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ABSTRACT

Few-shot image generation (FSIG) using deep generative models (DGMs) presents
a significant challenge in accurately estimating the distribution of the target domain
with extremely limited samples. Recent work has addressed the problem using
a transfer learning approach, i.e. fine-tuning, leveraging a DGM that pre-trained
on a large-scale source domain dataset, and then adapting it to the target domain
with very limited samples. However, despite various proposed regularization
techniques, existing frameworks lack a systematic mechanism to analyze the
degree of overfitting, relying primarily on empirical validation without rigorous
theoretical grounding. We present Few-Shot Diffusion-regularized Representation
Learning (FS-DRL), an innovative approach designed to minimize the risk of
over-fitting while preserving distribution consistency in target image adaptation.
Our method is distinct from conventional methods in two aspects: First, instead of
fine-tuning, FS-DRL employs a novel scalable Invariant Guidance Matrix (IGM)
during the diffusion process, which acts as a regularizer in the feature space of
the model. This IGM is designed to have the same dimensionality as the target
images, effectively constraining its capacity and encouraging it to learn a low-
dimensional manifold that captures the essential structure of the target domain.
Second, our method introduces a controllable parameter called sharing degree,
which determines how many target images correspond to each IGM, enabling a
fine-grained balance between overfitting risk and model flexibility, thus providing a
quantifiable mechanism to analyze and mitigate overfitting. Extensive experiments
demonstrate that our approach effectively mitigates overfitting, enabling efficient
and robust few-shot learning across diverse domains.

1 INTRODUCTION

In recent years, Deep Generative Models (DGMs) have achieved remarkable breakthroughs in the
generation of high-quality and diverse samples across various domains (Higgins et al., 2016; Karras
et al., 2019; Song et al., 2020b; Ruiz et al., 2023). However, reliance on extensive data presents
a significant challenge in scenarios where data is scarce (Abdollahzadeh et al., 2023). To address
this issue, Few-Shot Image Generation (FSIG) methods (Wang et al., 2018; Zhao et al., 2022) have
emerged, aiming to generate diverse images with limited training samples.

Most FSIG methods rely on fine-tuning a DGM, typically a generative adversarial network (GAN)
(Goodfellow et al., 2014), which pretrained on a larger and “similar” dataset (Ojha et al., 2021; Zhu
et al., 2022; Zhao et al., 2022; 2023). However, this fine-tuning process, which involves adjusting
the generator pθ(z) to minimize the loss in the target domain Y , minθ E(z∼N (0,I),y∼Y) [L(pθ(z), y)],
often leads to overfitting, visual artifacts, and catastrophic forgetting (Saito et al., 2017; Radford
et al., 2015; Kirkpatrick et al., 2017) when only a few samples are available.

More recently, Diffusion Models (DMs) (Ho et al., 2020; Song et al., 2020b) have demonstrated
remarkable success, surpassing GANs in image generation (Dhariwal & Nichol, 2021). Their inherent
scalability and more stable training process allow DMs to be trained on larger datasets, resulting
in superior generalization capabilities. This makes them particularly adept at tasks that require
fine-grained detail manipulation, such as text-to-image translation (Saharia et al., 2022; Ramesh et al.,
2021) and intricate image editing (Meng et al., 2021). Given these strengths, it is attractive to consider
adapting DMs for FSIG, potentially offering superior solutions to existing GAN-dominated methods.
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Figure 1: An illustration of FS-DRL, demonstrating how our method overcomes overfitting during
IGM training, along with visual showcase. The dotted arrow (top) is used only during training.

However, directly applying current FSIG techniques such as regularization (Li et al., 2020; Ojha
et al., 2021) and modulation (Zhao et al., 2022) to DMs proves challenging. The significantly larger
number of parameters in DMs and their iterative nature not only fail to address the problems faced
by GANs but may exacerbate overfitting and catastrophic forgetting issues (Abdollahzadeh et al.,
2023). Consequently, we define the research question as follows: How can we adapt the pre-trained
diffusion model to the target domain while minimizing the risk of overfitting?

To address this question, we present Few-Shot Diffusion-Regularized Representation Learning
(FS-DRL), as shown in Fig. 1. Our method consists of three main contributions:

Firstly, we introduce a novel framework to adapt a pretrained DM to a specific domain. Unlike other
approaches that attempt to modify the generator (Wang et al., 2018; Ojha et al., 2021; Zhao et al.,
2023), our method is designed to “influence” the generation process. Specifically, given a target
domain Y , our method converts the unconditional generation process to a conditional one, and at the
diffusion time t, the objective is thus minθ E(q(yt|y),y∼Y [L(pθ(yt|Y), y)]. We find that introducing a
non-adaptive module, which we call the Invariant Gradient Matrix (IGM), is sufficient to achieve our
objective by guiding the generation process.

Secondly, we theoretically demonstrated that this IGM is essentially equivalent to a “simplest”
classifier in classifier-guided diffusion model (Song et al., 2020b). The weights can be seen as an
“attention matrix”, which determines the amount of “attention” different regions of the state should
receive for a specific domain. Furthermore, we introduce a Scalable property for IGM, which allows
flexible control over granularity. This scalability impacts the trade-off between generalization and
specificity. Defining an IGM for multiple images provides high generalization with low overfitting
risk, while a single IGM per image offers high specificity but increases overfitting risk.

Thirdly, we propose two optimization techniques that significantly enhance the performance of our
method in Few-Shot Image Generation (FSIG). The introduction of percentile gradient clipping and
simplified loss function allows our approach to achieve comparable results to state-of-the-art methods,
with particularly notable improvements in mode coverage. Additionally, we conducted experiments
on further parameter reduction, exploring the trade-offs between model complexity and performance.

We summarize the structure of the paper as follows. In Sec. 3.1, we provide a preliminary introduction
to diffusion models and formalize the notion we used in this paper. We then introduce the details of
our proposed method FS-DRL (Sec. 3.2) with theoretical analysis (Sec. 3.3) and two optimization
strategies (Sec. 3.4. In Sec. 4, we demonstrate the effectiveness of our proposed method through
empirical comparisons with the baseline, and a comprehensive component analysis.

2 RELATED WORKS

Few-Shot Image Generation Conventional approaches typically apply fine-tuning a Generative
Model pre-trained on a large dataset of a similar domain (Bartunov & Vetrov, 2018; Wang et al.,
2018; Clouâtre & Demers, 2019). However, full model fine-tuning typically leads to mode collapse
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(Hu et al., 2023). To mitigate this, various selective fine-tuning techniques have been proposed. These
include updating only part of the model, e.g. freezing the discriminator of GAN (Noguchi & Harada,
2019; Mo et al., 2020), preserving crucial pretrained weights identified by the modulation method
and Fisher Information (Li et al., 2020; Zhao et al., 2022; 2023), and maintaining structural similarity
between source and target domain distributions (Ojha et al., 2021; Xiao et al., 2022; Hu et al., 2023).
GenDA (Mondal et al., 2022) first utilize the representation learning method for FSIG, however, their
method is limited to StyleGAN (Karras et al., 2019) as it requires a “short” explicit latent code. CRDI
(Cao & Gong, 2024) is the most similar work to ours. However, we showed that their framework can
be regarded as a special case of ours with the highest degree of overfitting in Sec. 3.3.

