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ABSTRACT

Multi-task learning (MTL) has emerged as an imperative machine learning tool to
solve multiple learning tasks simultaneously and has been successfully applied to
healthcare, marketing, and biomedical fields. However, in order to borrow infor-
mation across different tasks effectively, it is essential to utilize both homogeneous
and heterogeneous information. Among the extensive literature on MTL, vari-
ous forms of heterogeneity are presented in MTL problems, such as block-wise,
distribution, and posterior heterogeneity. Existing methods, however, struggle to
tackle these forms of heterogeneity simultaneously in a unified framework. In
this paper, we propose a two-step learning strategy for MTL which addresses the
aforementioned heterogeneity. First, we impute the missing blocks using shared
representations extracted from homogeneous source across different tasks. Next,
we disentangle the mappings between input features and responses into a shared
component and a task-specific component, respectively, thereby enabling infor-
mation borrowing through the shared component. Our numerical experiments and
real-data analysis from the ADNI database demonstrate the superior MTL per-
formance of the proposed method compared to a single task learning and other
competing methods.

1 INTRODUCTION

Motivation. Many datasets for specific scientific tasks lack sufficient samples to train an accurate
machine learning model. In recent decades, multi-task learning (MTL) has become a powerful tool
to borrow information across related tasks for improved learning capacity. In addition, data collected
for each task might come from multiple sources; for example, clinic notes, medical images, and
lab tests are collected for medical diagnosis. The multi-source data brings richer information for
each task, potentially enhancing the MTL. However, this also imposes several key challenges. First
of all, it is common that observed data sources for each task are heterogeneous, so some blocks
(certain data sources for certain tasks) could be entirely missing, termed as a block-wise missing
structure in the literature. Second, even if the observed data sources are aligned across tasks, the
distribution of the same data source could be heterogeneous, referred to as distribution heterogeneity.
Furthermore, the associations between features and responses could vary due to distinct scientific
goals or other factors, which we refer to as posterior heterogeneity. In the following, we provide
concrete motivating examples to illustrate these challenges in different problems.

Example 1: Medical multi-source datasets. Multi-source data are widely observed in medical
applications and offer more comprehensive information than single-source data. For example, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset includes medical imaging, biosam-
ples, gene expression, and demographic information (Mueller et al., 2005ajb). However, entire
blocks of data are often missing when certain sources become unnecessary or infeasible to collect
due to known factors or patient conditions (Madden et al., 2016).

Example 2: Single-cell multi-omics datasets. Data from different experimental batches often
exhibit distribution heterogeneity across various omics measurements. For instance, transcriptome
data collected from different batches can display varying patterns due to differences in experimental
conditions or technical variability (Cao et al.| [2022aZb). In multi-omics datasets, sequencing data
distributions also differ across various cancer types (Subramanian et al.,2020).
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Example 3: Combining randomized controlled trials (RCTs) and observational data. Combin-
ing RCTs and observational data has become effective for deriving causal effects due to the high
costs and limited participant numbers in RCTs (Colnet et al., 2024). However, RCTs and obser-
vational data often exhibit posterior heterogeneity (L1 et al.| [2024al); for instance, causal effects in
RCTs may differ from associations in observational data due to the controlled conditions of RCTs
(Imbens & Rubin, 2015).

Challenges. The challenge in MTL is to incorporate various forms of heterogeneity, each intro-
ducing a unique challenge. Block-wise heterogeneity complicates the integration of data as missing
patterns vary across tasks, making it difficult to leverage shared information efficiently. For example,
in the ADNI dataset, imaging features are present in all datasets, but genetic information is available
only in specific subsets (Xue & Qul, |2021). In addition, distribution heterogeneity can also lead to
biased or misleading scientific conclusions if not addressed properly. For instance, in multi-omics
datasets, sequencing data vary significantly across different cancer types (Subramanian et al.,[2020).
Lastly, posterior heterogeneity affects the accuracy of predictions. For example, the relationships
identified in RCTs often do not align with those observational data collected in real-life settings
(Kent et al., 2018} [2020). While each type of heterogeneity imposes its own challenge, addressing
all three challenges simultaneously under a unified framework presents significant obstacles, and to
our best knowledge, current MTL methods are not equipped to handle these intricate dilemmas.

Contributions. In this work, we propose a unified MTL framework to address three types of het-
erogeneity in MTL. There are three key contributions: First, we propose a novel block-wise missing
imputation method which effectively handles distribution heterogeneity by learning both shared and
task-specific representations, uncovering complex structures between sources, and enabling better
generalization during imputation. Second, we disentangle the associations between all input fea-
tures and responses into shared and task-specific components, allowing for the effective integration
of information while adapting to differences across tasks. Third, we propose an MTL architecture
consisting of two parts to construct these associations. The first part builds heterogeneous feature
spaces, while the second part learns responses, jointly addressing both distribution and posterior het-
erogeneity. We validate the proposed framework on synthetic and real-world datasets, demonstrating
its superior performance in handling block-wise missing data and various levels of heterogeneity.

2 RELATED WORK

Multi-source data integration. Several related works on multi-source data collected for the same
set of samples fall within the Joint and Individual Variation Explained (JIVE) framework. These
methods are classified as unsupervised or supervised JIVE, depending on the presence of responses.
Unsupervised JIVE and its variants learn joint, individual, and partially shared structures from multi-
ple data matrices through low-rank approximations (Lock et al., 2013} |Feng et al.,|2018};|Gaynanova
& L1, 20195 |Choi & Jung) 20225 Y1 et al., [2023] James et al., |2024)). Supervised JIVE, on the other
hand, focuses on regression for multi-source data (Gao et al., 2021} [Palzer et al. 2022} Zhang &
Gaynanova, |2022; [Wang & Lockl 2024). Similarly, factor models have been applied to multi-source
data in a supervised setting (Shu et al., 2020; |[Li & Li, [2022; |/Anceschi et al.| [2024). While these
methods can effectively address distribution heterogeneity across different sources in linear settings,
they are limited in scope, as they capture only simple data structures within a single task.

Multi-source block-wise missing data integration. Recently, several methods have been devel-
oped to address block-wise missing data. These methods can be divided into two categories based
on whether imputation is involved. Imputation-based methods assume consistent correlations be-
tween different sources across datasets, allowing for the imputation of missing blocks (Gao & Lee,
2017; [Le Morvan et al.,|2021; Xue & Qu} [2021}; [Xue et al., 2021; [Zhou et al., 2021} |Ouyang et al.,
2024])). For example, | Xue & Qu| (2021} and | Xue et al.[(2021)) construct estimating equations using
all available information and integrate informative estimating functions to achieve efficient estima-
tors. On the other hand, non-imputation-based methods focus on learning the covariance matrices
among predictors and between the response and predictors from the observed blocks (Yuan et al.,
2012; [ Xiang et al.| [2014; [Yu et al., 2020} [Li et al., 2024b). While these methods perform well in
the absence of distribution shift and posterior shift, effectively utilizing all block-wise missing data,
they struggle to handle distribution or posterior heterogeneity.
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Multi-task learning (MTL). There is a growing literature on learning multiple tasks simultane-
ously with a shared model; see [Zhang & Yang (2018)); (Crawshaw| (2020); |[Zhang & Yang (2021}
for reviews. Here, we primarily focus on MTL with deep neural networks, as these networks can
capture more complex relationships. These methods can be broadly classified into four categories:
The first category is balancing individual loss functions for different tasks, which is a common ap-
proach to ease multi-task optimization (Du et al., 2018} |Gong et al.l 2019; |[Hang et al., 2023} (Wu
et al.}2024). The second category involves regularization, especially in the form of hard parameter
sharing (Subramanian et al., 2018} |Liu et al., | 2019; Maziarka et al.,|2022)) and soft parameter sharing
(Ullrich et al., [2017} |[Lee et al., 2018; Han et al.| 2024). The third category addresses the challenge
of negative transfer, where explicit gradient modulation is used to alleviate conflicts in learning dy-
namics between tasks (Lopez-Paz & Ranzato, |2017; |Chaudhry et al.l 2018; Maninis et al., 2019;
Abdollahzadeh et al.l |2021; [Hu et al.l [2022; |Wang et al., [2024b). The fourth category uses knowl-
edge distillation to transfer knowledge from single-task networks to a multi-task student network
(Rusu et al., |2015; [Teh et al., 2017; |Clark et al.l [2019; ID’Eramo et al.| [2024). Although MTL can
integrate data from multiple tasks, it is limited in addressing different types of heterogeneity and is
constrained by the assumption of a fully observed setting.

