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Abstract

If generalist robots are to operate in truly unstructured environments, they need1

to be able to recognize and reason about novel objects and scenarios. Such ob-2

jects and scenarios might not be present in the robot’s own training data. We3

propose SuSIE, a method that leverages an image editing diffusion model to act4

as a high-level planner by proposing intermediate subgoals that a low-level con-5

troller attains. Specifically, we fine-tune InstructPix2Pix on robot data such that it6

outputs a hypothetical future observation given the robot’s current observation and7

a language command. We then use the same robot data to train a low-level goal-8

conditioned policy to reach a given image observation. We find that when these9

components are combined, the resulting system exhibits robust generalization ca-10

pabilities. The high-level planner utilizes its Internet-scale pre-training and visual11

understanding to guide the low-level goal-conditioned policy, achieving signifi-12

cantly better generalization than conventional language-conditioned policies. We13

demonstrate that this approach solves real robot control tasks involving novel ob-14

jects, distractors, and even environments, both in the real world and in simulation.15

The project website can be found at http://subgoal-image-editing.16

github.io.17

1 Introduction18

A useful generalist robot must be able to — much like a person — recognize and reason about novel19

objects and scenarios it has never encountered before. For example, if a user instructs the robot to20

“hand me that jumbo orange crayon,” it ought to be able to do so even if it has never interacted21

with a jumbo orange crayon before. In other words, the robot needs to possess not only the physical22

capability to manipulate an object of that shape and size but also the semantic understanding to23

reason about an object outside of its training distribution. As much as robotic manipulation datasets24

have grown in recent years, it is unlikely that they will ever include every conceivable instance25

of objects and settings, any more so than the life experiences of a person ever include physical26

interactions with every type of object. While these datasets contain more than enough examples of27

manipulating elongated cylindrical objects, they lack the broad semantic knowledge necessary to28

ground the particular objects that robots will undoubtedly encounter during everyday operation.29

How can we imbue this semantic knowledge into language-guided robotic control? One approach30

to do this would be to utilize pre-trained models trained on vision and language to initialize differ-31

ent components in the robotic learning pipeline. Recent efforts attempt to do this, for example, by32

initializing robotic policies with pre-trained vision-language encoders (Brohan et al., 2023a) or uti-33

lizing pre-trained models for generating semantic scene augmentation (Chen et al., 2023; Yu et al.,34

2023b). While these methods bring semantic knowledge into robot learning, it remains unclear35

if these approaches realize the full potential of Internet pre-training in improving low-level motor36

control and policy execution, or whether they simply improve visual generalization of the policy.37
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Figure 1: SuSIE leverages a pre-trained image editing model to generate future image subgoals based
on a language commands. A low-level goal-reaching policy then executes the actions needed to reach each
subgoal. Alternating this loop enables us to solve the task.

In this paper, we develop an approach for leveraging a class of pre-trained image-editing models38

(e.g., InstructPix2Pix (Brooks et al., 2023)) for improving motor control and policy execution. Our39

key insight is to decompose the robotic control problem into two phases: first, synthesizing a “sub-40

goal” that the robot must reach to complete the user-specified task, and then, attempting to reach41

this subgoal via a goal-reaching robot controller. The first phase of this recipe incorporates semantic42

information by fine-tuning an image-editing model on robot data such that, given the robot’s current43

observation and a natural language command, the model generates a hypothetical future subgoal44

that allows the robot to complete the command. We then employ a low-level goal-reaching policy45

to reach this hypothetical future subgoal. Crucially, our image-editing model does not need to un-46

derstand how to achieve this future subgoal, and on the other hand, the policy only needs to infer47

visuo-motor relationships to determine the correct actuation and does not require an understanding48

of the semantics. Furthermore, such subgoals can significantly simplify the task by inferring likely49

poses for the arm or intermediate sub-steps, such as grasping an object when the command requires50

repositioning it to a new location (see Figure 1). In fact, we observe in our experiments that while51

existing approaches often fail due to imprecise understanding of obstacles or object orientations,52

following the generated subgoals enables our method to perform well in such scenarios.53

The main contribution of our work is SUbgoal Synthesis via Image Editing (SuSIE), a simple and54

scalable method for incorporating semantic information in pre-trained models to improve robotic55

control. The pre-trained image editing model is used with minimal modification, requiring only56

fine-tuning on robot data. The low-level goal-conditioned policy is trained with standard supervised57

learning, and faces the comparatively easier problem of reaching nearby image subgoals; this typi-58

cally only requires attending to a single object or the arm position, ignoring most parts of the scene.59

Together, we find that this approach solves real robot control tasks involving novel objects, novel60

distractors, and even novel scenes, all of which are not observed at all in the robot training data.61

2 Related Work62

Incorporating semantic information from vision-language pre-trained models. Prior works that63

incorporate semantic information from vision-language pre-trained models into robot learning can64

be classified into two categories. The first category aims to improve visual scene understanding in65

robot policies with semantic information from VLMs. For instance, GenAug (Chen et al., 2023),66

