2%)

TDGIA 33.1 ± 1.6 9.7 ± 1.8 - - 51.6±0.1 27.5 ± 2.1 - 20.5 ± 0.9 18.6±0.8 29.3 ± 2.3 53.2 ± 0.8 ( ↑ 3.0%)
G-NIA 4.6 ± 0.4 2.5 ± 0.3 - - 35.3±0.1 5.6 ± 0.8 - 14.6 ± 0.1 2.5±0.1 11.5 ± 1.1 40.5 ± 1.6 ( ↑ 14.5%)
AVG 36.0 ± 25.0 25.0 ± 28.1 - - 48.1±8.5 32.8 ± 22.7 - 30.7 ± 19.2 27.3±22.2 31.5 ± 21.0 53.3 ± 10.7 ( ↑ 10.9%)

The proof of Proposition 2 is available in Appendix B.2. Note that condition (1) aligns with
minimizing the losses LP , LI , and LE in Eq.11. In condition (2), the first term corresponds to
minimizing LD in Eq.11, while the second term implies the diversity of adversarial examples,
common in graph. Proposition 2 serves as a theoretical validation for the effectiveness of IDEA.

4 EXPERIMENTS

Datasets. To evaluate the adaptability of IDEA across various datasets, we conduct node classification
experiments on 5 diverse network benchmarks. These include three citation networks: Cora (Bo-
jchevski & Günnemann, 2019), Citeseer (Bojchevski & Günnemann, 2019), and obgn-arxiv (Hu
et al., 2020), a social network Reddit (Hamilton et al., 2017; Zeng et al., 2020), as well as a product
co-purchasing network ogbn-products (Hu et al., 2020). The statistics of datasets are in Appendix D.1.

Attack methods and defense baselines. To demonstrate the effectiveness of our IDEA, we compare
IDEA with the state-of-the-art defense methods. Specifically, traditional GNNs including GCN (Kipf
& Welling, 2017) and GAT (Veličković et al., 2018); graph purification including ProGNN (Jin
et al., 2020b), STABLE (Li et al., 2022c), and GARNET (Deng et al., 2022); robust aggregation
including RGCN (Zhu et al., 2019), SimPGCN (Jin et al., 2021), Elastic (Liu et al., 2021), and
Soft-Median (Geisler et al., 2021), as well as adversarial training FLAG (Kong et al., 2022). The
details are described in Appendix D.2. We evaluate the robustness of IDEA using five attacks,
including a representative poisoning attack MetaAttack (Zügner & Günnemann, 2019b) and four
evasion attacks, i.e., nettack (Zügner et al., 2018), PGD (Madry et al., 2018), TDGIA (Zou et al.,
2021), G-NIA (Tao et al., 2021b). The details of attacks are provided in Appendix D.3.

Implementation. For each dataset, we randomly split nodes as 1:1:8 for training, validation and
test, following (Jin et al., 2020b; 2021; Liu et al., 2021; Li et al., 2022c). For each experiment, we
report the average performance and the standard deviation of 10 runs. We employ the widely-used
DeepRobust (Li et al., 2021) library for the attack and defense methods. We tune their hyper-
parameters according validation set. Note that MetaAttack is untargeted attack, performance is
reported on the test set with perturbation rates from 0% to 20%, following (Liu et al., 2021; Li et al.,
2022c). The evasion attacks are targeted attacks, and we randomly sample 20% of all nodes from
the test set as targets. Nettack perturbs 20% edges, while node injection attacks (PGD, TDGIA, and
G-NIA) inject 20% nodes and edges. We focused on gray-box attack scenarios following (Zügner
et al., 2018; Zügner & Günnemann, 2019b; Li et al., 2022c; Jin et al., 2021; 2020b) and the attacker is
only aware of the input and output, which is practical. For IDEA, our backbone model is GCN, which
is used for the encoder h. We tune the hyper-parameters from the following range: the coefficient α
over {10, 25, 100, 150}, the number of domains over {2, 5, 10, 20}. The details are in Appendix D.4.
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Table 2: Accuracy(%) of test set under poisoning attack (MetaAttack).
Dataset Pb. rate GCN GAT ProGNN STABLE GARNET RGCN SimpGCN Elastic Soft-Median FLAG IDEA

Cora

0% 83.6±0.5 83.5±0.5 83.0±0.2 85.6±0.6 80.1±0.5 82.6±0.3 81.9±1.0 85.8±0.4 84.0±0.5 83.4±0.3 87.1±0.7 ( ↑ 1.5%)
5% 77.8±0.6 80.3±0.5 82.3±0.5 81.4±0.5 77.1±0.8 77.5±0.5 77.6±0.7 82.2±0.9 79.9±0.8 80.9±0.3 85.5±0.6 ( ↑ 3.9%)

10% 74.9±0.7 78.5±0.6 79.0±0.6 80.5±0.6 75.3±0.8 73.7±1.2 75.7±1.1 78.8±1.7 73.4±2.3 78.8±0.9 84.8±0.6 ( ↑ 5.3%)
15% 67.8±1.2 73.6±0.8 76.4±1.3 78.6±0.4 72.3±0.7 70.2±0.6 72.7±2.8 77.2±1.6 70.5±1.1 75.0±0.7 84.2±0.6 ( ↑ 7.1%)
20% 61.6±1.1 66.6±0.8 73.3±1.6 77.8±1.1 69.8±0.7 62.7±0.7 70.3±4.6 70.5±1.3 60.5±0.4 70.2±1.1 83.2±0.6 ( ↑ 6.9%)

Citeseer

0% 73.3±0.3 74.4±0.8 73.3±0.7 75.8±0.4 70.4±0.7 74.4±0.3 74.4±0.7 73.8±0.6 71.3±0.8 72.8±0.8 80.3±1.0 ( ↑ 5.9%)
5% 70.2±0.8 72.3±0.5 72.9±0.6 74.1±0.6 69.2±0.9 71.7±0.3 73.3±1.0 72.9±0.5 69.6±2.2 71.1±0.6 79.1±0.9 ( ↑ 6.7%)

