
FightLadder: A Benchmark for Competitive
Multi-Agent Reinforcement Learning

Wenzhe Li 1 Zihan Ding 1 Seth Karten 1 Chi Jin 1

Abstract
Recent advances in reinforcement learning (RL)
heavily rely on a variety of well-designed bench-
marks, which provide environmental platforms
and consistent criteria to evaluate existing and
novel algorithms. Specifically, in multi-agent RL
(MARL), a plethora of benchmarks based on co-
operative games have spurred the development of
algorithms that improve the scalability of cooper-
ative multi-agent systems. However, for the com-
petitive setting, a lightweight and open-sourced
benchmark with challenging gaming dynamics
and visual inputs has not yet been established. In
this work, we present FightLadder, a real-time
fighting game platform, to empower competitive
MARL research. Along with the platform, we pro-
vide implementations of state-of-the-art MARL
algorithms for competitive games, as well as a set
of evaluation metrics to characterize the perfor-
mance and exploitability of agents. We demon-
strate the feasibility of this platform by training
a general agent that consistently defeats 12 built-
in characters in single-player mode, and expose
the difficulty of training a non-exploitable agent
without human knowledge and demonstrations in
two-player mode. FightLadder provides metic-
ulously designed environments to address criti-
cal challenges in competitive MARL research,
aiming to catalyze a new era of discovery and
advancement in the field. Videos and code at
https://sites.google.com/view/fightladder/home.

1. Introduction
As an active branch of artificial intelligence (AI), deep rein-
forcement learning (DRL) has achieved significant success
in various domains, including, but not limited to, strategic

1Princeton University. Correspondence to: Wenzhe Li <wen-
zhe.li@princeton.edu>, Chi Jin <chij@princeton.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. FightLadder currently supports various cross-platform
video fighting games: Street Fighter II (Genesis platform), Street
Fighter III (Arcade platform), Fatal Fury 2 (Genesis platform),
Mortal Kombat (Genesis platform), and The King of Fighters ’97
(Neo Geo platform).

games (Silver et al., 2016; Li et al., 2020; Moravvcík et al.,
2017; Vinyals et al., 2019; Berner et al., 2019), robotics
control (Lillicrap et al., 2015; Andrychowicz et al., 2020b;
Brohan et al., 2022), and large language models align-
ment (Ouyang et al., 2022). Underpinning these rapid ad-
vances are not only the development of sample-efficient RL
algorithms but also the availability of well-designed bench-
marks. These benchmarks provide environmental platforms,
unify evaluation protocols, enable comparisons of state-of-
the-art methods, motivate improved solutions, and guide
practical applications. As an example, policy proximal
optimization (PPO) (Schulman et al., 2017) demonstrates
its superior performance across different single-agent RL
benchmarks, hence being considered as one of the most
widely adopted single-agent RL algorithms (Andrychowicz
et al., 2020a). In the realm of multi-agent reinforcement
learning (MARL), while a series of benchmarks have also
been proposed, most of them focus on fully cooperative
settings. For competitive environments, some platforms
simulate games with tabular representations and relatively
simple dynamics, such as board games, while others, based
on complex game engines, require significant computational
resources and expert knowledge, such as Starcraft II and
DOTA. To advance research on competitive multi-agent rein-
forcement learning (MARL) and transform game-theoretical
results into practical applications, a fully competitive game
platform that strikes the right balance between complexity,
efficiency, and generality is urgently needed.

1

https://sites.google.com/view/fightladder/home

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Multi-agent games are known to be more challenging than
single-agent ones due to the additional non-stationarity in-
troduced by the interactions with other players. Among
different types of interactions, fully competitive settings
can be rather difficult. People have a long history of de-
signing and playing competitive games, as well as building
strong AI opponents to make the game more challenging
and hence intriguing. Previous AI research has investigated
the solutions of competitive games using RL, but mostly for
small-scale games like Backgammon (Tesauro et al., 1995)
or other board games (Schrittwieser et al., 2020; Brown &
Sandholm, 2018; 2019). Moreover, this line of work mostly
uses state vectors as inputs, which is arguably easier than
directly learning from raw pixel inputs that commonly ap-
pear in most popular video games. In contrast, this paper
considers fighting games, which feature rich policy space,
and significant depth in strategy — including catching spe-
cific timing, counter-attack by exploiting the stiffness of
the opponents, managing energy resources, etc. Moreover,
these games also have a rather large number of characters
with distinct move-sets which add another layer of complex-
ity for AI agents to master the game. As a result, we are
motivated to build a platform for a series of fighting games,
with image inputs and complex fighting dynamics, to serve
as a challenging competitive multi-player platform for the
broad AI research community.

Apart from the game platform, the evaluation criteria and
benchmark results for certain game settings are essential
for boosting the field. MARL has been greatly investigated
in the past few years for solving multi-player games, from
both theoretical and empirical perspectives. A large number
of algorithms have been proposed according to specific
settings (Sunehag et al., 2017; Yu et al., 2022; Lowe et al.,
2017; Silver et al., 2018; Lanctot et al., 2017; Vinyals et al.,
2019; Ding et al., 2022). Nonetheless, for competitive game
settings, there is a lack of unified evaluation criteria with
thorough comparisons among different approaches.

In this work, we present FightLadder, a competitive two-
player games benchmark. Our contributions are three-fold:
We build the FightLadder platform to support five two-
player fighting games, with ease to extend to other games in
the future. The games support various observation spaces
involving rendered images. Based on prior work, we pro-
vide implementations of the most popular algorithms for
solving these competitive games, including an AlphaStar
league training algorithm (Vinyals et al., 2019) and pol-
icy space response oracle (Lanctot et al., 2017). Further-
more, a unified evaluation framework with Elo rating and
exploitability tests are provided alongside the game plat-
forms and algorithm library. We report experimental results
using the above toolkits to serve as the baselines for two-
player competitive game settings. One important challenge
of MARL is its diverse nature, which includes collaborative

games, competitive games, two-player games, and multi-
player games, all of which have rather different problem
structures, properties, and solution concepts. While it is
promising to develop a unified solution that addresses them
all together, in this work, we empirically demonstrate that
to some extent, existing methods are still limited in solving
competitive two-player zero-sum games alone when com-
bined with visual input, rich strategy space, and lack of
extensive human demonstration. We hope that FightLadder,
which particularly focuses on this fundamental two-player
setting, can serve as a stepping stone for the research com-
munity to develop effective self-play style algorithms to
tackle it first before moving on to even more complicated
scenarios, and inspire future directions that involve more
types of interactions.

2. Related Work
MARL Environments. MARL environments can be cate-
gorized into three types according to the payoff structure of
the game: fully cooperative, fully competitive, and general.

Existing environments for fully cooperative games are de-
signed for various scenarios, including simulated games
like MAMuJoCo (Peng et al., 2021), card games like Han-
abi (Bard et al., 2020), video games like small-scale Star-
Craft SMAC (Samvelyan et al., 2019) and Google Research
Football (Kurach et al., 2020), as well as practical sce-
narios like Traffic Junction (Sukhbaatar et al., 2016) in a
grid world, Flatland (Mohanty et al., 2020) for railway net-
works, network load balancing (Yao & Ding, 2022) and
CityFlow (Zhang et al., 2019) for city traffic. Cooperative
environments feature a single reward function shared by all
agents, which makes them distinct from competitive games.

On the other hand, the fully competitive game benchmarks
are relatively underdeveloped. Prior competitive environ-
ments are either on games with low-dimensional or dis-
crete state space such as Pommerman (Resnick et al., 2018)
and board games (Tesauro et al., 1995; Schrittwieser et al.,
2020; Brown & Sandholm, 2018); or complex games with
image input that require a significant amount of computa-
tional resources, such as Starcraft II (Vinyals et al., 2019)
or DOTA (Berner et al., 2019). The fighting game envi-
ronments proposed in this paper strike the right balance be-
tween complexity, efficiency, and generality. A few previous
works also have explored fighting games: Go et al. (2023)
focuses on developing an algorithm for a single fighting
game—street fighter, as opposed to this paper which pro-
vides an environment that supports various fighting games.
While Palmas (2022) provides a platform for fighting games,
most of its efforts have been focused on the single-agent
setting. It lacks explicit criteria for two-player scenarios
with adaptive opponents, and does not provide a benchmark
evaluating existing competitive MARL algorithms. Khan

2

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

et al. (2022) focuses on fighting games in the blind setting
where agents have to rely on acoustic inputs to play.

Finally, there are also a number of environments for gen-
eral multiagent games that feature both cooperation and
competition, including MPE (Mordatch & Abbeel, 2018),
MAgent (Zheng et al., 2018), Hide-and-Seek (Baker et al.,
2019), DMLab2D (Beattie et al., 2020), Arena (Song et al.,
2020), Smarts (Zhou et al., 2020), Neural MMO (Suarez
et al., 2021), PettingZoo (Terry et al., 2021), MATE (Pan
et al., 2022), etc. Generic multi-agent general-sum games
are rather challenging to evaluate — even the optimal solu-
tion concepts remain elusive. In contrast, the fully compet-
itive setting considered in this paper presents clear game-
theoretic properties and well-defined solution concepts. We
also remark that while a number of the platforms above sup-
port several fully competitive games, they did not provide
carefully designed evaluation toolkits as well as extensive
baselines for competitive MARL algorithms.

MARL Algorithms and Evaluation. To solve multi-
agent learning tasks, researchers have proposed algorithms
and built libraries for ease of usage and evaluation. Py-
MARL (Samvelyan et al., 2019) is an initial MARL library
built for solving SMAC tasks, while PyMARL2 (Hu et al.,
2021) extends PyMARL with QMIX (Rashid et al., 2020).
EPyMARL (Papoudakis et al., 2020) is also an extension of
PyMARL, as a unified library for cooperative games sup-
porting different learning paradigms including centralized
and decentralized learning, value decomposition, etc. MAR-
Llib (Hu et al., 2023) includes major cooperative MARL
algorithms like VDN (Sunehag et al., 2017), MAPPO (Yu
et al., 2022), MADDPG (Lowe et al., 2017), etc. More
recent libraries include Pantheonrl (Sarkar et al., 2022),
MAlib (Zhou et al., 2023), etc. These libraries mainly sup-
port MARL algorithms for cooperative games, lacking sup-
port for solving competitive games.