Most related work focuses on addressing a single challenge, such as posterior heterogeneity or the
missing data problem, but typically fails to address all challenges simultaneously. In contrast, our
proposed method extends these approaches by tackling both distribution and posterior heterogeneity
in a block-wise missing setting. This enables a more comprehensive integration of data across tasks,
resulting in improved performance in MTL.

3 TwoO-STEP MTL FOR HETEROGENEOUS MULTI-SOURCE BLOCK-WISE
MISSING DATA

Notation. We introduce the notations used in this paper. Vectors and matrices are denoted by x and
X, respectively. The ¢; and ¢5 norms of a vector « are ||x||; and ||x||2, and the Frobenius norm
of a matrix X is | X||p. The symbol | represents concatenation. For example, [x1|z2] denotes
concatenating a p; X 1 vector &1 and a py X 1 vector @2 into a (p; + p2) x 1 vector. Similarly,
[X1]X ] denotes concatenating an n X p; matrix X and an n X p, matrix X5 into an n X (p1 + p2)

matrix. We define [r] = {1,2,...,r} as the set of integers from 1 to r.

Problem Description. Suppose we have data from  Anchor Specific Sources Response
T tasks, with features collected from 71" + 1 sources.

For all tasks, we assume that a common source, x} x} y!

called the anchoring source, is observed. Addition-
ally, each task has its own task-specific source, de-

noted as x! for the s-th source in the t-th task. xj 3 y?
Specifically, «{, represents the anchoring source ob- " 3 .
served in the t-th task, and w% denotes the task- ) T3 Y
specific source for the ¢-th task, while {z’}0 ¢+ are n 0 0
missing. For the ¢-th task, we observe n; samples Lo Ly Y

{lxh ;| ;], vi }i, - This block-wise missing pattern
is common in real-world applications. For exam- . o
ple, in biomedical data, some measurements (data Figure 1: Block-wise missing pattern for 4
sources) are widely observed for all subjects, while tasks and 5 sources, .mcludmg an anchoring
some measurements are only collected to a subgroup ~Source and task-specific sources.

of subjects due to various reasons. Concretely, in the ADNI data that we analyzed in Section [4.3]
MRI is crucial to monitor the cognitive impairment development of Alzheimer’s patients, so it is
measured for all subjects, while gene expression and PET images are less crucial and are only ob-
served for two subgroups separately. Another example is the split questionnaire design, which aims
to reduce respondent fatigue and improve response rates by assigning different subsets of the ques-
tionnaire to different sampled respondents (Lin et al.,[2023). In Figure[I} we provide an example of a
block-wise missing pattern for 4 tasks and 5 sources, where the blue source ) for ¢ € [4] represents
the anchoring source observed by all four tasks, and each task also has a uniquely observed specific
source x for t € [4]. Our goal is to perform MTL on these tasks with block-wise missing data.
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FigureT]illustrates one of the challenges in MTL. Each task has different missing blocks; for exam-
ple, in the first task, sources 2, 3, and 4 are missing, while in the second task, sources 1, 3, and 4
are missing. Furthermore, both distribution and posterior heterogeneity across tasks complicate the
application of standard imputation methods (Nair et al.,2019; He et al.||2024alb) and MTL methods
(Kouw & Loog, [2018; |Lee et al., 2024; Maity et al., 2024).

3.1 HETEROGENEOUS BLOCK-WISE IMPUTATION

In this section, we propose the first step, Heterogeneous Block-wise Imputation (HBI) for imputing
the missing blocks while leveraging distribution heterogeneity across tasks. HBI extracts disentan-
gled hidden representations from the anchoring source x(, including a shared representation across
tasks and a task-specific representation for each task. The shared representation is then used to
impute the missing blocks, improving generalization across tasks.

For T tasks and T" + 1 sources, we impute the task-

1] 1 1 1 1
specific sources in a parallel fashion. For each task- o ! v e v
: i : 2 2] .2 2 2
specific source s # 0, we utilize the anchoring | &§ 5 T g g
source across all tasks and x3 to impute the unob-
: .
served blocks {x’};xs. In particular, for the t-th zd ! zl zd 2]

source, only the ¢-th task has observed values for the
features . The imputation aims to use the observed
x} and x! along with z;" = {z}, to estimate
the missing features in the ¢-th source for the other
T — 1 tasks, where x; © = {x]}, are unobserved. For example, in Figure we use information
from x, x}, and z; ' = {3, x3, x3} to impute the missing blocks ;' = {x}, &}, x]} for the
task 1-specific source.

Figure 2: Illustration of parallel imputation
for task-specific sources.

This is accomplished by learning a model that ex- Bt D

ploits both the shared and task-specific informa- Ao Plg a0
tion of the data, allowing for accurate prediction

of missing values based on the available observed

data. To fully integrate multi-source information, : E. 1/ G o
we leverage an encoder-decoder framework, which &0 i : e
is well-suited for capturing non-linear relationships :

in data. Let E.(-) be a common encoder that maps . E. 1l - R
{xt,x;"} to shared representations f! = E.(x}) g

and f7! = FE.(x;") across all T tasks. Let

El(-) and E,*(-) be task-specific encoders that map m Fi[T) D o
x}h and x;" to task-specific representations g¢ = o g Z

E!(x}) and g=' = E;'(zy"). Then, D(f,g)
serves as a decoder that reconstructs the anchoring
source xo from f and g. Finally, G(f) is a pre-
dictor that maps the shared representation f to the

Figure 3: Illustration of HBI for the task ¢-
specific source x;. A common encoder E,(-)

task t-specific source x;. The resulting heteroge-
neous block-wise imputation model is illustrated in

Figure

In Figure[3] we assume that the relationship between
the anchoring source xy and the task ¢-specific
source x; can be borrowed through the shared rep-
resentations f, the common encoder E.(-), and the
decoder G(-). This allows us to utilize the shared in-
formation (reflected in f* and f~*) for imputation,
while also accounting for the heterogeneity between
xb and z, " (reflected in g* and g—*). Existing impu-
tation methods often learn the relationship between
xo and x; within the ¢-th task and apply the rela-

learns to capture representation components
that are shared among tasks. Task-specific
encoders E,(-) (one for the ¢-th task, and
one for the other 7" — 1 tasks) learn to cap-
ture task-specific components of the repre-
sentations. A decoder learns to reconstruct
the anchoring source x( by using both shared
and task-specific representations. The shared
part of the relationship between the anchor-
ing source x( and the task ¢-specific source
@ can be borrowed through E.(-) and G(-)
for imputation. See the text for more infor-
mation.

tionship to other tasks, overlooking distribution heterogeneity (Xue et al., [2021; [Zhou et al., [2021).
Moreover, common imputation methods rely on parametric models which fail to capture complex re-
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lationships in missing data (Xue & Qu, 2021} |Li et al., 2023). However, our HBI method effectively
overcomes these obstacles. Notably, HBI's extraction of the common components in the relation-
ships between sources across different tasks shares similarities with domain adaptation (Mansour
et al., 2008} [Bousmalis et al., 2016} [Tzeng et al.l [2017; [Farahani et al., [2021) but focuses on com-
pleting block-wise missing data. This architecture effectively models complex data structures and
interactions, providing a robust tool for understanding intricate patterns. The resulting optimization
can be formulated as:

(EC(')5 ngy() Ep_f()a ﬁ()’ @()) = arg min{ﬁpre + £recon}7 (1)

In (E]), the prediction loss Ly trains the model to predict a}, the target of interest, which is applied
only to the ¢-th task. We use the following loss function:

£pre = Z l(wizv G(Ec(wto,i)))?
i=1

where x; denotes the observed sample, and I(-,-) can be the mean squared error for continuous
outcomes or cross-entropy for binary outcomes (this applies similarly to the following symbols).
For the reconstruction loss in (1)),

Nt n—t

Lrecon = Y U(h 3 D(Ee(h 1), Ep(a ) + ) Uwmof, D(Ee(xgf), By (241))),
i=1 i=1

where n_y = >, n,. Then, we can train (1) to obtain the estimators E.(-) and G(-). Con-

sequently, we compute Z; © = @(Ec(wg %)). Note that li is constructed based on task t-specific
source imputation. Similarly, we can construct imputations for the other 7' — 1 sources. When
performing imputation for different sources using HBI, the learned hidden representations and cor-
responding generative functions adapt dynamically. This adaptation is crucial as it allows the model
to accommodate the unique information of each source. The complete algorithm for parallel hetero-
geneous imputation is provided in Appendix

Our proposed HBI method ensures that the imputation model leverages common information across
tasks while incorporating the heterogeneity of each task. By decomposing the latent space into
shared and task-specific components, we gain a nuanced understanding of how input features from
different sources interact, thereby enhancing imputation accuracy.

3.2 HETEROGENEOUS MULTI-TASK LEARNING

In this section, we propose our MTL framework to accommodate distribution and posterior hetero-
geneity given the imputed blocks from HBI. Similar to the disentangled representations for features,
we also model the association between features and responses as two components: a shared function
mapping and a task-specific function mapping. Specifically, for the ¢-th task, we assume that the
relationship between the response y* and the features [xf |z} |- - - |z} ] is given by:

y' = el 7)) + v ([plai| - - |27 ]), @)

where [z}|x!| - - |x%] influence y* through a shared mapping 1).(-) and a task-specific mapping
w;(-). Equationextends traditional meta-analysis, which often assumes a linear relationship in the

t-th task as y' = [zf|x!|- - - |z} T B! + &, where B¢ includes a common component p shared across
all T tasks and a unique component a! for each task (Chen et all 2021; |Cai et al., 2022; Maity
et al., 2022). Traditional meta-analysis is incapable of accommodating non-linear relationships or
varying effects. In contrast, we propose a flexible framework which accommodates non-linearities
and integrates task-specific information.

To construct the shared mapping .(-) and the task-specific mappings {¢;t)}tT:1 jointly, we
consider an MTL architecture comprising two parts. The first part builds heterogeneous
feature spaces, while the second part learns responses for all 7' tasks. Specifically, for
the t-th task, following HBI in Section we obtain samples with reconstructed features
{(@b i @y @t Th gy - 25,), Yy biey - These features can then be integrated to capture
both shared and task-specific representations, enabling the utilization of the combined data while ad-
dressing task-specific heterogeneity. During HBI, the components {Z’ }s_( + are primarily predicted
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using the anchoring source @, indicating that , serves as a common basis. To prevent redundancy,
we extract shared representations solely from the anchoring source xf. Specifically, we define

= po(xf), 3)

where ¢.(-) is a shared encoder that learns hidden information from the anchoring source for all
tasks. Meanwhile, task heterogeneity is captured by extracting representations from all features,
creating a framework in which shared representations provide a common foundation, while task-
specific details can still be preserved. For the ¢-th task, we define:

k' = (o] - 1@ @@ |- [27), 4)

where (bt is a task-specific encoder which maps the unique information within the ¢-th task. In ||
and (@), the heterogeneous feature spaces are fully captured using all data information. The task-
specific representations k capture complex interactions between different sources unique to each
task, aided by HBI in Section In practice, such interactions are crucial. For example, in the
ADNI dataset, there are intricate relationships between images and gene expression. Equation f]
accounts for this heterogeneous information. However, previous work (Moon & Carbonell, 2017;
Bica & van der Schaar 2022) often oversimplifies these interactions by focusing only on task-
specific sources, neglecting a wealth of shared information from other tasks.

For the second part, we consider a network architecture for learning responses in all 7' tasks,
consisting of L layers with both shared and task-specific subspaces (Ruder et al. 2019; |Curth
& Van der Schaar, 2021; Bica & van der Schaar, 2022)). For simplicity, in the ¢-th task, let
k} and h} represent the inputs, and k; and h| the outputs of the [-th layer. For I = 1, set
ki = [h'|k!] and hY = ki. For [ > 1, the inputs to the (I + 1)-th layer are given by
klt 41 = [hjlk;] and b} = [h{]. Let g(-) be the association function in the ¢-th task, defined as
g ([hL|kL]) = Ye([xglat]- - |[27]) + ¥ ([zh|zi]- - - [25]), where g*(-) is a linear function for
continuous outcomes and a sigmoid function for binary ones.

Flgure M] illustrates the construction of the shared  task I

mapping 1. (-) and the task-specific mappings 1/) ) S N B y!

and 12 (-) for two tasks. For task 1, the input fea- i _/D l

tures consist of [@}|x!|Z1], where #} represents the |1

imputed source. In the first part, we build the het- o h1 D |ﬂ|

erogeneous feature space by extracting the shared be

representation h! = ¢.(x}) and the task-specific 5 |

representation k' = ¢l([z}|x}|@3]). Similarly, [£0 L !

for task 2 we extract h? = ¢.(z3) and k? = o

o2 ([23 2]). Next, we utilize the palrs {h1 k:l} 2 &2 7z K’ "
P

and {h?, k?} to model the responses y* and y2,
spectively. In Figure [} the blue mapping illustrates tusk z i )

the shared mapping t.(-), while the orange and yel- Figure 4: Illustratlon of the construction of
low mappings represent the task-specific mappings Shared mapping and task-specific mappings
¥, () and 17 (-) for tasks 1 and 2, respectively. for two tasks.

The above construction allows us to define the following integrated loss across all T tasks:

"

Linteg = Z Zl (v 9 z|kth])) o)

t=1 i=1

Similar to Bousmalis et al.|(2016)), we also incorporate an orthogonality regularizer, defined as:
Rorth = le (H")"K'|%, ©6)

where H® and K are matrices whose rows are the hidden representations h! and k!, respectively.
Furthermore, in (@), the input is [« | - -~ |&}_, |@]|Z}, | - |Z}], where x{ and ] are the ob-
served data, and {55‘;}5750’,5 are obtained through imputation. Since imputation can introduce errors,
we also downweight the imputed data {Z'}s.o: compared to observed data for learning k' by
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applying a regularizer to the parameters of the first layer of the encoder ¢;(-), defined as:

Rimp = ZZII toallE, (7

t=1 s£0,t

where ©, | are the parameters of the first layer of ¢! (-) corresponding to {2} 0. This regu-
larizer downweights potentially less accurate imputed features by penalizing the magnitude of the
encoder parameters, fostering a model more robust to imputation errors. To further reduce redun-
dancy between the shared and task-specific layers, we introduce an orthogonal regularizer (Ruder,
et al., [2019; [Bica & van der Schaar| [2022). Let di’lfl and d;’lil be the dimensions of h{_; and

k{_,, the outputs of the (I — 1)-th layer. Denote the weights in the I-th layer as ©, ; € Rée.i-1%de
and 92,1 € Reatdy 1) xdp1 Ve apply the following regularizer:

T L
Ra= > OO, 14, I )

t=1 [=1

By combining the losses from (3), (), (7), and (8], we train the set of all parameters © using the
following integrated loss function:

(/(ch {"Z:;}lgth) = a*rger)nin{['inleg + 'YRorlh + 6Rimp + '%Rdr}y

where «, §, and ~ are weights controlling the balance among different terms. The more detailed
algorithm for heterogeneous MTL is provided in Appendix [A.4]

4 EXPERIMENTS

In this section, we conduct extensive numerical experiments, including two-task MTL, multi-task
MTL with more than two tasks, and an application to the ADNI real dataset. The numerical exper-
iments demonstrate that our proposed two-step MTL method effectively aggregates information in
the presence of block-wise, distribution, and posterior heterogeneity.