10% 68.0±1.4 70.3±0.7 72.5±0.8 73.5±0.4 68.5±1.0 69.3±0.4 72.0±1.0 72.6±0.4 67.9±1.9 69.2±0.6 78.6±1.1 ( ↑ 6.9%)
15% 65.2±0.9 67.7±1.0 72.0±1.1 73.2±0.5 65.0±1.2 66.0±0.2 70.8±1.3 71.9±0.7 66.0±2.9 66.5±0.8 77.6±0.6 ( ↑ 6.0%)
20% 60.1±1.4 64.3±1.0 70.0±2.3 72.8±0.5 62.9±1.9 61.2±0.5 70.0±1.7 64.7±0.8 56.1±1.3 64.1±0.8 77.8±0.9 ( ↑ 6.9%)

Reddit

0% 84.5±0.5 88.0±0.3 73.4±2.8 86.6±0.2 85.2±0.2 78.2±0.6 51.4±7.6 83.8±0.3 88.8±0.5 84.6±0.2 91.2±0.3 ( ↑ 2.7%)
5% 81.0±0.8 86.1±0.6 73.9±1.2 81.5±0.4 78.3±0.3 73.9±1.7 34.8±9.9 80.6±0.5 82.6±0.9 83.6±0.4 90.0±0.4 ( ↑ 4.5%)

10% 72.1±0.6 78.8±0.8 63.2±1.2 75.9±0.5 63.4±1.3 57.8±1.3 27.3±7.8 70.4±1.0 66.4±1.4 72.2±0.8 89.0±0.4 ( ↑ 12.9%)
15% 70.1±1.7 76.0±1.6 59.9±1.4 73.8±0.4 62.2±0.6 53.3±1.4 25.0±6.4 68.7±0.6 60.5±2.4 66.3±1.2 88.4±0.4 ( ↑ 16.3%)
20% 67.9±1.4 72.7±1.9 56.7±0.9 71.7±0.5 60.7±0.8 51.5±2.8 19.0±4.5 67.4±0.6 56.6±1.5 63.7±0.5 88.1±0.3 ( ↑ 21.2%)

ogbn-
products

0% 63.0±0.7 68.6±0.4 64.3±2 70.5±0.5 71.3±0.5 63.0±0.5 57.1±2.1 72.7±0.2 74.3±0.3 66.3±0.4 75.2±0.3 ( ↑ 1.2%)
5% 49.6±0.9 64.4±0.3 50.0±2.4 58.7±0.7 61.5±0.6 40.0±1.1 31.9±10.3 61.0±0.7 66.5±0.4 57.3±0.7 73.7±0.5 ( ↑ 10.8%)

10% 39.4±1.1 54.4±0.7 43.4±1.9 50.5±0.5 53.6±0.9 33.4±0.9 26.7±8.1 52.3±0.7 56.3±0.7 46.7±0.7 72.9±0.3 ( ↑ 29.5%)
15% 34.4±1.1 46.7±0.7 38.4±1.8 44.6±0.8 47.7±0.4 29.9±1.0 20.3±6.6 48.6±0.4 47.7±1.0 42.7±0.5 71.9±0.7 ( ↑ 47.9%)
20% 31.2±1.0 41.9±1.2 34.0±2.5 40.3±0.7 42.3±0.4 27.8±0.8 16.0±2.1 46.3±0.4 42.8±1.3 39.3±0.6 71.0±0.8 ( ↑ 53.3%)

4.1 ROBUSTNESS AGAINST EVASION ATTACKS

We conduct experiments under four evasion attacks (nettack, PGD, TDGIA, and G-NIA), and show
the accuracy of target nodes in Table 1. We also report the average accuracy of clean and attacked
graphs, along with standard deviation of accuracy across these graphs, denoted as AVG. Note that
we exclude nettack from ogbn-arxiv evaluation due to its lack of scalability. GCN and GAT exhibit
high accuracy on clean graphs, however, their accuracy significantly declines under PGD, TDGIA,
and G-NIA. Defense methods suffer from severe performance degradation under various attacks, and
some (such as ProGNN (81.9%) and RGCN (83.6%)) even experience a decline on Clean. For graph
purification methods, ProGNN and STABLE perform poorly under most attacks, maybe because
they require retraining to achieve defensive effects, rendering them unsuitable for evasion attacks.
GARNET shows effectiveness against PGD and TDGIA, but still struggles to defend against G-NIA.
RGCN, SimPGCN, Elastic, and Soft-Median perform well against nettack; however, they suffer
from performance degradation on clean graphs, which is undesirable. Adversarial training FLAG
outperforms other baselines but exhibits unsatisfactory defense on Cora, Citeseer, and ogbn-arxiv.

Our proposed method, IDEA, achieves the best performance on Clean and across all attacks, signifi-
cantly outperforming all baselines on all datasets. On Clean, IDEA exhibits the best performance
primarily due to its ability to learn causal features that have strong label predictability. Furthermore,
IDEA’s performance remains good consistency under both clean graphs and various attacks, evidenced
by the low standard deviation in AVG. This emphasizes its invariant predictability across all attacks.
For instance, on Citeseer, IDEA’s standard deviation across graphs is a only 2.4, while the runner-up,
FLAG, reaches 7.8. These results demonstrate that IDEA possesses both strong predictability (high
accuracy on Clean) and invariant predictability (sustained accuracy across attacks).

4.2 ROBUSTNESS AGAINST POISONING ATTACKS

We evaluate IDEA’s robustness under poisoning attacks, employing the widely-adopted MetaAt-
tack (Zügner & Günnemann, 2019b) and varying the perturbation rate (the rate of changing edges)
from 0 to 20% following (Liu et al., 2021; Li et al., 2022c). We exclude ogbn-arxiv since MetaAttack
cannot handle large graphs. Table 2 shows that all methods’ accuracy decreases as perturbation rate
increases. Among baselines, graph purification methods demonstrate better defense performance,
with STABLE outperforming others on Cora and Citeseer. RGCN, SimPGCN, and Soft-Median
resist attacks only at low perturbation rates. The adversarial training FLAG brings less improvement
than it does under evasion attacks. Maybe due to its training on evasion attacks, leading to poor
generalization for poisoning attacks.

