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Abstract

While large pretrained vision models have achieved widespread success, their
post-training adaptation in continual learning remains vulnerable to catastrophic
forgetting. We challenge the conventional use of cross-entropy (CE) loss, a surro-
gate for 0-1 loss, by reformulating classification through reinforcement learning.
Our approach frames classification as a one-step Markov Decision Process (MDP),
where input samples serve as states, class labels as actions, and a fully observable
reward model is derived from ground-truth labels. From this formulation, we
derive Expected Policy Gradient (EPG), a gradient-based method that directly
minimizes the 0-1 loss (i.e., misclassification error). Theoretical and empirical
analyses reveal a critical distinction between EPG and CE: while CE encourages
exploration via high-entropy outputs, EPG adopts an exploitation-centric approach,
prioritizing high-confidence samples through implicit sample weighting. Building
on this insight, we propose an adaptive entropy annealing strategy (aEPG) that
transitions from exploratory to exploitative learning during continual adaptation
of a pre-trained model. Our method outperforms CE-based optimization across
diverse benchmarks (Split-ImageNet-R, Split-Food101, Split-CUB100, CLRS) and
parameter-efficient modules (LoRA, Adapter, Prefix). More broadly, we evaluate
various entropy regularization methods and demonstrate that lower entropy of
the output prediction distribution enhances adaptation in pretrained vision models.
These findings suggest that excessive exploration may disrupt pretrained knowledge
and establish exploitative learning as a crucial principle for adapting foundation
vision models to evolving classification tasks.

1 Introduction

Modern vision models are prone to catastrophic forgetting when trained on non-stationary data.
Traditional continual learning (CL) methods address this through memory replay mechanisms [J5]].
However, with the rise of large-scale pretrained vision transformers, research has shifted toward
parameter-efficient fine-tuning (PEFT), which freezes most pretrained parameters and updates only a
small subset of adaptable parameters. PEFT achieves state-of-the-art CL performance without relying
on data replay [29, 28} 125]]. Recent research has integrated various parameter injection techniques
into continual learning, such as prompts, LoRA, and adapters, and proposed CL strategies like EMA
ensembles and subspace initialization [9} [16] to further reduce forgetting. However, these approaches
all rely on cross-entropy loss for optimization in classification tasks.

In this work, we rethink the conventional use of cross-entropy loss by reformulating continual learning
through a reinforcement learning (RL) lens. The ultimate goal of classification is to minimize the
misclassification error (0-1 loss), but this objective is non-differentiable and discontinuous, making it
incompatible with gradient-based optimization. As a result, cross-entropy loss has become the de
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facto surrogate for training models, even though they are ultimately evaluated on 0-1 loss. Instead, we
propose directly optimizing the 0-1 loss using reinforcement learning. To achieve this, we reformulate
classification as a Markov Decision Process (MDP): input samples serve as states, predicted class
labels as actions, and the reward function is defined as 1 for the correct label and O otherwise. This
formulation yields an RL objective that maximizes classification accuracy over the model’s policy
distribution, provably equivalent to minimizing 0-1 loss. To solve this, we introduce Expected Policy
Gradient (EPG), a low-variance variant of the REINFORCE [30] policy gradient method.

Our gradient analysis reveals an interesting relationship between EPG and cross-entropy optimization:
1) Gradient alignment: EPG and CE share the same gradient direction for individual samples; 2)
Sample weighting: EPG implicitly incorporates a sample-weighting mechanism that prioritizes easier
samples, i.e., those where the model already exhibits high prediction confidence. This distinction
also manifests in their entropy dynamics: RL optimization consistently produces output distributions
with lower entropy than those trained with cross-entropy. Building on this insight, we propose
an adaptive entropy annealing strategy (adaptive EPG): starting with CE to encourage exploration
and gradually shifting toward exploitative learning (EPG). Empirically, this approach demonstrates
superior performance across four continual learning benchmarks and multiple parameter-efficient
training architectures (LoRA, Adapter, and Prefix-tuning).