ROSIE (Yu et al., 2023b), DALL-E-Bot (Kapelyukh et al., 2023), and CACTI (Mandi et al., 2022)67

use text-to-image generative models to produce semantic augmentations of a given scene with novel68

objects and arrangements and train the robot policy on the augmented data to enable it to perform69

well in a similar scene. MOO Stone et al. (2023) utilizes a pre-trained object detector to extract70

bounding boxes that guide the robot policy towards the object of interest. Other works directly71

train language and image-conditioned policies (Brohan et al., 2022, 2023a; Shridhar et al., 2022), by72
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utilizing frozen or fine-tuned off-the-shelf VLMs (Driess et al., 2023; Radford et al., 2021) on robot73

data to produce action sequences (Brohan et al., 2023a).74

While these approaches do utilize pre-trained models, we find in our experiments, that pre-training75

using VLMs (e.g., Brohan et al. (2023a)) does not necessarily enhance low-level motor control,76

in the sense that learned policies often localize the object or move the gripper imprecisely (see77

Figure 4). On the other hand, our approach is able to incorporate benefits of pre-training in syn-78

thesizing subgoals that carefully steer the motion of the low goal-conditioned policy, improving its79

precision. Also, while our approach can be directly applied in unstructured open-world settings, ap-80

plying GenAug (Chen et al., 2023), MOO (Stone et al., 2023), and ROSIE (Yu et al., 2023b) requires81

additional information about the scene, such as clean object bounding boxes or 3D object meshes.82

This significantly restricts their applicability to scenarios where this additional information is not83

available: for example, GenAug is not applicable in our real-world experiments since 3D object84

meshes for new target objects are not available. Distinct from our approach for utilizing generative85

models, other works design representation learning objectives for vision-language pre-training for86

control (Nair et al., 2022; Ma et al., 2023; Karamcheti et al., 2023; Bhateja et al., 2023), but these87

methods still need to utilize limited amounts of data from the target task to learn a policy.88

The second category of approaches also incorporates semantic information from pre-trained models89

for planning. Most approaches in this category use pre-trained models to imagine visual (Du et al.,90

2023; Ajay et al., 2023b) or textual plans (Brohan et al., 2023b; Huang et al., 2022a,b; Liang et al.,91

2023), which then inform a low-level robot control policy. Low-level policies conditioned on text92

suffer from a grounding problem, which our approach circumvents entirely since the low-level con-93

trol policy only observes image-based plans. Perhaps the most related are UniPi (Du et al., 2023)94

and HiP (Ajay et al., 2023b), which train video models to generate a sequence of frames achieving95

the target task, and then extract robot actions from an inverse dynamics model. Our approach does96

not attempt to generate full videos (i.e., all frames in a rollout), but only the next waypoint that a97

low-level policy must achieve to solve the commanded task. While this difference might appear98

small, it has major implications: modeling an entire video puts a very high burden on the generative99

model, requiring the frames to obey strict physical consistency. Unfortunately, we find that current100

video models often produce temporally inconsistent frames (“hallucinations”), which only confuse101

the low-level controller, inhibiting it from completing the task. Indeed, the control evaluations in102

such prior works often focus on simpler simulated environments. Our method provides more free-103

dom to the low-level controller to handle the physical aspects of the task over a longer time interval104

while providing higher-level guidance at a level that is suitable to the diffusion model’s ability to105

preserve physical plausibility. In our experiments, we find that our method significantly improves106

over a reimplementation of UniPi (Du et al., 2023).107

Classical model-based RL and planning with no pre-training. The idea behind our approach108

is also related to several methods in the deep RL literature that do not use pre-trained models and109

generally do not study language-guided control. For instance, (Hafner et al., 2019; Lee et al., 2020;110

Yu et al., 2021; Wu et al., 2023; Rafailov et al., 2021; Hafner et al., 2023) train action-conditioned111

dynamics models and run RL in the model. While our approach also models multi-step dynamics,112

our model is not conditioned on an action input. Removing the dependency on an action input113

enables us to de-couple the fine-tuning of the (large) image-editing model from the policy entirely,114

improving simplicity and time efficiency. APV (Seo et al., 2022) trains an action agnostic dynamics115

model from videos but fine-tunes it in a loop with the policy with actions, and hence, does not enjoy116

the above benefits. Finally, these model-based RL methods do not exhibit zero-shot generalization117

abilities to new tasks, which is an important capability that our method enjoys. Our approach is118

also related to several video prediction methods (Ebert et al., 2018; Lee & He, 2018; Babaeizadeh119

et al., 2020; Villegas et al., 2019) but utilizes a better neural network architecture (i.e., diffusion120

models instead of LSTMs and CNNs). Most related is to our method is hierarchical visual foresight121

(HVF) (Nair & Finn, 2019): while HVF utilizes MPC to find an action, our approach simply utilizes122

a goal-reaching policy thereby eliminating the cost of running MPC with large dynamics models.123

Our approach is also related to several prior works that utilize generative models for planning in a124

single-task setting, with no pre-training. Trajectory transformer (TT) (Janner et al., 2021), decision125

transformer (DT) (Chen et al., 2021), and their extensions condition the policy on the target return126

or goal. While diffusion-based variants of these methods (Janner et al., 2022; Ajay et al., 2023a) use127

diffusion models to model long-term rollout distributions over states, actions, and rewards, they still128

require training data from the target task to learn a policy, unlike our zero-shot planning approach.129
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3 Preliminaries and Problem Statement130