For ours, IDEA also achieves the state-of-the-art performance under all perturbation rates on all
datasets, significantly outperforming all baselines. When the attack strength becomes larger, our
IDEA still maintains good performance, demonstrating that IDEA has the invariant prediction ability
across perturbations.

4.3 ABLATION STUDY

We analyze the influence of each part of IDEA through experiments on invariance goals and domain
construction. We implement four variants of IDEA, including IDEA removing the node-based
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Figure 4: Ablation Study. Figure 5: Visualizing learned features: clean and attacked graphs.

invariance goal (IDEA w/o LI), IDEA removing the structure-based invariance goal LE (IDEA w/o
LE ), IDEA removing both invariance goals (IDEA w/o LI and LE ), and IDEA removing domain
partition (IDEA w/o LD). IDEA w/o LI and LE only optimizes the predictive loss, which can be
regarded as an adversarial training version of IDEA, which can verify the benefit brought by learning
causal features. We take the results on clean graph and evasion attacks on Cora as an illustration.

As shown in Figure 4, all variants exhibit a decline compared to IDEA (red), highlighting the
significance of both invariance goals and domain construction. Specifically, IDEA w/o LI and
LE (blue) suffers the largest drop, highlighting our objectives’ benefits since IDEA is much more
robust than simple adversarial training using same adversarial examples. The performance decline of
IDEA w/o LE (orange) illustrates the significant advantages of the structural-based invariance goal,
especially on clean graph, highlighting the benefits of modeling the interactions between samples.
IDEA w/o LD (green) displays a large standard deviation, with the error bar much larger than that of
IDEA, emphasizing the stability achieved through the diverse attack domains.

Detailed hyper-parameter analysis regarding coefficient α and the number of attack domains can be
found in Appendix D.5. The performance under adaptive attacks are shown in Appendix D.6.

4.4 VISUALIZATION

We further visualize the learned features with t-SNE technique (Van der Maaten & Hinton, 2008)
to show whether IDEA learns the features that have strong and invariant predictability. Figure 5
illustrates the feature learned by GCN, RGCN, FLAG, and IDEA on clean graph and under the
strongest G-NIA attack on Cora. As shown in Figure 5, existing methods either learn discriminative
features on Clean but destroyed under attack (GCN and FLAG), or learn features are mixed (RGCN).

For our IDEA, in Figure 5(d,h), the features learned by IDEA can be distinguished by labels.
Specifically, IDEA’s learned features are similar for nodes with the same label and distinct for
different labels, emphasizing features’ strong predictability for labels. Furthermore, the features in
Figure 5(d) on the clean graph and those in Figure 5(h) on the attacked graph exhibit nearly the same
distributions. This observation demonstrates that the relationship between features and labels can
remain invariant across attacks, thus exhibiting invariant predictability. These results show that
IDEA learned causal invariant features with both strong and invariant predictability for labels.

5 CONCLUSION AND FUTURE WORK

In this paper, we creatively introduce a causal defense perspective by learning causal features that have
strong and invariant predictability across attacks. Then, we propose IDEA and design two invariance
objectives to learn causal features. Extensive experiments demonstrate that IDEA significantly
outperforms all the baselines under both evasion attacks and poisoning attacks on five benchmark
datasets, emphasizing that IDEA possesses both strong and invariant predictability across attacks.
We believe causal defense approach is a promising new direction, and there are many interesting
and valuable research problems in the future. For example, studying domain partitioning is more
suitable for adversarial attack and defense scenarios; or exploring more ways to generate adversarial
examples, and so on.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
ICLR ’18, 2018.

Jihong Wang, Minnan Luo, Fnu Suya, Jundong Li, Zijiang Yang, and Qinghua Zheng. Scalable attack
on graph data by injecting vicious nodes. arXiv preprint arXiv:2004.13825, 2020a.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 1(1):
396–413, 2020b.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and defense. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, IJCAI ’19, pp. 4816–4823, 2019.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations, ICLR ’22, 2022.

Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, and Xueqi Cheng. Graph convolutional networks
using heat kernel for semi-supervised learning. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI ’19, pp. 1928–1934, 2019a.

Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural network.
In International Conference on Learning Representations, ICLR ’19, 2019b.

LIN Yong, Shengyu Zhu, Lu Tan, and Peng Cui. Zin: When and how to learn invariance without
environment partition? In Advances in Neural Information Processing Systems 36, NeurIPS ’22,
2022.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations, 2020.

Chi Zhang, Karthika Mohan, and Judea Pearl. Causal inference with non-iid data using linear
graphical models. In Advances in Neural Information Processing Systems 36, NeurIPS ’22, 2022a.

13



Under review as a conference paper at ICLR 2024

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. In Proceedings of Neural Information Processing Systems, NeurIPS ’20, pp. 9263–9275,
2020.

Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard
Schölkopf, and Kun Zhang. Adversarial robustness through the lens of causality. In International
Conference on Learning Representations, ICLR ’22, 2022b.

Dawei Zhou, Nannan Wang, Chunlei Peng, Xinbo Gao, Xiaoyu Wang, Jun Yu, and Tongliang Liu.
Removing adversarial noise in class activation feature space. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, ICCV’21, pp. 7858–7867, 2021.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, pp. 1399–1407, 2019.

Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov, Jialiang Lu, and Jie Tang.
Tdgia: Effective injection attacks on graph neural networks. In Proceedings of the 27th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2461–2471,
2021.

Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’19, pp. 246–256, 2019a.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations, ICLR ’19, 2019b.

Daniel Zügner and Stephan Günnemann. Certifiable robustness of graph convolutional networks
under structure perturbations. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’20, 2020.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pp. 2847–2856, 2018.

14



Under review as a conference paper at ICLR 2024

A RELATED WORKS

In this section, we present the related works on defense methods against graph adversarial attacks
and invariant learning methods.

