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ABSTRACT

While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance
LLM reasoning, its training process poses a critical risk: Entropy Collapse. This
phenomenon is a rapid loss of policy diversity, stemming from the exploration-
exploitation imbalance and leading to suboptimal solutions. Recent entropy-
intervention methods aim to prevent this, yet their underlying mechanisms remain
unclear. In this paper, we conduct extensive experiments to reveal token-level en-
tropy changes and how existing entropy intervention methods help avoid entropy
collapse. Our findings point out a fundamental limitation of existing methods:
they attempt to control the entropy indirectly. By only adjusting related factors,
such as the advantage signal and generation probability, their effectiveness is in-
herently limited and prone to failure. To address this limitation, we introduce
an entropy-change-aware reweighting scheme, namely Stabilizing Token-level
Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy
dynamics through fine-grained, token-level adjustments. This approach prevents
over-exploitation while ensuring robust exploration. Our extensive experiments
demonstrate that STEER significantly avoids entropy collapse, stabilizes entropy
dynamics, and achieves stronger downstream performance across math reasoning
benchmarks.

1 INTRODUCTION

The success of Reinforcement Learning with Verifiable Rewards (RLVR) in advancing LLM rea-
soning (Jaech et al., 2024; Lambert et al., 2024; Guo et al., 2025; Shao et al., 2024; Yang et al.,
2025a; Team et al., 2025) is largely attributed to its ability to foster emergent capabilities like long-
form chain-of-thought (CoT) and self-reflection (Shao et al., 2024; Zhu et al., 2025b). However, a
key challenge in RLVR is the exploration-exploitation trade-off under outcome-based supervision
(Yeo et al., 2025; Yue et al., 2025). This is because rewards based solely on the final answer can
force models into a state of premature convergence, where models stick to narrow solutions and
ignore other correct ones. This issue is particularly damaging to group-based policy-gradient meth-
ods (Shao et al., 2024; Ahmadian et al., 2024), as the lack of output diversity makes it difficult to
estimate relative advantages, thus providing weak learning signals.

This lack of output diversity is a direct consequence of a poorly managed exploration-exploitation
trade-off. Policy entropy is the primary metric used to quantify this balance (Wu et al., 2025; Song
et al., 2025; Li et al., 2025; Cui et al., 2025b): low entropy indicates insufficient exploration (a
state of over-exploitation), while high entropy indicates sufficient exploration. Therefore, prevent-
ing a catastrophic drop in this metric, known as the Entropy Collapse, becomes a central research
focus in RLVR. To avoid the entropy collapse, existing approaches attempt to indirectly influence
entropy dynamics through several mechanisms, each with inherent limitations. One strategy targets
(i) PPO-style ratio-clipping thresholds, for example, by decoupling them to enhance exploration (Yu
et al., 2025); however, this approach can induce asymmetric and uncontrolled effects on entropy
change. Another focuses on (ii) the relative weighting of positive and negative samples, either by
up-weighting rare-but-correct solutions (He et al., 2025) or skewing weights towards negative sam-
ples (Zhu et al., 2025a). While effective at preventing over-sharpening, this method only modulates
entropy as a byproduct and lacks fine-grained control. The third approach involves (iii) an entropy-
induced advantage (Cheng et al., 2025; Tan & Pan, 2025; Wang et al., 2025b;a; Deng et al., 2025).
This design, however, often has an unintended negative effect; it tends to excessively focus learning
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on high-entropy tokens, which, instead of stabilizing entropy, amplify its fluctuations and can distort
the entropy change. These observations lead to an important question: Is there a unified framework
that can not only explain the root cause of limitations of existing methods, but also guide us to design
better solutions?

We believe the answer is to analyze the problem from the perspective of entropy dynamics. We argue
that the overall entropy dynamics during training arise from the accumulation of per-token entropy
changes; thus, analyzing entropy change at the token level helps reveal the entropy dynamics. In this
paper, we unify the entropy-intervention in RLVR through the lens of entropy change: we conduct a
quantitative analysis of token-level entropy change, which not only allows us to analyze interesting
properties and limitations of existing entropy-intervention methods, but also motivates us to propose
a simple yet effective method to control entropy change.

Specifically, we start by conducting a quantitative analysis under mild conditions. Based on this
analysis, we conceptually explain how existing methods influence entropy dynamics: (i) PPO-style
ratio-clipping thresholds induce asymmetric effects on entropy change; (ii) the relative weighting
of positive and negative samples modulates entropy change; and (iii) entropy-induced-advantage
approaches magnify entropy fluctuations, which potentially accelerate entropy decline. Although
these methods can mediate influence entropy change, they fall short of controlling entropy change
directly. Guided by this insight, we introduce an entropy-change-aware scheme, called Stabilizing
Token-level Entropy-changE via Reweighting (STEER), that provides fine-grained, token-level
control of policy entropy dynamics to keep per-step entropy change within a moderate band. In this
way, our method steers the policy away from over-exploitation and sustains adequate exploration.
Empirically, our method achieves superior downstream performance over strong baselines while
effectively preventing entropy collapse and strengthening exploration across RLVR benchmarks.

In summary, our contributions can be briefly summarized as follow:

• We propose a quantitative analysis framework for entropy change and the entropy effect of
existing entropy interventions can be unified and elucidated through token-level analysis.