More broadly, we investigate entropy regularization strategies for continual fine-tuning: While
prior research advocates high-entropy techniques (e.g., label smoothing, focal loss, and confidence
penalty) to improve classification performance, we demonstrate that these approaches actually harm
performance in class-incremental learning with pretrained vision transformers. In contrast, techniques
with lower entropy consistently enhance continual fine-tuning results (Table 2. This result implies
that aggressive exploration can destabilize a pretrained model’s learned knowledge, positioning
exploitative learning as a critical strategy for continual learning with foundation models.

Our contributions are summarized as follows:

* We introduce Expected Policy Gradient (EPG), a gradient-based reinforcement learning
method that directly optimizes the 0-1 loss instead of a surrogate objective, e.g. CE.

* We conduct theoretical and empirical studies revealing EPG’s exploitative nature (vs. cross-
entropy’s exploration bias) through analysis on the gradient, entropy, and objective function
(see Fig[I)and Proposition 2).

* We propose an adaptive entropy annealing strategy (aEPG) that combines the strengths of
EPG and cross-entropy, achieving state-of-the-art performance in continual fine-tuning, as
shown in Table[Tland

* We provide evidence showing that lower entropy, contrary to traditional classification
literature, improves continual adaptation of pretrained vision models (see Fig[2).

2 Related work

Continual learning and parameter-efficient finetuning (PEFT) Parameter-efficient fine-tuning
techniques have recently been used in continual learning, achieving state-of-the-art performance
without the need for data replay. Early work in continual fine-tuning focused on learnable prompt
parameters [28] 29, [25]], maintained in memory. These approaches optimize prompts to guide model
predictions while explicitly managing task-invariant and task-specific knowledge. Recent advances
include unified frameworks combining adapters, LoRA, and prefix tuning [9], ensemble models
with online/offline PEFT experts, and specialized LoRA initialization techniques to reduce task
interference [[16]].

RL for fine-tuning LLMs. RL has become pivotal for aligning large pretrained models with human
preferences [2]]. In the RL from human feedback (RLHF) framework, human feedback serves as
the reward signal of MDP, and the model is optimized as a policy via policy gradient methods
like PPO [21]. While reinforcement learning has proven highly effective for fine-tuning LLMs in
generative tasks, its application to vision models and classification remains underexplored.

RL for continual learning Reinforcement learning has also been applied to improve continual learn-
ing performance. For instance, [31] employs RL to dynamically select optimal neural architectures
for incoming tasks, while [32] introduces a multi-armed bandit framework with bootstrapped policy
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gradient to adapt augmentation strength and training iterations in online continual learning. Similarly,
[L8] proposes a bandit-based method for online hyperparameter optimization in offline continual
learning. However, these approaches focus on tuning hyperparameters rather than directly optimizing
classification model parameters.

Entropy regularization. Entropy regularization is widely used in machine learning to influence
the behavior of learned policies or predictions. 1) Increasing entroy: In reinforcement learning,
entropy regularization encourages exploration by preventing premature convergence to suboptimal
deterministic policies. Recent work by [3] applies this idea to continual RL, evaluating it on tasks
such as Gridworld, CARL, and MetaWorld. Similarly, in supervised learning, entropy regularization
mitigates overconfident predictions by promoting high-entropy output distributions. For instance, [22]
introduces the confidence penalty, which subtracts a weighted entropy term from the loss function
to produce more balanced predictions. Later, [19] unifies the understanding of label smoothing and
confidence penalties, comparing their effectiveness in language generalization tasks. Additionally,
[20] shows that focal loss implicitly increases entropy, improving model calibration. 2) Decreasing
entropy. Conversely, entropy reduction is useful when training with unlabeled data and has been
applied in the areas of semi-supervised learning, self-supervised learning and test-time adaptation[10]].
Our work investigates entropy regularization in continual learning, particularly when pretraining
from large vision models.

Direct minimization of 0-1 loss. Prior works have explored optimizing 0-1 directly via approxima-
tions and alternative formulations. [[11] proposes a smooth approximation using the posterior mean
of a generalized Beta-Bernoulli distribution. [14] employs stochastic prediction with probabilistic
embeddings, modeling predictions as a multivariate normal distribution and solving optimization via
orthant integration of its probability density function. Unlike these approaches, our work studies the
0-1 loss from a reinforcement learning perspective.