On the other hand, there is a line of research for solving com-
petitive games with algorithms like self-play (Silver et al.,
2018), fictitious play (Brown, 1951), Nash Q-learning (Hu &
Wellman, 2003; Ding et al., 2022), double oracle (McMahan
et al., 2003), policy space response oracle (PSRO) (Lanctot
et al., 2017) and league training (Vinyals et al., 2019). A
unified benchmark remains missing to compare and evaluate
the efficiency these algorithms on the same set of tasks, espe-
cially when combined with deep RL. This paper addresses
this issue in the fully competitive setting. We concentrate
on two-player zero-sum games, and propose a platform for
fighting-style fully competitive games, along with a baseline
implementation and evaluation of popular algorithms.

3. Multi-Agent Reinforcement Learning
FightLadder is designed to motivate novel algorithms for
fully competitive two-player games in the domains of

MARL and game theory. Markov Games (MGs) (Shapley,
1953) generalize single-player Markov Decision Processes
(MDPs) into multi-player settings. Each player has its own
utility and optimizes its policy to maximize the utility. The
two-player zero-sum setting in MG represents a competitive
relationship between the two players. With a shaped dense
reward, the games can be generalized to general-sum.

We denote a finite-horizon two-player general-sum partially
observable MG as POMG(S,O,A,B,P,O, {r}2i=1, H).
S is the state space, which can be partially observable and
transformed through an observation emission function O:
S → O to the observation space O. A and B are action
spaces for two players, respectively. P(·|s, a, b) is the state
transition distribution, ri : S × A × B → R is the re-
ward function for the i-th player. In the zero-sum setting,
two reward functions satisfy the zero-sum payoff structure
r1 + r2 = 0. H is the horizon length. We denote the poli-
cies of two players as µ and ν, respectively. V µ,ν

i : S → R
represents the value function for player i evaluated with
policies µ and ν, which can be expanded as the expected
cumulative reward starting from the state s,

V µ,ν
i (s) := Eµ,ν

[∑∞
h=1 ri(sh, ah, bh)

∣∣s1 = s
]
.

In zero-sum games, we have V µ,ν
1 (s) = −V µ,ν

2 (s),∀s ∈ S
and define V µ,ν(s) = V µ,ν

1 (s) for simplicity.
Definition 3.1 (Best Response). For any policy of the
first player µ, there exists a best response (BR) against
it from the second player, which is a policy ν†(µ) satisfying

V
µ,ν†(µ)
2,h (s) = maxν V

µ,ν
2,h (s) for any (s, h) ∈ S× [H]. We

denote V µ,†
2,h := V

µ,ν†(µ)
2,h for simplification. V µ,ν

2,h (s) is the
value function of the second player. BR against the second
player can be defined similarly.
Definition 3.2 (Nash Equilibrium). The Nash equilibrium
(NE) in zero-sum setting is defined as a pair of policies
(µ⋆, ν⋆) satisfying the following minimax equation:

max
µ

min
ν

V µ,ν(s) = V µ⋆,ν⋆

(s) = min
ν

max
µ

V µ,ν(s).

Definition 3.3 (Exploitability). The exploitability for a pol-
icy µ of the first player is defined as V µ,†

2 (s1)−V µ⋆,ν⋆

2 (s1),
i.e., the value of its BR policy ν†(µ) or the suboptimality
gap from the NE value. The exploitability of the other side
policy ν can be defined accordingly.

Note that NE strategies will always lead to zero exploitabil-
ity, thus approaching the non-exploitable strategies is a rea-
sonable pursuit for the game.

4. FightLadder
In this section, we present technical details of FightLadder.
In the following part, we first introduce different game set-
tings of FightLadder, followed by elaborating elements of

3

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

MGs corresponding to the environment, and conclude with
highlighting features of our benchmark.

4.1. Scenarios

FightLadder provides a flexible interface between modern
game emulators (Murphy, 2013; Nichol et al., 2018) and
algorithm developers. Thanks to its flexibility, FightLadder
can support a wide range of classical fighting games over the
past decades, including Street Fighter, Mortal Kombat, Fatal
Fury, and The King of Fighters, some of which are still very
popular nowadays. Figure 1 shows screenshots of several
fighting games provided by FightLadder. With this diverse
set of supported games, we can benchmark algorithms on
various fighting scenarios differing in backgrounds, char-
acters, and moving dynamics, which can further motivate
novel algorithms that are general rather than overfitting to
one specific game. For better readability and clarity, we
would use Street Fighter as an example for illustration and
evaluation in the rest of the paper. The other fighting games
are very similar, and readers could refer to Appendix A.2
for more details. We name each scenario in the form [game
alias]_[character left]_vs_[character right], for example
sf_ryu_vs_ryu in Street Fighter.

While FightLadder mainly focuses on the competitive two-
player setting, the nature of fighting games allows it to be
seamlessly deployed to the single-player scenario where the
agent’s task is to compete against a built-in game AI (e.g.,
sf_ryu_vs_ryu(cpu)). Under this single-player setting, users
have the freedom to choose characters and set up the diffi-
culty of the scripted AI opponent. Moreover, our benchmark
also supports training in a much more challenging full-game
scenario (e.g., sf_ryu_full_game), where the agent needs to
defeat all 12 characters controlled by computers with the
difficulty progressively increasing. As we shall see in later
experiments, this scenario could also serve as a sanity check
for our baseline algorithms to see whether they could learn
effective behaviors from the environment.

4.2. State and Observations

We define the state space S as the complete set of attributes
stored in the game emulator after each step of action. Same
as human players, the agent is not allowed to access the
underlying full state but can only access the observation
space O of pixels, which forms a 128×100 RGB image
corresponding to the rendered screen. This image includes
the position and movement of both sides of the players, as
well as the hit-point bar and the round timer on the top of
the screen. At every step, a configurable number of images
are stacked as the input of the agent.

While we use pixels as default observations, we also provide
an interface for users to access additional information about
the game status, including position, hit-point, and exact

Figure 2. Motion and attack action spaces of fighting games. Im-
ages are adapted from Instruction Manual of Street Fighter II.

countdown number for agents on both sides. Users can
leverage these attributes to better understand the agent’s
behavior or augment feature representations. More details
are provided in Appendix A.2.

4.3. Action Space

In fighting games, two players share the same action space
A. The native human action space Ahuman is designed to
mimic the joystick control of arcade games, which is a 12-
dimensional binary space ([’B’, ’A’, ’MODE’, ’START’,
’UP’, ’DOWN’, ’LEFT’, ’RIGHT’, ’C’, ’Y’, ’X’, ’Z’]) with
each dimension representing a button being pressed or not.
Note that due to the nature of fighting game engines, this
space contains many redundant actions that are invalid, for
instance, moving in opposite directions or moving and at-
tacking at the same moment. To filter out these redundant
actions and to construct a more structured space, we develop
a categorical transformed action space Atrans through an en-
coding function F : Ahuman → Atrans. Specifically, Atrans is
the joint set of a direction move set Amotion={defense, for-
ward, jump, crouch, back flip, front flip, offensive crouch,
defensive crouch} and an attack move set Aattack={light
punch, medium punch, hard punch, light kick, medium kick,
hard kick}, as shown in Figure 2. Each action will remain
a number of frames according to users’ configuration. The
games also have special techniques called close attack, i.e.,
Throws and Holds, which can be applied in certain regions
near the opponent.

In addition to the standard move set, one signature element
of fighting games is special moves, which is a kind of pow-
erful attack or maneuver that requires the player to follow a
specific action sequence (i.e., sequential keys combination,
or combination of key holding and key pressing), with an
example depicted in Figure 3. These moves usually have
special properties (e.g., invincibility frames, larger coverage,
etc.) and play a critical role in the strategy and depth of
the game. They are especially useful for higher levels of
play, from which players could create complex combos and
outperform opponents. However, we observe that learning
to perform special moves from scratch can be challenging
to baseline algorithms, as it requires the agent to memo-
rize frames and actions in previous steps and accurately
perform the next action in the action sequence of special

4

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Figure 3. Example of special moves for character Ryu in Street-
Fighter II (left to right): Fireball, Dragon Punch, Hurricane Kick.
Images are adapted from Instruction Manual of Street Fighter II.

moves. Moreover, the special moves can be different from
character to character, which increases the difficulty of the
game. Therefore, to alleviate this challenge, we also include
hard-coded special move lists as one part of the action space
so that the agent can directly access special moves with one
single action.

4.4. Rewards

Sparse Reward. Both sides of the agents are to maximize
their win rate for each round of the game. The sparse re-
ward rsparse assigns +1 for the winner and -1 for the loser
at the end of each episode. In the sparse reward setting, all
fighting games are two-player zero-sum games, which are
theoretically guaranteed to exist at least one Nash Equilib-
rium (Filar & Vrieze, 2012), which directly induces a pair
of non-exploitable policies.

Win Rate. For two players A and B, policy πA winning
against policy πB can be defined as a reward relationship
rAsparse(πA, πB) > rBsparse(πA, πB) in a single match, with
rAsparse and rBsparse as the sparse reward for players A and
B in the zero-sum setting. The win rate is defined as the
probability of winning as p(πA ≻ πB).