• To precisely stabilize entropy change, we propose an adaptive and fine-grained reweighting
method that keeps per-step entropy change within a moderate band.

• Experiments on standard RLVR setups demonstrate superior performance, training stabil-
ity, and precise control of entropy.

2 PRELIMINARIES

2.1 RLVR ALGORITHMS

Given a prompt q sampled from data D, π is denoted as the policy parameterized with θ, and o
is denoted as the response sampled from πold(·|q). PPO (Schulman et al., 2017) optimizes the
policy by maximizing the expected advantage and stabilizes the training process through the clipped
surrogate. Instead of training an additional value model, GRPO (Shao et al., 2024) samples a group
of rollouts oiGi=1 for each prompt q and estimates advantages by relative rewards within the group:

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, (1)

where Ri equals 1 when the response is correct and −1 when the response is wrong for all tokens in
the i-th response. Formally, by adapting the token-level policy gradient loss (Yu et al., 2025), GRPO
maximizes the following objective.

J (θ) = Eq∼D, {oi}G
i=1∼πold(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min (ri,tAi,t, (ri,t, 1 + ε, 1− ε)Ai,t)

]
, (2)

where ri,t =
πθ(oi,t|q,oi,<t)
πold(oi,t|q,oi,<t)

denotes the importance sampling ratio. The KL divergence term be-
tween the current policy πθ and the reference policy πref in the original form (Shao et al., 2024) is
excluded in this work.
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2.2 POLICY ENTROPY OF LLMS

Entropy quantifies the uncertainty of a policy model’s action selection under a given state (Haarnoja
et al., 2018). The token entropy on token oi,t is defined as the Shannon entropy of the conditional
distribution πθ(·|q, oi,<t):

Hi,t = −Eoi,t∼πθ(·|q,oi,<t) [log πθ(oi,t|q, oi,<t)] . (3)

Policy entropy measures a policy model’s overall uncertainty on a dataset by averaging token entropy
over sequences and positions. For policy model πθ on dataset D the policy entropy is defined as:

H(πθ,D) = Eq∼D, {oi}G
i=1∼πold(·|q)

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

Hi,t. (4)

3 ENTROPY-INTERVENTION MECHANISM: AN ENTROPY CHANGE
PERSPECTIVE

Policy entropy serves as an indicator of a model’s output diversity. The overall entropy change
reflects the exploration–exploitation trade-off during training. Macro changes in policy entropy
arise from the accumulation of micro entropy changes, with a single update’s effect on a single
token’s conditional entropy constituting the atomic unit. In this section, we begin from this micro-
level perspective, deriving a quantitative analysis to identify the direct factors that govern token-level
entropy change. We then leverage this analysis to examine the impact of existing training parameters
on the overall entropy dynamics.

3.1 QUANTITATIVE ANALYSIS ON TOKEN-LEVEL ENTROPY CHANGE

We start by analyzing the factors that govern a single token’s entropy change. The policy gradient
of GRPO (in Eq.(2)) is expressed as follows:

∇θJ(θ) = Eq∼D, {oi}∼πold(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

Iclip ri,tAi,t∇θ log πθ(oi,t | q, oi,<t)

]
, (5)

where

Iclip =


0, Ai,t > 0 and ri,t > 1 + εhigh,

0, Ai,t < 0 and ri,t < 1− εlow,

1, otherwise.
(6)

During the RLVR training process, token-level logit distributions are influenced by multiple factors,
so it is impractical to estimate the induced entropy change in entropy directly. To capture the essence
of distribution shifts, we follow the assumption from (Liu, 2025):
Assumption 1 (Parameter-independent softmax). For any context (state) si,t = (q, oi,<t), each
token (action) a in vocabulary V is associated with an independent logit parameter zs,a(θ). And the
next-token distribution follows πk

θ (· | s) = softmax(zks,·).

Assumption 1 states that a gradient step on the sampled token does not substantially affect the logits
of the other tokens in the vocabulary. Given this assumption, we obtain the following theorem (see
proof in Appendix C).
Theorem 1. (First–order entropy change) Let policy model πθ follow Assumption 1. The change of
conditional entropy between two update steps is defined as ∆Hit ≜ H(πk+1

θ | si,t)−H(πk
θ | si,t).

Then the first-order estimation of ∆Hit in Eq. 2 is

Ωi,t = −η Ea∼πk
θ (·|si,t)

wi,t(1− πk
θ (a|si,t))2 (log πk

θ (a|si,t) +H(πk
θ | si,t)), (7)

where η is the learning rate, wi,t = Iε ri,t Ai,t is per-token weight.

Theorem 1 above implies that, under Assumption 1, the entropy change of a single token ∆Hit can
be reflected by Ωi,t. Obviously, Ωi,t are jointly determined by learning rate η, per-token gradient
weight wi,t, generation probability πk

θ (a|si,t) and current conditional entropy H(πk
θ | si,t).

3
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In contrast to our milder Assumption 1, prior work often relies on more restrictive assumptions
to derive entropy change. For instance, (Cui et al., 2025b) (denoted as Cov) assumes a uniform
entropy distribution across different queries within the same batch. However, this assumption is
often unrealistic and can lead to estimations that misrepresent the ground-truth entropy dynamics.
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(a) Qwen2.5-7B
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Figure 1: Entropy change estimation in the first 10
training steps on Qwen2.5-Math-7B and Qwen2.5-
7B. The curve compares estimated vs. ground-truth
entropy change (left axis) and histograms show to-
ken counts per bin (right axis).