A.1 DEFENSE AGAINST GRAPH ADVERSARIAL ATTACK

Despite the success of graph neural networks (GNNs), they are shown to be vulnerable to adversarial
attacks, (Zügner et al., 2018; Sun et al., 2018; Chen et al., 2020), i.e., imperceptible perturbations
on graph data can dramatically degrade the performance of GNNs (Tao et al., 2021b; Zou et al.,
2021; Sun et al., 2020; Wang et al., 2020a; Tao et al., 2023a), blocking the deployment of GNNs
to real world applications (Jin et al., 2020a). Various defense mechanisms (Li et al., 2023; Gosch
et al., 2023; Tao et al., 2023b; 2021a) have been proposed to counter these graph adversarial attacks,
which can broadly be classified into adversarial training, graph purification, and robust aggregation
strategies (Sun et al., 2018; Li et al., 2022c; Jin et al., 2020a).

Adversarial training methods, such as FLAG (Kong et al., 2022) and others (Dai et al., 2019; Feng
et al., 2019; Li et al., 2022b), typically employ a min-max optimization approach. This involves
iteratively generating adversarial examples that maximize the loss and updating GNN parameters to
minimize the loss on these examples. However, adversarial training may be not robust under unseen
attacks (Bojchevski & Günnemann, 2019). Robust training methods (Zügner & Günnemann, 2019a;
Bojchevski & Günnemann, 2019; Zügner & Günnemann, 2020; Bojchevski et al., 2020; Schuchardt
et al., 2021) incorporate worst-case adversarial examples to enhance certifiable robustness (Bojchevski
& Günnemann, 2019; Zügner & Günnemann, 2019a). These methods can be considered an improved
version of traditional adversarial training. However, due to limited searching space, robust training
still faces similar challenges as adversarial training.

Graph purification methods (Wu et al., 2019; Jin et al., 2020b; Entezari et al., 2020) aim to purify
adversarial perturbations by modifying graph structure. Jaccard (Wu et al., 2019) prunes edges
that connect two dissimilar nodes, while ProGNN (Jin et al., 2020b) concurrently learns the graph
structure and GNN parameters through optimization of feature smoothness, low-rank and sparsity.
The recent method STABLE (Li et al., 2022c) acquires reliable representations of graph structure via
unsupervised learning. GARNET (Deng et al., 2022) first leverages weighted spectral embedding to
construct a base graph, then refines the base graph by pruning additional uncritical edges based on
probabilistic graphical model, to boost the adversarial robustness of GNN models.

Robust aggregation methods (Zhu et al., 2019; Liu et al., 2021; Jin et al., 2021; Lei et al., 2022; Zhang
& Zitnik, 2020) redesign model structures to establish robust GNNs. RGCN (Zhu et al., 2019) uses
Gaussian noise to mitigate adversarial perturbations. SimPGCN (Jin et al., 2021) resents a feature
similarity preserving aggregation that balances the structure and feature information. Elastic (Liu
et al., 2021) improves the local smoothness adaptivity and derives the elastic message passing. Geisler
et al. (Geisler et al., 2021) design a robust aggregation function, Soft Median to achieve an effective
defense at all scales. However, both kinds of methods rely on specific heuristic priors such as local
smoothness (Wu et al., 2019; Veličković et al., 2018; Jin et al., 2020b; Zhang & Zitnik, 2020; Li et al.,
2022c; Jin et al., 2021) or low rank (Jin et al., 2020b; Entezari et al., 2020), that may be ineffective
against some attacks (Chen et al., 2022b), leading to method failure. What’s worse, modifying
graph structure (Jin et al., 2020b; Zhang & Zitnik, 2020) or adding noise (Zhu et al., 2019) with this
heuristic may even cause performance degradation on clean graphs.

Different from the above studies, in this paper, we creatively propose an invariant causal defense
perspective, providing a new perspective to address this issue. Our method aims to learn causal
features that possess strong predictability for labels and invariant predictability across attacks, to
achieve graph adversarial robustness.

A.2 INVARIANT LEARNING METHODS

Invariant learning methods (Arjovsky et al., 2019; Krueger et al., 2021; Li et al., 2022a) have fueled
a surge of research interests (Shen et al., 2021; Creager et al., 2021; Yong et al., 2022; Chen et al.,
2022a;c; Wu et al., 2022). These work typically assume that data are collected through different
domains or environments (Arjovsky et al., 2019), and the causal relationships within the data remain
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unchanged across different domains, denoting invariant causality (Shen et al., 2021). Generally,
invariant learning methods aim to learn the causal mechanism or causal feature that is invariant across
different domains or environments, allowing the causal feature to generalize across all domains,
which can be used to solve the out-of-distribution generalization problem (Shen et al., 2021; Arjovsky
et al., 2019; Rosenfeld et al., 2021).

However, such methods cannot be directly applied to solve graph adversarial robustness due to the
complex nature of graph data and the scarcity of diverse domains. Two main challenges arise: i) On
graph data, there are interconnections (edges) between nodes, so nodes are no longer independent
of each other, making samples not independent and identically distributed (non-IID) (Wu et al.,
2022; Chen et al., 2022c). We model the generation of graph adversarial attack via an interaction
causal model and propose corresponding invariance goals considering both node itself and the
interconnection between nodes. ii) In adversarial learning, constructing sufficiently diverse domains
or environments is challenging due to a lack of varied domains. We propose to learn sufficient and
diverse domains by limiting the co-linearity between domains.

A.3 CAUSAL METHODS FOR ADVERSARIAL ROBUSTNESS

A few recent works attempt to achieve adversarial robustness with causal methods on computer
vision (Ren et al., 2022; Zhang et al., 2022b). These methods, such as DICE (Ren et al., 2022),
ADA (Zhang et al., 2022b), mainly use causal intervention to achieve the robustness. The difference
between them and our work lies in two aspects: (1) Existing causal methods for robustness are
developed for the image area. However, the non-IID nature of graph data brings challenges to these
methods in achieving graph adversarial robustness. Our work proposes the structural-level invariance
goal for the non-IID graph data. (2) These methods adopt causal intervention. For example, DICE
uses hard intervention (Ren et al., 2022), and ADA (Zhang et al., 2022b) uses "soft" intervention.
However, the intervention is difficult to achieve (Pearl, 2009). Our work constructs diverse domains
and learns causal features by optimizing both node-based and structural-based invariance goals.