We consider the problem setting of language-conditioned robotic control. Specifically, we want131

a robot to accomplish the task described by a novel language command. We study this problem132

in the context of learning from a dataset D of language-labeled robot trajectories, and optionally,133

an additional dataset, D′ of robot data, which is not annotated any task labels (e.g., play data).134

Formally, D = {
(
τ1, l1

)
,
(
τ2, l2

)
, · · · ,

(
τN , lN

)
}, where each rollout τ i consists of a sequence of135

scenes (or states) sik ∈ S and actions aik ∈ A that were executed while collecting this data, i.e.,136

τ i =
(
si0,a

i
0, · · · , sik,aik, · · ·

)
, following the standard assumptions of a Markov decision process. li137

is a natural language command describing the task accomplished in the trajectory. D′ is organized138

similarly toD, but does not contain any language annotations li. At test time, given a new scene stest
0139

and a new natural language description ltest of a task, we evaluate a method in terms of its success140

rate at accomplishing this task starting from this scene, stest
0 .141

4 SuSIE: Subgoal Synthesis via Image Editing142

Our goal is to utilize semantic information from the Internet to improve language-guided robot143

control in novel environments, scenes, and objects. How can we do this when models trained on144

general-purpose Internet data do not provide guidance in selecting low-level actions? Our key insight145

is that we can still utilize some sort of a pre-trained model for guiding low-level control if we could146

decouple the robot control problem into two phases: (i) imagining subgoals that would need to147

be attained to succeed at the task, and (ii) learning low-level control policies for reaching these148

generated subgoals. Our method incorporates semantic information from Internet pre-training in149

phase (i), by fine-tuning a text-guided image-editing model for subgoal generation. Phase (ii) is150

accomplished via a goal-conditioned policy trained only on robot data. We describe each of these151

phases below and then summarize the resulting robot controller.152

4.1 Phase (i): Synthesizing Subgoals From Image Editing Models153

The primary component of our method is a generative model that, given a target task specified in154

natural language, can guide the low-level controller towards a state that it must try to attain in order155

to solve the task. One way to accomplish this is to train a generative model to produce an immediate156

next way-point or subgoal frame. We can then incorporate semantic information from the Internet157

into our algorithm by initializing this generative model with a suitable pre-trained initialization,158

followed by fine-tuning it on multi-task, diverse robot data.159

What is a good pre-trained initialization for initializing this model? Our intuition is that since ac-160

complishing a task is equivalent to “editing” the pixels of an image of the robot workspace under161

controls prescribed by the language command, a favorable pre-trained initialization is provided by162

a language-guided image-editing model. We instantiate our approach with Instruct pix2pix (Brooks163

et al., 2023), though other image editing models could also be used. Formally, this model is given164

by pθ(sedited|sorig, l). Then, using the dataset D of robot trajectories, we fine-tune pθ on tuples165

containing a pair of images sampled from a trajectory and the corresponding language annotation:166

(sorig := ski , sedited := skj , lk), where sj is a state that appears after si (j > i). During fine-tuning,167

we run gradient descent on the following objective, starting from θ0 := θpre-trained:168

min
θ
− E (τk,lk)∼D; ski ∼τk; j∼q(j|i)

[
log pθ

(
skj |ski , lk)

)]
. (1)

We need to choose the distribution q over the time-step j given a state ski for fine-tuning the image-169

editing model as in Equation 1. Since we model the next subgoal that the low-level controller should170

attain, and since the depending upon the task, this subgoal could be arbitrarily close to the original171

state si, we require valid tuples (si, sj , l) used for fine-tuning pθ in Equation 1 to have values of j in172

a bounded interval around i, specifically we choose j ∈ [i, i+k], where k is a fixed hyperparameter.173

4.2 Phase (ii): Reaching Generated Sub-Goals with Goal-Conditioned Policies174

In order to utilize the fine-tuned image-editing model to actually control the robot, we further need175

to train a low-level controller to actually select suitable robot actions. In this section, we present176

the design of our low-level controller, followed by a full description our test-time control procedure.177

Since the image-editing model in SuSIE produces images of future subgoals conditioned on natural178

language task descriptions, our low-level controller can simply be a language-agnostic goal-reaching179

policy that aims to reach these generated subgoals.180
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Training a goal-reaching policy. Our goal-reaching policy is parameterized as πϕ(·|si, sj), where181

sj is a future frame that the policy intends to reach, by acting at si. At test time, we only need the182

low-level goal-conditioned policy to be proficient at reaching close-by states that lie within k steps183

of a given state since the image editing model from phase (i) is also trained to produce subgoals184

within k steps of any state. To train this policy, we run goal-conditioned behavioral cloning (GCBC)185

on the robot data, utilized previously in phase (i). In addition, we can also leverage robot data D′186

that does not contain language annotations. Formally, our training objective is given by:187

max
ϕ

E τ i∼D∪D′; (ski ,a
k
i )∼τk; j∼q(j|i)