To validate our approach, we compare our
entropy change estimator, Ωi,t, with that of
Cov during a standard GRPO training pro-
cess. As visualized in Figure 1, our pro-
posed Ωi,t closely tracks the ground-truth en-
tropy change, showing a positive correlation.
While the estimation Cov shows only a weak
correlation.

To quantify this gap, we compute the Mean
Squared Error (MSE), Pearson Correlation
Coefficient (PCC), and Spearman’s Rank
Correlation Coefficient (SRCC) between each
estimation and the ground-truth token-level
entropy change, as shown in Figure 2. Across
all three metrics, Ωi,t from Theorem 1 deliv-
ers orders-of-magnitude lower MSE and sub-
stantially higher PCC and SRCC than Cov. Furthermore, the SRCC between Ωi,t and the ground-
truth token entropy change exceeds 60% across all models, demonstrating a strong rank correlation.
A more comprehensive comparison is provided in Appendix E.3. These results strongly validate the
effectiveness of our estimator derived in Theorem 1 and the soundness of Assumption 1.

Model Method MSE ↓ PCC ↑ SRCC ↑

Math-1.5B Cov 5.37 -6e-5 +0.04
Ours 5e-4 +0.42 +0.65

Qwen-7B Cov 0.53 +0.05 +0.08
Ours 8e-4 +0.39 +0.72

Math-7B Cov 0.29 +0.03 +0.06
Ours 4e-4 +0.42 +0.61

Figure 2: MSE, PCC and SRCC comparison.
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Figure 3: Token-level entropy
change indicator δ(a|s).

3.2 ON ANALYSIS OF PHENOMENA IN ENTROPY DYNAMICS

Positive Samples

Negative Samples

High

Probability

unlikeliness

DAPO

clip-high

clip-low

Encourage high Entropy Encourage low Entropy

Strengthen Weaken

Low

Probability

W-REINFORCE 

Clip-Cov

Clip-Cov

III

III IV

Figure 4: Entropy change with advantage and
probability.

Method πθ(a|s) A(a|s) H(·|s)
DAPO ✓ ✓ ✗

Unlikeliness ✓ ✓ ✗

W-REINFORCE ✗ ✓ ✗

Entropy Adv. ✗ ✓ ✓

KL Reg. ✓ ✗ ✗

Entropy Reg. ✗ ✗ ✓

Forking Tokens ✗ ✗ ✓

Clip-Cov ✓ ✓ ✗

STEER ✓ ✓ ✓

Figure 5: Key Considerations in Current Ap-
proaches.
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3.2.1 ENTROPY DYNAMICS UNDER ADVANTAGE AND PROBABILITY

To dissect the factors governing token-level entropy change, we first need to decompose the first-
order estimation Ωi,t from Theorem 1. To this end, we introduce a token-level entropy change
indicator, δ(a|s), defined as:

δ(a|s) = −πθ(a|s)(1− πθ(a|s))2(log(πθ(a|s)) +H(·|s)) (8)

This allows us to express the entropy change from Theorem 1 as Ωi,t = η Ea∼πθ(·|si,t)[w
′
i,t ·

δ(a|si,t)], where w′
i,t contains the magnitude-scaling terms like advantage A(a|si,t) and the im-

portance sampling ratio. The key insight is that δ(a|s) represents the intrinsic directional tendency
of the entropy change, since it only depends on the token’s generation probability πθ(a|s) and the
current conditional entropy H(·|s). Figure 3 visualizes δ(a|s) as a function of these two variables.

Based on this decomposition, we can now analyze the entropy dynamics by examining how token-
level entropy changes with different signs of the advantage A(a|s) and the indicator δ(a|s). To
illustrate, we create a two-dimensional space, shown in Figure 4, which can be divided into four
distinct quadrants:

Quadrant I: Exploitation (Entropy Decrease). For high-probability correct tokens (A > 0, δ <
0), rewarding an already-mastered behavior concentrates probability mass, thus decreasing entropy.

Quadrant II: Exploration (Entropy Increase). For low-probability correct tokens (A > 0, δ > 0),
rewarding a rare-but-correct behavior diversifies the policy, thereby increasing entropy.

Quadrant III: Suppression (Entropy Decrease). For low-probability incorrect tokens (A < 0, δ >
0), penalizing an unlikely error pushes its probability further toward zero, which also decreases
entropy.

Quadrant IV: Error-Correction (Entropy Increase). For high-probability incorrect tokens (A <
0, δ < 0), penalizing an overconfident error flattens the distribution to encourage seeking alterna-
tives, substantially increasing entropy.
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En
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strengthen Quadrant II
strengthen Quadrant IV
weaken Quadrant I
weaken Quadrant III
standard GRPO

Figure 6: Four schemes to uplift entropy based on
advantage and probability.

To validate these theoretical findings, we con-
duct an experiment to provide empirical sup-
port. Specifically, we can learn from the
above analyses that entropy increases in two
of these quadrants: (Quadrant II) when up-
dating on low-probability tokens with positive
advantages, and (Quadrant IV) when updating
on high-probability tokens with negative ad-
vantages. To test this, we selectively apply
double-weighting (to strengthen) or masking
(to weaken) to 10% of tokens falling into each
quadrant and track the resulting entropy. As
shown in Figure 6, all four interventions suc-
cessfully increase policy entropy compared to
the standard GRPO baseline, confirming our
model’s validity. Further experimental details
are available in Appendix E.1.