DM for Representation Learning There are three main approaches which are close to our proposed
method: (1) Diffusion Models with AutoEncoder (VAE) (Kingma & Welling, 2013), this approaches
including D2C (Sinha et al., 2021), Diff-AE (Preechakul et al., 2022), DiTi (Yue et al., 2024) et al.,
which also be able to generate given only a few samples (≥ 100), however, these methods require to
train a Latent DMs from scratch to adapt a pre-trained VAE, which cause significant computational
resources and cannot be applied to varies pre-trained diffusion model. (2) Text-to-Image Diffusion
Model (DM), because of the high scalability of DMs, many LMMs such as DALL-E (Ramesh et al.,
2021) and Stable Diffusion (Rombach et al., 2022) are also applied to FSIG task. However, existing
multimodal foundation models have limited capacity for generating images of unseen categories in
inferring. Although methods such as DreamBooth (Ruiz et al., 2023) can generate samples from a
few shots, they are limited to adapting at the subject level. (3) Diffusion Inversion, which can be
further decomposed into two methods, training-free method including SDEdit (Meng et al., 2021),
Edict (Wallace et al., 2023) et al. and training-required method including Textual Inversion (Gal
et al., 2022), MCG (Chung et al., 2022) et al., these methods are mainly for Image Editing task which
requires deterministic inversion, hence not suitable for FSIG as the diversity is a key point.

3 METHODOLOGY

3.1 PRELIMINARIES

Diffusion Model Denoising Diffusion Probabilistic Model (Ho et al., 2020) (DDPM) is a latent
variable model that learns to sample from a distribution by learning to iteratively denoise samples.
The forward process q(x0:T ) adds noise to the sample x0 as

q (xt | xt−1) = N
(
xt;
√
1− βtxt−1, βtI

)
(1)

where βt is pre-defined to control the variance schedule. Song et al. (2020b) and Ho et al. (2020)
shown that the reverse process can be converted to a generative model by sampling xT ∼ N (0, I) and
transforming incrementally into a data manifold as pθ (x0:T ) = p (xT )

∏T
t=1 pθ (xt−1 | xt), where

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (2)

Here µθ and Σθ are the outputs of a neural network. Furthermore, by using the reparameterization
trick and Tweddie’s formula (Stein, 1981), we can get two equivalent interpretations

µθ (xt, t) =
1
√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵθ (xt, t) =
1
√
αt

xt +
1− αt√

αt
sθ (xt, t) (3)

where αt is mean coefficient defined as 1− βt, ϵθ (xt, t) and sθ (xt, t) are noise network and score
network, respectively. See Luo (2022) and Song et al. (2020b) for complete deviation.

3.2 FEW-SHOT DIFFUSION-REGULARIZED REPRESENTATION

Definition 1. (Target Domain Adaptation) Given a diffusion model trained on a source domain
dataset X , we say that the diffusion model is adapted to target domain Y with degree η at t when
Ex0∈X ,y0∈Y [M(x0, y0, t)] ≥ η, where domain adaptation measureM(x0, y0, t) is defined as:

M(x0, y0, t) :=
1

2

(
E

q(xt|x0)
[I (|x̂0 − x0| > δ)]

adaptation

+ E
q(yt|y0)

[I (|ŷ0 − y0| < δ)]
reconstruction

)
(4)

where x̂0 = pθ(xt:T ), ŷ0 = pθ(yt:T ), indicator function I(·) and a given threshold δ.

3
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Specifically,M(x0, y0, t) measures the target domain adaptation degree by assessing how well a
noised sample yt obtained from y0 is reconstructed and how likely a noised sample xt obtained from
x0 is falsely reconstructed. In the context of the FSIG task, the source domain and target domain
differ in attribute, we can assume that, initially, the target domain adaptation degree is close to 0,
as the model is trained solely on the source domain. To increase the adaptation degree and enable
effective generation in the target domain, we apply the conditioning mechanism for diffusion models.

Few-Shot Image Generation can be considered as a fine-grained conditional generating. Specifically,
a conditional generative model can be formulated as pt(xt | y), where y is the condition (given
samples in FSIG task). Per Bayes’ theorem, pt(xt | y) ∝ pt(xt)pt(y | xt). Expressing this
relationship as a score function, a score-based conditional diffusion model is described as:

∇xt log pt(xt | y) = ∇xt log pt(xt) +∇xt log p(y | xt) (5)
where ∇xt

log pt(xt) and ∇xt
log p(y | xt) are respectively the scores of an unconditional DM

and a time-dependent intermediate state (xt) classifier. However, the distribution of xt at different
timestep of diffusion model is different, therefore raising the difficulty of training the classifier. To
mitigate overfitting under few-shot, instead of choosing classifier with a simple structure, we propose
replacing the time-dependent intermediate state classifier with a non-adaptive Invariant Gradient
Matrix G(t). This matrix captures the essential characteristics of the target domain at each timestep t,
without relying on the current state xt. Incorporating G(t) into the score function (Eq. 5), we obtain:

∇xt
log pt(xt | y) = ∇xt

log pt(xt) +G(t) (6)
The Invariant Gradient Matrix (IGM) G(t) guides the sampling process towards the target domain,
effectively capturing essential domain characteristics under few-shot setting while avoiding overfitting.
The training loss associated with our definition of Target Domain Adaptation is defined as:
LDA = E

t,x0∈X ,y0∈Y

[∣∣y0 − p̂θ
(√

ᾱty0 +
√
1− ᾱtϵ, t

)∣∣− ∣∣x0 − p̂θ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∣∣]
(7)

where p̂θ is the pretrained diffusion model with our IGM, |·| denotes a distance metric.

3.3 THEORETICAL ANALYSIS

We shall now provide the theoretical justification of our proposed method.

IGM Fundamentals Without loss of generality, let us consider the case at time t. To simplify the
notation, we denote c = G(t). According to Eq. 5 and 6, we have c = ∇x log p(y | xt), solving
this differential equation yields p(y | xt) ∝ exp(c · xt). This equation defines a pixel-wise linear
regression model followed by a softmax activation function, where each pixel of the intermediate
state xt is weighted by the corresponding element of the IGM. Intuitively, the IGM functions as an
attention mechanism that determines how much “attention” or “importance” should be assigned to
different regions of xt, conditioned on a specific target domain Y . See Fig. 1 for an IGM visualization
and Section C.1 for further explanation and more visual examples of IGM.