Classification with bandit feedback Our work differs from classification with bandit feedback, a
problem setting introduced by [13]]. In the bandit feedback setting, the learner does not observe the
true label for a given input but only receives binary feedback indicating whether its predicted label
was correct. And this is typically studied in an online setting and the main objective is to minimize
the regret and most works investigate the properties of the hypothesis class that allow for sublinear
regret [[7, 18, 14]. In this paper, we explore a one-step MDP (similar to contextual bandit) framework
to model a standard supervised learning problem, rather than operating under the bandit feedback
setting.

3 Methodology

3.1 Problem setting: Classification as a One-Step MDP

We formulate classification and continual fine-tuning as a one-step MDP: the input samples = ~ d(z)
form the state space with state distribution d(x); and classification labels constitute the action space A,
with a reward function r ~ R, , indicating whether an action (predicted label) matches the ground-
truth label for x, or not. Episodes terminate after one step. The policy 7y (a|x) is parameterized by a
deep neural network. The objective is to maximize expected reward over the policy:

J7r<9) = Esz(z),aNﬂg(a\z) [’I“] = Z d(l‘) Z 7T9(Q|x)Ra:7a €))

zeX acA

More specifically, we define a deterministic reward function based on ground-truth labels:

1, fa=y
Rea=12_ ; 2
’ {O, otherwise @)

This reward scheme assigns a value of one for correct classifications and zero otherwise, directly
aligning the reinforcement learning objective with the goal of maximizing classification accuracy.

We focus on the supervised classification setting, where ground truth labels are available during
training. This means that the reward model is fully observable to the learning agent. This differs from
the problem setting of classification under bandit feedback [[13].
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Connection between RL Objective and 0-1 Loss. We establish the relationship between the
reinforcement learning objective and the 0-1 classification loss. For a classifier hg with true labels y
and predictions hy(z), the 0-1 loss is defined as:

0, if hg(x) = y (correct prediction)

3
1, if hy(x) # y (incorrect prediction) )

Loi(ys ha(x)) = {

Building upon the RL objective in Eq.[I]and the reward function in Eq.[2] we derive the following
connection:

Proposition 1. Minimizing the 0-1 loss of classifier hy is equivalent to maximizing the RL objective:

Hbin Loi(hg) = max Jn(0) 4)
This demonstrates that 0-1 loss minimization can be viewed as an RL problem.

Proof. By interpreting hg(z) as the policy 79 (a|y) in Eq[1]and applying a constant baseline of value
1 to the reward function R, ,, (Eq. @) we obtain:

In(8) = Evna(e)amhs [} =1 = D d(@) Y ho(al2)(~Rea +1) =1-Lo(he) (s

zeX acA

The constant offset does not affect the optimization objective, thus establishing the equivalence. [J

The 0-1 loss presents fundamental challenges for gradient-based optimization due to its discontinuous
and non-differentiable nature. We address this limitation through a novel reinforcement learning
perspective that reformulates classification as policy optimization. While conventional classification
approaches typically implement a deterministic mapping hy : X — ) (which could alternatively be
viewed as a deterministic policy in the proposed framework and optimized via deterministic policy
gradient methods [24]), this paper instead explores a stochastic policy with softmax parameterization:
mo(alzr) = efelal?) /5 efolkl®) where fy : X — RX denotes the model’s logit outputs. This
parameterization not only maintains the familiar structure of softmax-based classification but also
establishes a principled connection between policy gradient optimization and cross-entropy mini-
mization. Through this formulation, we can directly investigate how policy gradient methods relate
to traditional classification objectives (CE) while handling the non-differentiable 0-1 loss, as shown
in the next section.

3.2 Expected Policy Gradient

We solve the RL problem described above using policy gradient methods. While traditional ap-
proaches such as REINFORCE [30]] and PPO [23]] rely on stochastic action sampling, we derive a
more efficient gradient estimator by exploiting the inherent structure of the classification MDP.