4.1 MTL FOR TWO TASKS

We address a common real-world scenario involving MTL with two tasks for illustration. The data
generation process (DGP) is as follows:

DGP: For Task 1, the features are denoted as «' = [z}|z}|z3] and follow a Gaussian distribution
with mean O and an exchangeable covariance matrix. The variance is fixed at 1, and the covariance
structure is specified as (pl)o'm'i’j'. We randomly generate n; samples, with the third block x3
missing in Task 1. For Task 2, the features are denoted as x> = [x3 2], where x? follows a
Gaussian distribution with mean 0, variance 1, and covariance structure (pz)°-°**=J!. In this task,
we generate 1y samples, with the second block =2 missing. The responses are defined as:

1

p
y Ve,a(g)’/p+ (1 — @) Zvl,dxé/PJrEh

M@

«

d=1

hS]

le\:

[

Q
Mv

ve,a(27)’/p+ (1 — @) Z V2,a%5/D + €2,

Y
Il
—

where p = Zi:o Ds, With p, being the dimension of the s-th source, and the subscript d denotes the
d-th element of a vector (this notation applies to subsequent symbols as well). The parameters Ve, V1,
and vy are sampled from N (—10,102), and the noise terms e; ~ N (0,0%) and g3 ~ N(0,03). The
parameter « controls the level of sharing across tasks. Additionally, our DGP accounts for nonlinear
relationships by element-wise square, further increasing the complexity of MTL. For evaluation, we
calculate the average root-mean-squared error (RMSE) on the testing data, as defined in Appendix
[A2] We conduct experiments under various settings to compare the proposed MTL for hetero-
geneous multi-source block-wise missing data (MTL-HMB) against existing methods, including
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Single Task Learning (STL) and Transfer Learning for Heterogeneous Data (HTL) (Bica & van der
Schaar, 2022)).

Setting A: Effect of covariance parameters. We set n; = ny = 300, pg = 100, p1 = p2 = 25,
a = 0.3, and 07 = 09 = 0.1. To examine the impact of the covariance parameters p; and py, we set
p1 = p2 and vary them from 0.5 to 0.95, assuming no distribution heterogeneity across datasets. As
shown in Figure [5(a)] increasing correlation improves prediction accuracy across all methods. The
proposed MTL-HMB is the best performer. Specifically, at p = 0.95, it outperforms the others by
more than 28.33 %. Even at p = 0.5, despite imputation errors, our method maintains an advantage.
This demonstrates that imputation enhances prediction, especially when distribution heterogeneity
is absent.

Setting B: Effect of heterogeneous covariance parameters. We set n; = ny = 300, pg = 100,
p1 = p2 = 25, = 0.3, and o7 = o9 = 0.1. To assess the impact of heterogeneous covariance,
we fix p; = 0.95 and vary ps from 0.5 to 0.9. Smaller p, indicates greater heterogeneity and
weaker correlations in Task 2, making predictions more challenging. Figure shows that as
p2 increases, all methods improve, and our approach consistently leads. At the highest level of
heterogeneity, MTL-HMB outperforms HTL by over 20.91 %. Moreover, HTL shows no advantage
over STL, indicating that transfer learning struggles with distribution heterogeneity. In contrast, the
proposed method effectively solves the heterogeneity challenge through imputation, achieving better
predictive accuracy.

Setting C: Effect of heterogeneous mappings. We set ny = ne = 300, pg = 100, p1 = p2 = 25,
p1 = p2 = 0.8, and 01 = 02 = 0.1. The parameter « is varied to control the level of information
sharing in the mappings to the response. A larger o indicates more shared information. With p; = pa
fixed, heterogeneity is governed solely by «. Figure shows that as « increases, the magnitude
of y also increases, resulting in higher average RMSEs. Except at « = 0.1, HTL consistently
outperforms STL, indicating its advantage in incorporating posterior shift. Overall, the proposed
MTL-HMB performs the best across all settings, even in the absence of distribution heterogeneity.

Setting D: Effect of sample sizes. We set pg = 100, p1 = ps = 25, p1 = 0.95, po = 0.7,
a = 0.3, and 07 = 09 = 0.1. The sample sizes n; and no vary as n; = ny = k x 100 for
k=1,...,6. Figure shows that as the sample size increases, average RMSEs decrease, and
the corresponding variability of estimator is reduced across all methods. Our method consistently
performs best, with an improvement of over 18.13 % compared to HTL. This is particularly notable
at smaller sample sizes such as 100, where MTL-HMB outperforms HTL and STL by 37.13 %
and 38.06 %, respectively. Additionally, HTL does not significantly outperform STL, indicating
difficulty in handling distribution heterogeneity.

Setting E: Effect of dimensions. We set n; = ne = 300, p; = 0.95, po = 0.7, « = 0.3, and
01 = oo = 0.1. To assess the impact of dimensions p1, po2, and ps, we fix p; = 100 and vary
p2 =p3 =k x25fork =1,...,4. Figure shows that increasing dimensions make predic-
tion more challenging, leading to higher average RMSEs for all methods. Our method consistently
outperforms the others, with at least 7.88 % and 10.73 % improvements over HTL and STL, respec-
tively. Moreover, it exhibits greater stability, refleced by lower RMSEs at both the 75th and 25th
percentiles.

Setting F: Effect of heterogeneous noise levels. We set n; = no = 300, pg = 100, p1 = ps = 25,
p1 = 0.95, pa = 0.7. By fixing oo = 0.1 and varying o7 from 0.1 to 0.5, we assess the impact of
different noise levels. Figure [5(f)|shows that HTL lacks a clear advantage over STL, indicating that
distribution heterogeneity leads to degenerated HTL’s performance. Our MTL-HMB consistently
outperforms the competing methods, demonstrating robustness in addressing both distribution and
posterior heterogeneity. Furthermore, MTL-HMB excels at lower prediction levels, with neither
STL nor HTL matching its performance at the 25th percentile.

4.2 MTL FOR MULTIPLE TASKS

To save space, the DGP for number of tasks greater than 2 is detailed in Appendix We select
T =2,T = 3,and T' = 4, with the prediction results summarized in Figure @ As shown in Figure
[6(a)] increasing the number of heterogeneous tasks makes prediction more challenging, resulting in
higher average RMSEs. This underscores the complexity of integrating diverse data. Nevertheless,
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Figure 5: Boxplots of average RMSEs under Settings A to F for the three methods. The methods
are distinguished by color: orange for STL, green for HTL, and blue for the proposed MTL-HMB.
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Figure 6: Boxplots of average RMSEs under multiple settings across three methods. The methods
are differentiated by color: orange for STL, green for HTL, and blue for our proposed MTL-HMB.

our MTL-HMB consistently outperforms the other methods and shows the smallest RMSE standard
deviation, indicating greater robustness and reliability. We focus on the first task, considering it the
“easiest” due to the highest observed correlations. Figure [6(b)| shows that for this “easy” task, as
more tasks are integrated, the improvement of our method decreases due to increasing heterogeneity.
Additionally, we observe that in two-task learning, the second task is the most challenging; in three-
task learning, it is the third task; and in four-task learning, it is the fourth task. This pattern indicates
that as the number of integrated tasks increases, the complexity of learning escalates, particularly
for the most recently added task. To quantify these challenges, we compile the RMSEs for the most
difficult tasks in Figure which shows that our MTL-HMB excels in these challenging tasks,
consistently outperforming the other methods. For example, in the four-task integration, our method
achieves over 18.22 % improvement compared to the HTL.