Shaped Dense Reward. While sparse reward is straight-
forward for evaluation, we discover that baseline algorithms
could not effectively learn to behave well from such a sparse
signal. To address this issue, we introduce a shaped dense
reward rdense for training, which is a weighted sum of the
hit-point damage inflicted by the agent on the opponent and
the damage it receives, together with a bonus (penalty) for
winning (losing) the game. Specific format of this reward
refers to Appendix A.1. The dense reward rdense is chosen to
coincide with the win rate of the policy, such that πA ≻ πB

will always lead to rAdense(πA, πB) > rBdense(πA, πB) in ex-
pectation. The dense reward also offers some flexibility, that
the user can control the agent’s aggressiveness by configur-
ing the weighing scales in the reward function.

4.5. Features

We remark on the following features of the proposed bench-
mark that could benefit MARL research.

Table 1. FPS and memory usage of several open-sourced platforms.

Environment Speed (FPS) Memory (MB)

FightLadder (Ours) 1935.76 195.46
SMACv2 146.72 876.96
PettingZoo Atari 6268.18 32.13
DMLab2D 1144.27 47.41

Rich Strategy Space. One key feature of our benchmark
is the rich strategy space as the nature of fighting games,
which is particularly beneficial to the development of game-
theoretical algorithms. To name a few, fighting games re-
quire players to consider (a) character diversity: each
character has a unique skill set with different strengths and
weaknesses, so one needs to master the strategy and counter-
strategy of all possible opponents, and even reason how to
select and order characters when they have the freedom to
do so; (b) complexity of mechanics: fighting games are
designed with sophisticate mechanics such as invincibility
frame, hitboxes, and combo systems, which are challenging
for micromanagement of characters; and (c) adversarial op-
ponents: opponents may progressively adapt their policies
to players’ policies, thus finding non-exploitable policies is
crucial in mastering fighting games.

Various Difficulty Levels. FightLadder provides sev-
eral kinds of scenarios: single-player mode against one
CPU player (e.g., sf_ryu_vs_ryu(cpu)), single-player mode
full game (e.g., sf_ryu_full_game), two-player mode (e.g.,
sf_ryu_vs_ryu), team mode (supported in some games such
as The King of Fighters). The difficulty levels are increasing
in this order, as two-player mode (no CPU) introduces addi-
tional non-stationary (opponents can be adaptive), and team
mode offers a richer strategy space. Moreover, FightLadder
supports specifying arbitrary difficulty levels of CPUs and
arbitrary characters for both the player and its opponent.
This enriches the features of our platform and the diversity
of strategy space.

Computational Efficiency. FightLadder also enjoys ef-
ficient computation for its usage, and the comparison with
several other popular game environments is shown in Ta-
ble 1. The frame rate is 13 times faster than SMACv2,
with one-fourth usage of the memory. While it is less effi-
cient than FightLadder is the PettingZoo Atari, it provides
more game complexity. The balance of complexity and low
computational cost is important for evaluating algorithms at
scale.

Fidelity and Popularity. FightLadder allows testing
agents in full-length fighting games with an interface similar
to human perception, thus providing a high-fidelity evalu-
ation of competitive RL algorithms. Moreover, fighting

5

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

games have been gaining popularity since they were re-
leased, making it easier to test the learned RL agents against
human expert players.

Open-Source and Compatibility. FightLadder is de-
signed for the broad RL research community, so we make
efforts to improve the ease of usage and make it accessible to
all potential users. It is compatible with the Gym (Brockman
et al., 2016) interface so that users can leverage off-the-shelf
RL algorithms implementation.

Customization, Extension, and Flexibility. FightLadder
is extremely flexible for configuration and extension. For
customization, the users can customize action spaces (hu-
man/transformed action), reward functions (sparse/tunable
shaped dense reward), number of frames to be observed per
step, as well as access to additional information to help train-
ing. Moreover, our platform is built upon popular modern
game emulators so that it is easy to extend to other games
not provided by us. Specifically, it supports Gym Retro
and MAMEToolkit, which already support a wide range
of games. This extension capability of diverse games is
provided by our platform with minimal engineering efforts.
Please check our open-source project1 for more details.

5. Evaluation Metrics
Versus Built-In Game AIs. Directly competing with the
built-in AIs of the games provides a straightforward way of
measuring policy performance. Typically, fighting games
offer a hierarchical structure of levels, enabling players
to adjust the difficulty setting (for example, Street Fighter
features eight distinct levels). This structure allows for
the empirical evaluation of the policy against the game’s
scripted AI at varying levels of challenge. It is important
to acknowledge, however, that the limitations associated
with hard-coded adversaries restrict the extent to which this
metric can accurately reflect the policy’s real capability. For
brevity, we shall refer to such agents as CPU.

Elo Ratings. The skills of agents can be ranked through
the FIDE rating system (Elo & Sloan, 1978), which is an in-
cremental learning system that increases the Elo of winners
and decreases the Elo of losers. The larger the difference in
Elo between players A and B, the higher the probability that
the player with the higher Elo, A, beats the player with the
lower Elo, B. The Elo score calculation takes the following
procedures:

First, the probability of player A winning is estimated with,

pA := p(πA ≻ πB) = (1.0 + 10
EloB−EloA

400)−1.

1https://sites.google.com/view/fightladder/home

Then the Elo rating for player A as EloA will be updated
with following formula:

EloA = EloA + k · (1[winner = A]− pA),

where k is a constant of update rate. The update is symmet-
ric for player B, as well as any other player in the ranking
system.

Versus AI Exploiters. As discussed in Section 3, ex-
ploitability (as Definition 3.3) measures the distance of a
policy to the Nash equilibrium of the game. Specifically,
the exploitability of a policy µ is measured by the win rate
of its BR policy ν†(µ) against µ, since V µ⋆,ν⋆

(s1) = 0

for symmetric zero-sum game and V µ,†
2 (s1) = 1 · p(ν ≻

µ) + 0 · p(ν ⪯ µ) = p(ν ≻ µ) for sparse reward setting. In
practice, we can use any single-agent deep RL algorithm
as an exploiter to approximately learn the BR policy ν†(µ).
For fair comparisons, we should use one consistent exploiter
(same RL algorithm with same configurations) to evaluate
the exploitability of different baselines.

Versus Human Players. While Definition 3.3 is a general
metric to measure exploitability, it may be limited to the
capability of deep RL algorithms in usage. Therefore, we
also provide an interface for human players such that they
can play with any learned model with convenience. This
feature will show the strengths and weaknesses of agents di-
rectly and visibly, and motivate developers to improve their
algorithms to be more non-exploitable in general. Given the
remarkable success of modern RL algorithms outperforming
expert human players in various video games (Mnih et al.,
2013; Vinyals et al., 2019; Berner et al., 2019), we believe
that FightLadder will emerge as a promising platform for the
broad competitive MARL community and researchers will
eventually build AI agents that could beat world champions
in a much richer set of strategic games with significantly
less engineering efforts.

6. FightLadder-Baselines
For the convenience of the community to evaluate existing
methods and new algorithms on FightLadder platform, we
open-source the implementation of several state-of-the-art
(SOTA) competitive MARL algorithms, including indepen-
dent learning (de Witt et al., 2020), two-timescale learn-
ing (Daskalakis et al., 2020), fictitious self-play (Heinrich
et al., 2015), policy-space response oracle (Lanctot et al.,
2017) and league training (Vinyals et al., 2019). Our code-
base supports decentralized learning across multiple GPUs,
and it is built upon Stable-Baselines3 (Raffin et al., 2021)
so that users can leverage off-the-shelf implementations of
RL algorithms. We choose proximal policy optimization
(PPO) (Schulman et al., 2017) as the backbone policy op-

6

https://github.com/openai/retro
https://github.com/M-J-Murray/MAMEToolkit
https://sites.google.com/view/fightladder/home
https://sites.google.com/view/fightladder/home

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

timization algorithm in our experiments. More details of
baseline algorithms refer to Appendix B.

7. Results
In this section, we provide benchmark results on a selected
game in FightLadder–the Street Fighter. We aim to answer
the following questions through our benchmark: (a) Can
existing RL algorithms solve the full video game in the
single-player scenario? (b) How does the performance of
state-of-the-art baseline algorithms in the two-player com-
petitive setting compare? and (c) Does multi-agent training
help to improve the non-exploitability?

7.1. Single-Player Full Video Game

To answer question (a), we evaluate PPO’s performance in
the scenario sf_ryu_full_game with human action space as a
feasibility check. As mentioned in Section 4, this scenario
requires the agent to learn a generalizable policy to compete
against all different characters with increasing difficulty
levels. Curriculum learning is applied to train the policy
from easy to hard cases. Furthermore, to improve learning
efficiency we develop a curriculum scheduler for opponent
sampling to match with the learner after each epoch. More
specifically, for the current learner L with policy πL, we
sample its opponent C from the entire character set C, with
the following inverse-weight scheduling distribution:

C ∼ ∆(C) ∝ 1− p(πL ≻ πC),

where p(πL ≻ πC) is the win rate of the learner against
the opponent and ∆(·) is the simplex. Intuitively, such a
curriculum will encourage the agent to focus on the hardest
opponents, similarly to prioritized experience play (Schaul
et al., 2015). We defer other implementation details to
Appendix C.

Figure 4 shows the performance of our proposed method
during training. With 20 epochs of training (each epoch
involves 10M training steps competing with opponents sam-
pled from the curriculum scheduler in parallel), the agent is
capable of defeating characters at each level with a win rate
close to 1. In addition to beating each character with a high
probability, the trained policy can complete the full video
game with over 0.6 win rate, outperforming human players
with hours of playing experience. This result shows that
existing RL algorithms can already learn a well-behaved
policy to solve the full single-player video game, which
provides a good starting point for exploring the multi-agent
setting.

As an additional experiment, we also test the inclusion of
hard-coded special move lists in this setting with exactly the
same algorithm implementation. Although it could be easier
for the agent to learn more offensive policies, significant

improvement in the overall win rate is not observed. It
indicates that the agents without encoded special moves
can also effectively learn policies against CPUs. Constantly
playing special moves will lead to a vulnerable situation for
the agent, whereas the defensive strategy also matters greatly
in the game. Moreover, given that an experienced human
player can perform special moves easily (by executing the
action sequences almost instantly), we do not think that
hard-coded special move lists will become the advantage of
trained agents over human players.