Based on the policy gradient theorem, the gradient of Eq[I]can be computed using the likelihood ratio
gradient estimator [26]. For one-step MDPs with immediate rewards, we have:

v@‘](a) = E$~d(a:)7a~7r9(a|z) [Rx,aVQ log o (Cl|.T)} (6)

The REINFORCE policy gradient algorithm [30] approximates this expectation through Monte Carlo
sampling. Given the sampled trajectories {z;, a;, 7; } n, the gradient can be estimated as:

. 1
JREINFORCE = 77 > ReiaVelogm(ailz:) )

zi~vd(x),a;~me

This type of sampling-based policy gradient method, as employed by REINFORCE and Proximal
Policy Optimization (PPO) [23], is widely used in deep reinforcement learning tasks and for fine-
tuning large language models with human feedback. However, we observe that the sampling-based
approach does not exploit the simplicity of classification tasks. Crucially, in our classification MDP
formulation, the reward function is available to the learner, since the reward R, , for all actions
is available once the class label for a sample is given (see Eq. [2). This allows us to compute
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Figure 1: The entropy of the policy, i.e. the softmax output of the model, during training. Expected
policy gradient optimization (EPG) leads to higher entropy than cross-entropy (CE) optimization.

the expectation over actions exactly in the gradient estimator while only sampling from the state
distribution d(z):

. 1
JerG = Y. > mlalzi)Re, Ve log me(ala;) 8)

zi~d(z) a€A

We term this the Expected Policy Gradient (EPG) to distinguish it from methods that need to sample
actions. As EPG uses the exact expectation, it can eliminate the noise caused by action sampling. In
other words, it maintains the true gradient’s expectation while reducing variance in gradient estimate,
i.e., Var[gep| < Var[gremrorce), and E[gepc] = E[JreNFORCE]-

3.3 Over-exploration and entropy annealing

Connection to cross entropy. We analyze the relationship between EPG and CE optimization. Given
the target distribution g(a|x) and the softmax output 7y (a|z), the gradient of CE (Eq.[J) is:

gee=— >_ Y qlaz)Velogmy(alz). ©)

z~d(z) a

Note that both EPG and CE gradients involve Vg logmg(a|z). For one-hot labels (i.e. q(alz)
follows Dirac delta distribution), the gradient for a sample (z;,y;) simplifies to §¢g(zi,yi) =
—Vy log my(y;|x;). Comparing this with Eq. (8] we derive:

dtpe (@i, yi) = mo(yilzi) Ve log mo(yilas) = —mo(yilz:) e (24, vi)- (10

Gradient and entropy analysis. This reveals that EPG and CE yield gradients in the same direction
but with different sample weights: EPG upweights confident predictions (g (y;|z;) ~ 1) while
downweighting uncertain ones. To better understand how this sample weighting scheme affects
gradient optimization, we analyze the entropy dynamics of both CE and EPG. Figure [I] shows
the evolution of output distribution entropy during continual fine-tuning. Initially, when learning
each new task, the model’s predictions are nearly random, resulting in high entropy. As training
progresses, this entropy gradually decreases. Perhaps surprisingly, we observe that EPG reduces
entropy significantly faster than CE and achieves lower final entropy levels (Fig.[I)), despite EPG
having smaller gradient magnitudes than CE (|§ipg (@i, ¥i)| = mo (i|zi)|9ég (i, i) | < |gég (24, vi)])-
The entropy and gradient analysis demonstrate a key difference in their optimization behaviors: CE
exhibits exploratory behavior, maintaining higher entropy in action space and promoting exploration
through stochastic gradient updates that probe uncertain regions of the parameter space; EPG
demonstrates exploitative tendencies, converging toward lower-entropy action distributions and more
confident gradient solutions that exploit existing model knowledge.