4.3 ADNI REAL DATA APPLICATION

We perform MTL using the ADNI database. The first task has 72 samples with features from MRI
and PET sources, denoted as X ¢ and X{. The second task has 69 samples with features from MRI
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and GENE sources, denoted as X3 and X 3. The MRI source includes 267 features, PET includes
113, and GENE includes 300. For the response variable, we use the Mini-Mental State Examination
(MMSE), which measures cognitive impairment and serves as a diagnostic indicator of Alzheimer’s
disease (Tombaugh & Mclntyrel [1992). We provide a detailed description of the ADNI database in

Appendix

Although both tasks share the MRI source, significant
heterogeneity may still exist between the two datasets. _Method  Task 1 Task 2

To quantitatively assess this heterogeneity, we calculate ~ STL 2.74(0.87)  4.57(1.15)
the Maximum Mean Discrepancy (MMD) distance be-  HTL 2.86(0.75)  4.34(1.47)
tween X¢ and XZ. Additionally, a permutation test  Qurs 2.66(0.59) 3.59(0.98)
is conducted to determine whether the differences be-
tween these sample sets are statistically significant. The Taple 1: Prediction accuracy on testing
test yields a p-value of 1 x 1075, indicating significant data, measured by RMSE.

differences between X ¢ and X and therefore a neces-

sity of incorporating heterogeneity among homogeneous source in MTL. Furthermore, the small
sample sizes in both tasks impose challenges for prediction, where MTL can potentially enhance
performance. For both datasets, we use 60% of the samples for training, 20% for model selection
and early stopping, and calculate RMSE on the remaining 20% for testing. The experiment is re-
peated 30 times, and the results are summarized in Table E} Our MTL-HMB yields lower prediction
errors in both tasks, particularly in Task 2, where it improves performance by at least 17.28% com-
pared to the other two methods, despite the small sample sizes. HTL performs worse than STL due
to ignoring the significant heterogeneity between X¢ and X¢Z.

Figure [/| presents the t-SNE visualization of the la-
tent representations obtained from a single training ses- 10 &
sion, where the proposed MTL-HMB method effec-

tively captures both shared and task-specific represen-
tations. Notably, the shared representations of the two
tasks form a single cluster, while the task-specific rep-
resentations of the two tasks exhibit significant dif-

ferences in their distributions. This indicates that the -20 Py I:ti:;z:f?c
datasets for the two tasks share certain commonalities y 4 Task 2 Specific
while also displaying clear heterogeneity, which re- 1o 0 10 20
quires careful consideration during integration. t-SNE Dimension 1

,,
@

o
@
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Figure 7: The t-SNE visualization of the
5 DISCUSSION learned task-specific and shared represen-
tations.

In this paper, we propose a novel two-step strategy for effective MTL in the context of block-wise
missing data in conjunction with different types of heterogeneity. The first step addresses distribu-
tion heterogeneity using integrated imputation, while the second step integrates learning to overcome
distribution and posterior heterogeneity. We conduct extensive numerical experiments to validate the
superiority of the proposed method across various levels of heterogeneity. Additionally, in the ADNI
real-world dataset, our approach achieves significant improvements in both tasks. In the following,
we provide the limitations and outline directions for future work, primarily focusing on transforming
the two-step process into a single-step approach. In this unified method, the shared and task-specific
hidden representations can be used for both imputing missing data and posterior learning simultane-
ously, as detailed in Appendix
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A APPENDIX

In Appendix [A.T] we further expand on the related works described in Section 2}
In Appendix we provide the detailed DGP used in Section

In Appendix [A.3] we conduct ablation experiments to demonstrate the individual roles of the two
steps in our proposed method.

In Appendix [A.4] we provide the pseudo-code for the proposed MTL-HMB.

In Appendix [A.5] we include detailed experimental information, including the real data description
and implementation details.

In Appendix[A.6] we discuss the limitations of our work and potential future research directions.

In Appendix we display all qualitative results in Section [d and compare with additional statis-
tical method.

A.1 EXPANDED RELATED WORKS

Multi-group data integration. Multi-group data integration and MTL share the common goal of
learning from multiple datasets or tasks simultaneously. The input features and response of a sin-
gle task can be viewed as a separate group. There are several existing methods in the statistical
literature for multi-group data analysis, which can be broadly classified into three categories. The
first category designs specialized regression models (Meinshausen & Biithlmannl, 2015} [Zhao et al.,
2016;|Wang et al.| [2018;[Huang et al.l[2023a3b)) or factor regression models (Wang et al.|[2023a}b) to
handle large-scale heterogeneous data and identify group-specific structures. The second category
employs specified parameter space constraints, such as fused penalties, to estimate regression coef-
ficients that capture subgroup structures (Tang & Songl |[2016;|Ma & Huang), 2017} /Chen et al., 2021}
Li & Sang, 2019; [Tang et al., [2021} Lam et al., 2022; Duan & Wang, 2023; Zhang et al., 2024b).
The third category involves transfer learning, which borrows information from source data to target
data (Li et al.,[2022; Tian et al.,2022; Zhang & Zhu} 2022} Tian & Feng|,2023};|Cai & Pu}, 2024; Cai
et al.,2024; He et al., 2024a; Zhang et al.,[2024a). The aforementioned multi-group data integration
approaches address distribution and posterior heterogeneity but overlook block-wise missing issues.
Additionally, most methods rely on structured model assumptions, such as linearity, limiting their
capacity to capture complex relationships.

Heterogeneous feature spaces. Existing transfer learning methods mainly addressed either distri-
bution shift or posterior shift separately, with fewer studies considering both types of shifts simul-
taneously. For instance, Moon & Carbonell| (2017) investigated scenarios with both heterogeneous
feature and label spaces in the context of natural language processing. They proposed a method that
learned a common embedding for the features and labels and then established a mapping between
them. Similarly, Bica & van der Schaar| (2022)) focused on a shared label space but assumed that all
tasks had a common source, utilizing the same encoder to extract shared representations. However,
this assumption was often unrealistic in practice. Even when sources were identical, different tasks
could exhibit significant heterogeneity due to variations in subjects, locations, and experimental set-
tings. For example, in our ADNI real data (Section[4.3)), tasks sharing MRI features might still differ
due to varying experimental conditions. A key distinction in our method is that we treat this problem
as a block-wise missing data issue rather than simply considering each task to have only the observed
features. This perspective aligns more closely with the reality of medical data, where missing prob-
lem is common, and these missing features can also influence the response. Additionally, we focus
on MTL, which is designed for numerous small-sample and challenging tasks. In contrast, trans-
fer learning often assumed the existence of a large-scale dataset to support a smaller-sample task.
For example, in the experiments conducted by |[Bica & van der Schaar (2022), the source domain’s
sample size was typically more than ten times that of the target domain. However, in real-world sce-
narios, it is more common for all tasks to have relatively small and limited sample sizes. Our method
aims to provide a more comprehensive and robust learning framework by integrating heterogeneous
information across these small-sample tasks.