[
log πϕ(a

k
i |ski , skj )

]
, (2)

where q(j|i) is the distribution over future frames that we previously utilized in Equation 1.188

Test-time control with πϕ and pθ. Once both the goal-reaching policy πϕ and the image edit-189

ing subgoal generation model pθ are trained, we utilize them together to solve new manipulation190

tasks based on user-specified natural language commands. Given a new scene, stest
0 , and a lan-191

guage task description ltest, SuSIE attempts to solve the task by iteratively generating subgoals192

and commanding the low-level goal-reaching policy with these subgoals. At the start, we sample193

the first subgoal ŝtest
+ ∼ pθ(·|stest

0 , ltest). Once the subgoal is generated, we then roll out the goal-194

reaching policy πϕ, conditioned on ŝtest
+ , for k time-steps, such that each action is chosen according195

to atest
j ∼ πϕ(·|stest

j , ŝtest
+ ). After k time steps, given the current image stest

k , we refresh the subgoal by196

sampling from the image-editing model again and repeat the process. Note crucially that this recipe197

does not require that the subgoal stest be attained after k steps, as the generative model effectively198

“replans” a new subgoal based on the current observation. Overall, at test time, we alternate between199

obtaining a new subgoal from pθ and commanding the goal-reaching policy to attain this subgoal,200

until a maximum number of allowed time steps. Pseudocode is provided in Algorithm 1.201

Algorithm 1 SuSIE: Zero-Shot, Test-Time Execution
Require: subgoal model pθ(s+|st, l), policy πϕ (· | st, s+), language command ltest, max episode

length T , goal sampling interval K, initial state stest
0

1: t← 0
2: while t ≤ T do
3: Sample stest

+ ∼ pθ(s+|stest
t , ltest) ▷ Sample a new subgoal every K steps

4: for j = 1 to k do
5: Sample at ∼ πϕ

(
· | stest

t , stest
+

)
▷ Predict the action from current state and subgoal

6: Execute at
7: t← t+ 1
8: end for
9: end while

4.3 Implementation Details202

In Phase (i), we utilize the pre-trained initialization from the InstructPix2Pix model (Brooks et al.,203

2023), trained to perform language-guided image editing and fine-tune it on our robot dataset. Since204

the InstructPix2Pix model utilizes a UNet-based diffusion model architecture, we implement Equa-205

tion 1 using a variational lower bound objective, following the standard recipe for training diffusion206

models. Our image-editing diffusion model operates on images of size 256× 256. The language in-207

structions are encoded with a frozen CLIP encoder (Radford et al., 2021). To ensure that this model208

pays attention to the input state and the language command it is conditioned on, we apply classifier-209

free guidance (Ho & Salimans, 2022) separately to both the language and the image, similarly to210

InstructPix2Pix. To obtain a robust goal-reaching policy in Phase (ii), we follow the implementation211

details prescribed by Walke et al. (2023). More details about the training hyperparameters and the212

architecture of this goal-reaching policy are provided in Appendix A.1.1.213

5 Experimental Evaluation214

The goal of our experiments is to evaluate the efficacy of SuSIE at improving generalization and215

motor control in open-world robotic manipulation tasks. To this end, our experiments aim to study216

the following questions: (1) Can SuSIE generate plausible subgoals for novel tasks, objects and217

environments, even those that lie outside of the robot training distribution? (2) Are the generated218

subgoals useful for solving a task specified by a novel language command, in zero-shot?, (3) Does219
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Figure 2: Real-world experimental setup. We evaluate our method in 3 real-world scenes. The scenes
become progressively more difficult from left to right, due to both an increasing visual departure from the robot
training data and an increasingly confounding mixture of both seen and unseen objects.

SuSIE exhibit an elevated level of precision and dexterity compared to other approaches that do220

not use subgoals?, and (4) How crucial is pre-training on Internet data for attaining zero-shot gen-221

eralization? To answer these questions, our experiments compare SuSIE to several prior methods222

including state-of-the-art approaches for training language-conditioned policies that leverage pre-223

trained vision-language models in a variety of ways.224

5.1 Experimental Scenarios and Comparisons225

Real-world experimental setup and datasets. We conduct our real-robot experiments on a Wid-226

owX250 robot platform. Our robot dataset is BridgeData V2 (Walke et al., 2023), a large and diverse227

dataset of robotic manipulation behaviors designed for evaluating open-vocabulary instructions. The228

dataset contains over 60k trajectories, 24 environments, 13 skills, and hundreds of objects. Our eval-229

uations present three different scenarios 2, designed specifically to test the ability of various methods230

at different levels of open-world generalization: Scene A: this scene includes an environment and231

objects that are well-represented in BridgeData V2; Scene B: this scene is situated in an environ-232

ment with a seen tabletop but a novel background and distractors, where the robot must move a seen233

object (bell pepper) into a choice of seen container (orange pot) or unseen container (ceramic bowl);234

and Scene C: this scene includes a table texture unlike anything in BridgeData V2 and requires ma-235

nipulating both seen and unseen objects. We expect Scene C to be the hardest since the robot needs236

to carefully ground the language command to identify the correct object while resisting its affinity237

for an object that is well-represented in the data (the spoon).238

Simulation tasks. We run our simu-239

lation experiments in CALVIN (Mees240

et al., 2022b), a benchmark for long241

horizon, language-conditioned ma-242

nipulation. CALVIN consists of four243

simulated environments, A, B, C, D,244

and each environment comes with a dataset of human-collected play trajectories. Approximately245