In a standard RLVR process, these four dynamics co-exist, acting as competing forces that shape
the policy. Policy entropy evolves from the superposition of these updates. Consequently, entropy
collapse can be understood as a state where the exploitation-driven, entropy-decreasing updates
(Quadrants I and III) consistently overwhelm the exploration-driven, entropy-increasing updates
(Quadrants II and IV). This framework not only explains the phenomenon but also provides a foun-
dation for analyzing the effects of other interventions, such as positive/negative sample rebalancing
and ratio clipping.

3.2.2 EXPLAINING THE ASYMMETRIC IMPACT OF RATIO CLIPPING

Ratio clipping is a core component of PPO-style algorithms, designed to prevent destructive policy
updates by constraining the importance sampling ratio rt. This mechanism can be interpreted within

5
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Figure 7: Entropy dynamics with ratio clipping. Figure 8: PSR-NSR

our framework as a gate that primarily suppresses updates for tokens with large ratios—namely,
low-probability tokens. As our analysis in Section 3.2.1 shows, these tokens correspond to the
entropy-increasing Quadrant II (exploration) and the entropy-decreasing Quadrant III (suppression).

This insight allows us to form a clear hypothesis about how adjusting the clipping thresholds, εhigh
and εlow, will asymmetrically affect policy entropy:

Adjusting εhigh: This threshold gates updates on positive-reward tokens. Increasing εhigh (as in
DAPO, (Yu et al., 2025)) relaxes the constraint on Quadrant II updates. This should unleash more
of the natural, entropy-increasing effect of exploration. We therefore predict that a higher εhigh will
increase policy entropy.

Adjusting εlow: This threshold gates updates on negative-reward tokens. Increasing εlow relaxes the
constraint on Quadrant III updates. This should amplify the natural, entropy-decreasing effect of
suppression. We therefore predict that a higher εlow will decrease policy entropy.

To verify our predictions, we conducted two experiments. First, we confirmed that clipping is indeed
concentrated on low-probability tokens, as shown by the trigger counts in Figure 9. Second, we in-
dependently varied εhigh and εlow and tracked the resulting entropy dynamics. The results, presented
in Figures 7a and 7b, perfectly align with our predictions: entropy rises with a higher εhigh and falls
with a higher εlow.

This analysis demonstrates that our framework provides a principled explanation for the asymmetric
and often counter-intuitive effects of ratio clipping on policy entropy. The mechanism is not simply
about limiting updates, but about selectively suppressing the competing forces of exploration and
suppression that originate in the low-probability regions of the policy distribution.

3.2.3 EXPLAINING THE IMPACT OF POSITIVE AND NEGATIVE SAMPLE WEIGHTING

A notable phenomenon, observed by Zhu et al. (2025a) and confirmed in our experiments (Figure 8),
is that training exclusively on negative samples (Negative Sample Reweighting, or NSR) sustains
high policy entropy, whereas training only on positive samples (Positive Sample Reweighting, or
PSR) leads to a rapid entropy collapse. Our four-quadrant framework provides a clear explanation
for this behavior.

The key insight is that training data is naturally dominated by high-probability tokens. While our
analysis shows that the magnitude of entropy change, |δ(a|s)|, is similar for both high- and low-
probability tokens (Figure 3), the sheer volume of high-probability tokens means they dictate the
overall entropy trend.

In PSR (Positive Sample Reweighting), the training signal is dominated by high-probability cor-
rect tokens, which fall into Quadrant I (Exploitation). This leads to a relentless decrease in entropy.
Crucially, PSR removes all negative samples, thereby eliminating the powerful, entropy-increasing
force of Quadrant IV (Error-Correction). Without this countervailing force, the policy quickly con-
verges to a narrow solution set, causing entropy to collapse.

In NSR (Negative Sample Reweighting), the training signal is dominated by high-probability in-
correct tokens, which fall into Quadrant IV (Error-Correction). This provides a strong and continu-
ous entropy-increasing signal. By removing all positive samples, NSR also eliminates the primary
source of entropy decrease from Quadrant I (Exploitation). The result is a policy that constantly
seeks to correct its errors, thereby maintaining high diversity and high entropy.

This framework also clarifies the mechanism behind other related methods. For instance, the strategy
of up-weighting rare-but-correct tokens, as proposed by He et al. (2025) and Deng et al. (2025),
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can be understood as a targeted intervention to boost the entropy-increasing effect of Quadrant II
(Exploration). By amplifying this specific signal, these methods aim to counteract the dominant
entropy-decreasing pressure from Quadrant I and thus mitigate entropy collapse.

3.2.4 THE PERILS OF TARGETING HIGH-ENTROPY TOKENS

0.0 0.2 0.4 0.6 0.8
(a|s)

0

20

40

60

80

100

120

Cl
ip

-H
ig

h 
Co

un
ts

Clip-High
Clip-Low

0

500

1000

1500

2000

Cl
ip

-L
ow

 C
ou

nt
s

Figure 9: The average clip counts
over 10 steps.