Block-wise Statistical Methods. Numerous statistical methods for block-wise missing data have
been proposed, and we provide a more detailed discussion here. |Yu et al.| (2020); |Wang et al.
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learn linear predictors through covariance matrix and cross-covariance vector, which can be
estimated with block-missing data without imputation. Xue & Qu| (2021); [Xue et al.| (2021)) pro-
pose a multiple block-wise imputation (MBI) approach to construct estimating equations based on
all available information and integrate estimating functions to achieve efficient estimators.
leverages block-wise missing labeled samples and further enhances estimation efficiency
by incorporating large unlabeled samples through imputation and projection. Their method is robust
to model misspecification on the missing covariates. (2024) address a similar problem
under the semi-supervised learning setting, employing a double debiased procedure without rely-
ing on imputation. [Zhou et al.|(2023)) develop an efficient block-wise overlapping noisy matrix
integration algorithm to obtain multi-source embeddings. These methods have demonstrated strong
performance in various real-world applications. For instance, Zhou et al.| (2023); L1 et al.[ (2024b)
validated their methods on electronic health record (EHR) data, demonstrating their effectiveness in
real-world applications. However, all the aforementioned methods suffer from several limitations.
First, they primarily capture linear relationships and struggle to effectively learn nonlinear patterns.
Many real-world datasets, such as multi-modal single-cell data (Tu et al 2022} [Cohen Kalafut
[2023) and imaging data (Jin et al.| 2017; [Bernal et al.l 2019), exhibit complexities that further
limit the applicability of these methods. This limitation underscores the motivation for adopting an
encoder-decoder framework in our work. Second, these methods consider the homogeneous model
setup for different tasks, for instance, assuming the same regression coefficients are applied to all
tasks. However, data heterogeneity across tasks or sources are ubiquitous in real applications, either
marginal distribution of sources or conditional distribution among sources can be distinct, which
complicates the modeling procedure. This is another motivation of our project, to effectively handle
multiple types of heterogeneity simultaneously.

A.2 DATA GENERATION PROCESS IN SECTION [4.2]

We consider MTL for multiple tasks. The DGP is similar to that in Section 1] but is extended to
accommodate more tasks. For three-task learning, the features for the ¢-th task are denoted as ! =
[ |z} |zh|x] and follow a Gaussian distribution with mean O and an exchangeable covariance
matrix. The variance is fixed at 1, and the covariance structure is determined by (p;)?-°H* =71, We
randomly generate n; samples, with only {, and ! being observed. The response y' is given by:

P P
y'=a) vea(wy)/p+(1-0a))Y vary/p+en, Vrel3).
d=1 d=1

where p = Z?:o ps. For three-task learning, we choose the following parameters: n; = ny = ng =
300, po = 125, p1 = p2 = p3 = 25, p1 = 0.95, po = p3 = 0.9, a = 0.3, v, v; ~ N(—10,10?),
and g; ~ N(0,0.01) for ¢ € [3].

For four-task learning, the features for the ¢-th task are denoted as @' = [z}|x!|x}|z}|z]] and
follow a Gaussian distribution with mean 0 and an exchangeable covariance matrix. The variance
is fixed at 1, and the covariance structure is determined by (p;)?°!1*~J. We randomly generate n;
samples, with only } and x! being observed. The response y' is given by:

P P
yt = aqud(xfi)Q/p +(1-a) thda:fi/p +e., Vreld.
d=1 d=1

where p = Z:ZO ps. For four-task learning, we choose the following parameters: n; = no = ng =
ng = 300, pg = 125, p1 = pa = p3 = ps = 25, p1 = 0.95, p2 = p3 = p4 = 0.9, a = 0.3,
Ve, vy ~ N(—10,102), and g, ~ N(0,0.01) for t € [4].

For evaluation, we focus on the average RMSE across all tasks in the testing data, defined as follows:

T M, test
1 1 . 2
RMSE = — gt —yh)”.
T tz:; Tt test ; (yz yZ)
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Figure 8: The average RMSEs of all methods across different ne sample sizes. HPS refers to hard
parameter sharing, and Imp refers to imputation.

A.3 ABLATION EXPERIMENTS

We propose an MTL framework that involves two steps: Step 1 for HBI (see Section[3.1)) and Step 2
for heterogeneous MTL (see Section [3.2)). To assess the independent effect of each step, we design
ablation experiments. In addition to comparing with STL and HTL, we consider three new ablation
experiments. The first is Step 1 + STL, which applies HBI followed by STL to evaluate the effect of
Step 2 and is denoted as Ablation 1. The second approach is Step 1 combined with a common MTL
framework (Ablation 2). Specifically, we adopt the hard parameter sharing (HPS) framework, which
shares the main layers across tasks while differentiating in the final layer, and is widely used in MTL
(Liu et al.l2019; Bai et al.,[2022). However, hard parameter sharing struggles to address distribution
heterogeneity due to the shared structure in the first L — 1 layers. The third is naive imputation + Step
2, where we ignore distribution heterogeneity to analyze the impact of disregarding heterogeneity in
imputation, denoted as Ablation 3.

The data generation process is consistent with Section [4.1] but we adopt a more challenging setting.
Specifically, we set p; = 100, po = 25, p3 = 25, p1 = 0.8, p2 = 0.6, « = 0.3, and 01 = 02 = 0.1.
We analyze the impact of sample sizes n; and ny on three methods by fixing 7, = 300 and varying
ng asng = k x 100 for k = 1, ..., 4. The experiments are repeated 30 times, and the mean RMSE
per task is computed, with the results summarized in Figure[§] It is important to note that, due to the
presence of distribution heterogeneity in this setting, HTL performs the worst.

We analyze the ablation results from different perspectives. First, it is evident that both Ablation 3
and our proposed MTL-HMB outperform STL, Ablation 1, and Ablation 2, indicating that Step 2
plays a crucial role in enhancing prediction performance. Second, by comparing Ablation 1 with
STL, we observe that Ablation 1 consistently achieves lower loss across different sample sizes,
demonstrating that Step 1 improves predictions for a single dataset. Third, when comparing Abla-
tion 3 with our proposed method, Ablation 3 shows higher loss, suggesting that ignoring distribution
heterogeneity in imputation negatively impacts performance. Fourth, we compare Ablation 1, Ab-
lation 2, and our proposed MTL-HMB method, all of which incorporate Step 1. The prediction
results demonstrate that our method outperforms both Ablation 2 and Ablation 1. This indicates
that our MTL framework in Step 2 is more effective than hard parameter sharing, as it accounts for
distribution heterogeneity, while hard parameter sharing performs better than STL. Fifth, even when
comparing Ablation 2 with Ablation 3—which uses a less effective imputation method—the latter
still achieves better predictive performance. This further highlights the advantages of Step 2 over
traditional MTL approaches. Overall, the ablation experiments demonstrate that when both distri-
bution and posterior heterogeneity are present, both steps of our proposed framework are crucial.

A.4 PSEUDO-CODE FOR OUR PROPOSED MTL-HMB

Algorithm[T]provides the pseudo-code for training our proposed MTL method. For simplicity, we set
the mini-batch size to be the same across all T" datasets: B' = B for ¢ € [T]. For HBI, we divide the
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data into training and testing sets and train the parameters on the training set. Early stopping is ap-
plied to L on the ¢-th dataset’s testing data to check for convergence and perform model selection.
For heterogeneous MTL, the data is split into training, validation, and testing sets. Parameters are
trained on the training set, and the best hyperparameter combination is selected using the validation
set. Early stopping is applied to Liye, on the validation set to check for convergence, and the final
prediction metrics are calculated on the test set. In practice, we choose the regularization parameters
7, 8, and & from the set [0.01, 0.1, 1] for R, Rimp> and Rq;. In our experiments, we found that the
selection of v, d, and « is robust, having minimal impact on the final prediction performance.