Overfitting Mitigation Strategy From a pixel-wise perspective, if each image of the target domain
is assigned a unique IGM, it may lead to overfitting as the model can memorize the specific pixel.
However, when an IGM is shared across multiple images, it effectively becomes a linear regression
model fitting multiple data points, promoting better generalization. To balance model expressiveness
and generalization, we introduce the IGM Sharing Degree, γ, representing the number of images
that share an IGM. As γ increases from 1, the model shifts from potential overfitting toward better
generalization, allowing for fine-tuned performance across diverse datasets. However, excessively
high γ values can lead to underfitting. We provide an in-depth analysis of this trade-off in Sec. 4.1.

Theoretical Foundation of Domain Adaptation with IGM We develop a theoretical framework for
domain adaptation in diffusion models, showing how our Invariant Gradient Matrix (IGM) guides the
generative process from source domain to target domains towards the desired distribution.

Theorem 1. Let x be a random variable following a normal distribution with mean µ and standard
deviation σ. If the conditional probability p(y | x) has the form p(y | x) ∝ exp(c · x), where c is a
constant, then the conditional probability p(x | y) is also a normal distribution, and its posterior
density is given by (See Section C.2 for the proof):

p(x|y) = 1

p(y)
√
2πσ2

exp

(
− (x− (µ+ cσ2))2

2σ2
+

c2σ2

2
+ cµ

)
(8)
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Figure 2: Left: Left: A density ridgeline plot showing an 1-D example of our method, transforming
a standard normal distribution to a target distribution through an adapted diffusion process. Right:
Zooming in a specific step from the left plot, the PDFs of xt (blue), yt (green) and adapted target
domain sample y′t (red) are shown. The adapted version reduces the overlapping area (green→ red).

Remark 1. According to Theorem 1, the conditional probability p(x | y) differs from the original
distribution p(x) in the following aspects:

1. Mean shift: The mean of the conditional probability shifts from the original mean µ to
µ+ cσ2. This implies that the center of the distribution moves in the direction of c, and the
distance of the shift is determined by the magnitude of σ.

2. Scaled distribution height: The distribution is vertically scaled at each point by a factor of
1

p(y) exp
(

c2σ2

2 + cµ
)

, based on the observed data and the original hyper-parameters.

For any samples x0 ∈ X and y0 ∈ Y , Eq. 1 defines a forward process in which xt and yt progressively
approach N (0, I). This process ensures that samples from different domains converge to a common
Gaussian distribution. The shared endpoint guarantees an overlap between the distributions of xt

and yt at certain timesteps, despite the model not being trained on the target domain. Conversely,
the reverse process starts from N (0, I) and aims to recover the training samples. The Fokker-Planck
equation (Risken, 1996) describes the evolution of probability density during this process:

∂p(x, t)

∂t
= −∇x · (p(x, t)∇x log p(x, t)) +

1

2
∇2

xp(x, t) (9)

The score function ∇x log p(x, t) learned by the model primarily captures the distribution of the
source domain X . Consequently, during the reverse process, this source domain-biased score function
influences both xt and yt, causing the generated samples to gravitate towards the source domain
distribution, even if yt has already deviated from its intended trajectory. Intuitively, the learned
probability flow acts as a “force” pulling samples towards the center of the source domain X . Our
proposed Invariant Gradient Matrix acts as a “counterforce”, steering the reverse process towards the
target domain while mitigating influence from the source domain. A visual illustration is shown in
Fig. 2. For more theoretical analysis from the probability flow point of view refer to Section C.3.

3.4 OPTIMIZATION

In Section 3.3, we theoretically analyzed the feasibility of our proposed method. While leveraging a
model trained on a source domain that closely resembles the target domain somewhat reduces the
complexity of the task, employing a non-adaptive gradient matrix to generate out-of-distribution
images still poses significant challenges. Therefore, in this section, we introduce two optimization
strategies to further enhance the performance and generalization capability in the target domain.

Percentile Gradient Clipping The gradient matrix G(t) may contain gradient values gi,j(t) at
certain pixels that represent noise or weakly correlated information between the source domain X
and the target domain Y . Accordingly, we introduce Percentile Gradient Clipping (PGC) as:

ĝi,j(t) = gi,j(t) · (|gi,j(t)| ≥ Q(G(t), ρ)) (10)

where Q(G(t), ρ) represents the ρ-th percentile of the gradient matrix G(t). PGC removes smaller
gradients that are more likely to represent noise or weak correlations, while retaining stronger gradi-
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ents potentially more informative for target domain adaptation. From an information-theoretic per-
spective, this process increases the ratio of effective information I(G(t);Y)

H(G(t)) in G(t). Here, I(G(t);Y)
represents the mutual information between G(t) and Y and H(G(t)) denotes the entropy of G(t),
quantifying its informational uncertainty. Enhancing this ratio enables G(t) to more effectively
capture common features across different domains (Ganin et al., 2016), potentially leading to better
generalization in the target domain. For more detail and theoretical analysis see Section C.4.

Simplified Loss Function In Section 3.2, according to the definition of Target Domain Adaptation,
we can express the domain adaptation loss function as Eq. 7, which aims to encourage the model
to reverse intermediate states to the target domain Y instead of the source domain X . However,
experimental results suggest that this approach may suppress useful knowledge learned by the model
in the source domain. Considering that the goal of FSIG is to select a source domain X that is close
to the target domain Y , we can simplify the loss function by emphasizing reconstruction ability:

LDA = E
y0∈Y

[∣∣y0 − p̂θ
(√

ᾱty0 +
√
1− ᾱtϵ, t

)∣∣] (11)

This simplified loss function allows the model to retain useful knowledge learned from the source
domain while adapting to the target domain. Intuitively, by minimizing the reconstruction error of
target domain samples, the model naturally gravitates towards the target domain while preserving
relevant information from the source domain to the greatest extent possible.

4 EXPERIMENTS

Datasets and Baseline Following previous work (Wang et al., 2018; Li et al., 2020; Ojha et al.,
2021), we used Flickr Faces HQ (FFHQ) (Karras et al., 2019) as the source domain datasets for
all quantitative analysis, LSUN (Yu et al., 2015) and FFHQ for qualitative analysis. We applied
our method to adapt to the following common target domains for comparisons to existing FSIG
methods: FFHQ-Babies (Ojha et al., 2021), FFHQ-Sunglasses (Ojha et al., 2021), MetFaces (Karras
et al., 2020), portrait paintings from the artistic faces dataset (Yaniv et al., 2019). We select three
FSIG methods as baseline, including RICK (SOTA method) (Zhao et al., 2023), GenDA (SOTA
representation learning method for GAN) (Mondal et al., 2022), CRDI (SOTA representation learning
method for DM) (Cao & Gong, 2024). More methods comparison results are given in Section F.

Metrics We compute two commonly used metrics in FSIG, FID (Fréchet inception distance) (Heusel
et al., 2017) and Intra-LPIPS (Intra-cluster pairwise Learned Perceptual Image Patch Similarity) Ojha
et al. (2021), to quantitatively assess the quality and diversity of generated samples with respect to
the target domain, respectively. We also calculate MC-SSIM (Mode Coverage Structural Similarity
Index Measure) (Cao & Gong, 2024) which quantify the mode coverage for complex domain.