35% of these rollouts are annotated with language. Each environment consists of a Franka Emika246

Panda robot arm positioned next to a desk with various manipulatable objects, including a drawer,247

sliding cabinet, light switch, and various colored blocks. Environments are differentiated by the248

positions of these objects and their textures. With this benchmark, we study the most challenging249

zero-shot multi-environment scenario: training on A, B, and C, and testing on D. We follow the250

evaluation protocol from Mees et al. (2022b). During evaluation, a policy given a fixed number of251

timesteps (default 360) to complete a chain of five language instructions.252

Comparisons. Our experiments cover methods that utilize pre-trained models of vision and lan-253

guage in language-guided robot control in a variety of ways. While there are several prior methods254

that tackle language-based robotic control as we discuss in Section 2, in our experiments, we choose255

to compare to a representative subset of these prior methods to maximally cover the possible set256

of comparisons. We compare to (a) RT-2 (Brohan et al., 2023a) which is one of the most recent257

works utilizing a pre-trained VLM for initializing the robot policy (specifically, RT-2-X (Anony-258

mous), which was also trained and evaluated on BridgeData V2), generalizing prior work (Shridhar259

et al., 2022); (b) MOO (Stone et al., 2023), which utilizes pre-trained object detectors to obtain260

bounding box information for the policy and then trains a language-conditioned behavioral cloning261

policy (denoted as “LCBC/MOO”); and (c) UniPi (Du et al., 2023), which trains an entire language-262

conditioned video prediction model starting from a pre-trained video initialization. Since the orig-263
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Figure 3: Examples of subgoals synthesizd by SuSIE. A Comparison between the pre-trained diffusion
model initialized from InstructPix2Pix (Ours) and random initialization on BridgeData. Each row is a trajectory
from a holdout in-distribution validation set, where the objects and environments are all seen but the particular
trajectory and language label are not. The fine-tuned model consistently generates better subgoals.

inal UniPi model utilized proprietary pre-trained initializations that are not available publically, we264

re-implemented this method using our own video model following the guidelines in Du et al. (2023),265

but were unable to obtain high-quality generations (examples in Figure 5). In our simulation exper-266

iments though, we also evaluate another reimplementation of UniPi, using a video diffusion model267

trained by concurrent work (Ajay et al., 2023b). We present details for MOO and UniPi baselines268

in Appendix A.2. Finally, we remark that while we did try to apply GenAug (Chen et al., 2023) as a269

representative semantic augmentation approach in our real-world experiments, we were not able to270

obtain 3D mesh predictions for objects in Bridgedata V2, needed for this approach.271

We also compare to language-conditioned behavioral cloning (“LCBC”) (Walke et al., 2023), trained272

to produce actions conditioned on an embedding of the natural language task description (Walke273

et al., 2023); and an oracle goal-conditioned behavioral cloning (“GCBC oracle”) approach for tasks274

that require manipulating objects previously seen in the robot data. We observed that in Scene A,275

simple LCBC outperforms MOO. However, in Scenes B and C, which include tasks with unseen ob-276

jects, MOO is crucial for achieving non-zero success. Hence, we report LCBC in Scene A and MOO277

in Scenes B and C. In simulation, we also compare to additional methods previously studied on the278

CALVIN benchmark. These include methods that explicitly tackle long-horizon language-based279

control on CALVIN such as multi-context imitation (MCIL) (Lynch & Sermanet, 2020), hierarchi-280

cal universal language-conditioned policy (HULC) (Mees et al., 2022a), and improved variants of281

HULC (Ge et al., 2023). We also compare to other state-of-the-art methods from Ge et al. (2023) that282

employ an identical training and evaluation protocol as our experiments, namely MdetrLC (Kamath283

et al., 2021), and AugLC (Pashevich et al., 2019).284

5.2 Can SuSIE Generate Plausible and Meaningful Subgoals?285

To answer question (1), we start by presenting qualitative examples of intermediate subgoals gen-286

erated by the SuSIE image-editing model in Figure 3. Even on previously unseen trajectories and287

language commands, the model is able to produce visually high-quality and useful subgoals involv-288

ing the gripper grasping and moving objects. This is nontrivial since it requires the model to have289

not only the semantic knowledge to detect which pixels in the image correspond to a given object,290

but also an understanding of dynamics to predict how to move and rotate the gripper to grasp it.291

5.3 Is the Synthesized Subgoal Useful for Completing New Commands?292

Simulation results. We present performance for SuSIE and other comparisons in Table 5.3, in293

terms of success rates (out of 1.0) for completing each language instruction in the chain. Observe294

that SuSIE is able to complete instructions with a significantly higher success rate than LCBC, out-295

performing prior methods on this benchmark, including both the reimplementations of the closest296

prior approach, UniPi. Concretely, we observe more than about 20% improvement in the success297

rates for completing the first and second language tasks in the chain, and approximately 10% im-298
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No. of Instructions Chained