A.5 EXPERIMENTAL DETAILS
A.5.1 DATASET DESCRIPTION

In this subsection, we provide a detailed description of the ADNI database used in Section 4.3
The ADNI study (Mueller et al.| [2005a) aims to identify biomarkers that track the progression of
Alzheimer’s disease (AD). The MMSE score, which measures cognitive impairment, is treated as the
response variable, and we aim to select biomarkers from three complementary data sources: MRI,
PET, and gene expression. Given the sparsity assumption, we use region of interest (ROI) level data
rather than raw imaging data, as the latter might not be suitable for our method. MRI variables
include volumes, cortical thickness, and surface areas, while PET features represent standard uptake
value ratios (SUVR) of different ROIs. Gene expression variables are derived from blood samples
and represent expression levels at different gene probes. To reduce the number of gene expression
variables, we apply sure independence screening (SIS), narrowing it down to 300 variables. This
results in a total of 680 features, including 267 MRI features and 113 PET features. The data is
sourced from ADNI-2 at month 48, where block-wise missingness occurs due to factors such as
low-quality images or patient dropout. Using visit codes, we align MMSE with the imaging data
to ensure they are measured within the same month. Ultimately, we obtained two datasets: dataset
1 contains only MRI and PET sources, while dataset 2 includes MRI and gene expression sources.
Both datasets have relatively small sample sizes, underscoring the importance of effectively using
incomplete observations in the analysis.

A.5.2 IMPLEMENTATION DETAILS AND HYPERPARAMETER TUNING

In Section ] we compare our proposed method (MTL-HMB) with Single Task Learning (STL)
and Heterogeneous Transfer Learning (HTL). Here, we provide the implementation details of these
three methods. For STL, we use standard deep neural networks to train each dataset individually. In
contrast, HTL assumes no heterogeneity in the anchoring source and extracts task-shared represen-
tations from it, while task-specific representations are derived from task-specific sources.

STL. For STL, we use standard deep neural networks to train each dataset individually. Each dataset
is split into 60% for training, 20% for validation, and 20% for testing. On the training set, we
perform hyperparameter tuning, including network width from {32, 64, 128}, depth from {2, 3, 4,
5}, and batch size from {8, 16, 32} (with 8 included due to the smaller sample size in the ADNI
database). Additionally, we set the learning rate to 0.001 and the early-stopping patience to 30. To
stabilize the optimization during iterations, we use the exponential scheduler (Patterson & Gibson,
2017), which decays the learning rate by a constant per epoch. In all numerical tasks, we set the
decay constant to 0.95, applied every 200 iterations. We tune the hyperparameters and select the best
model on the validation set. Finally, the tuned hyperparameters are used to compute the prediction
loss on the testing set.

HTL. For HTL, we adapt the network architecture from Bica & van der Schaar (2022) and modify
it for our setting. Following their approach, the framework for handling heterogeneous feature
spaces consists of a common encoder for shared source and task-specific encoders for task-specific
sources, implemented using deep neural networks. The network widths are selected from {32,
64, 128} and depths from {2, 3, 4}. The remaining components are incorporated into an MTL
network architecture, similar to the structure described in Section@], where shared and task-specific
pathways have depths chosen from {2, 3, 4}. The output dimensions of the first L — 1 layers are
selected from {32, 64, 128}, with the final layer predicting the corresponding response. The batch
size is chosen from {8, 16, 32}, and the learning rate is set to 0.001. To remain consistent with Bica
& van der Schaar (2022), we train the prediction loss on the training set, along with regularization
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terms Ropn and Rg,. Early stopping and hyperparameter tuning are performed based on the sum of
the prediction losses across all datasets on the validation set, with an early-stopping patience of 30.
Finally, the tuned hyperparameters are used to compute the prediction loss on the testing set.

MTL-HMB. For the proposed MTL-HMB, we describe the method in two steps: Step 1 and Step
2. Step 1: In HBI, the common encoder, task-specific encoders, decoder, and predictor use network
architectures with widths selected from {8, 16, 32} and depths from {1, 2, 3}. The batch size is
chosen from {8, 16, 32}, and the learning rate is set to 0.001. Notably, since the features in our
simulated data exhibit relatively simple linear relationships, we include smaller network widths and
depths in our tuning. Step 2: To construct task-shared and task-specific mappings, the network
architecture for the shared encoder ¢, and the task-specific encoders qbf, have widths selected from
{32, 64, 128} and depths from {2, 3, 4}. The output dimensions are also chosen from {32, 64, 128}.
For the prediction function, both shared and task-specific pathways have depths chosen from {2, 3,
4}, with the output dimensions of the first L — 1 layers selected from {32, 64, 128}. The final layer
predicts the corresponding response. The batch size is chosen from {8, 16, 32}, and the learning
rate is set to 0.001. Early stopping and hyperparameter tuning are conducted based on the sum of
the prediction losses across all datasets on the validation set, using an early-stopping patience of 30.
Finally, the tuned hyperparameters are applied to compute the prediction loss on the testing set.

A.6 DISCUSSION ABOUT LIMITATIONS AND FUTURE WORK

First, our proposed method essentially assumes that there is common information across all tasks
that can be fused, which implies a relatively strong shared structure. For example, in Section [3.2]
we assume the existence of a common mapping, 1., between input features and responses for all
r € [R]. However, in reality, when there is strong heterogeneity across multiple datasets, the shared
structure is often only partial. For instance, in three datasets, only two may share the common
1., while the third task may be too heterogeneous to fuse with the first two. In such cases, an
adaptive approach for MTL is needed, one that explores partially shared information among tasks
while preserving the uniqueness of the highly heterogeneous task. Currently, some studies have
considered adaptive MTL in relatively simple settings, such as linear cases (Duan & Wang, 2023;
Tian et al.|[2023)). However, adaptive MTL in the presence of block-wise, distribution, and posterior
heterogeneity remains unexplored, making it a meaningful direction for future research.

Moreover, it is worth noting that in both Section @ (HBI) and Section @ (MTL), the hidden rep-
resentations in each dataset are learned in two steps: the first step for imputation and the second
step for learning the response. This process introduces some computational redundancy. A possi-
ble improvement would be to combine these two steps into one, unifying multiple tasks to learn the
hidden representations for each task, which can then be used for both imputation and response learn-
ing. However, this approach poses computational challenges, such as how to balance different loss
functions to achieve both accurate imputation and prediction. Thus, this remains a future research
direction worth exploring.

A.7 QUALITATIVE RESULTS

As suggested by the reviewers, we display all qualitative results from Section [4] in this subsec-
tion. Specifically, we report the means and standard deviations of the average RMSEs under dif-
ferent experimental settings. Additionally, we apply the statistical block-wise imputation method
(MBI) proposed by Xue & Qu| (2021); |Xue et al.| (2021) to various simulation settings and the
ADNI real dataset. In particular, MBI does not account for distribution or posterior heterogene-
ity. It assumes that the relationships among all sources across different tasks are consistent, as well
as the relationships between the sources and the response. The method first imputes all missing
blocks and then constructs estimating equations based on the available information. These estimat-
ing equations are subsequently integrated to achieve efficient estimators. We used the R package
BlockMissingData to conduct the experiments, with the tuning parameters set to their default
values. The RMSE was computed on a 20% testing set.

Tables [2]to [7] present the prediction results under settings A to F in Section A1} while Table [8] cor-
responds to the results in Section [f.2] We have included the prediction results of the MBI method
for comparison. The performance of STL, HTL, and the proposed MTL-HMB methods is exten-
sively discussed in Section[d] where it is evident that MBI significantly underperforms compared to
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these three methods. For example, as shown in Table[2] the prediction error of MBI is several times
higher than that of the proposed MTL-HMB method. This poor performance can be attributed to
several factors. First, MBI cannot handle nonlinear relationships and is limited to modeling linear
relationships between sources and the response, which severely restricts its learning capacity. These
findings underscore the substantial benefits of leveraging the encoder-decoder framework. Second,
MBI is unable to address distribution or posterior heterogeneity.