While advantage and token probability determine the direction
of an entropy update, the current conditional entropy, H(·|s),
governs its magnitude. Our analysis of the entropy change in-
dicator δ(a|s) reveals a critical dynamic: the magnitude of
potential entropy change, |δ(a|s)|, increases significantly as
H(·|s) grows, particularly for high-probability tokens (Fig-
ure 3, right half). This implies that tokens in states of high
uncertainty are inherently volatile and prone to large swings
in entropy. This relationship is empirically confirmed in Fig-
ure 18, which shows a strong correlation between a token’s
current entropy and the magnitude of its subsequent entropy
change.

This volatility has led some methods, such as Entropy-based Advantage (Cheng et al., 2025) and
GTPO (Tan & Pan, 2025), to propose interventions that explicitly up-weight high-entropy tokens.
The intuition is that focusing on these uncertain states will promote exploration and thus increase
overall policy entropy.

However, our analysis reveals this strategy to be counterproductive and potentially harmful. High-
entropy tokens are not a reliable source of entropy increase; they are a source of entropy variance.
By amplifying updates on these tokens, these methods create a dangerous positive feedback loop:
When policy entropy happens to decrease, the amplified updates on the now lower-entropy (but still
volatile) tokens can cause it to decrease even faster; This creates a system that is highly sensitive to
its own fluctuations. Instead of stabilizing entropy, it amplifies its inherent oscillations.

We demonstrate this destabilizing effect in Figure 11. Compared to the standard GRPO baseline,
entropy-induced advantage methods exhibit much larger fluctuations. Critically, when the policy
enters a phase of decline, these methods can accelerate entropy collapse, leading to a faster and
more severe drop in diversity. This finding highlights a key flaw in targeting high-entropy tokens:
rather than preventing collapse, such interventions can inadvertently aggravate it.
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Figure 10: Empirical corelation
between entropy and entropy.
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Figure 11: Entropy dynamics with ratio clipping.

4 STABILIZING TOKEN-LEVEL ENTROPY-CHANGE VIA RE-WEIGHTING

Building on the above analysis, we find that all three factors materially shape entropy change,
whereas existing approaches target only a subset, which limits their effectiveness, as shown in Ta-
ble 5. Since excessive entropy change can cause the policy entropy to rapidly increase or decrease,
potentially leading to model training failure, we aim to keep the stepwise entropy change within
a moderate range. To control entropy change precisely, we introduce an adaptive and fine-grained
token-reweighting scheme that keeps the stepwise entropy change within a moderate band. Since
Ωi,t in Figure 2 shows a strong correlation with the ground-truth entropy change, a simple approach
is to design a token-level weight negatively correlated with Ωi,t to suppress updates of tokens with
excessively large entropy changes.
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Specifically, we apply an exponential-decay mapping to the token weights:

λit = e−k·|Ωi,t|, where k =
− lnλmin

max{|Ωi,t| | oi ∈ B}
, (9)

so that the token with the largest entropy change in each mini-batch attains the minimum weight.
λmin is the only hyperparameter introduced and enforces token weights within [λmin, 1]. λmin equals
to 1, STEER degenerates into standard GRPO. It is noteworthy that this reweighting scheme does
not fundamentally hinder the model’s learning, as the weighting is dominated by a few tokens with
very large Ωi,t within the batch, while the majority of tokens still have weights approaching 1.

5 EXPERIMENT

5.1 RLVR TRAINING SETUPS

Training: We conduct experiments on three different models, including Qwen2.5-Math-7B,
Qwen2.5-Math-1.5B and Qwen2.5-14B. We adapt our training codebase from verl (Sheng et al.,
2025) and follow the training recipe of standard GRPO. Our training data is DAPO-Math-17k (Yu
et al., 2025), containing only math problems with integer ground-truth answers. Both the KL-
divergence and entropy loss terms are removed in our experiments. Generation batch size is set
to 512, and update batch size is set to 32. Rollout times are set to 8. Training is performed with top-
p value of 1.0 and temperature= 1.0. Training details of our method and baselines are in Appendix
D.

Evulation: We evaluated our models and baselines on six widely used mathematical reasoning
benchmarks: AIME24, AIME25, AMC23 (Li et al., 2024), MATH-500 (Hendrycks et al., 2021),
Minerva Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024), detailed in Ap-
pendix D. Validation is performed with a top-p value of 0.7 and temperature= 1.0 across all models
and test sets. We use Math-Verify for training validation and final evaluation.

Baselines: For throughout comparison, we compare our method against 10 baselines, including
standard GRPO (Shao et al., 2024), SimpleRL-Zoo (Zeng et al., 2025), Eurus-PRIME(Cui et al.,
2025a), OPO (Hao et al., 2025), GRPO with cilp-high (Yu et al., 2025), GRPO with entropy loss
(Schulman et al., 2017), GRPO with Fork Tokens (Wang et al., 2025b), W-REINFORCE (Zhu et al.,
2025a), Entro. Adv. (Cheng et al., 2025), Clip-Cov and KL-Cov (Cui et al., 2025b).