Beyond empirical observations, we also study this phenomenon from a theoretical perspective. We
demonstrate that the RL objective underlying EPG inherently minimizes entropy while simultaneously
reducing the KL divergence between the target and predicted distributions (see Proposition 2).
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Proposition 2. For hard-label classification, the reinforcement learning objective satisfies:
max Jy," (¢) = min [Die(po || ) + H(po)] (1)

where pg is the model’s predictive distribution and q is the target distribution. This establishes
that Expected Policy Gradient optimization simultaneously minimizes the KL divergence between
predictions and targets and reduces the entropy of the output distribution

Proof Sketch. The equivalence follows from 1) decomposing the RL objective using the baseline
subtraction technique from policy gradient methods; 2) identifying the entropy and divergence terms
through algebraic manipulation The complete derivation appears in Appendix [A] O

Proposition 2 reveals a fundamental connection between the 0-1 loss and KL divergence. Specifically,
while the CE loss explicitly minimizes the difference between the target and predicted distributions
(via minimizing Dxy.(¢||pe)), the 0-1 loss not only reduces this distributional disparity (via minimiz-
ing Dxy1.(pel|q)) but also implicitly minimizes entropy. This dual optimization mechanism provides a
theoretical explanation for the empirical observation that EPG drives the model toward lower-entropy
solutions compared to CE.

While prior work has shown that increased entropy can benefit classification models by promoting
exploration [22] [19,16], these advantages have primarily been observed in train-from-scratch settings.
We hypothesize that this relationship may fundamentally differ for pretrained models, where excessive
exploration could prove detrimental. Specifically, aggressive exploration may: 1) cause substantial
deviation from the pretrained weights, compromising their inherent generalization capabilities, and
2) in continual learning settings, disrupt previously acquired task knowledge, thereby accelerating
catastrophic forgetting. This necessitates a careful re-examination of the exploration-exploitation
tradeoff when continually fine-tuning pretrained models.

Adaptive entropy annealing. To effectively balance exploration (via cross-entropy optimization) and
exploitation (via expected policy gradient optimization), we propose an adaptive entropy annealing
method that combines both objectives through a time-dependent weighting scheme. The combined
gradient formulation is given by:

garpG(0) = argee(0) + (1 — ar)(—grp(0))- (12)

where a; € [0, 1] is an annealing coefficient that evolves during training. This design provides a
smooth transition from initial exploration to final exploitation: beginning with pure cross-entropy
optimization (o; = 1) to maintain high entropy during early training, we progressively shift to
pure EPG (o = 0) to optimize the 0-1 loss in later stages. The transition follows a sigmoid

annealing schedule of a; = o (7' T}zt ), where T represents the total number of training steps, and

o(x) = (1 + e~®)~!is the sigmoid function. 7 = 6 controls transition rate. This schedule smoothly
interpolates from ay = o(6) & 1 (initialization) to ar = o(—6) ~ 0 (convergence). Extensive
experiments demonstrate that this choice of hyperparameter value is robust across diverse datasets
and architectures.

4 Experiments

Datasets. We evaluate our approach on four diverse datasets spanning different image classification
challenges. ImageNet-R [12]] has renditions of 200 ImageNet classes with 24,000 training and
6,000 test samples, naturally exhibiting class imbalance. We partition it into 10 sequential tasks.
Food-101 [1]] provides balanced classification across 101 food categories (750 training/250 test
images per class, 101k total), split into 10 tasks. CUB200 [27] contains 11,788 bird images across
200 species, which we organize into 10 incremental tasks (20 classes each). Finally, CLRS [15] offers
large-scale remote sensing with 25 scene classes (600 images/class, 256x256 resolution) collected
from multiple sensors, divided into 5 sequential tasks.

Baselines. We compare our approach (adaptive EPG, aEPG) against four state-of-the-art continual
fine-tuning methods for pretrained vision transformers: Dual Prompt, LAE, InferLoRA, and standard
LoRA. DualPrompt [28] is one of the early works that use parameter-efficient fine-tuning in continual
learning by optimizing learnable prompts stored in memory. LAE [9] is a recent work which employs
an ensemble of online and offline PEFT experts (labelled as d-lora), and InferLLoRA [16], mitigates
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Table 1: Performance comparison of continual PEFT methods on Split-ImageNet-R datasets.