A.4 PURIFICATION METHODS IN COMPUTER VISION

There are also some purification works in computer vision for defending against attacks. Shi et al.
propose Self-supervised Online Adversarial Purification (SOAP), leveraging self-supervised loss to
purify adversarial examples at test-time (Shi et al., 2021). Zhou et al. propose to remove adversarial
noise by implementing a self-supervised adversarial training mechanism in a class activation feature
space (Zhou et al., 2021). Naseer et al. propose a self-supervised adversarial training mechanism in
the input space (Naseer et al., 2020). Liao et al. propose high-level representation guided denoiser
(HGD), using a loss function defined as the difference between the target model’s outputs activated
by the clean image and denoised image (Liao et al., 2018).

Most purification methods in computer vision leverage image data priors. For example, SOAP (Shi
et al., 2021) incorporates self-supervised tasks such as image rotation that are unique to the domain
of computer vision, while NRP (Naseer et al., 2020) depends on a pixel loss function, i.e., Limg,
to encourage image smoothness. These domain-specific dependencies pose significant challenges
when considering the direct transposition of these methods to graph data, which inherently lacks such
image-based priors.

In contrast, graph purification methods (Jin et al., 2020b; Li et al., 2022c) are specifically designed to
exploit the unique properties of graph data, making them appropriate for addressing graph-specific
issues. However, graph purification defenses rely on predefined heuristics, while these may be
ineffective for som attacks causing the methods to fail. Therefore, there is a pressing need to develop
a defense strategy that is robust and effective against various attacks.
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B PROOFS

B.1 PROOF FOR PROPOSITION 1

Proof. The difference between Î(Y,D|Z) and I(Y,D|Z) could be written as

Î(Y,D|Z)− I(Y,D|Z)

= Ep(z)
[
Ep(y,d|Z) [[log qd(y | z, d)− log q(y|z)]− [log p(y | z, d)− log p(y | z)]]

]
= Ep(z)

[
Ep(y,d|z)

[
log

p(y | z)
q(y | z) − log

p(y | z, d)

qd(y | z, d)

]]
= Ep(z)

[
Ep(y|z)

[
log

p(y | z)
q(y | z)

]
− Ep(d|z)Ep(y|z,d)

[
log

p(y | z, d)

qd(y | z, d)

]]
= Ep(z)KL [p(y | z)‖q(y | z)]− Ep(z,d)KL [p(y | z, d)‖qd(y | z, d)]

(12)

Next, similar to the theoretical analysis in CLUB (Cheng et al., 2020), we can prove that Î is either
a upper bound of I or a esitimator of I whose absolute error is bounded by the approximation
performance Ep(z,d)KL[p(y | z, d)‖qd(y | z, d)]. That is to say, if Ep(z,d)KL[p(y | z, d)‖qd(y |
z, d)] is small enough, I(Y,D|Z) is bounded by Î(Y,D|Z). Therefore, Î(Y,D|Z) is minimized if
Ep(z,d)KL[p(y | z, d)‖qd(y | z, d)] and Î(Y,D|Z) are both minimized.

B.2 PROOF FOR PROPOSITION 2

Proof. The proof includes three steps:

Step 1: We prove that if Φ and ω satisfies the condition (1), i.e., I
(

Φ(Ĝ), Y
)
−[

I
(
Y,D | Φ(Ĝ)

)
+ I

(
Y,D | Φ(Ĝ)N

)]
(denoted as κ) is maximized, then

ΘφEρ(Ĝ)D

[
ρ(ĜD)ρ(ĜD)>

]
Θ>φΘω = ΘφEρ(ĜD),YD

[
ρ(ĜD)Y D

]
where ĜD =

{
ρ(Ĝ)i|i ∈ VD

}
,

for all D ∈ Dtr. Next, we begin our proof. Suppose that Φ has infinite capacity for representation,
with Φ = arg maxκ and Φ containing φ and ρ, we have Y D = ρ(ĜD)>Θ>φΘω + εΦ, where
ρ(ĜD)>Θ>φΘω represents the output of ρ(ĜD) after passing through learner φ and classifier ω (i.e.,
the output of ĜD after passing through Φ and ω). The error term εΦ satisfies EY D [εΦ] = 0. We
have:

Y D = ρ(ĜD)>Θ>φΘω + εΦ

EYD

[
Y D
]

= EYD

[
ρ(ĜD)>Θ>φΘω + εΦ

]
= EYD

[
ρ(ĜD)>Θ>φΘω

]
= ρ(ĜD)>Θ>φΘω

Eρ(ĜD),YD

[
ρ(ĜD)Y D

]
= Eρ(ĜD)

[
ρ(ĜD)ρ(ĜD)>

]
Θ>φΘω

ΘφEρ(ĜD),YD

[
ρ(ĜD)Y D

]
= ΘφEρ(ĜD)

[
ρ(ĜD)ρ(ĜD)>

]
Θ>φΘω.

(13)

The validity of line 2 in Eq. 13 stems from EY D [εΦ] = 0, and the fact that Y D is inde-
pendent with ρ(ĜD)>Θ>φΘω. Consequently, we have ΘφEρ(ĜD)

[
ρ(ĜD)ρ(ĜD)>

]
Θ>φΘω =

ΘφEρ(ĜD),Y D

[
ρ(ĜD)Y D

]
.