Main Results: As shown in Table 1, STEER outperforms classical RLVR baselines as well as ex-
isting entropy intervention baselines across all datasets. STEER improves average performance by
2.7 over the runner-up (OPO) and by 3.4 over the runner-up (Clip-Cov) in the Entropy Intervention
Baselines. The performance experiments on Qwen2.5-Math-1.5B and Qwen2.5-14B shown in Fig-
ure 4 are compared with the top3 competitors in Table 1 (i.e., OPO, Clip Cov, and Entro. Adv.).
We also assessed the sensitivity of the experimental results to hyperparameters λmin, as shown in the
Figure 15. It is evident that our method performs consistently well when λmin ∈ [0.5, 0.8].

AIME24 AIME25 AMC23 MATH500 Minerva Olympiad
Dataset
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Figure 12: Advantage and Probability

Figure 13 shows the test curves during training, where STEER outperforms the baselines. Figure 14
presents the test curves for different hyperparameters, demonstrating both stability and superiority.
Entropy Control The superiority of our method is not only reflected in its performance but also
in its ability to regulate entropy across a wide range. We consider an extreme training setup with
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Table 1: Benchmark results of different methods (values are multiplied by 100; Avg. is the mean
across six datasets).

Method AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg.
Qwen2.5-Math-7B 13.8 5.3 44.6 39.6 9.9 13.8 21.2

Classical RLVR Baselines
GRPO 28.0 14.3 66.2 78.6 37.3 40.9 44.2
SimpleRL-Zoo 25.2 13.4 70.6 78.6 37.8 38.4 44.0
Eurus-PRIME 20.9 13.0 65.2 79.8 37.4 40.6 42.8
OPO 32.2 13.4 71.5 82.2 38.2 41.0 46.4

Entropy Intervention Baselines
GRPO w/ clip-high 31.7 12.8 66.8 79.0 38.6 39.3 44.7
GRPO w/ Entro. Loss 29.1 14.0 67.6 80.0 38.2 37.9 44.5
GRPO w/ Fork Tokens 31.9 14.3 65.5 79.2 37.1 40.9 44.8
W-REINFORCE 31.9 14.3 65.5 79.2 37.1 40.9 44.8
Entro. Adv. 27.5 13.5 70.2 79.6 36.8 42.8 45.1
Clip–Cov 32.5 12.9 68.4 78.0 40.8 41.3 45.7
KL–Cov 32.8 14.1 64.2 78.8 37.1 39.4 44.4

Our Method
STEER 36.9 16.2 72.2 82.4 42.3 43.3 49.1
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Figure 13: Test set accuracy dynamics compar-
ison with different λmin
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Figure 14: Test set accuracy dynamics compar-
ison with benchmarks

εhigh = 5 and εlow = 0.99, where almost no ratio clipping is applied. In such scenarios, RL training
is vulnerable due to the influence of extreme values. The results are shown in the figure below:
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Figure 15: Entropy in extreme scenarios.
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Figure 16: Advantage and Probability

6 CONCLUSION

In this paper, we rethink the entropy interventions through the lens of entropy change. By proposing
a quantitative analysis framework for entropy change, the entropy effect of current entropy interven-
tions can be unified and elucidated through token-level analysis. Motivated by stabilizing entropy
change, we propose STEER, an adaptive, fine-grained reweighting scheme that precisely keeps per-
step entropy changes within a moderate band by suppressing potentially disruptive updates. Exten-
sive experiments on mathematical reasoning benchmarks demonstrate that STEER achieves superior
performance, enhanced training stability. Our work provides both a new lens for analyzing RL dy-
namics and a practical solution for developing robust and effective training algorithms for LLMs.
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Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
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A USAGE OF LLMS

Throughout the preparation of this manuscript, Large Language Models (LLMs) were utilized as a
writing and editing tool. Specifically, we employed LLMs to improve the clarity and readability of
the text, refine sentence structures, and correct grammatical errors. All final content, including the
core scientific claims, experimental design, and conclusions, was conceived and written by us, and
we take full responsibility for the final version of this paper.

B RELATED WORK

Entropy regularization (Mnih et al., 2016; Haarnoja et al., 2018), an early line of applied in tra-
ditional RL, may mislead actions at critical states (Zhang et al., 2025) and has been shown to be
highly coefficient-sensitive in LLM training (Cheng et al., 2025; Cui et al., 2025b). The KL diver-
gence term between the current policy πθ and the reference policy πref in the original form (Shao
et al., 2024) is excluded, since its practical impact is often negligible or counterproductive for rea-
soning tasks, as demonstrated in recent works (Yu et al., 2025; Chu et al., 2025; Hu et al., 2025).
(Liu et al., 2025) argues that the KL penalty not only preserves entropy but also acts as a regularizer,
ensuring that the online policy remains close to a stable reference, which stabilizes learning and re-
duces overfitting to misleading reward signals. One typical approach to address entropy collapse is
by raising the sampling temperature during inference. However, (Luo et al., 2025) findings suggest
that while this method postpones the onset of entropy collapse, it does not prevent it, as entropy
continues to decrease progressively throughout the training process. Recent studies have sought to
mitigate entropy collapse by adjusting key elements of policy optimization, such as PPO-style ratio
clipping (Yu et al., 2025; Yang et al., 2025b), balancing positive and negative samples (Zhu et al.,
2025a), and applying KL regularization (Liu et al., 2025). However, these methods are broad and
lack fine-grained control at the token level, with their mechanisms often not fully explained in a uni-
fied or principled way. To address this gap, researchers have increasingly used policy entropy as a
critical measure for assessing the exploration-exploitation trade-off in RLVR (Wu et al., 2025; Song
et al., 2025; Li et al., 2025). Policy entropy in LLMs has been widely recognized as a vital external
indicator of this balance, with low entropy reflecting over-exploitation and insufficient exploration,
while high entropy indicates the opposite. Although prior work (Cui et al., 2025b) considers entropy
change, the resulting estimation is distorted (see Figure 1) due to its unreasonable state-equivalence
assumption. Notably, its entropy-control scheme (i) enforces a hard binary split by entropy change
without considering their intra-group differentiation, and (ii) may hinder learning process, since
high-entropy-change tokens that are informative for exploration are over-penalized. the proposed
entropy control method has two main limitations: (i) it imposes a hard binary partition of tokens
by entropy change, with no intra-group granularity; (ii) it over-suppresses the contribution of high
entropy-change tokens—often the most informative—thereby hindering learning. Further, the fac-
tors shaping entropy dynamics remain largely uncharacterized, constraining actionable control.