Implementation Details We used Guided Diffusion (Dhariwal & Nichol, 2021) framework from
OpenAI and pretrained weight from Segmentation DDPM (Baranchuk et al., 2021). We utilized
DDIM (Song et al., 2020a) with 25 inference steps to improve the efficiency while training. Model
training is performed with 256 x 256 resolution and batch size 10 on a single A100/H100 GPU.

4.1 SHARING DEGREE: BALANCING GENERALIZATION AND SPECIFICITY

To validate the theoretical analysis presented in Sec. 3.3 regarding the impact of the IGM sharing
degree on overfitting, we conducted experiments across three commonly used target domains in FSIG,
Babies, Sunglasses and MetFaces. We applied our method for each domain at three different timestep
periods [ts, te] during the diffusion process, varying the degree of IGM sharing. We evaluated the
generated images using FID scores; the results are shown in Fig. 3. The IGM sharing degree, γ,
ranges from 1 (one IGM per one image) to 10 (one IGM per ten images). We additionally fitted an
Exponential Moving Average (EMA) curve (green line) to each graph to highlight the overall trend.

It can be observed that, for the target domain Babies and Sunglasses, the EMA of FID shows varying
degrees of the U-shaped curve as the IGM sharing degree increases from 1 to 10. When γ = 1, the
model exhibits the highest degree of overfitting, resulting in images generated with low diversity. As
shown in Fig. 4a (middle), some modifications are concentrated on facial expressions without altering
personal identity. As γ increases, the FID (↓) decreases, reaching a minimum at an optimal sharing
degree. This optimum balances specific image feature capture and generalizable pattern learning of a
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Figure 3: FID (↓) values across different IGM sharing degrees (γ) for three target domains in FSIG:
Babies, Sunglasses, and MetFaces. Each subplot represents a different domain, where the x-axis
denotes the IGM sharing degree γ, ranging from 1 (one IGM per one image) to 10 (one IGM per ten
images), and the y-axis shows the corresponding FID score. An Exponential Moving Average curve
(green line) illustrates the trend, and the lowest FID(↓) score is marked with a red dot.

target domain. Further increasing γ to 10 leads to FID (↓) increase, indicating underfitting. Generated
images include source domain samples due to insufficient fitting capacity. IGMs fail to fully adapt the
source model to the target domain, as the orange boxed samples in Fig. 4a (right). This phenomenon
illustrates the trade-off between model capacity and generalization in IGM-guided DMs.

In contrast, the MetFaces target domain exhibits a distinct pattern. When γ = 1, generated samples
closely match the target domain style but lack diversity. As the sharing degree increases to 10, the
generated samples predominantly resemble the source domain, with only slight characteristics of
the target domain (Fig. 4a second row, right). This behavior differs from Babies and Sunglasses,
where intermediate sharing degrees yield optimal results. For MetFaces, the significant disparity
from the source domain exposes the limitations of IGMs in bridging large domain gaps, resulting
in effective target domain capture only at lower sharing degrees (We provide a detailed analysis in
Sec. 4.3 and visualization in Section C.1). This finding highlights the importance of selecting an
appropriate source domain that shares sufficient similarities with the target domain in FSIG tasks.

4.2 MAIN RESULTS ON FSIG

Building upon the insights from our analysis of IGM sharing degree, we now apply our method to
real-world Few-Shot Image Generation (FSIG) experiments. In this section, we present a comparative
evaluation of our approach against current state-of-the-art (SOTA) methods; the quantitative results
are shown in Tab. 1. To demonstrate the robustness of our method, we further present the experimental
results with sharing degrees of 10 (FS-DRL-10) and 5 (FS-DRL-5). These configurations utilize
one-tenth and one-half of the parameters employed in the CRDI (Cao & Gong, 2024), respectively.

As seen in Tab. 1, FS-DRL significantly improves the performance of representation learning method
in FSIG. However, in Babies and MetFaces, a gap remains compared to fine-tuning methods in
terms of FID. Consistent with the findings of Cao & Gong (2024), we observe that while fine-tuning
approaches achieve better performance on evaluation metrics, they tend to produce samples with
certain visual artifacts. In contrast, representation learning methods generate “cleaner” samples,
but with reduced diversity. See Fig. 4b for visual examples. However, FID score failed to capture
these differences, as in Fig. 3 (first and second rows), FID scores at γ = 1 and 10 are comparable.
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Ground Trutha.

c. OursGenDA RICK

Ground Truthb.

RICK (FT)

RSSA (FT)CDC (FT)

Ours (RL)GenDA (RL)

FS-DRL-10FS-DRL-1

Figure 4: a: Impact of IGM sharing degree (FS-DRL-γ) on generated image quality and diversity,
highlighting source domain leakage (orange) and low diversity (blue) (First row: Babies, Second
row: MetFaces). b: Visual examples of our method alongside four other high-performance methods
on Sunglasses (RL: Representation Learning and FT: Fine-Tuning). c: Mode coverage comparison
across GenDA, RICK and our method. For each row, the leftmost image is from the MetFaces target
domain, followed by the most similar (SSIM) generated images. Please zoom in for more details.

Table 1: Comparing FID (↓) Scores and MC-SSIM (↑) (for MetFaces only) between our methods and
the baselines (Mean ± Std.). FS-DRL-γ represents our method with a sharing degree γ, and FS-DRL-
opt denotes the optimized result. RL and FT represent Representation Learning and Fine-Tuning,
respectively. Best in bold and the second best in underline with bold.

Babies Sunglasses MetFaces
Method Type FID ↓ FID↓ FID↓ MC-SSIM ↑∗

GenDA RL 63.31 ± 0.05 35.64 ± 0.15 104.48 ± 0.58 0.33 ± 0.03
RICK FT 39.39 ± 0.09 25.22 ± 0.11 48.53 ± 0.34 0.41 ± 2e-3
CRDI RL 48.52 ± 0.28 24.62 ± 0.18 94.86 ± 0.72 0.62 ± 5e-3

FS-DRL-10 RL 56.96 ± 0.31 31.69 ± 0.25 110.54 ± 0.50 0.57 ± 0.01
FS-DRL-5 RL 43.73 ± 0.29 22.69 ± 0.16 88.36 ± 0.52 0.64 ± 7e-3
FS-DRL-opt RL 41.95 ± 0.22 21.93 ± 0.16 77.17 ± 0.43 0.70 ± 2e-3

∗Calculated using 5000 samples for improved stability compared to prior work.

This indicates the limitation of FID score in distinguishing between source domain leakage and low
diversity issues, as it measures both quality and diversity using feature space distances.

This limitation is particularly evident in complex domains like MetFaces (given samples in Fig.4a
second row, left). While fine-tuning methods achieve lower FID (↓) scores, they capture only a
limited subset of styles with prominent artifacts. Our approach, despite higher FID (↓) scores, achieve
superior mode coverage and sample quality. To better quantify this aspect, we employ the MC-SSIM
metric (Tab.1 last column), which shows that our method outperforms others in preserving target
domain styles. Fig.4c provides qualitative results of this advantage. These findings underscore the
importance of using complementary metrics for comprehensive model evaluation in FSIG tasks and
highlight the strength of our approach in maintaining target domain styles.
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Table 4: Comparison of model performance under 10-shot, 5-shot, and 1-shot with GenDA and CRDI,
evaluated based on generation quality using the FID score (↓). Best in Bold.