Step 2: We prove that if Θ>φΘω satisfies the condition (2), i.e.,{
Eρ(ĜD)

[
ρ(ĜD)ρ(Ĝ)D

>
] (

Θ>φΘω −Θ>
ψ̃

Θγ

)}
D∈Dtr

is linearly independent, and

dim

(
span

({
EĜi

[
ρ(Ĝ)iρ(Ĝ)>i

] (
Θ>φΘω −Θ>

ψ̃
Θγ

)}
i∈V

))
> dim(φ) − r, then

dim

(
span

({
Eρ(ĜD)[ρ(ĜD)ρ(ĜD)>]

(
Θ>φΘω −Θ>

ψ̃
Θγ

)
− Eρ(ĜD),εD [ρ(ĜD)εD]

}
D∈Dtr

))
>

dim(φ)− r.
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We examine the two component individually. Suppose that

dim(span
{
Eρ(ĜD)[ρ(ĜD)ρ(ĜD)>]

(
Θ>φΘω −Θ>

ψ̃
Θγ

)}
D∈Dtr

= k (14)

Since the set
{
Eρ(ĜD)[ρ(ĜD)ρ(ĜD)>]

(
Θ>φΘω −Θ>

ψ̃
Θγ

)}
D∈Dtr

is linearly independent, and

dim

(
span

({
EĜi

[
ρ(Ĝ)iρ(Ĝ)>i

] (
Θ>φΘω −Θ>

ψ̃
Θγ

)}
i∈V

))
> dim(φ)−r, we have k > dim(φ)−r.

Next, we consider Eρ(ĜD),εD [ρ(ĜD)εD]. Since rank(A) ≥ rank(AB), and both εD and(
Θ>φΘω −Θ>

ψ̃
Θγ

)
are scalar values that do not affect the dimension, we have

dim(span
([

Eρ(ĜD),εD [ρ(ĜD)εD]
])

≥dim(span
{
Eρ(ĜD)[ρ(ĜD)ρ(ĜD)>]

(
Θ>φΘω −Θ>

ψ̃
Θγ

)}
D∈Dtr

= k
(15)

Taking the dimensions of both components into account, we arrive at

dim
(

span
(
{Eρ(ĜD)[ρ(ĜD)ρ(ĜD)>]

(
Θ>φΘω −Θ>ψ̃Θγ

)
− Eρ(ĜD),εD [ρ(ĜD)εD]}D∈Dtr

))
≥k > dim(φ)− r.

(16)

Step 3: We prove that if Θ>φΘω satisfies: ΘφEρ(ĜD)[ρ(ĜD)ρ(ĜD)>]Θ>φΘω =

ΘφEρ(ĜD),Y D [ρ(ĜD)Y D], for allD ∈ Dtr and dim(span({Eρ(ĜD)[ρ(ĜD)ρ(ĜD)>]
(

Θ>φΘω −Θ>
ψ̃

Θγ

)
−

Eρ(ĜD),εD [ρ(ĜD)εD]}D∈Dtr )) > dim(φ) − r, then Θ>φΘω = Θ>
ψ̃

Θγ is causal invariant defender for
all attack domain set Dall,

According to Y = Cγ + ε, ψ̃(ρ(Ĝ)) = C, and Step 1, we have

ΘφEρ(ĜD)

[
ρ(ĜD)ρ(ĜD)>

]
Θ>φΘω

=ΘφEρ(ĜD),Y D

[
ρ(ĜD)Y D

]
=ΘφEρ(ĜD),εD

[
ρ(ĜD)

((
Θψ̃ρ(ĜD)

)>
Θγ + εD

)]
.

(17)

We can re-write the Eq. 17 as:

Θφ

Eρ(ĜD)

[
ρ(ĜD)ρ(ĜD)>

]
Θ>φΘω − Eρ(ĜD),εD

[
ρ(ĜD)

((
Θψ̃ρ(ĜD)

)>
Θγ + εD

)]
︸ ︷︷ ︸

:=tD

 = 0

(18)

To show that Φ leads to the desired invariant defender Θ>φΘω = Θ>
ψ̃

Θγ , we assume

Θ>φΘω 6= Θ>
ψ̃

Θγ and reach a contradiction. First, according to Step 2, we have

dim(span({Eρ(ĜD)[ρ(ĜD)ρ(ĜD)>]
(

Θ>φΘω −Θ>
ψ̃

Θγ

)
− Eρ(ĜD),εD [ρ(ĜD)εD]}D∈Dtr )) > dim(φ) − r.

Second, according to Step 1, each tD ∈ Ker(φ). Therefore, it would follow that dim(Ker(Θφ)) >
dim(Θφ)− r, which contradicts the assumption that rank(Θφ) = r, which is similar to (Arjovsky
et al., 2019). Therefore, Φ leads to the desired invariant defender Θ>φΘω = Θ>

ψ̃
Θγ .

C ALGORITHM

In this section, we present the training process for the IDEA algorithm, as illustrated in Algorithm 1.
The model f is first optimized using Algorithm 2. During this optimization, the encoder h calculates

18



Under review as a conference paper at ICLR 2024

Algorithm 1 The training process for IDEA method

Require: clean graph G = (V, E , X), attack method Λ, set of node labels Y
Ensure: model f concluding encoder h, classifiers g and gd, domain learner s

1: for number of training iterations do
2: Sample minibatch of nodes Vt from node set V , Vt = Sample(V )

% Optimize the model f
3: Update the model f by Algorithm 2
4: Sample minibatch of nodes Vt from node set V , Vt = Sample(V )

% Optimize the attack method
5: Generate the perturbed graph by attack method Λ, Ĝ = Λ(G)

6: Compute the prediction ŷ by the classifier g, ŷ = g(zatk), where zatk = h(Ĝ)[Vt]
7: Compute the attack loss Latk = −LP , where LP is computed by Eq.5
8: Compute the gradient of attack method Λ and update Λ.
9: Sample minibatch of nodes Vt from node set V , Vt = Sample(V )

% Optimize the domain learner
10: Generate the perturbed graph by attack method Λ, Ĝ = Λ(G)
11: Obtain total representation z by concatenating zcln and zptb, z = Concat(zcln, zptb), where

zcln = h(G)[Vt] , zptb = h(Ĝ)[Vt]
12: Obatin the attack domain D by domain learner s, D = s(z)
13: Compute the prediction ŷ by the classifier g, ŷ = g(z)
14: Compute the loss for the domain learner s by Eq.11
15: Compute the gradient of domain learner s and update s
16: end for