C THEOREM PROOF DETAILS

Theorem 1. (First–order entropy change) Let policy model πθ follows Assumption 1. The change of
conditional entropy between two update steps is defined as ∆Hit ≜ H(πk+1

θ | si,t)−H(πk
θ | si,t).

Then the first-order estimation of ∆Hit in Eq. 2 is

Ωi,t = −η Ea∼πk
θ (·|si,t)

wi,t(1− πk
θ (a|si,t))2 (log πk

θ (a|si,t) +H(πk
θ | si,t)), (10)

where η is the learning rate, wi,t = Iε ri,t Ai,t is per-token weight.

Proof. The proof is similar to (Liu, 2025). Taking the first-order Taylor expansion, we have

∆Hit ≜ H(πk+1
θ | si,t)−H(πk

θ | si,t)
≈

〈
∇θH

(
πk
θ | si,t

)
, zk+1 − zk

〉
.
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Since we have log trick Ea∼πθ(·|s)[∇θ log πθ(a | s)] = 0, the gradient term can be derived as

∇θH(πθ | s) = ∇θH(πθ(· | s))
= ∇θ

(
−Ea∼πθ(·|s)

[
log πθ(a | s)

])
= −Ea∼πθ(·|s)[∇θ log πθ(a | s) + log πθ(a | s)∇θ log πθ(a | s)]
= −Ea∼πθ(·|s)[log πθ(a | s)∇θ log πθ(a | s)] .

Then we have

∆Hit =
〈
∇θH(θk | si,t), (zk+1 − zk)

〉
=−

〈
Ea∼πk

θ (·|si,t)
[
log πθ(a | si,t)∇θ log πθ(a | si,t)

]
, θk+1 − θk

〉
=− Ea∼πk

θ (·|si,t)

[
log πθ(a | si,t)

〈
∇θ log πθ(a | si,t), θk+1 − θk

〉]
=− Ea∼πk

θ (·|si,t)

[
log πθ(a | si,t)

∑
a′∈A

∂ log πθ(a | si,t)
∂θsi,t,a′

(
θk+1
si,t,a′ − θksi,t,a′

)]

=− Ea∼πk
θ (·|si,t)

[
log πθ(a | si,t)

∑
a′∈A

(
1{a = a′} − π(a′ | si,t)

) (
θk+1
si,t,a′ − θksi,t,a′

)]

=− Ea∼πk
θ (·|si,t)

[(
log πθ(a | si,t)− Eâ∼πk

θ (·|si,t)
log πθ(a | si,t)

)
(
θk+1
si,t,a − θksi,t,a − Ea′∼πk

θ (·|si,t)
(
θk+1
si,t,a′ − θksi,t,a′

))]
=− Ea∼πk

θ (·|s)
[
log πk

θ (a|s) +H(·|s)
] [(

1− πk
θ (α|s)

) (
zk+1
si,t,a − zksi,t,a

)]
=− Ea∼πk

θ (·|s)
[
log πk

θ (a|s) +H(·|s)
] [

w(s|a)
(
1− πk

θ (α|s)
)2]

,

where w(s|a) is the weight of policy gradient.

D TRAINING SETTINGS

D.1 DETAILED INFORMATION FOR TEST DATASET

Table 2: Dataset statistics.

Test Datasets #Questions Level

AIME24 30 Olympiad
AIME25 30 Olympiad
AMC23 40 Intermediate
MATH500 500 Advanced
Minerva 272 Graduate
OlympiadBench 675 Olympiad

D.2 TRAINING DETAILS FOR OUR METHOD AND BASELINES.

All algorithms are implemented based on the official GRPO codebase within the VeRL framework.
We use a learning rate of 1e-6 without warm-up across all experiments. At each rollout step, we
generate 8 answers for each of 512 sampled questions, then split the data into 16 mini-batches and
train the policy network for 16 gradient steps. Models are trained for at most 150 rollout steps.
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Unless otherwise specified, we follow GRPO’s default design choices with token-level loss normal-
ization without dynamic sampling and KL regularization. For all models, the maximum input length
is 1024 and the minimum input length is 3072. All the experiments were conducted on H20 GPUs.