1-shot 5-shot 10-shot
Methods Babies Sunglasses Babies Sunglasses Babies Sunglasses
GenDA 105.13 83.70 65.47 45.44 62.14 35.64
CRDI 100.85 74.60 55.87 31.35 48.52 24.62
Ours 95.90 60.99 48.27 28.45 41.95 21.93

4.3 FURTHER ANALYSIS AND DISCUSSION

Table 2: Comparisons of model performance with dif-
ferent ρ, evaluated by the FID (↓). Best in Bold.

ρ-th 0 20 40 60 80

Babies 45.70 44.56 42.40 41.95 43.53
Sunglasses 22.46 22.08 21.93 22.55 25.90
MetFaces 78.31 77.17 79.38 81.66 88.19

Effective of Percentile Gradient Clipping
Tab. 2 demonstrates the impact of Percentile
Gradient Clipping (PGC) across three tar-
get domains. The results show a U-shaped
trend in FID scores, indicating the presence
of noise in the IGM that can be effectively
removed using PGC. However, excessive
clipping eliminates informative gradients, degrading results. For Babies and Sunglasses, performance
improves significantly with high percentile clipping (40th-60th), which suggests that IGM for these
domains is inherently sparse. Conversely, MetFaces performs optimally at a lower percentile (20th),
implying a denser IGM that requires more gradient information preservation; see the visualization
and in-depth analysis in Section C.1. These divergent behaviors highlight IGM adaptability to domain
complexity, motivating further exploration of domain-specific parameter optimization techniques.

Table 3: Comparisons of model performance and parameter
count when further decrease number of parameter using Up-
sampling and LRMA, evaluated by the FID (↓). Best in Bold.

Upsampling LRMA Original

# Params m=64 m=128 r=64 r=128 n=256
12K 49K 37K 82K 196K

Babies 58.45 54.53 45.96 43.21 41.95
Sunglasses 33.16 30.62 40.21 39.89 21.93
MetFaces 100.46 88.21 133.42 131.49 77.17

Further Decrease Number of Pa-
rameter To explore the possibility
of further reducing the number of
parameters in our Invariant Gradient
Matrix (IGM), we investigated two
additional approaches: Upsampling
and Low-Rank Matrix Approxima-
tion (LRMA). For Upsampling, we
initialize a low-resolution gradient
matrix Glow(t) ∈ Rm×m, where
m < n, with n being the dimen-
sionality of the input samples. During the training and sampling process, we upsample Glow(t) to the
original resolution using bilinear interpolation. For LRMA, we assume that G(t) = U(t)Σ(t)V(t)T

is an anti-symmetric matrix, where U(t) ∈ Rn×r,Σ(t) ∈ Rr×r,V(t) ∈ Rn×r, with r < n. The
results are shown in Tab. 3. These results indicate that, while IGM exhibits some sparsity, simple
parameter reduction methods may not effectively capture its full information content. LRMA shows
more promise, particularly on certain datasets, but requires further refinement to achieve performance
comparable to that of the original method across diverse datasets.

From Few-Shot to One-Shot To evaluate the performance of our method in more extreme scenarios,
we designed experiments under 5-shot and 1-shot settings. In these cases, conventional models face
an increased risk of overfitting. However, our approach, leveraging the adjustable sharing degree
γ, demonstrates significant advantages. As shown in Tab. 4, our method significantly outperforms
GenDA (Mondal et al., 2022) and CRDI Cao & Gong (2024) under both 5-shot and 1-shot scenarios,
highlighting its effectiveness in extreme few-shot conditions.

5 CONCLUSION

We present a novel representation learning framework for Few-Shot Image Generation, featuring a
tunable parameter to explicitly mitigate overfitting while adapting a specific domain. Our method
achieves competitive SOTA performance while surpassing representation learning-based approaches
using only half of the parameters. By focusing on the diffusion process, our approach is compatible
with all diffusion models, offering a versatile and efficient solution for Few-Shot Image Generation.
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REPRODUCIBILITY STATEMENT

To ensure that the proposed work is reproducible, we have included a pseudocode for training
(Algo. 1) and sampling (Algo. 2). We have an explicit section (Sec. 4) with implementation details.
We have also clearly mentioned evaluation details in Section .E. Complete code will be released upon
acceptance.
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Louis Clouâtre and Marc Demers. Figr: Few-shot image generation with reptile. arXiv preprint
arXiv:1901.02199, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion. arXiv preprint arXiv:2208.01618, 2022.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 17(59):1–35, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Teng Hu, Jiangning Zhang, Liang Liu, Ran Yi, Siqi Kou, Haokun Zhu, Xu Chen, Yabiao Wang,
Chengjie Wang, and Lizhuang Ma. Phasic content fusing diffusion model with directional distri-
bution consistency for few-shot model adaption. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2406–2415, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in neural information processing
systems, 33:12104–12114, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Yijun Li, Richard Zhang, Jingwan Lu, and Eli Shechtman. Few-shot image generation with elastic
weight consolidation. arXiv preprint arXiv:2012.02780, 2020.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,
2022.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the discriminator: a simple baseline for fine-
tuning gans. arXiv preprint arXiv:2002.10964, 2020.

Arnab Kumar Mondal, Piyush Tiwary, Parag Singla, and AP Prathosh. Few-shot cross-domain image
generation via inference-time latent-code learning. In The Eleventh International Conference on
Learning Representations, 2022.

Atsuhiro Noguchi and Tatsuya Harada. Image generation from small datasets via batch statistics
adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
2750–2758, 2019.

Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros, Yong Jae Lee, Eli Shechtman, and Richard
Zhang. Few-shot image generation via cross-domain correspondence. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10743–10752, 2021.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
fusion autoencoders: Toward a meaningful and decodable representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10619–10629, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

H Risken. The fokker-planck equation, 1996.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510,
2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022.

Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets with
singular value clipping. In Proceedings of the IEEE international conference on computer vision,
pp. 2830–2839, 2017.

Abhishek Sinha, Jiaming Song, Chenlin Meng, and Stefano Ermon. D2c: Diffusion-decoding models
for few-shot conditional generation. Advances in Neural Information Processing Systems, 34:
12533–12548, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals of Statistics,
pp. 1135–1151, 1981.

Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled transfor-
mations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22532–22541, 2023.

Yaxing Wang, Chenshen Wu, Luis Herranz, Joost Van de Weijer, Abel Gonzalez-Garcia, and Bogdan
Raducanu. Transferring gans: generating images from limited data. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 218–234, 2018.