Tasks 5 Tasks 10 Tasks 20 Tasks
Methods PEFT  Loss As As Aio Ay Ao Asg
DualPrompt prefix CE 729+03 760+03 712+0.1 754+01 712401 74.8+0.1
InferLoRA i-lora CE 768+04 808+03 742+0.1 795+02 686+05 748404
LoRA lora CE 748+00 798+0.1 743+0.1 792+03 732+0.1 78.7+0.0
LAE d-lora CE 76.1+02 806+0.1 754400 799+03 739+03 79.2+0.1

LoRA +aEPG  lora aEPG 7724+00 819+00 758+03 809+00 741402 79.74+0.2
LAE + aEPG  d-lora aEPG 783 +0.1 823+00 767+03 814402 750+03 80.0+0.1

task interference via carefully initialized LoRA subspaces (labeled as i-lora). We also evaluate
standard LoRA, applied in continual fine-tuning with local cross-entropy loss; this baseline has been
shown to outperform DualPrompt [9]. Our experiments adopt the unified framework of [9], which
supports diverse PEFT methods, including Adapter, LoRA, and Prefix.

We further compare EPG and aEPG against entropy regularization techniques, including: Focal
loss [17]], Label smoothing [19], and Confidence penalty [22]]. Following previous CL works [9}[16],
all losses are applied locally in the continual fine-tuning experiments, computed exclusively over the
current task’s categories.

Training details. We adopt a ViT-B/16 backbone (vit_base_patch16_224 from timm library), pre-
trained on ImageNet-21k and fine-tuned on ImageNet-1k. All experiments use PyTorch with the Adam
optimizer (learning rate=0.0003, batch size=256,). We initialize classifier heads from N (0,0.001), an
aspect previously uncontrolled in the release code of previous continual fine-tuning works. Following
[9l], the ViT backbone remains frozen for the first 30 epochs before full fine-tuning for 20 additional
epochs (50 total). All PEFT modules (LoRA, Adapters, or Prefix Tuning) are applied to the first
5 transformer blocks (results for 10 blocks show a similar pattern and are omitted), with LoRA
configured to rank 4. Unless otherwise specified, we report mean performance metrics with standard
deviations across 5 independent runs with different random seeds.

Evaluation metrics. We evaluate all models with a widely used incremental metric: the end accuracy

on all the seen tasks Ap = 1/T Zi{ a; T , where T' is the total number of tasks and a; ; denotes
the accuracy of the j-th task once the model has learned the ¢-th task. We also report the average

I t=T
accuracy Ap = % 1 A

4.1 Results

Continual fine-tuning results. Our first evaluation is based on ImageNet-R with 5, 10, and 20
task splits. Table [T] demonstrates aEPG outperforming the baseline methods. In addition, unlike
DualPrompt or InferLoRA, which rely on a specific architectural design, our method introduces a
novel loss formulation that can be easily combined with different continual learning frameworks.
Table [[ldemonstrates that aEPG can be combined with LAE to achieve the best results.

We further validate aEPG’s effectiveness through comprehensive experiments on Split-ImageNetR200,
Split-Food101, Split-CUB200, and CLRS datasets, demonstrating consistent improvements over
cross-entropy optimization across diverse post-training architectures, including LoRA, Adapter, and
Prefix tuning (see Table [2).

Entropy dynamics. Inspired by the promising results of aEPG in Table [I] we systematically
investigate the effects of increasing or decreasing entropy during fine-tuning of pretrained models. To
increase entropy, we employ established methods such as label smoothing, confidence penalty, and
focal loss. Conversely, to decrease entropy, we leverage EPG and aEPG, which have been shown to
reduce entropy in Section [3.3|and Fig.[T} Additionally, we evaluate an entropy-penalized (EP) loss
adapted from CE, structured similarly to Proposition 2. This objective simultaneously minimizes the
KL divergence and entropy:

min Lpp = min [Lop + H(pe)] = min [Dxi(q|[pe) + H (po)]
The objective functions are summarized in Table d]in the Appendix.