7.2. Performance of Two-Player Baseline Algorithms

To answer question (b), we evaluate five SOTA algorithms
mentioned in Section 6: independent PPO (IPPO), two-
timescale IPPO (2Timescale), fictitious self-play (FSP),
policy-space response oracles (PSRO), and league train-
ing (League) in the scenario sf_ryu_vs_ryu. IPPO and
2Timescale can be categorized into the independent learn-
ing paradigm, while FSP, PSRO, and League can be cate-
gorized into the population-based learning paradigm. For
each algorithm, we initialize the population of agents with
a pretrained policy in sf_ryu_vs_ryu(cpu) against the most
difficult CPU2. We use the transformed actions Atrans with
hard-coded special moves to unleash the full potential for
agents. As a fair comparison, we use the same codebase
(FightLadder-Baselines) and fix the hyperparameters of the
backbone PPO algorithm. We train IPPO and 2Timescale
for approximately 50M steps until the Elos saturate across
all three seeds, FSP and PSRO for approximately 250M
steps, and League for approximately 700M steps due to a
larger population. A slice of the league during the league
training process is visualized in Figure 5 Please refer to
Appendix C for more implementation details.

For each algorithm, we report the training Elos of agents
in the population during the course of training, respectively.
The results are shown in Appendix D, which reveal that
all baseline algorithms are improving their policies at the
onset of training. Subsequently, IPPO and 2Timescale grad-
ually converge and oscillate around the peak Elos, where
FSP, PSRO, and League continue to increase their scores.
This suggests that IPPO and 2Timescale may suffer from
optimization issues during training and population-based
methods may be more suitable for policy learning in fighting
games.

To compare different baseline algorithms, we select the top
ten agents (five on each left or right side) from each algo-
rithm to form a new population, and compute the test Elos
for this group of agents and CPU policies. We report the
highest Elos for each algorithm in Table 2 and the distribu-
tion of these agents’ Elos in Figure 6, where we find that

2We do not pre-train in sf_ryu_full_game as sf_ryu_vs_ryu does
not require skills to compete with other characters rather than Ryu.

7

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

0.0

0.5

1.0

W
in

 R
at

e
Level 1 (Guile) Level 2 (Ken) Level 3 (Chun-Li) Level 5 (Zangief) Level 6 (Dhalsim) Level 7 (Ryu)

0 10 20
Epoch

0.0

0.5

1.0

W
in

 R
at

e

Level 9 (E. Honda)

0 10 20
Epoch

Level 10 (Blanka)

0 10 20
Epoch

Level 11 (Balrog)

0 10 20
Epoch

Level 13 (Vega)

0 10 20
Epoch

Level 14 (Sagat)

0 10 20
Epoch

Level 15 (M. Bison)
0.0

0.5

1.0

Sc
he

du
le

 D
ist

.

0.0

0.5

1.0

Sc
he

du
le

 D
ist

.

Figure 4. The win rate curves and the scheduling distribution bar plot in sf_ryu_full_game via the proposed PPO with curriculum learning.
Opponents of different characters are marked with different levels. Levels 4, 8, and 12 are omitted as they are bonus levels without
fighting.

ME0
_rig

ht_
h_1

0M

ME0
_rig

ht

MA0_r
igh

t_h
_20

M

MA0_r
igh

t_h
_10

M

MA0_r
igh

t_h
_0M

MA0_r
igh

t

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

ME0_left

ME0_left_h_10M

0.94 0.66 0.87 0.97 0.93 0.97

0.09 0.10 0.08

0.29 0.08 0.21

0.86 0.47 0.84 0.90 0.82 0.86

0.21 0.03 0.04

0.35 0.41 0.38

0.93 0.91 0.77 0.95 0.95 0.45 0.88 0.90

0.03 0.02 0.00 0.02

0.14 0.25 0.22 0.17

0.25 0.26 0.25 0.29

0.43 0.98 1.00 0.06

0.26 0.31 0.31

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. The payoff matrix for each pair of agents at a cer-
tain stage of League training. For league training, there
is one main agent (MA), two league exploiters (LE0, LE1),
and one main exploiter (ME) for each side (left or right).
The name of each row indicates the agent information as
Character_Side_Checkpoint. Checkpoint=h_xM
represents a historical version of agent saved at x million steps.
The value indicates the win rate of the left (row) player against
the right (column) player. For instance, ME0_right wins all
MA0_left_h_xM with high probability, indicating that main ex-
ploiters in the league can fully exploit previous main agents. Also
the high win rate of MA0_left against all right agents (except
MA0_right) shows that the main agent at current steps outper-
forms other agents in the league.

0 250 500 750 1000 1250 1500 17500

1

2

3

4

5

Co
un

t

Left
IPPO
League
2Timescale
PSRO
FSP
CPU

0 250 500 750 1000 1250 1500 1750
Elo

0

2

4

6

Co
un

t

Right

Figure 6. The distribution of Elo ratings for top ten agents from
each baseline.

League and PSRO significantly outperform other baselines,
and population-based methods deliver better results than
independent learning counterparts, which is aligned with
our previous observation inspecting Elos of baselines indi-
vidually. On the other hand, we notice that CPU policies
may defeat most of the agents in this group except for a few
best-performing agents, suggesting that it is still very chal-
lenging for existing SOTA algorithms to reach an advanced
or superhuman level of performance in these fighting games.
We also noticed that two sides of agents reveal asymmetric
strengths in terms of Elos in both individual evaluation for
each algorithm (Appendix D Figure 10-14) and overall eval-
uations across algorithms (Table 2). Such an imbalance may
result from various factors, for instance, optimizing instabil-
ity, variance from the population or Elos computation, etc,
and can be an interesting research question for future work.

8

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Table 2. Comparison of training steps and the best Elo ratings
among baselines, with CPU’s Elos as references.

Method Training Steps (Left/Right) Elo (Left/Right)

IPPO 46M / 46M 1082 / 1164
League 647M / 630M 1682 / 1503
2Timescale 51M / 46M 1080 / 919
PSRO 176M / 161M 1262 / 1517
FSP 262M / 244M 1079 / 1150
CPU N/A 1395 / 1541

Table 3. Comparison of methods’ exploitability. A lower number
indicates the evaluated policy is more robust to exploitation.

Method Exploitability (Left/Right)

IPPO 0.96 ± 0.03 / 0.91 ± 0.03
League 0.94 ± 0.05 / 0.94 ± 0.00
2Timescale 0.96 ± 0.02 / 0.90 ± 0.05
PSRO 0.97 ± 0.02 / 0.88 ± 0.05
FSP 1.00 ± 0.00 / 0.95 ± 0.01
PPO 0.99 ± 0.02 / 0.99 ± 0.01

7.3. Non-Exploitability of Trained Agents

To answer question (c), we measure the non-exploitability of
baseline algorithms according to the evaluation approaches
proposed in Section 5. More specifically, we choose models
with the highest Elos from each two-player baseline algo-
rithm respectively, and compare their exploitability with
the single-player pretrained model used for initializing the
population-based methods in Section 7.2.

The practical exploitability is calculated by setting the
trained policy fixed on one side, and deploying a PPO agent
on the other side as an exploiter. The PPO exploiter will
be trained until convergence, and the success rate of the ex-
ploiter is the estimated exploitability of the original policy,
according to Definition 3.3.

Single-Agent RL Exploiters. We use PPO as the algo-
rithm for training exploiters, given its decent performance
in both single-player and two-player scenarios shown in pre-
vious experiments. Table 3 shows the exploitability of com-
paring methods evaluated across three seeds, from which
we observe that the single-player pretrained policy via PPO
is easier to exploit and suffers from higher exploitability
than almost all selected policies from two-player baselines.
Therefore, this result indicates that two-player learning al-
gorithms such as League and PSRO can help to improve the
robustness of learned policies. On the other hand, the PPO
exploiter eventually learns to beat policies from all baselines
(with a win rate greater than 0.5), which means that none
of these algorithms can result in the exact Nash equilibrium
policies, or even close to it. Therefore, closing this gap is a
challenging direction for future research.

Human Players as Exploiters. In addition to exploiting
the learned models with RL algorithms, we also attempt
to exploit their policies with human effort. During human
evaluations, the evaluated models reveal some robustness
to human players (e.g., defend when a human player at-
tacks), but some simple strategies (e.g., defensive posture
combined with low kicks at proper timing) could still de-
feat them rather consistently. Visualizations are provided in
Appendix E.

Therefore, based on two exploiting experiments, we observe
that existing competitive MARL algorithms are found hard
to learn non-exploitable strategies in competitive fighting
games like Street Fighter, thus raising a new challenge for
the research community.

8. Conclusion and Limitation
In this paper, we present the FightLadder platform and evalu-
ation benchmarks as a novel testbed for competitive MARL
research. The platform supports various video action games
including the popular Street Fighter series, with flexible
support for new game integration.

We further provide experimental evaluations of present RL
and MARL algorithms in both single-player and two-player
modes of one specific game Street Fighter. In the single-
player setting, we proposed a learning scheme based on
curriculum learning. It trains a general RL agent that can
consistently beat CPUs across different characters. In the
two-player setting, the Elo rating and exploitability test
are conducted as part of the proposed evaluation criteria.
Our implementation of league training and PSRO provides
stronger agents than FSP and IPPO in terms of Elo ratings.
However, both single-agent RL and human players are ca-
pable of exploiting all agents learned by current widely
adopted algorithms.