E ADDITIONAL EXPERIMENTS

E.1 STRENGTHS AND WEAKNESSES OF THE ENTROPY DYNAMICS

For experiments in Figure 6, we select samples with a generation probability greater than 0.8 and
an advantage greater than 0, as well as those with a generation probability less than 0.2 and an
advantage less than 0, and randomly mask 10% of them. Similarly, for samples with a generation
probability greater than 0.8 and an advantage less than 0, or a generation probability less than 0.2
and an advantage greater than 0, we set the token weight of 10% to twice the original value.

Adjusting the proportion of enhancement or suppression also significantly impacts the change in
entropy as follow:
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Figure 17: Empirical corelation
between entropy and entropy.
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Figure 18: Empirical corelation
between entropy and entropy.

E.2 HYPERPARAMETER ANALYSIS

STEER also consistently achieves the highest average performance on both Qwen2.5-Math-1.5B
(38.1) and Qwen2.5-14B (45.1), demonstrating its superior capabilities in improving model reason-
ing.

Table 3: Hyperparameter Analysis

Model AIME24 AIME25 AMC23 MATH500 Minerva Olympiad
λmin = 0.8 33.5 15.6 71.1 81.4 39.6 41.0
λmin = 0.7 36.9 16.2 72.2 82.4 42.3 43.3
λmin = 0.6 37.0 16.3 76.3 82.2 39.3 43.5
λmin = 0.5 34.8 14.8 71.3 82.2 37.7 41.4

E.3 ENTROPY CHANGE ESTIMATION COMPARISON

We recorded the token entropy changes for the first ten steps across different models and datasets, as
shown in Figure 20 and21. It can be observed that our method exhibits a clear positive correlation,
which strongly supports our theoretical framework.

E.4 A TOKEN-LEVEL GRADIENT REWEIGHTING FRAMEWORK FOR SHAPING POLICY
ENTROPY

In our analysis, existing entropy intervention methods can be unified into a gradient reweighting
framework and subsequently examine their respective impacts on policy entropy. The table below
summarizes the different weighting schemes used by existing methods, while our proposed approach
is more fundamental, weighting based on entropy change.

Let wi,t(q) = I (πθ, Ai,t) ri,tA (πθ, Ai,t) + βR (πθ).
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Table 4: Benchmark results of different models (example caption).

Model AIME24 AIME25 AMC23 MATH500 Minerva Olympiad Avg.
Qwen2.5-Math-1.5B

base 4.1 2.1 24.7 29.0 9.2 20.5 14.9
GRPO 16.2 7.6 56.0 74.4 26.1 34.6 35.8
OPO 14.8 9.0 58.2 72.2 26.1 35.9 36.0
Entro. Adv. 15.0 9.1 55.7 70.2 26.8 34.9 35.3
Clip-Cov 14.7 8.4 56.0 72.8 26.4 34.9 35.5
STEER 17.2 9.7 61.3 75.4 28.0 36.9 38.1

Qwen2.5-14B
base 3.9 2.6 25.8 52.6 15.4 23.0 20.6
GRPO 17.2 13.2 66.3 80.6 38.0 42.2 42.9
OPO 17.8 12.6 68.2 78.6 37.7 42.6 42.9
Entro. Adv. 14.6 9.8 65.6 78.8 36.5 40.9 41.0
Clip-Cov 14.1 13.6 59.8 78.2 38.6 43.2 41.2
STEER 19.3 14.0 70.3 81.6 39.1 46.3 45.1

Figure 19: Entropy Change Estimation curves on DAPO-Math-17k.

(a) Ours on Math-1.5B (b) Ours on 7B (c) Ours on Math-7B

(d) Cov on Math-7B (e) Cov on Math-7B (f) Cov on Math-7B

Figure 20: Entropy Change Estimation on DAPO-Math-17k.
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(a) Ours on Math-1.5B (b) Ours on 7B (c) Ours on Math-7B

(d) Cov on Math-1.5B (e) Cov on 7B (f) Cov on Math-7B

Figure 21: Entropy Change Estimation scatters on DAPO-Math-17k.

Table 5: A token-level Gradient Reweighting Framework for shaping policy entropy.

Method wi,t

DAPO / DCPO Iε → Iεhigh,εlow

KL penalty R (πθ) =
πref(oi,t|q,oi,<t)
πθ(oi,t|q,oi,<t)

− 1

Entropy Loss R (πθ) = − log πθ(oi,t | q, oi,<t)− 1

Unlikeliness R̂i,t = Ri

(
1− βrank

G−rank(oi)
G

)
W-REINFORCE A (πθ, Ai,t) =

{
λ, Ai,t > 0

1, Ai,t < 0
λ < 1

Entropy Advantage A (πθ, Ai,t) = Ai,t +min
(
α · Hdetach

it , |Ait|
κ

)
α > 0, κ > 1

PPL-based A (πθ, Ai,t) = Ai,t(1− αlog-PPL(oi))

Position-based A (πθ, Ai,t) = Ai,t + γsign(Ai,t)σ(rit) rit: token’s relative position

Forking Tokens Iε = Iε ∧ I(Hit > τD)

Clip-Cov Iε = Iε ∧ I
((

log πθ(oi,t)− 1
N

∑N
j=1 log πθ(yj)

)(
A(oi,t)− 1

N

∑N
j=1 A(yj)

)
> τD

)
KL-Cov R (πθ) =

πold(oi,t|q,oi,<t)
πθ(oi,t|q,oi,<t)

− 1
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