1 2 3 4 5

HULC (Mees et al., 2022a) 0.43 0.14 0.04 0.01 0.00
MCIL (Lynch & Sermanet, 2020) 0.20 0.00 0.00 0.00 0.00
MdetrLC (Ge et al., 2023) 0.69 0.38 0.20 0.07 0.04
AugLC (Ge et al., 2023) 0.69 0.43 0.22 0.09 0.05
LCBC (Walke et al., 2023) 0.62 0.31 0.14 0.05 0.01
UniPi (Ours) (Du et al., 2023) 0.56 0.16 0.08 0.08 0.04
UniPi (HiP) (Ajay et al., 2023b) 0.08 0.04 0.00 0.00 0.00

SuSIE (Ours) 0.75 0.46 0.19 0.11 0.07
Table 1: Comparison of SuSIE and other prior approaches on CALVIN. SuSIE is able to chain together
more instructions with a higher success rate than all of these prior methods.

Task LCBC/MOO RT-2-X Ours

Scene A

Eggplant on plate 0.4 0.3 0.8
Carrot on plate 0.3 0.4 0.7
Eggplant in pot 0.4 0.6 0.7
Average 0.37 0.43 0.73

Scene B
Bell pepper in pot 0.0 0.0 0.2
Bell pepper in bowl 0.1 0.0 0.4
Average 0.05 0.00 0.30

Scene C

Toothpaste in bowl 0.0 0.5 0.5
Crayon in bowl 0.0 0.9 0.6
Spoon in bowl 0.3 0.7 0.4
Bowl to top 0.2 0.9 0.3

Average 0.13 0.75 0.45
Table 2: Real-world performance. SuSIE consistently achieves the best success rates in Scenes A (against
LCBC) and B (against MOO), and is able to attain a high absolute success rate of 45% on the most challenging
Scene C (against MOO) with unseen objects in unseen domains.

provement for the remaining tasks. This indicates that SuSIE is able to produce useful subgoals that299

enable the low-level policy to accomplish tasks in this novel environment.300

Real-world results. We present performance of real-world evaluations in Table 2. Observe that in301

Scene A, SuSIE achieves the highest success rate on all three tasks, attaining an average success302

rate of 73% which improves over RT-2-X by 69%. In Scene B, SuSIE again outperforms other prior303

approaches on the two tasks, successfully grounding both the novel ceramic bowl and the previously304

seen orange pot. In the most challenging Scene C (unseen domain, unseen objects), SuSIE attains305

a success rate of 45%, outperforming MOO by about 260%. However, RT-2-X outperforms SuSIE306

in this scene. We believe that the superior performance of RT-2-X compared to SuSIE in Scene C is307

because it is a much larger 55B parameter model, initializes from a proprietary VLM, and is trained308

on much more data — including BridgeData V2, but also a vast quantity of additional tabletop309

manipulation. These differences in the amount of data and parameters put our method, which only310

utilizes BridgeData V2, at quite an unfair advantage against RT-2-X. Nevertheless, SuSIE is still311

able to recognize the novel objects and attain a high absolute success rate of 45%.312

5.4 Does SuSIE Improve Precision and Low-Level Skill Execution?313

Our real-world and simulated results clearly demonstrate the efficacy of SuSIE in executing novel314

language commands in a variety of scenarios. In this section, we visualize some evaluation rollouts315

from our experiments in Scene A to understand if SuSIE works merely because it enhances the316

generalization of the policy to semantic changes in the visual observation or if it actually does317

improve the precision of the low-level control by commanding meaningful subgoals. Observe in318

Figure 4 that the RT-2-X policy often produces actions that fail to precisely orient the gripper around319

the target object or close the gripper early. In contrast, policy executions obtained via SuSIE are more320

precise, and execute actions that attempt to match the gripper and object positions to the generated321

subgoal, allowing the policy to succeed at the task.322

To understand the contribution of the subgoal prediction towards improved precision, we also eval-323

uate an oracle GCBC policy on a subset of tasks. This policy is trained on identical robot data as324

SuSIE; however, we at test time we command the policy with a real image of the completed task,325
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Figure 4: Visualizing rollouts from SuSIE, RT-2-X, and oracle GCBC. While RT-2-X and oracle GCBC
often fail to precisely localize or grasp the object, generated subgoals from the image editing model in SuSIE
guide the low-level controller precisely, improving low-level skill execution with novel language commands.

Table 3: Comparison to GCBC with oracle goals.
Executing generated subgoals improves the perfor-
mance of GCBC even when the latter is provided with
a real goal image.