Our current work is limited to fully competitive two-player
games. One important challenge of MARL is its diverse
nature, which includes collaborative games, competitive
games, two-player games, and multiplayer games, all of
which have rather different problem structures and solution
concepts. The more general setting, which involves more
than two players and both cooperation and competition, is
not yet explored and should be an important future direction.
Although FightLadder supports multiple fighting games, our
current results are mostly conducted on Street Fighter, and
we are curious to see more results on other games.

This work motivates further research in developing more
efficient and effective self-play algorithms finding non-
exploitable strategies. We hope that our platform prompts
general interest and more extensive research in competitive
MARL and serves as a standard benchmark for developing
practically useful self-play training paradigms.

9

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Acknowledgements
This work was supported by Office of Naval Research
N00014-22-1-2253, National Science Foundation Grant
NSF-IIS-2107304, and National Science Foundation Grad-
uate Research Fellowship Program under Grant No. DGE-
2039656.

Impact Statement
This work may advance the field of game AI, thus has po-
tentials to affect the gaming experience for human players.
The strong AI agents for popular fighting games may attract
people’s attention to get involved in these games, or make
them feel that the games can be even more challenging for
human. Another positive impact is that our study promotes
the research for robust systems against adversarial attacks.

References
Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M.,

Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
O., Michalski, M., et al. What matters in on-policy rein-
forcement learning? a large-scale empirical study. arXiv
preprint arXiv:2006.05990, 2020a.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020b.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Pow-
ell, G., McGrew, B., and Mordatch, I. Emergent tool
use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528, 2019.

Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot,
M., Song, H. F., Parisotto, E., Dumoulin, V., Moitra, S.,
Hughes, E., et al. The hanabi challenge: A new frontier
for ai research. Artificial Intelligence, 280:103216, 2020.

Beattie, C., Köppe, T., Duéñez-Guzmán, E. A., and Leibo,
J. Z. Deepmind lab2d. arXiv preprint arXiv:2011.07027,
2020.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J.,
Finn, C., Gopalakrishnan, K., Hausman, K., Herzog, A.,

Hsu, J., et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

Brown, G. W. Iterative solution of games by fictitious play.
Act. Anal. Prod Allocation, 13(1):374, 1951.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418–424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):885–890, 2019.

Daskalakis, C., Foster, D. J., and Golowich, N. Independent
policy gradient methods for competitive reinforcement
learning. Advances in neural information processing
systems, 33:5527–5540, 2020.

de Witt, C. S., Gupta, T., Makoviichuk, D., Makoviychuk,
V., Torr, P. H., Sun, M., and Whiteson, S. Is indepen-
dent learning all you need in the starcraft multi-agent
challenge? arXiv preprint arXiv:2011.09533, 2020.

Ding, Z., Su, D., Liu, Q., and Jin, C. A deep reinforcement
learning approach for finding non-exploitable strategies in
two-player atari games. arXiv preprint arXiv:2207.08894,
2022.

Domahidi, A., Chu, E., and Boyd, S. ECOS: An SOCP
solver for embedded systems. In European Control Con-
ference (ECC), pp. 3071–3076, 2013.

Dresher, M., Shapley, L. S., and Tucker, A. W. Advances in
Game Theory.(AM-52), Volume 52, volume 52. Princeton
University Press, 2016.

Elo, A. E. and Sloan, S. The rating of chessplayers: Past
and present. (No Title), 1978.

Filar, J. and Vrieze, K. Competitive Markov decision pro-
cesses. Springer Science & Business Media, 2012.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradi-
ents. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Go, S.-X., Jiang, Y., and Loke, D. K. A phase-change mem-
ristive reinforcement learning for rapidly outperforming
champion street-fighter players. Advanced Intelligent
Systems, 5(11):2300335, 2023.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play
in extensive-form games. In Bach, F. and Blei, D. (eds.),
Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 805–813, Lille, France, 07–09 Jul
2015. PMLR. URL https://proceedings.mlr.
press/v37/heinrich15.html.

10

https://proceedings.mlr.press/v37/heinrich15.html
https://proceedings.mlr.press/v37/heinrich15.html

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Hu, J. and Wellman, M. P. Nash q-learning for general-sum
stochastic games. Journal of machine learning research,
4(Nov):1039–1069, 2003.

Hu, J., Jiang, S., Harding, S. A., Wu, H., and Liao, S.-w.
Rethinking the implementation tricks and monotonicity
constraint in cooperative multi-agent reinforcement learn-
ing. arXiv preprint arXiv:2102.03479, 2021.

Hu, S., Zhong, Y., Gao, M., Wang, W., Dong, H., Liang,
X., Li, Z., Chang, X., and Yang, Y. Marllib: A scalable
and efficient multi-agent reinforcement learning library.
Journal of Machine Learning Research, 24(315):1–23,
2023.

Khan, I., Van Nguyen, T., Dai, X., and Thawonmas, R. Dare-
fightingice competition: A fighting game sound design
and ai competition. In 2022 IEEE Conference on Games
(CoG), pp. 478–485. IEEE, 2022.

Kurach, K., Raichuk, A., Stańczyk, P., Zając, M., Bachem,
O., Espeholt, L., Riquelme, C., Vincent, D., Michalski,
M., Bousquet, O., et al. Google research football: A novel
reinforcement learning environment. In Proceedings of
the AAAI conference on artificial intelligence, volume 34,
pp. 4501–4510, 2020.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A.,
Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing
systems, 30, 2017.

Li, J., Koyamada, S., Ye, Q., Liu, G., Wang, C., Yang, R.,
Zhao, L., Qin, T., Liu, T.-Y., and Hon, H.-W. Suphx:
Mastering mahjong with deep reinforcement learning.
arXiv preprint arXiv:2003.13590, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neu-
ral information processing systems, 30, 2017.

McMahan, H. B., Gordon, G. J., and Blum, A. Planning in
the presence of cost functions controlled by an adversary.
In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 536–543, 2003.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Mohanty, S., Nygren, E., Laurent, F., Schneider, M.,
Scheller, C., Bhattacharya, N., Watson, J., Egli, A.,
Eichenberger, C., Baumberger, C., et al. Flatland-rl:
Multi-agent reinforcement learning on trains. arXiv
preprint arXiv:2012.05893, 2020.

Moravvcík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill,
D., Bard, N., Davis, T., Waugh, K., Johanson, M., and
Bowling, M. Deepstack: Expert-level artificial intelli-
gence in heads-up no-limit poker. Science, 356(6337):
508–513, 2017.

Mordatch, I. and Abbeel, P. Emergence of grounded com-
positional language in multi-agent populations. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Murphy, D. Hacking public memory: Understanding the
multiple arcade machine emulator. Games and Culture, 8
(1):43–53, 2013.

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman,
J. Gotta learn fast: A new benchmark for generalization
in rl. arXiv preprint arXiv:1804.03720, 2018.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Palmas, A. Diambra arena: a new reinforcement learning
platform for research and experimentation. arXiv preprint
arXiv:2210.10595, 2022.

Pan, X., Liu, M., Zhong, F., Yang, Y., Zhu, S.-C., and
Wang, Y. Mate: Benchmarking multi-agent reinforcement
learning in distributed target coverage control. Advances
in Neural Information Processing Systems, 35:27862–
27879, 2022.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht,
S. V. Benchmarking multi-agent deep reinforcement
learning algorithms in cooperative tasks. arXiv preprint
arXiv:2006.07869, 2020.

Peng, B., Rashid, T., Schroeder de Witt, C., Kamienny,
P.-A., Torr, P., Böhmer, W., and Whiteson, S. Facmac:
Factored multi-agent centralised policy gradients. Ad-
vances in Neural Information Processing Systems, 34:
12208–12221, 2021.

11

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. Monotonic value function
factorisation for deep multi-agent reinforcement learning.
The Journal of Machine Learning Research, 21(1):7234–
7284, 2020.

Resnick, C., Eldridge, W., Ha, D., Britz, D., Foerster, J.,
Togelius, J., Cho, K., and Bruna, J. Pommerman: A multi-
agent playground. arXiv preprint arXiv:1809.07124,
2018.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G., Hung, C.-M., Torr, P. H.,
Foerster, J., and Whiteson, S. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

Sarkar, B., Talati, A., Shih, A., and Sadigh, D. Pantheonrl: A
marl library for dynamic training interactions. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 13221–13223, 2022.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shapley, L. S. Stochastic games. Proceedings of the national
academy of sciences, 39(10):1095–1100, 1953.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Song, Y., Wojcicki, A., Lukasiewicz, T., Wang, J., Aryan, A.,
Xu, Z., Xu, M., Ding, Z., and Wu, L. Arena: A general

evaluation platform and building toolkit for multi-agent
intelligence. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 7253–7260, 2020.

Suarez, J., Du, Y., Zhu, C., Mordatch, I., and Isola, P. The
neural mmo platform for massively multiagent research.
arXiv preprint arXiv:2110.07594, 2021.

Sukhbaatar, S., Fergus, R., et al. Learning multiagent com-
munication with backpropagation. Advances in neural
information processing systems, 29, 2016.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

Tan, M. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the tenth inter-
national conference on machine learning, pp. 330–337,
1993.

Terry, J., Black, B., Grammel, N., Jayakumar, M., Hari, A.,
Sullivan, R., Santos, L. S., Dieffendahl, C., Horsch, C.,
Perez-Vicente, R., et al. Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information
Processing Systems, 34:15032–15043, 2021.

Tesauro, G. et al. Temporal difference learning and td-
gammon. Communications of the ACM, 38(3):58–68,
1995.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Yao, Z. and Ding, Z. Learning distributed and fair policies
for network load balancing as markov potential game.
Advances in Neural Information Processing Systems, 35:
28815–28828, 2022.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A.,
and Wu, Y. The surprising effectiveness of ppo in cooper-
ative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z.,
Zhang, W., Yu, Y., Jin, H., and Li, Z. Cityflow: A multi-
agent reinforcement learning environment for large scale
city traffic scenario. In The world wide web conference,
pp. 3620–3624, 2019.