Jiayu Xiao, Liang Li, Chaofei Wang, Zheng-Jun Zha, and Qingming Huang. Few shot genera-
tive model adaption via relaxed spatial structural alignment. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11204–11213, 2022.

Jordan Yaniv, Yael Newman, and Ariel Shamir. The face of art: landmark detection and geometric
style in portraits. ACM Transactions on graphics (TOG), 38(4):1–15, 2019.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Zhongqi Yue, Jiankun Wang, Qianru Sun, Lei Ji, Eric I Chang, Hanwang Zhang, et al. Exploring
diffusion time-steps for unsupervised representation learning. arXiv preprint arXiv:2401.11430,
2024.

Yunqing Zhao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Man Cheung. Few-
shot image generation via adaptation-aware kernel modulation. Advances in Neural Information
Processing Systems, 35:19427–19440, 2022.

Yunqing Zhao, Chao Du, Milad Abdollahzadeh, Tianyu Pang, Min Lin, Shuicheng Yan, and Ngai-Man
Cheung. Exploring incompatible knowledge transfer in few-shot image generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7380–7391, 2023.

Jingyuan Zhu, Huimin Ma, Jiansheng Chen, and Jian Yuan. Few-shot image generation with diffusion
models. arXiv preprint arXiv:2211.03264, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

This is the appendix for “Exploring Few-Shot Image Generation With Minimized Risk of Overfitting”.
Tab. 5 summarizes the abbreviations and symbols used in the paper.

This appendix is organized as follows:

• Section B discusses the limitation and broader impact of our work.

• Section C gives the full proof of our Theorem with additional explanation.

• Section D presents additional details of our approach.

• Section E presents additional details of the FSIG evaluation metric.

• Section F presents additional quantitative and qualitative results.

Table 5: List of abbreviations and symbols used in the paper
Abbreviation/Symbol Meaning
Abbreviation
Sec. A.B Section in the main paper
Section. A.B Section in the Appendix
FSIG Few-Shot Image Generation
DM Diffusion Model
DDPM Denoising Diffusion Probabilistic Model
IGM Invariant Gradient Matrix
LRMA Low-Rank Matrix Approximation

Symbol in Theory
X Source Domain
Y Target Domain
G(t) Invariant Gradient Matrix
gi,j(t) (i, j)-th element of Invariant Gradient Matrix G(t)
M(·) Domain adaptation measure

Symbol in Algorithm
x0 Original source domain sample
xt Noisy original source sample after t forward step
y0 Target domain sample
yt Noisy target sample after t forward step
q(·) Distribution in the encoding process
pθ(·) Distribution in the θ-parameterized decoding process
ρ Percentile of percentile gradient clipping
p̂θ Pretrained diffusion model with our IGM
θ Parameter of U-Net
x̂0 Reconstructed source domain sample x0

ŷ0 Reconstructed target domain sample y0
T Total time-steps
β1, . . . , βT Variance schedule
αt 1− βt

ᾱt

∏t
s=1 αs

B LIMITATION AND BROADER IMPACT

Limitation Although our method effectively balances specificity and generalization, its perfor-
mance degrades when the disparity between the source and target domains is substantial, such as
MetFaces (Karras et al., 2020). In such cases, overfitting tends to outperform underfitting (Fig. 3). A
potential solution involves incorporating Large Multi-modality Models (LMMs) like CLIP (Radford
et al., 2021) to constrain style more effectively, allowing the Invariant Gradient Matrix to preserve
more non-style information. We avoided using CLIP to minimize target domain exposure, as LMMs
may have been trained on these samples. However, if this constraint can be relaxed, integrating
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LMMs could enhance our method’s robustness across diverse domains. Future work will explore this
integration while maintaining data privacy.

Broader Impact Although our method outperforms state-of-the-art (SOTA) approaches in various
comparisons, our research is not centered on topping leaderboards but rather on exploring the limits
of FSIG while “fundamentally” avoiding overfitting. It is worth noting that while diffusion models
have made impressive progress in recent years, surpassing GANs in most fields, they are rarely used
in Few-Shot Image Generation (FSIG) tasks. This is primarily because most FSIG methods rely on
fine-tuning, and diffusion models, despite being trained on the same datasets, have more parameters,
making them seemingly “unsuitable” for FSIG tasks.

However, on the one hand, the training data for large models continues to expand rapidly and is
becoming crucial in many real-world applications. On the other hand, although large models can
generate highly realistic images, they still underperform on most user-defined real-world subjects.
This gap requires FSIG methods that can align with the capabilities of these large models. Our
method presents a novel attempt toward this goal, showing promising initial progress.

C PROOF AND ADDITIONAL THEORETICAL ANALYSIS

C.1 ADDITIONAL ANALYSIS OF EQUIVALENT CLASSIFIER

Consider the gradient of the log-conditional probability:

∇x log p(y | xt) = c (12)

This differential equation can be solved to obtain the form of p(y | xt). Integrating both sides with
respect to x: ∫

∇x log p(y | xt) · dx =

∫
c · dx (13)

yield
log p(y | xt) = c · xt +K (14)

where K is an integration constant. Exponentiating both sides:

p(y | xt) = exp(c · xt +K) = exp(K) · exp(c · xt) (15)

Let Z = exp(K), which serves as a normalization constant. Thus:

p(y | xt) = Z · exp(c · xt) (16)

This exponential form aligns with the softmax mechanism, where c acts as an attention matrix,
determining the “attention” or “importance” of different regions in the state space given y.

Invariant Gradient Matrix Visualization To validate our theoretical analysis, we visualized the
Invariant Gradient Matrices (IGMs) at different diffusion timesteps for three target domains: Babies,
Sunglasses, and MetFaces (Fig. C.1). Notably, for Babies and Sunglasses domains, the IGMs exhibit
significant sparsity, aligning with our analysis in Sec.4.3. In contrast, the IGM for MetFaces contains
more intricate details, likely capturing additional information such as style variations. This increased
complexity in the MetFaces IGM correlates with the observed reduction in diversity, as the model
focuses on preserving more domain-specific features.