Task GCBC Ours

Scene A
Eggplant on plate 0.4 0.8
Carrot on plate 0.4 0.7
Eggplant in pot 0.5 0.7

CALVIN 8 tasks involving non-prehensile motion 0.16 0.92

which our method does not require. Observe326

that even then this GCBC oracle fails to accom-327

plish the task due to issues with imprecise ob-328

ject localization and untimely gripper closing.329

Corroborated by numerical results in Table 3,330

these experiments validate our claim that uti-331

lizing subgoal prediction is crucial for enabling332

precise low-level skill execution and control.333

5.5 Is Pre-Training on Internet Data Crucial for Zero-Shot Generalization?334

Finally, we conduct an experiment to understand if pre-training is crucial for generating meaningful335

subgoals. We train a second image editing model without InstructPix2Pix initialization, but using336

the same UNet architecture, image autoencoder, and text encoder as InstructPix2Pix. Observe in337

Figure 3 that the pre-trained model consistently generates superior subgoals.338

6 Discussion and Future Work339

We presented a method for robotic control from language instructions that uses pre-training to gener-340

ate subgoals to guide low-level goal-conditioned policy, which is unaware of language. The subgoals341

are generated by an image-editing diffusion model fine-tuned on robot data. This system improves342

both zero-shot generalization to new objects, and the precision of the overall policy, because the343

subgoal model incorporates semantic benefits from pre-training and commands the low-level pol-344

icy to reach more meaningful subgoals. Our experiments show that SuSIE improves over prior345

techniques on the CALVIN benchmark and attains good performance in three different scenes for346

a real-world manipulation task, outperforming language-conditioned behavioral cloning, and often347

outperforming the state-of-the-art, instruction-following approach, RT-2-X, that is trained on more348

than an order of magnitude more robot data.349

Our method is simple and provides good performance, but it does have limitations that suggest350

promising directions for future work. For instance, the diffusion model and the low-level policy are351

trained separately indicating that the diffusion model itself is also unaware of the capabilities of the352

low-level policy — it is trained on the same dataset, but assumes that anything that is reachable in353

the dataset can also be reached by the policy. We hypothesize that performance can be improved354

by making the diffusion model aware of the low-level policy’s capabilities. More broadly, we found355

the performance of our method to often be bottlenecked by the performance of the low-level policy,356

suggesting that addressing either of these limitations might lead to a more performant method for357

importing Internet-scale knowledge into robotic manipulation.358
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A Appendix527

We provide implementation details for SuSIE and the baselines.528

A.1 SuSIE implementation details529

A.1.1 Goal-reaching policy530

We use a diffusion model for our goal-reaching policy since recent work has shown that diffusion-531

based policies can better capture multi-modality in robot data (Chi et al., 2023; Hansen-Estruch532

et al., 2023), leading to improved performance across a variety of tasks. In our implementation533

(which follows Walke et al. (2023)), the observation and goal image are stacked channel-wise before534

being passed into a ResNet-50 image encoder. This image encoding is used to condition a diffusion535

process that models the action distribution. We use the DDPM (Denoising Diffusion Probabilistic536

Models) objective as introduced by Ho et al. (2020). The diffusion process uses an MLP with 3537

256-unit layers and residual connections. Following Chi et al. (2023), rather than predicting a single538

action, we predict a sequence of k actions to encourage temporal consistency. We use an action539

sequence length of k = 4. We use the Adam optimizer (Kingma & Ba, 2015) with a learning540

rate of 3e-4 and a linear warmup schedule with 2000 steps. We augment the observation and goal541

with random crops, random resizing, and color jitter. During training, the goal associated with an542

observation is selected by uniformly sampling an observation from a window of future timesteps in543

the trajectory. Specifically, we sample a goal from 0-20 steps in the future.544

At test time, we have several options for how to predict and execute action sequences. Chi et al.545

(2023) use receding horizon control, sampling k-length action sequences and only executing some546

of the actions before sampling a new sequence. This strategy can make the policy more reactive.547

However we found that the robot behavior was quite jerky as the policy switched between different548

modes in the action distribution with each sample. Instead, we use a temporal ensembling strategy549

similar to Zhao et al. (2023). We predict a new k-length action sequence at each timestep and execute550

a weighted average of the last k predictions.551

A.2 Baseline implementation details552

A.2.1 Language-conditioned behavior cloning (LCBC)553

We use the language-conditioned behavior cloning method from Walke et al. (2023) and Myers et al.554

(2023). The instruction is encoded using the MUSE sentence embedding Yang et al. (2019), then the555

image observation is encoded using a ResNet-50 with FiLM conditioning on the language encoding556

Perez et al. (2017). The output is passed into a fully connected policy network with 3 256-unit layers557

to produce the action. We use the Adam optimizer Kingma & Ba (2015) with a learning rate of 3e-4558

and a linear warmup schedule with 2000 steps. We augment the observation and goal with random559

crops, random resizing, and color jitter.560

A.2.2 UniPi561

UniPi (Du et al., 2023) trains a video diffusion model, pθ (τ |s0, l)) to generate a sequence of frames562

given a language command and an initial frame. The original paper employs the model architecture563

from Imagen Video (Ho et al., 2022a,b). To achieve higher resolution and longer videos for their564

real-world results, the authors leverage a 1.7B 3D U-Net and four pre-trained super-resolution mod-565

els from Imagen Video, with 1.7B, 1.7B, 1.4B, and 1.2B parameters, respectively. Since the original566

models and codes are not publicly available, we tried to replicate their approach in two different567

ways.568

UniPi (ours). We implemented a 3D U-Net video diffusion model, following Ho et al. (2022b,a),569

combining UniPi’s first-frame conditioning. Due to limited computes, we did not train spa-570

tial/temporal super-resolution models; instead, we trained a 3D U-Net-based diffusion model571

to directly generate images with a resolution of 128 × 128. The model includes 4 residual572

blocks, with (input channels, output channels) as follows: (64, 64), (64, 128), (128, 256), and573