Zheng, L., Yang, J., Cai, H., Zhou, M., Zhang, W., Wang, J.,
and Yu, Y. Magent: A many-agent reinforcement learning

12

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

platform for artificial collective intelligence. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Zhou, M., Luo, J., Villella, J., Yang, Y., Rusu, D., Miao,
J., Zhang, W., Alban, M., Fadakar, I., Chen, Z., et al.
Smarts: Scalable multi-agent reinforcement learning
training school for autonomous driving. arXiv preprint
arXiv:2010.09776, 2020.

Zhou, M., Wan, Z., Wang, H., Wen, M., Wu, R., Wen,
Y., Yang, Y., Yu, Y., Wang, J., and Zhang, W. Malib:
A parallel framework for population-based multi-agent
reinforcement learning. Journal of Machine Learning
Research, 24(150):1–12, 2023.

13

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

A. Details of FightLadder
A.1. Dense Reward

The shaped dense reward for the i-th agent at step t is defined as follows:

ri,t = α [λ(HP−i,t−1 − HP−i,t)− (HPi,t−1 − HPi,t) + ri,bonus] , (1)

where α is a scaling factor, HPi,t denotes agent i’s hit-point at step t and λ control the aggressiveness of learned agents, and
−i denotes the opponent agent. At the end of the game, the agent i will receive a bonus reward ri,bonus, which is positively
correlated to HPi if it wins and negatively correlated to HP−i if it loses. By default, we choose λ = 3 in SF2, FF2, and MK,
and λ = 1 in SF3 and KOF97, for the consideration of practical performances.

A.2. Game Settings

Table 4 illustrates the observation, action, and rewards as well as other elements in the environment for all supported games
— Street Fighter II (SF2), Fatal Fury 2 (FF2), Mortal Kombat (MK), Street Fighter III (SF3), and The King of Fighters ’97
(KOF97).

Table 4. Specification of supported games in FightLadder.

SF2 FF2 MK SF3 KOF97

Observation (Pixels) 100×128×3 112×128×3 112×160×3 112×192×3 112×192×3
Human Action Supported Yes Yes Yes Yes Yes
Transformed Action Supported Yes Yes Yes No No
Shaped Dense Reward Yes Yes Yes Yes Yes
Default Frames Per Step 8 8 8 3 3
Default Frames Stacked3 12 12 12 9 9

Additional Available Info HPs, Countdown, HPs, Countdown HPs, Countdown, HPs HPs, Countdown,
Scoreboard, Positions Scoreboard Positions, Power Status

A.3. Comparison of MARL Game Platforms

Table 5 compares our FightLadder with several popular MARL game platforms mostly focusing on competitive settings,
in terms of observation space, action space, whether baseline methods are included and the number of agents in games.
For the observation space, ‘Continuous’ indicates a vector-form latent state information of the game with continuous
numerical values, and ‘Image’ indicates visual RGB information as observations. PommerMan (Resnick et al., 2018) uses
grid environments therefore its observation only has discrete values. For the action space, most of the games only involves
discrete action values except for Arena (Song et al., 2020). For the number of agents in these platforms, MPE provide
diverse competitive settings like 1v1, 1vN , 1v1v1 and so on. MAgent includes 1 million agents competing againts each
other, and for Neural MMO (Suarez et al., 2021) the number of agents is 256 or 1024. The team mode in our FightLadder
and Arena supports the competitive settings of two teams, where each team includes multiple characters to be controlled by
one team policy or separate agent policies.

Table 5. Comparison of popular MARL game platforms.

Env Observation Space Action Space Baselines # Agents
MPE (Mordatch & Abbeel, 2018) Continuous Discrete Yes 1v1, 1vN and 1v1v1...

MAgent (Zheng et al., 2018) Continuous+Image Discrete Yes 1 million
Arena (Song et al., 2020) Continuous+Image Continuous/Discrete Yes 1v1, NvN and team mode

Neural MMO (Suarez et al., 2021) Continuous Discrete Yes 256 and 1024
PettingZoo Atari (Terry et al., 2021) Continuous+Image Discrete No 1v1
PommerMan (Resnick et al., 2018) Discrete Discrete No 2v2

FightLadder (Ours) Continuous+Image Discrete Yes 1v1 and team mode

3We uniformly sample the stacked frames as observations to improve the computational efficiency.

14

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

B. Baseline Algorithms of FightLadder-Baselines
Independent Learning (IPPO). Independent learning is a straightforward extension of single-agent RL into MARL.
It decomposes the joint optimization into individual ones for each agent while regarding all other agents as part of
the environment. It can be implemented easily by simultaneously running single-agent RL algorithms for each player.
Theoretically, this independent learning paradigm suffers from suboptimality (Tan, 1993; Foerster et al., 2018), because the
environment becomes non-stationary while other agents are updating their policies. However, recent work (de Witt et al.,
2020; Yu et al., 2022) finds that with modest hyperparameter tuning, IPPO can serve as a strong baseline compared to other
state-of-the-art algorithms in some cooperative MARL tasks.

Two-timescale Learning (2Timescale). Two-timescale learning follows the independent learning paradigm, but requires
two players to update gradients according to the two-timescale rule, i.e., one player uses a much smaller step size than the
other one. As a result of this modification, two-timescale learning enjoys some nice theoretical properties — it is proven
that under some mild assumptions, independent policy gradient algorithms satisfying two-timescale converge to a Nash
equilibrium in two-player zero-sum stochastic games (Daskalakis et al., 2020).

Population-Based Methods. The independent learning framework is only training agents against the current version of
their opponents, which may fail or converge slowly due to the lack of diversity (Dresher et al., 2016). Population-based
methods are proposed to increase policy diversity by maintaining a pool of policies in previous iterations, and using them as
a curriculum to update the current policy. More specifically, for t-th update, the agent µt plays with previous versions of
its opponent ν̃ sampled from the meta-strategy ρν , which is a distribution over ν0, ν1, . . . , νt−1. Algorithm 1 presents the
pseudo-code for general population-based methods. With different choices of sampling distribution, we can recover several
state-of-the-art baselines:

• Fictitious Self-Play (FSP), where ρν is the uniform distribution Uniform(ν0, ν1, . . . , νt−1) (Heinrich et al., 2015).

• Policy-Space Response Oracles (PSRO), where (µ̃, ν̃) are sampled from the meta-strategy (ρµ, ρν) by solving Nash
equilibrium of the payoff matrix game between µ0, µ1, . . . , µt−1 and ν0, ν1, . . . , νt−1 (Lanctot et al., 2017).

• League Training (League), where three types of agents — main agents, league exploiters, and main exploiters, are
introduced into the population. Main agents train against themselves as well as all previous versions of agents in the
population; league exploiters train against all previous agents; and main exploiters optimize the best response of main
agents. Each type of agent adopts a different sampling distribution which is a mixture of self-play and prioritized
fictitious self-play. We refer readers to (Vinyals et al., 2019) for more implementation details.

Algorithm 1 Population-Based Methods for MGs
1: Initialize policies µ0 = {µh}, ν0 = {νh}, h ∈ [H]
2: Initialize policy sets: µ = {µ0}, ν = {ν0}
3: Initialize meta-strategies: ρµ = [1.], ρν = [1.]
4: for t = 1, . . . , T do
5: if t%2 == 0 then
6: νt = BEST_RESPONSE(ρµ, µ)
7: ν = ν

⋃
{νt}

8: Update ρν according to specific algorithms
9: else

10: µt = BEST_RESPONSE(ρν , ν)
11: µ = µ

⋃
{µt}

12: Update ρµ according to specific algorithms
13: end if
14: end for
15: Return µ, ρµ, ν, ρν

15

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

C. Experiment Details
C.1. Hyperparameters (Table 6 and 7)

Hyperparameters Value

feature extractor CNN (Mnih et al., 2015)
rollout steps for each environment 512

batch size 1024
epochs per update 4

γ 0.94
GAE λ 0.95

learning rate linear schedule from 2.5e-4 to 2.5e-6
clipping range linear schedule from 0.15 to 0.025

advantage normalization True
entropy coefficient 0.0

gradient clipping 0.5
value function coefficient 0.5

Table 6. Training hyperparameters for PPO, which is the backbone for both single-player and two-player algorithms in the experiment.

FSP PSRO League

envs per learner 24 # envs per learner 24 # envs per learner 24
steps for BR 10M steps for BR 10M steps for BR 10M
total steps 50M total steps 250M total steps 700M
main agent 1 # main agent 1 # main agent 1

Nash solver ECOS # main exploiter 1
(Domahidi et al., 2013) # league exploiter 2

Table 7. Training hyperparameters for FSP, PSRO, and League. We omit the details of League’s opponent scheduling here as it strictly
follows the pseudocode provided in (Vinyals et al., 2019).

C.2. Training Details

Figure 7, 8, and 9 report the payoff matrix of policies within the population for FSP, PSRO, and League, respectively, with
the value representing the win rate of the left player against the right player. We trained all our agents on one server with
192 CPUs and 8 A6000 GPUs.

D. Individual Elo Results
D.1. IPPO (Figure 10)

D.2. 2Timescale (Figure 11)

D.3. FSP (Figure 12)

D.4. PSRO (Figure 13)

D.5. League (Figure 14)

E. Visualization of Human Exploiters
Figure 15 visualizes how human players can exploit learned models with a simple strategy. Full videos are provided in the
supplementary material.