Algorithm 2 The algorithm of IDEA

Require: clean graph G = (V, E , X), attack method Λ, set of node labels Y , minibatch nodes Vt
Ensure: updated model f

1: Sample a neighbor for each v in Vt and obtain neighbor nodes Nt, Nt = NeighbSample(Vt)

2: Generate the perturbed graph by attack method Λ, Ĝ = Λ(G)
3: Compute the representation by the encoder h on clean graph G (i.e., zcln) and on perturbed graph
Ĝ (i.e., zptb), zcln = h(G)[Vt], zptb = h(Ĝ)[Vt]

4: Obtain the total representation z by concatenating zcln and zptb, z = Concat(zcln, zptb)
5: Obatin the attack domain D by domain learner s, D = s(z)
6: Compute the prediction ŷ and prediction based on attack domain ŷd for nodes Vt by the classifier
g and gd, ŷ = g(z), ŷd = gd(z,D)

7: Compute the predictive loss LP , node-based invariance loss LI , and structural-based invariance
loss LE by Eq.5, Eq.8, and Eq.9, respectively.

8: Compute the total loss L = LP + LI + LE
9: Compute the gradient of the model f and update f

10: Return model f

the representation z for a minibatch of nodes Vt, and the domain learner s identifies the attack domain
D. Next, classifiers g and gd produce predictions ŷ and ŷd, respectively, which are then used to
compute the total loss. After updating f , both the attack method and domain learner are optimized.
This procedure is repeated iteratively for the number of training iterations.

D EXPERIMENTS

D.1 DATASETS

We conduct node classification experiments on 5 diverse network benchmarks: three citation networks
(Cora (Jin et al., 2020b), Citeseer (Jin et al., 2020b), and obgn-arxiv (Hu et al., 2020)), a social
network (Reddit (Hamilton et al., 2017; Zeng et al., 2020)), and a product co-purchasing network
(ogbn-products (Hu et al., 2020)). Due to the high complexity of some GNN and defense methods, it is
difficult to apply them to very large graphs with more than million nodes. Thus, we utilize subgraphs
from Reddit and ogbn-products for experiments. Following the settings of most methods (Zügner
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Table 3: Statistics of benchmark datasets

Dataset Type #Nodes #Edges #Attr. Classes

Cora Citation network 2,485 5,069 1,433 7
Citeseer Citation network 2,110 3,668 3,703 6
Reddit Social network 10,004 73,512 602 41
ogbn-products Co-purchasing network 10,494 38,872 100 35
ogbn-arxiv Citation network 169,343 2,484,941 128 39

et al., 2018; Zügner & Günnemann, 2019b; Tao et al., 2021b; Jin et al., 2020b; 2021; Liu et al.,
2021; Li et al., 2022c) , experiments are conducted on the largest connected component (LCC). All
datasets can be assessed at https://anonymous.4open.science/r/IDEA_repo-666B.
The statistics of datasets are summarized in Table 3.

• Cora (Jin et al., 2020b): A node represents a paper with key words as attributes and paper class as
label, and the edge represents the citation relationship.

• Citeseer (Jin et al., 2020b): Same as Cora.

• Reddit (Hamilton et al., 2017; Zeng et al., 2020): Each node represents a post, with word vectors
as attributes and community as the label, while each edge represents the post-to-post relationship.

• ogbn-products (Hu et al., 2020): A node represents a product sold in Amazon with the word vectors
of product descriptions as attributes and the product category as the label, and edges between two
products indicate that the products are purchased together.

• ogbn-arxiv (Hu et al., 2020): Each node denotes a Computer Science (CS) arXiv paper indexed by
(Wang et al., 2020b) with attributes obtained by averaging the embeddings of words in paper’s
title and abstract. Each edge indicates the citation relationship, and the node label is the primary
categories of each arXiv paper.

D.2 DEFENSE BASELINES

We evaluate the performance of our proposed method, IDEA, by comparing it against ten baseline
approaches. These baselines include traditional Graph Neural Networks (GNNs) and defense tech-
niques from three main categories: graph purification, robust aggregation, and adversarial training.
For each category, we select the most representative and state-of-the-art methods for comparison. In
summary, our comparison includes the following ten baselines:

• Traditional GNNs

1. GCN (Kipf & Welling, 2017): GCN is a popular graph convolutional network based on
spectral theory.

2. GAT (Veličković et al., 2018): GAT computes the hidden representations of each node by
attending over its neighbors via graph attentional layers.

• Graph purification

3. ProGNN (Jin et al., 2020b): ProGNN simultaneously learns the graph structure and GNN
parameters by optimizing three regularizations, i.e., feature smoothness, low-rank and sparsity.

4. STABLE (Li et al., 2022c): STABLE first learns reliable representations of graph structure
via unsupervised learning, and then designs an advanced GCN as a downstream classifier to
enhance the robustness of GCN.

5. GARNET (Deng et al., 2022): GARNET uses weighted spectral embedding to create a
base graph, then refines this graph through the pruning of non-essential edges to enhance
adversarial robustness.

• Robust aggregation

6. RGCN (Zhu et al., 2019): RGCN uses gaussian distributions in graph convolutional layers to
absorb the effects of adversarial attacks.

7. SimPGCN (Jin et al., 2021): SimPGCN presents a feature similarity preserving aggregation
which balances the structure and feature information, and self-learning regularization to
capture the feature similarity and dissimilarity between nodes.

20

https://anonymous.4open.science/r/IDEA_repo-666B


Under review as a conference paper at ICLR 2024

8. Elastic (Liu et al., 2021): Elastic enhances the local smoothness adaptivity of GNNs via
`1-based graph smoothing and derives the elastic message passing (EMP).

9. Soft-Median (Geisler et al., 2021): Soft-Median is robust aggregation function where the
weight for each instance is determined based on the distance to the dimension-wise median.

• Adversarial training

10. FLAG (Kong et al., 2022): FLAG, a state-of-the-art adversarial training method, defends
against attacks by incorporating adversarial examples into the training set, enabling the model
to correctly classify them.