C.2 PROOF OF THEOREM 1 AND REMARK 1

Let x be a random variable following a normal distribution, N (µ, σ), i.e.,

p(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
(17)

Assume that the conditional probability p(y|x) has the form:

p(y|x) = exp(cx) · const (18)
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Babies

MetFaces

Sunglasses

T 0
Figure 5: Visualization of Invariant Gradient Matrices (IGMs) across three target domains: Babies,
Sunglasses, and MetFaces. Each row represents the IGM at different diffusion timesteps for the
corresponding domain.

where c is an invariant variable (IGM in our case). Applying Bayes’ theorem, we obtain (the constant
term from p(y|x) is absorbed into p(y)):

p(x|y) = p(y|x)p(x)
p(y)

=
exp(cx)

p(y)
√
2πσ2

exp

(
− (x− µ)2

2σ2

)
(19)

Combining the exponential terms, we have:

p(x|y) = 1

p(y)
√
2πσ2

exp

(
cx− (x− µ)2

2σ2

)
(20)

By completing the square, we can rewrite the expression as:

p(x|y) = 1

p(y)
√
2πσ2

exp

(
− (x− (µ+ cσ2))2

2σ2
+

c2σ2

2
+ cµ

)
(21)

This expression shows that p(x|y) is also a normal distribution with mean µ+ cσ2 and variance σ2,
where the normalization constant is given by:

1

p(y)
exp

(
c2σ2

2
+ cµ

)
(22)

For a d-dimensional case where all dimensions are independent, we can treat each dimension
separately and combine the results. The mean of each dimension will be updated as µi + ciσ

2
i , where

i is the dimension index. The variances remain unchanged. The overall normalization constant will
be the product of the normalization constants for each dimension. □

C.3 THEORETICAL ANALYSIS OF PROBABILITY FLOW CORRECTION

Consider a diffusion model with probability density function (PDF) p(x, t) for its data distribution,
where x represents the data and t represents the time step of the diffusion process. The probability
flow vector field v(x, t) satisfies the modified Fokker-Planck equation with a diffusion coefficient
g(t):

∂p(x, t)

∂t
= −∇x · (p(x, t)v(x, t)) +

1

2
∇x ·

(
g(t)2∇xp(x, t)

)
. (23)

The first term −∇x · (p(x, t)v(x, t)) represents the drift induced by the vector field v(x, t), while
the second term 1

2∇x ·
(
g(t)2∇xp(x, t)

)
accounts for diffusion, with g(t) (

√
βt in DDPM) as the

time-dependent diffusion coefficient.

To improve the alignment of the model’s probability flow with the target domain, we introduce a
correction term δv(x, t):

v̂(x, t) = v(x, t) + δv(x, t), (24)
where δv(x, t) is learned from an underfitted classifier at the intermediate state t. This correction
term can be represented as:

δv(x, t) = Eθc∼p(θc|x)[f(x, θc)], (25)
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where θc represents the classifier parameters, p(θc|x) is the posterior distribution given the data x,
and f(x, θc) maps these parameters to a correction in the probability flow. This correction aims to
capture the discrepancy between the current model state and the target domain.

By introducing the correction, the modified vector field v̂(x, t) adjusts the dynamics of the diffusion
process, resulting in the corrected Fokker-Planck equation:

∂p(x, t)

∂t
= −∇x · (p(x, t)v̂(x, t)) +

1

2
∇x ·

(
g(t)2∇xp(x, t)

)
. (26)

Proof (Informal) To analyze the effect of the correction δv(x, t), we expand the divergence term in
the corrected Fokker-Planck equation:

∂p(x, t)

∂t
= −∇x · (p(x, t)v̂(x, t)) +

1

2
∇x ·

(
g(t)2∇xp(x, t)

)
= −∇x · (p(x, t)(v(x, t) + δv(x, t))) +

1

2
∇x ·

(
g(t)2∇xp(x, t)

)
= −∇x · (p(x, t)v(x, t))−∇x · (p(x, t)δv(x, t)) +

1

2
∇x ·

(
g(t)2∇xp(x, t)

)
.

(27)

The term −∇x · (p(x, t)v(x, t)) + 1
2∇x ·

(
g(t)2∇xp(x, t)

)
corresponds to the original diffusion

model, while the new term −∇x · (p(x, t)δv(x, t)) introduces a correction based on the classifier.
This correction guides the probability flow to better match the target distribution. □

In summary, by modifying the probability flow vector field to v̂(x, t), we adjust the generative process
to produce samples that more closely align with the target data distribution, enhancing both the quality
and diversity of the generated samples.

C.4 THEORETICAL ANALYSIS OF PERCENTILE GRADIENT CLIPPING

Given a gradient matrix G(t) containing gradient information between the source domain X and
the target domain Y , let Q(G(t), ρ) denote the ρ-th percentile of G(t). Define the gradient clipping
operation T as follows:

T (G(t))i,j =

{
0, if |gi,j(t)| < Q(G(t), p)

gi,j(t), otherwise
(28)

where gi,j(t) denotes the (i, j)-th element of G(t). Then, the gradient clipping operation T satisfies
the following inequality:

I(T (G(t));Y)
H(T (G(t)))

≥ I(G(t);Y)
H(G(t))

(29)

where I(·; ·) denotes the mutual information and H(·) denotes the entropy. In other words, the
gradient clipping operation T increases the ratio of effective information, enabling the clipped
gradient matrix T (G(t)) to capture the characteristics of the target domain Y more effectively.

Proof (Informal) The gradient clipping operation T sets the elements of G(t) with smaller mag-
nitudes to zero. This is equivalent to removing the gradient information that has a relatively weak
influence on the target domain Y . Since elements with smaller magnitudes are assumed to contribute
less to mutual information I(G(t);Y), their removal has a limited impact on the overall mutual
information between the gradient matrix and the target domain. At the same time, removing this
information reduces the entropy H(G(t)) of G(t), since it reduces the overall noise and randomness
in the gradient matrix.

Specifically, let gi,j(t) denote the (i, j)-th element of G(t). The clipping threshold Q(G(t), ρ) is
selected such that elements below this threshold contribute minimally to the mutual information
I(G(t);Y). Hence, we have:

I(T (G(t));Y) ≈ I(G(t);Y)

At the same time, setting these elements to zero reduces the entropy H(G(t)), as the sparsity of
T (G(t)) increases and the overall uncertainty within the gradient matrix is reduced. This reduction
in entropy is significant, since the clipped elements are removed entirely, resulting in:

H(T (G(t))) < H(G(t))
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Therefore, the ratio of mutual information to entropy increases after clipping:

I(T (G(t));Y)
H(T (G(t)))

>
I(G(t);Y)
H(G(t))

In essence, the gradient clipping operation T preserves the information that is relevant to the target
domain Y while reducing the entropy of the gradient matrix. This increases the relative effectiveness
of the retained information, allowing T (G(t)) to more effectively capture the characteristics of the
target domain. □

D ADDITIONAL DETAIL FOR APPROACH

Training Algorithm Algo. 2 shows the training pseudocode when γ = 10. When γ < 10, we
randomly create a mapping function to distribute the images such that each IGM may correspond
to multiple images. Specifically, as γ decreases, we aim to evenly distribute the images among the
available IGMs. When γ eventually reduces to one, it results in a single IGM corresponding to all
images. This mapping approach ensures that the images are distributed fairly and shared as evenly as
possible across varying γ.
Algorithm 1 FS-DRL - Training Pseudo-code

1: Input: Target Domain Y = {y0, y1, ..., yn−1} (n=10), start point ts, end point te, Randomly
Initialized IGM Gθ(t), a Frozen Noise Network (DM) ϵθ and Learning Rate ν.