16

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

FSP
0_r

igh
t_h

_0M

FSP
0_r

igh
t

FSP0_left

FSP0_left_h_0M

0.62

0.52

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r

igh
t_h

_10
M

FSP
0_r

igh
t_h

_0M

FSP
0_r

igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

0.91 0.99

0.00

0.11

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r

igh
t_h

_20
M

FSP
0_r

igh
t_h

_10
M

FSP
0_r

igh
t_h

_0M

FSP
0_r

igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

0.99 0.99 0.99

0.00

0.05

0.08

0.48

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r

igh
t_h

_40
M

FSP
0_r

igh
t_h

_30
M

FSP
0_r

igh
t_h

_20
M

FSP
0_r

igh
t_h

_10
M

FSP
0_r

igh
t_h

_0M

FSP
0_r

igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

FSP0_left_h_40M

FSP0_left_h_50M

0.76 0.84 0.95 0.99 1.00

0.00

0.03

0.07

0.06

0.22

0.40

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r

igh
t_h

_60
M

FSP
0_r

igh
t_h

_50
M

FSP
0_r

igh
t_h

_40
M

FSP
0_r

igh
t_h

_30
M

FSP
0_r

igh
t_h

_20
M

FSP
0_r

igh
t_h

_10
M

FSP
0_r

igh
t_h

_0M

FSP
0_r

igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

FSP0_left_h_40M

FSP0_left_h_50M

FSP0_left_h_60M

0.64 0.88 0.94 0.96 0.96 0.97 1.00

0.01

0.02

0.04

0.06

0.16

0.21

0.04

0.0

0.2

0.4

0.6

0.8

1.0

FSP
0_r

igh
t_h

_70
M

FSP
0_r

igh
t_h

_60
M

FSP
0_r

igh
t_h

_50
M

FSP
0_r

igh
t_h

_40
M

FSP
0_r

igh
t_h

_30
M

FSP
0_r

igh
t_h

_20
M

FSP
0_r

igh
t_h

_10
M

FSP
0_r

igh
t_h

_0M

FSP
0_r

igh
t

FSP0_left

FSP0_left_h_0M

FSP0_left_h_10M

FSP0_left_h_20M

FSP0_left_h_30M

FSP0_left_h_40M

FSP0_left_h_50M

FSP0_left_h_60M

FSP0_left_h_70M

FSP0_left_h_80M

0.96 0.97 0.94 0.97 1.00 1.00 1.00 1.00

0.00

0.02

0.03

0.02

0.11

0.19

0.09

0.04

0.50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. FSP details (training order from top left to bottom right): For FSP, there is one agent for each side (left or right). The name of
each row indicates the agent information as Character_Side_Checkpoint. Checkpoint=h_xM represents a previous version
of agent saved at x million steps. The value indicates the win rate of the left (row) player against the right (column) player.

17

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

PS
RO0_r

igh
t_h

_0M

PS
RO0_r

igh
t

PSRO0_left

PSRO0_left_h_0M

0.63

0.65 0.47

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO0_r

igh
t_h

_10
M

PS
RO0_r

igh
t_h

_0M

PS
RO0_r

igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

1.00 0.96

0.02 0.65 0.02

0.31 0.98 0.03

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO0_r

igh
t_h

_30
M

PS
RO0_r

igh
t_h

_20
M

PS
RO0_r

igh
t_h

_10
M

PS
RO0_r

igh
t_h

_0M

PS
RO0_r

igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

0.93 0.98 1.00 0.96

0.02 0.07 0.02 0.65 0.04

0.03 0.02 0.31 0.98 0.04

0.01 0.63 0.99 0.93 0.01

0.07 0.93 1.00 0.96 0.00

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO0_r

igh
t_h

_50
M

PS
RO0_r

igh
t_h

_40
M

PS
RO0_r

igh
t_h

_30
M

PS
RO0_r

igh
t_h

_20
M

PS
RO0_r

igh
t_h

_10
M

PS
RO0_r

igh
t_h

_0M

PS
RO0_r

igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

PSRO0_left_h_40M

PSRO0_left_h_50M

0.95 0.92 0.89 0.99 1.00 0.96

0.02 0.01 0.02 0.07 0.02 0.65 0.04

0.06 0.01 0.03 0.02 0.31 0.98 0.04

0.08 0.00 0.01 0.63 0.99 0.93 0.01

0.04 0.01 0.07 0.93 1.00 0.96 0.00

0.16 0.39 0.87 0.94 0.94 0.99 0.07

0.08 0.97 0.90 0.82 0.91 0.98 0.06

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO0_r

igh
t_h

_60
M

PS
RO0_r

igh
t_h

_50
M

PS
RO0_r

igh
t_h

_40
M

PS
RO0_r

igh
t_h

_30
M

PS
RO0_r

igh
t_h

_20
M

PS
RO0_r

igh
t_h

_10
M

PS
RO0_r

igh
t_h

_0M

PS
RO0_r

igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

PSRO0_left_h_40M

PSRO0_left_h_50M

PSRO0_left_h_60M

PSRO0_left_h_70M

0.95 0.98 0.92 0.88 1.00 1.00 0.96

0.09 0.02 0.01 0.02 0.07 0.02 0.65 0.04

0.35 0.06 0.01 0.03 0.02 0.31 0.98 0.00

0.22 0.08 0.00 0.01 0.63 0.99 0.93 0.01

0.18 0.04 0.01 0.07 0.93 1.00 0.96 0.00

0.02 0.16 0.39 0.87 0.94 0.94 0.99 0.01

0.23 0.08 0.97 0.90 0.82 0.91 0.98 0.07

0.12 1.00 0.91 0.65 0.53 0.79 0.94 0.10

0.96 0.99 0.92 0.86 1.00 0.98 0.98 0.17

0.0

0.2

0.4

0.6

0.8

1.0

PS
RO0_r

igh
t_h

_80
M

PS
RO0_r

igh
t_h

_70
M

PS
RO0_r

igh
t_h

_60
M

PS
RO0_r

igh
t_h

_50
M

PS
RO0_r

igh
t_h

_40
M

PS
RO0_r

igh
t_h

_30
M

PS
RO0_r

igh
t_h

_20
M

PS
RO0_r

igh
t_h

_10
M

PS
RO0_r

igh
t_h

_0M

PS
RO0_r

igh
t

PSRO0_left

PSRO0_left_h_0M

PSRO0_left_h_10M

PSRO0_left_h_20M

PSRO0_left_h_30M

PSRO0_left_h_40M

PSRO0_left_h_50M

PSRO0_left_h_60M

PSRO0_left_h_70M

PSRO0_left_h_80M

0.92 0.91 0.97 0.98 0.92 0.94 1.00 1.00 0.96

0.00 0.00 0.09 0.02 0.01 0.02 0.07 0.02 0.65 0.04

0.02 0.00 0.35 0.06 0.01 0.03 0.02 0.31 0.98 0.00

0.04 0.06 0.22 0.08 0.00 0.01 0.63 0.99 0.93 0.01

0.05 0.05 0.18 0.04 0.01 0.07 0.93 1.00 0.96 0.00

0.04 0.04 0.02 0.16 0.39 0.87 0.94 0.94 0.99 0.01

0.02 0.06 0.23 0.08 0.97 0.90 0.82 0.91 0.98 0.03

0.03 0.09 0.12 1.00 0.91 0.65 0.53 0.79 0.94 0.01

0.19 0.08 0.96 0.99 0.92 0.86 1.00 0.98 0.98 0.18

0.23 0.93 0.84 0.91 0.93 0.87 0.98 0.99 1.00 0.04

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. PSRO details (training order from top left to bottom right): For PSRO, there is one agent for each side (left or right). The
name of each row indicates the agent information as Character_Side_Checkpoint. Checkpoint=h_xM represents a previous
version of agent saved at x million steps. The value indicates the win rate of the left (row) player against the right (column) player.

18

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

ME0
_rig

ht

MA0_r
igh

t_h
_0M

MA0_r
igh

t

LE1
_rig

ht

LE0
_rig

ht

LE0_left

LE1_left

MA0_left

MA0_left_h_0M

ME0_left

0.61

0.54

0.58 0.56 0.57

0.48 0.52 0.53

0.48

0.0

0.2

0.4

0.6

0.8

1.0

ME0
_rig

ht_
h_1

0M

ME0
_rig

ht

MA0_r
igh

t_h
_0M

MA0_r
igh

t

LE1
_rig

ht

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE1_left

LE1_left_h_10M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

ME0_left

ME0_left_h_10M

0.53 0.93

0.15 0.19 0.40

0.25 0.73

0.16 0.27 0.30

0.85 0.91 0.97 0.80

0.08 0.03 0.00 0.02

0.61 0.34 0.50 0.58

0.97 0.06

0.44 0.71 0.70

0.0

0.2

0.4

0.6

0.8

1.0

ME0
_rig

ht_
h_1

0M

ME0
_rig

ht

MA0_r
igh

t_h
_20

M

MA0_r
igh

t_h
_10

M

MA0_r
igh

t_h
_0M

MA0_r
igh

t

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

ME0_left

ME0_left_h_10M

0.94 0.66 0.87 0.97 0.93 0.97

0.09 0.10 0.08

0.29 0.08 0.21

0.86 0.47 0.84 0.90 0.82 0.86

0.21 0.03 0.04

0.35 0.41 0.38

0.93 0.91 0.77 0.95 0.95 0.45 0.88 0.90

0.03 0.02 0.00 0.02

0.14 0.25 0.22 0.17

0.25 0.26 0.25 0.29

0.43 0.98 1.00 0.06

0.26 0.31 0.31

0.0

0.2

0.4

0.6

0.8

1.0

ME0
_rig

ht_
h_3

0M

ME0
_rig

ht_
h_1

0M

ME0
_rig

ht

MA0_r
igh

t_h
_30

M

MA0_r
igh

t_h
_20

M

MA0_r
igh

t_h
_10

M

MA0_r
igh

t_h
_0M

MA0_r
igh

t

LE1
_rig

ht_
h_2

0M

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_3

0M

LE0
_rig

ht_
h_2

0M

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE0_left_h_30M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