D.3 ATTACK METHODS

We assess the robustness of IDEA by examining its performance against five adversarial attacks,
including one representative poisoning attack (MetaAttack (Zügner & Günnemann, 2019b)) and
four evasion attacks (nettack (Zügner et al., 2018), PGD (Madry et al., 2018), TDGIA (Zou et al.,
2021), G-NIA (Tao et al., 2021b)). Among these attacks, nettack and MetaAttack modify the original
graph structure, while PGD, TDGIA, and G-NIA are node injection attacks. The following is a brief
description of each attack:

• nettack (Zügner et al., 2018): Nettack is the first adversarial attack on graph data, which can attack
node attributes and graph structure with gradient. In this paper, we adopt nettack to attack graph
structure, i.e., adding and removing edges.

• PGD (Madry et al., 2018): PGD, a popular adversarial attack, is used as node injection attack. We
employi projected gradient descent (PGD) to inject malicious nodes on graphs.

• TDGIA (Zou et al., 2021): TDGIA consists of two modules: the heuristic topological defective
edge selection for injecting nodes and smooth adversarial optimization for generating features of
injected nodes.

• G-NIA (Tao et al., 2021b): G-NIA is one of the state-of-the-art node injection attack methods,
showing excellent attack performance. G-NIA models the optimization process via a parametric
model to preserve the learned attack strategy and reuse it when inferring.

• MetaAttack (Zügner & Günnemann, 2019b): MetaAttack is the most representative poisoning
attack method, which has been widely-used to evaluate the robustness of GNN models.

D.4 IMPLEMENTATION DETAILS

For attack and defense methods, we employ the most widely recognized DeepRobust (Li et al., 2021)
benchmark in the field of graph adversarial and defense, to ensure that the experimental results
can be compared directly to other papers that use DeepRobust (such as Elastic (Liu et al., 2021),
ProGNN (Jin et al., 2020b), STABLE (Li et al., 2022c), and SimPGCN (Jin et al., 2021)). For
our IDEA, hyper-parameters of all datasets can be assessed at https://anonymous.4open.
science/r/IDEA_repo-666B. Note that we implement both attribute and structural attacks
to generate adversarial examples that minimize the predictive loss LP . Specifically, attribute attack
generation is the same as that in FLAG (Kong et al., 2022), while structural attack generation is the
same as that in EERM (Wu et al., 2022). For all methods that require a backbone model (e.g., FLAG
and our IDEA), we use GCN as the backbone model. All experiments are conducted on a single
NVIDIA V100 32 GB GPU.

D.5 HYPER-PARAMETER ANALYSIS

We investigate the effects of coefficient α and the number of domains and compare the defense
performance. Note that we take results against evasion attacks on Cora as an illustration. Figure 6
shows that the average accuarcy of the clean and attacked graphs, along with the standard deviation
of accuracy across these graphs, i.e., AVG in Section 4.1. For coefficient α, we observe that when α
is increasing, IDEA achieves better performance (higher accuracy), and performs more stable (lower
standard deviation), validating the effectiveness of invariance component. While, too large α (e.g.
α = 150) causes domination of invariance goal, leading to little attention to the predictive goal and
degradation of performance. Regarding the number of attack domains, performance improves with
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Figure 6: Hyperparameter analysis: The average accuracy of clean and attacked graphs, including
Clean, nettack, PGD, TDGIA, and G-NIA.

Table 4: Accuracy(%) of targets under adaptive attack.

Dataset GCN ProGNN STABLE RGCN SimPGCN FLAG IDEA
Cora 18.7±3.5 15.0±2.8 27.5±5.0 14.3±1.6 28.9±3.4 36.7±2.4 53.1±5.0

Citeseer 11.8±2.0 21.8±2.3 12.7±2.3 10.1±1.2 24.5±4.7 31.1±6.4 44.4±1.6
Reddit 34.7±4.9 43.1±8.1 27.3±4.4 57.5±3.0 12.5±6.7 5.2±5.9 61.7±5.3

increasing domain numbers, reaching its peak at 10 domains. This may be due to the relatively small
number of nodes in the Cora dataset, suggesting that a larger number of domains (e.g., 20) is not
necessary. In our main experiment shown in Table 1, we utilized α = 100 and the attack domain
number to 10 to achieve the best results.

D.6 PERFORMANCE UNDER ADAPTIVE ATTACKS

To better evaluate our IDEA, we also conduct experiments under adaptive attack, i.e., PGD in (Mu-
jkanovic et al., 2022). We implement adaptive attacks for baselines and IDEA. Some baselines are
excluded because their open source codes use edge_index to represent edges. This makes calculating
gradients on edges challenging, so the implementation of these baselines are difficult to conduct
white-box adaptive attacks. As shown in Table 4, adaptive attack causes serious performance degrada-
tion to defense methods because adaptive attacks are powerful white-box attacks. IDEA outperforms
all the baselines. Experiments offer a more broader evaluation of IDEA’s performance under a hard
scenario, consistently showing IDEA’s superiority.

E SYMBOL AND DEFINITION

Table 5 summarizes all symbols and their definitions for quick reference.
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Table 5: Symbol table

Symbol Definition
G Graph in a node classification task
V Node set of a graph
E Edge set of a graph
X Attribute matrix
K Class set
K Class number
fθ GNN classifier
Ĝ Perturbed graph
G Admissible perturbed graph set
i, j Nodes in graph

Gi Input ego-network of node i
Yi Label of node i
Ci Causal feature of node i
Di Attack domain of node i
Ni Non-causal feature of node i

I(·) Mutual information
Φ Feature encoder
CN Causal feature of neighbor N
Z Representation of feature encoder
p(·) Natural distribution
q(·) Variation approximation
h Neural network feature encoder
g Neural network classifier
gd Neural network auxiliary classifier
s Domain learner
VD Nodes assigned to domain D
rD Overall representation of VD
LP Predictive loss
LI Node-based invariance loss
LE Structure-based invariance loss
LD Domain loss
γ Intrinsic causal mechanism
ε Gaussian noise
ψ Mapping from causal and non-causal features to graph representation
ρ Powerful graph representation extractor
Θ· Parameter associated with a particular model component
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