To ensure a fair comparison, we reconsidered a linear data-generating process (DGP). Specifically,
we modified the nonlinear DGP described in Section[d.1]to a simpler linear DGP as follows:

p p
y'=aY veary/p+(1—a) Y vrawi/p+ e,

d=1 d=1
P P
v =aY veard/p+ (1—a)d vsaxi/p+ e
d=1 d=1

Where other parameters and settings remain unchanged, we evaluated the prediction performance of
the four methods under this linear DGP. The results, presented in Table|§|, show that MTL-HMB still
achieves the best performance, followed by STL. HTL is constrained by distribution heterogeneity,
while MBI, despite being designed for linear cases, suffers significant errors starting from the impu-
tation step due to its assumption of no distribution or posterior heterogeneity. Consequently, its final
predictions are notably poor.

Additionally, we evaluated MBI on the ADNI real dataset. The prediction results for Task 1 and
Task 2 were 9.847, (3.516) and 10.272, (3.448), respectively. These findings further demonstrate
the significant improvements brought by the encoder-decoder framework in real-world applications.

Table 2: Average RMSEs under Setting A.

p1 = p2 STL HTL MTL-HMB MBI
0.5 0.650(0.116)  0.593(0.130) 0.593(0.188) 5.155(0.936)
0.6 0.604(0.150)  0.529(0.114)  0.474(0.098) 5.089(0.936)
0.7 0.535(0.170)  0.434(0.077) 0.421(0.107) 4.921(0.842)
0.8 0.558(0.196) 0.452(0.098) 0.382(0.118) 4.782(0.821)
0.9 0.421(0.155)  0.463(0.138) 0.345(0.125) 4.651(0.779)
0.95 0.376(0.169) 0.413(0.182) 0.270(0.064) 4.516(0.696)

Table 3: Average RMSEs under Setting B.

p1 # P2 STL HTL MTL-HMB MBI
0.5 0.529(0.145) 0.476(0.128) 0.410(0.131) 5.125(0.961)
0.6 0.485(0.170)  0.466(0.140) 0.378(0.128) 5.013(0.849)
0.7 0.489(0.129) 0.485(0.116) 0.375(0.143) 4.966(0.856)
0.8 0.457(0.154)  0.463(0.109) 0.333(0.116) 4.902(0.821)
0.9 0.444(0.200)  0.402(0.127) 0.314(0.126) 4.807(0.806)
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Table 4: Average RMSEs under Setting C.

! STL HTL MTL-HMB MBI
0.1 0.218(0.056) 0.214(0.035) 0.191(0.050) 1.825(0.336)
0.2 0.366(0.093) 0.372(0.134) 0.300(0.085) 3.356(0.564)
0.3 0.558(0.196) 0.452(0.098) 0.382(0.118) 4.921(0.842)
0.4 0.585(0.154) 0.587(0.192) 0.511(0.207) 6.551(1.180)
0.5 0.810(0.280) 0.676(0.130) 0.583(0.192) 8.152(1.424)
0.6 0.970(0.246) 0.871(0.237) 0.809(0.266) 9.711(1.668)
Table 5: Average RMSEs under Setting D.
niy = ng STL HTL MTL-HMB MBI
100 0.893(0.403) 0.797(0.294) 0.598(0.277) 4.474(1.118
200 0.526(0.141) 0.532(0.112) 0.452(0.262) 4.362(0.803
300 0.489(0.129) 0.485(0.116) 0.375(0.143)  4.966(0.856
400 0.365(0.096)  0.400(0.105) 0.327(0.084) 5.091(0.726
500 0.332(0.066) 0.367(0.102) 0.288(0.046) 5.140(0.627
600 0.303(0.060) 0.350(0.064) 0.276(0.055) 4.867(0.693
Table 6: Average RMSEs under Setting E.
P1 = P2 STL HTL MTL-HMB MBI
25 0.489(0.129) 0.485(0.116) 0.375(0.143) 4.966(0.856
50 0.660(0.141) 0.658(0.232) 0.531(0.170) 4.414(0.874
75 0.712(0.175)  0.649(0.168) 0.585(0.161) 4.745(0.548
100 0.786(0.201) 0.886(0.208) 0.692(0.118) 4.709(0.770
Table 7: Average RMSEs under Setting F.
o1 STL HTL MTL-HMB MBI
0.1 0.489(0.129) 0.485(0.116) 0.375(0.143) 4.966(0.856)
0.2 0.499(0.156) 0.438(0.071) 0.389(0.098) 4.961(0.877)
0.3 0.536(0.119) 0.522(0.102) 0.454(0.093) 4.938(0.858)
0.4 0.543(0.120) 0.569(0.131) 0.466(0.105) 4.974(0.872)
0.5 0.663(0.162) 0.647(0.160) 0.511(0.082) 5.002(0.855)
Table 8: Average RMSEs under multiple tasks.
T SDL HTL Proposed MBI
2 0.429(0.209) 0.398(0.150) 0.310(0.111) 4.776(0.688)
3 0.468(0.129) 0.394(0.109) 0.344(0.074) 5.861(0.878)
4 0.490(0.116) 0.451(0.066) 0.410(0.044) 6.902(0.976)

Table 9: Average RMSEs under linear setting.

STL

HTL

MTL-HMB

MBI

0.295(0.028)

0.765(0.167)

0.274(0.029)

0.525(0.296)
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Algorithm 1 Pseudo-code for Our Proposed MTL-HMB.

1: Input: T datasets denoted by {x},y}}"*|, where z includes two blocks x{, ; and x} ;, learning

rate 77, mini-batch size for the ¢-th dataset is denoted by B?.
2: Step 1: HBI

3:fort=1,...,T do > Imputation for task ¢-specific source
4: Initialize: @' (all parameters in this step)

5 while not converged do

6: Sample mini- batch of B' demonstrations from the ¢-th dataset {x!,y!}!"*, and mini-

batch combination of B~* = > okt B* demonstrations from the rest 7 — 1 datasets.

7: fori=1,...,B'do > Process batch from the ¢-th dataset.
8: fi = Ec(@,), 9; = Ep ()

9: end for ,
10 Compute prediction loss L, = Z? U=y, GOf))
11: Compute reconstruction loss LL,., = Zil I(xh ;, D(ff,g}))

12: fori=1,...,B7tdo > Process batch from the rest 7' — 1 datasets.
13: ' = Ee(wo)), 9, = B (x0))
14: end for L,
15: Compute reconstruction loss: L., = Zf;l l(a:a;, D(f " g;")

16: Parameter update 8° < 0" — Vi (Ll + Liecon + Lrcon)

17: end while
18: fori=1,...,B 'do

19: Imputation for task t-specific source: Z; | = G(Ec(x "))

20: end for

21: end for

22: Obtain samples with reconstructed features {(xf ;, ..., Z} |, ®f 1, Bl 40> B ,), Uh) it

23: Step 2: Heterogeneous MTL

24: Initialize: © (all parameters in this step)
25: while not converged do

26: fort=1,...,Tdo

27: fori=1...B'do > Process batch from the r-th dataset.
28: hi = de(xp ), ki = ¢ ([ ;] - @)yl |20 - [27,])
29: Set H! = [ht hgt] K'=[kt-- k:t ]T

30: fori=1...Ldo

31: if [ == 1 then

32: }_‘f,i = hi, klt,i = [h}|K{]

33: else ~

34: h%,i = hfq,i’ kltz = [h;:fl,i|klt71,i]

35: h} ; = Shared Path(hj ), kf ; = Task_Specific Path’(k{ ,)
36: end if ’

37: end for

38: Ui = g'([h |k i)

39: end for

40: end for .

41:  Compute integration 10ss: Lineg = Y9—y Sy L(yl, TF)

42: Compute orthogonal regularizer for features: Romn = thl I(H t)TK ¢|%
43: Compute robust regularizer for imputation: Rimp = 23;1 >sz0. 195, Lol

44: Compute regularizater for redundancy: Rg; = 23:1 Zlel l(® C’l) 62,1,1: dr %

-1
45: Parameters update:

46: O+ 0 -1V (Einteg + Rorth + Rimp + Rdr)

47: end while

48: Output: Learnt parameters ©
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