LE1_left_h_30M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

MA0_left_h_30M

ME0_left

ME0_left_h_10M

ME0_left_h_30M

0.89 0.86 0.34 0.89 0.94 0.97 0.78 0.93 0.68 0.72 0.94

0.09 0.06 0.01

0.07 0.09 0.70

0.06 0.22 0.79

0.94 0.91 0.76 0.92 0.94 0.98 0.91 0.98 0.81 0.88 0.90

0.10 0.02 0.72

0.09 0.38 0.06

0.28 0.54 0.83

0.84 0.94 0.91 0.80 0.85 0.90 0.98 0.43 0.90 0.92 0.84 0.88 0.94

0.16 0.02 0.05 0.02

0.30 0.14 0.13 0.76

0.28 0.11 0.12 0.76

0.44 0.16 0.28 0.87

0.31 0.67 0.28 0.82 0.06

0.12 0.17 0.76

0.06 0.05 0.70
0.0

0.2

0.4

0.6

0.8

1.0

ME0
_rig

ht_
h_3

0M

ME0
_rig

ht_
h_1

0M

ME0
_rig

ht

MA0_r
igh

t_h
_40

M

MA0_r
igh

t_h
_30

M

MA0_r
igh

t_h
_20

M

MA0_r
igh

t_h
_10

M

MA0_r
igh

t_h
_0M

MA0_r
igh

t

LE1
_rig

ht_
h_4

0M

LE1
_rig

ht_
h_2

0M

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_3

0M

LE0
_rig

ht_
h_2

0M

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE0_left_h_30M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

LE1_left_h_30M

LE1_left_h_40M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

MA0_left_h_30M

MA0_left_h_40M

ME0_left

ME0_left_h_10M

ME0_left_h_30M

0.96 0.91 0.61 0.56 0.78 0.91 0.99 0.66 0.87 0.93 0.84 0.87 0.98

0.05 0.10 0.19

0.06 0.05 0.15

0.06 0.11 0.14

0.94 0.96 0.50 0.91 0.96 0.94 0.99 0.61 0.95 0.92 0.92 0.90 0.92

0.05 0.11 0.23

0.09 0.27 0.24

0.14 0.26 0.31

0.17 0.31 0.37

0.95 0.94 0.91 0.81 0.87 0.93 0.97 0.98 0.51 0.75 0.93 0.94 0.88 0.84 0.94

0.13 0.02 0.03 0.14

0.17 0.13 0.15 0.31

0.12 0.09 0.15 0.25

0.27 0.17 0.34 0.36

0.32 0.29 0.63 0.43

0.53 0.65 0.87 0.91 0.99 0.06

0.10 0.26 0.34

0.13 0.06 0.22
0.0

0.2

0.4

0.6

0.8

1.0

ME0
_rig

ht_
h_5

0M

ME0
_rig

ht_
h_3

0M

ME0
_rig

ht_
h_1

0M

ME0
_rig

ht

MA0_r
igh

t_h
_50

M

MA0_r
igh

t_h
_40

M

MA0_r
igh

t_h
_30

M

MA0_r
igh

t_h
_20

M

MA0_r
igh

t_h
_10

M

MA0_r
igh

t_h
_0M

MA0_r
igh

t

LE1
_rig

ht_
h_4

0M

LE1
_rig

ht_
h_2

0M

LE1
_rig

ht_
h_1

0M

LE1
_rig

ht

LE0
_rig

ht_
h_5

0M

LE0
_rig

ht_
h_3

0M

LE0
_rig

ht_
h_2

0M

LE0
_rig

ht_
h_1

0M

LE0
_rig

ht

LE0_left

LE0_left_h_10M

LE0_left_h_20M

LE0_left_h_30M

LE0_left_h_50M

LE1_left

LE1_left_h_10M

LE1_left_h_20M

LE1_left_h_30M

LE1_left_h_40M

LE1_left_h_50M

LE1_left_h_60M

MA0_left

MA0_left_h_0M

MA0_left_h_10M

MA0_left_h_20M

MA0_left_h_30M

MA0_left_h_40M

MA0_left_h_50M

MA0_left_h_60M

ME0_left

ME0_left_h_10M

ME0_left_h_30M

ME0_left_h_50M

0.620.870.88 0.310.310.310.610.880.89 0.570.800.90 0.410.750.730.83

0.05 0.09 0.36

0.06 0.05 0.14

0.09 0.05 0.14

0.07 0.26 0.38

0.920.960.92 0.630.830.900.940.971.00 0.850.990.95 0.860.920.970.95

0.04 0.11 0.29

0.08 0.14 0.44

0.11 0.12 0.40

0.10 0.17 0.59

0.11 0.31 0.61

0.26 0.36 0.83

0.930.950.940.910.790.870.860.940.950.970.480.920.970.97 0.910.960.960.98

0.11 0.01 0.03 0.20

0.44 0.11 0.11 0.44

0.22 0.05 0.15 0.40

0.29 0.07 0.28 0.55

0.37 0.29 0.38 0.66

0.52 0.19 0.55 0.74

0.75 0.40 0.69 0.85

0.640.690.630.810.770.950.06

0.11 0.11 0.52

0.07 0.04 0.18

0.11 0.23 0.55
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9. League training details (training order from top left to bottom right): For league training, there is one main agent (MA), two
league exploiters (LE0, LE1), and one main exploiter (ME) for each side (left or right). The name of each row indicates the agent
information as Character_Side_Checkpoint. Checkpoint=h_xM represents a previous version of agent saved at x million
steps. The value indicates the win rate of the left (row) player against the right (column) player.

19

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

600 800 1000 1200 1400 1600 1800
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

IPPO: Left
5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500

El
o

IPPO: Left

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

Co
un

t

IPPO: Left
Seed 1
Seed 2
Seed 3

400 600 800 1000 1200 1400 1600
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

IPPO: Right
5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

5 M
23 M
41 M

11 M
29 M
47 M

17 M
35 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500
El

o

IPPO: Right

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

Co
un

t

IPPO: Right
Seed 1
Seed 2
Seed 3

Figure 10. The Elo rating for the population of agents trained with IPPO algorithm. The upper three plots are for left-side player and the
bottom three are for the right-side player. The Elo rating is plotted against the winning rate over matched policies (left figures), training
steps (middle figures) and the number of policies (right figures).

400 600 800 1000 1200 1400 1600
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2Timescale: Left
5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500

El
o

2Timescale: Left

400 600 800 1000 1200 1400 1600
Elo

0

5

10

15

Co
un

t

2Timescale: Left
Seed 1
Seed 2
Seed 3

200 400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2Timescale: Right
5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

5 M
29 M
53 M

13 M
37 M
61 M

21 M
45 M

0 1 2 3 4 5
Steps 1e7

0

500

1000

1500

El
o

2Timescale: Right

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

10

Co
un

t

2Timescale: Right
Seed 1
Seed 2
Seed 3

Figure 11. The Elo rating for the population of agents trained with 2Timescale algorithm. The upper three plots are for left-side player
and the bottom three are for the right-side player. The Elo rating is plotted against the winning rate over matched policies (left figures),
training steps (middle figures) and the number of policies (right figures).

20

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

FSP: Left
5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e8

0

500

1000

1500

El
o

FSP: Left

400 600 800 1000 1200 1400 1600
Elo

0

1

2

3

Co
un

t

FSP: Left
FSP

400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

FSP: Right
5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

5 M
104 M
203 M

38 M
137 M
236 M

71 M
170 M

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e8

0

500

1000

1500
El

o

FSP: Right

400 600 800 1000 1200 1400 1600
Elo

0

1

2

3

Co
un

t

FSP: Right
FSP

Figure 12. The Elo rating for the population of agents trained with FSP algorithm. The upper three plots are for left-side player and the
bottom three are for the right-side player. The Elo rating is plotted against the winning rate over matched policies (left figures), training
steps (middle figures) and the number of policies (right figures).

400 600 800 1000 1200
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

PSRO: Left
5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

0.0 0.5 1.0 1.5 2.0
Steps 1e8

0

500

1000

1500

El
o

PSRO: Left

400 600 800 1000 1200 1400 1600
Elo

0

1

2

3

Co
un

t

PSRO: Left
PSRO

400 600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

PSRO: Right
5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

5 M
98 M
191 M

36 M
129 M
222 M

67 M
160 M

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e8

0

500

1000

1500

El
o

PSRO: Right

400 600 800 1000 1200 1400 1600
Elo

0

2

4

6

8

Co
un

t

PSRO: Right
PSRO

Figure 13. The Elo rating for the population of agents trained with PSRO algorithm. The upper three plots are for left-side player and the
bottom three are for the right-side player. The Elo rating is plotted against the winning rate over matched policies (left figures), training
steps (middle figures) and the number of policies (right figures).

21

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

600 800 1000 1200 1400
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

League: Left
5 M
227 M
449 M

116 M
338 M
560 M

5 M
227 M
449 M

116 M
338 M
560 M

0 1 2 3 4 5 6 7
Steps 1e8

0

500

1000

1500

El
o

League: Left

400 600 800 1000 1200 1400 1600
Elo

0

5

10

15

20

25

Co
un

t

League: Left
MA0
ME0
LE0
LE1

600 800 1000 1200
Elo

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

League: Right
5 M
227 M
449 M

116 M
338 M
560 M

5 M
227 M
449 M

116 M
338 M
560 M

0 1 2 3 4 5 6 7
Steps 1e8

0

500

1000

1500

El
o

League: Right

400 600 800 1000 1200 1400 1600
Elo

0

10

20

30

Co
un

t

League: Right
MA0
ME0
LE0
LE1

Figure 14. The Elo rating for the population of agents trained with League training. The upper three plots are for left-side player and the
bottom three are for the right-side player. The Elo rating is plotted against the winning rate over matched policies (left figures), training
steps (middle figures) and the number of policies (right figures).

Figure 15. Demonstration of the exploiting strategy of one human player. The human player (Ryu on the right in white) defends when the
AI opponent (Ryu on the left in gray) attacks, and inflicts damage with low kicks.

22