2: while not converge do
3: Sample: t uniformly from [ts, ..., te]
4: for i, yi in enumerate(Y) do
5: Given yit−1 ← sample from

√
ᾱt−1y

i
0 +
√
1− ᾱt−1ϵ, ϵ ∼ N (0, I)

6: ϵ̂← ϵθ
(
yit
)
−
√
1− ᾱtGθ(t, i)

7: ŷi0 ←
yi
t−

√
1−ᾱtϵ̂√
ᾱt

8: Gθ(t, i)← Gθ(t, i)− ν∇Gθ(t,i)L|yi0 − ŷi0|
9: return Gθ

Sampling Algorithm We show the sampling pseudocode in Algo. 2.
Algorithm 2 FS-DRL - Sampling Code

1: Input: Target Domain Y = {y0, y1, ..., yn−1} (n=10), start point ts, end point te, Proposed
IGM Gθ(t), a Frozen Noise Network (DM) ϵθ and a mask (Percentile Gradient Clipping).

2: Sample y0 randomly from Y , i from [0, ..., n-1], Set t← te
3: yt ← sample from

√
ᾱty0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

4: for t in reversed(range(te + 1)) do
5: if t < ts then
6: Gθ(t, i)← 0

7: ϵ̂← ϵθ (yt)−
√
1− ᾱt(Gθ(t, i)⊙mask)

8: ŷ0 ← yt−
√
1−ᾱt ϵ̂√
ᾱt

9: yt−1 ← sample from
√
ᾱiŷ0 +

√
1− ᾱiϵ, ϵ ∼ N (0, I)

10: return y0

E ADDITIONAL DETAIL FOR EVALUATION

Implemented Intra-LPIPS Algorithm As most implementations of Intra-LPIPS skip empty clus-
ters when calculating the average, reducing the number of comparisons (e.g., from 10 to only 3),
misrepresenting true diversity, we modify the implementation as Algo. 3 (modified parts in red).

Implemented MC-SSIM Algorithm For pseudocode of MC-SSIM please refer to Algo. 4. Note
that in Tab. 1, MC-SSIM was calculated using 5000 samples for improved stability, which may lead
to disparities with prior work.
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Algorithm 3 Calculate Intra-LPIPS within clusters
1: Input:
2: 1. Generated images X = x1, . . . , xb

3: 2. Real image dataloader L
4: 3. Number of images per cluster m
5: Output: Average Intra-LPIPS within clusters
6:
7: Step 1. Initialize empty clusters Ci = ∅ for i ∈ 0, . . . , 9
8: for i = 1, . . . , b do
9: Initialize distances D = []

10: for real image r in L do
11: d = LPIPS(xi, r) ▷ Compute LPIPS distance
12: D.append(d)
13: j = argminj D ▷ Index of closest cluster
14: Cj .append(i) ▷ Assign xi to cluster Cj

15:
16: Step 2. Restrict clusters to size m
17: for i = 0, . . . , 9 do
18: Ci = Ci[1 : m]

19:
20: Step 3. Compute pairwise Intra-LPIPS within each cluster
21: Initialize distances D = []
22: for i = 0, . . . , 9 do
23: Initialize temp distances T = [0] ▷ Initialize T with [0] instead of an empty list.
24: for j = 1, . . . , |Ci| do
25: for k = j + 1, . . . , |Ci| do
26: d = LPIPS(xCi[j], xCi[k]) ▷ Pairwise LPIPS
27: T .append(d)
28: D.append(mean(T )) ▷ Average pairwise distance per cluster
29: return mean(D)

Algorithm 4 Calculate MC-SSIM
1: Input:
2: 1. Target Domain Y
3: 2. Synthesis images I
4: 3. Number of top scores k
5: Output: Average Top-K SSIM for each reference image
6: Initialize dictionary D = [] ▷ To store average SSIM per reference
7: for reference image x in Y do
8: Initialize list S = [] ▷ To store SSIM scores
9: for image i in I do

10: score = SSIM(x, i) ▷ Compute SSIM
11: S.append(score)
12: Sort S in descending order
13: T = S[1 : k] ▷ Top-K scores
14: if T is not empty then
15: avg = mean(T )
16: else
17: avg = 0

18: D[x] = avg ▷ Store average SSIM for x
19: return mean(D)
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F ADDITIONAL EXPERIMENT RESULTS

F.1 ADDITIONAL QUANTITATIVE EVALUATIONS

Extended Results To extend the results presented in Tab. 1, a more comprehensive comparison with
additional methods, including TGAN Wang et al. (2018), TGAN+ADA (Karras et al., 2020), BSA
Noguchi & Harada (2019), FreezeD Mo et al. (2020), EWC Li et al. (2020), CDC Ojha et al. (2021),
RSSA Xiao et al. (2022), DDPM-PA Zhu et al. (2022) AdAM Zhao et al. (2022), is shown in Tab. 7.

Diversity Quantitative Analysis Tab. 6 presents Intra-LPIPS results. While our method not always
achieve the highest scores, it is crucial to note that Intra-LPIPS has limitations in assessing true
diversity. Visual artifacts can inflate this metric, potentially rewarding methods that produce diverse
but low-quality outputs. Our approach prioritizes balancing diversity with fidelity to the target domain,
which may not be fully captured by Intra-LPIPS alone. For a more comprehensive evaluation of
generation quality, qualitative results provide additional insight (Babies: Fig. 7 and MetFaces: Fig. 8,
RICK generated samples come from CRDI (Cao & Gong, 2024)).

Table 6: Comparisons Intra-LPIPS (↑) Scores between our methods and the baseline methods. Best
in bold and the second best in underline with bold.

Domains FreezeD RSSA RICK GenDA CRDI Ours
Babies 0.51 0.50 0.60 0.48 0.52 0.53
MetFaces 0.21 0.15 0.37 0.35 0.41 0.41

Table 7: (Extended Tab. 1) FID (↓) Scores for more baseline methods. FT represents Fine-Tuning.
Method Type Babies Sunglasses MetFaces
TGAN FT 104.79 55.61 76.81
TGAN+ADA FT 101.58 53.64 75.82
BSA FT 140.34 76.12 −
FreezeD FT 110.92 51.29 73.33
EWC FT 87.41 59.73 62.67
CDC FT 74.39 42.13 65.45
RSSA FT 75.67 44.35 72.63
DDPM-PA FT 48.92 34.75 −
AdAM FT 48.83 28.03 51.34

F.2 MORE DOMAIN ADAPTATION

To validate the performance of our method beyond the face-related domains, we performed experi-
ments on various visual categories, including FFHQ to Otto (Yaniv et al., 2019), Church (Yu et al.,
2015) to Haunted House Ojha et al. (2021), and Church to Van Gogh’s house Ojha et al. (2021)
adaptations. Qualitative results in Fig. 6 demonstrate consistent performance across these varied
domain pairs.

Figure 6: Adapting FFHQ→ Otto (first row), Church→ Haunted House (second row) and Church
→ Van Gogh’s house (third row). First column: source domain, second column: target domain, third
column: generated samples

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

RICK Ours

Figure 7: Qualitative comparison with RICK (state-of-the-art) on Target Domain Babies.
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RICK Ours

Figure 8: Qualitative comparison with RICK (state-of-the-art) on Target Domain MetFaces.
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