(256, 640). The model is trained to produce the trajectory with a fixed horizon of 10 frames574

τt = {st, st+1, . . . , st+9} conditioned on the current frame st and language command. We used575

a frozen pre-trained CLIP (Radford et al., 2021) encoder to obtain the language embeddings.576
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UniPi (HIP, Ajay et al. (2023b)) For the second approach, we followed the UniPi replication in577

Ajay et al. (2023b). We trained a latent video diffusion model from PVDM (Yu et al., 2023a),578

building upon the codebase https://github.com/sihyun-yu/PVDM where we added first579

frame conditioning. We first trained the video autoencoder to project video of size 16× 128× 128580

into latent representation, followed by training a PVDM-L model that uses a 2D U-Net architecture.581

We used a Flan-T5- Base (Chung et al., 2022) encoder to obtain the language embeddings.582

Data and training details. To incorporate knowledge from internet data into video models, we583

utilize Ego4D (Grauman et al., 2022), a large-scale human egocentric video dataset with language584

annotations. For UniPi (ours), we first pre-trained the video model on Ego4D for 270K steps, and585

fine-tuned it on the robotics dataset, CALVIN for the simulation and BridgeData v2 for the real586

world, for additional 200K steps. We use a batch size of 4 during the training. For UniPi (HIP), we587

jointly trained a single model on all Ego4D, BridgeData v2, and CALVIN dataset at the same time.588

The autoencoder was trained for 85K steps, and the PVDM-L model was trained for 200K steps.589

We use a batch size of 8 during the training.590

Inverse model and test time control. To extract actions from generated videos, we trained an in-591

verse dynamics model πϕ (· | st, st+1) to predict the action from two adjacent frames. We employed592

the same architecture as our GCBC policy described in Section 4.2 and set the goal horizon k to 1.593

During test time, given the current observation st and the language command l, we synthesize H594

image frames from the video model and apply the inverse dynamics model to obtain the correspond-595

ing H − 1 actions. The predicted actions are executed, and we generate a new video from st+H−1596

and repeat the process until it reaches the maximum episode step.597

Generated videos. While the quality of the video model trained on the simulation dataset is good598

enough for solving the tasks on the CALVIN benchmark as shown in Table 5.3, we found that it599

is nontrivial to obtain a high-quality generation for the real-world dataset. We show examples of600

generations in Figure 5. Additionally, sampling the video model of UniPi to rollout a real robot is601

extremely time-consuming. Therefore, we evaluated UniPi only in simulations.602

A.2.3 MOO603

MOO (Stone et al., 2023) utilizes a mask to represent the target objects and incorporates it as an604

additional channel in the observation. Specifically, they train a language-conditioned policy that605

takes a 4-channel image and a language command as inputs. To acquire the mask for target objects,606

the Owl-ViT (Minderer et al., 2022) detector is employed. This detector is an open-vocabulary607

object detection model, pre-trained on internet-scale datasets, and it is used to extract the bounding608

boxes of the objects of interest from the image. For tasks like ”move X to Y,” MOO calculates the609

bounding box for X, representing the object of interest, and Y, indicating the target place. A mask610

is then created where the pixel at the center of the predicted bounding box is assigned a value of 1.0611

for X and 0.5 for Y.612

Extracting object entities from BridgeData V2 language annnotaions. In order to obtain the613

mask, it is necessary to extract the entities corresponding to the object of interest, denoted as X, and614

the target place, Y, from the language command. In MOO’s original paper, the authors assume that615

the language in their dataset is structured in a way that facilitates the easy separation of X and Y.616

Specifically, they employ a dataset that exclusively consists of language annotations such as “pick617

X,” “move X near Y,” “knock X over,” “place X upright,” and “place X into Y.”618

Given that the language annotations in BridgeData v2 are diverse and unstructured, it is challenging619

to naively extract X and Y. We utilized the the API of OpenAI’s gpt-3.5-turbo-instruct620

model to extract the object of interest and the target place (if any) from the language annotations,621

and input them into Owl-ViT to create masks. We then train a mask conditioned LCBC policy using622

the same architecture as described in Section A.2.1. Following the original work, we removed X and623

Y from the prompt and replaced the word X with “object of interest” and the word Y with “target624

place”. For example, given a language prompt “put the eggplant in the pot”, we use a modified625

prompt “put object of interest in target place” as the input to the policy during both training and test626

time.627

Test time. During test time, we use oracle masks annotated from the initial camera observations of628

each test trial. To enable this, we build a simple interface on the robot machine, allowing the tester629

to create the masks by clicking on the initial camera image at the beginning of each test trial.630
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https://github.com/sihyun-yu/PVDM


Figure 5: Generated videos from UniPi (ours) for BridgeData. Observe that the model suffers from hallu-
cination and physical inconsistency.
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