Fig. ] illustrates the entropy dynamics and continual learning performance. Generally, entropy-
increasing methods (focal loss, label smoothing, confidence penalty) degrade performance, whereas
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Table 2: Algorithm performance comparison across four datasets and different PEFT modules.

PEFT Algo H(po) Split-ImageNetR200 Split-Food101 Split-Cub200 CLRS25
AIU Al[) AlU Al(] AlU Al() AS AS
CE - 741+04 793+03 832402 888402 833402 862401 742408 839402
Focal t 724403 779403 827403 884402 829403 861402 73.0+09 825404
LS T 70.6+0.2 767+02 77.5+04 852+02 829+02 866+02 748+1.1 851+£05
LoRA cp t 724408 779407 83.0£02 889+02 833+03 865+02 740+10 83.9+03
EPG | 751404 800+02 835+03 889+02 842401 859+0.1 746+£08 843+£07
aEPG 1 755+01 809+0.1 844+0.1 895+0.1 847+03 867+01 763+04 855103
EP | 751402 804403 840+02 892402 85.0+02 872+0.1 748+08 84.6+05
CE - 737+£02 794+0.1 829+0.1 885+0.1 83.7+03 863+02 756+12 837+£09
Focal T 721402 779402 824402 881401 8274+03 862+03 732409 827+ 1.0
LS t 707407 772405 773+£03 851£02 832+£03 862+£0.1 755+£10 849+08
Adapter CP T 71.8+04 779+0.1 835+02 89.1+01 84.1+02 87.0+02 745+0.7 83.6+09
EPG 1 751403 803402 835403 888401 847403 864+02 77.5+1.1 849+12
aEPG | 754+02 813+0.1 844+0.1 894+01 85002 869+02 77.9+0.6 855+13
EP 1 748+0.2 804+0.1 838+0.1 89.1+01 854+04 873+02 766+08 852+05
CE - 735+02 778402 829402 888402 817403 851402 707413 80.6+09
Focal 0 7224+03 767+03 826+04 884+03 81.6+02 855+02 689+13 79.0+1.2
LS T 699+12 747+12 77.2+04 855+03 829+05 864+06 744+07 833+03
Prefix cp +  704+£02 748402 837401 892401 83.0+03 86702 717+12 812409
EPG | 747401 787402 832404 888401 823+£02 848+£02 741+£10 82.6+05
aEPG I 752+01 792+01 842+0.2 895+0.1 824+02 853+02 737+£08 826+£05
EP | 746401 787401 839+02 893+0.1 83.0+02 858+02 73.1+07 820404
3 % —e— CE —— FL1
=90 3\ aEPG  —e— FL2 o
g o
g \; —e— EPG 5001 | §
585 ',\ —— EP —+— CP-0.1 2
(9]
£ \\ 2
T 80 S-S <
€ e 2
o n%?%A\ ]
€ 75 \ZREQ& =y | 2
5 Ny |« 15-001 —— CP-0.1
g ———i—
~ 70
2 4 6 8 10 0 1000 2000 3000 4000

Number of Learned Tasks Gradient Steps

(a) Incremental test accuracy (b) Entropy of output distribution

Figure 2: Entropy dynamics in continual fine-tuning of VisionTransformers on Split-ImagenetR200.
Compared to the cross-entropy loss, Expected Policy Gradient (EPG), adaptive EPG (aEPG), and
Entropy Penalty (EP) lead to lower entropy and improved accuracy. In contrast, focal loss, label
smoothing, and confidence penalty (CP) lead to higher entropy and worse performance. Results for
Split-Food101 datasets can be found in Appendix [D.2]

entropy-decreasing methods (EPG, aEPG, EP) improve it. Detailed quantitative results with optimal
hyperparameters are provided in Table 2] Notably, we observe that aEPG achieves the best perfor-
mance on ImageNet-R, Food101, and CLRS, and EP performs best on CUB200. All entropy-reducing
methods (EPG, aEPG, EP) outperform the cross-entropy baseline.

4.2 Ablation studies

Effect of o on objective combination. We analyze the impact of the weighting coefficient «
when combining cross-entropy L..(#) and the reinforcement learning objective —J(6). Fig.
compares performance across « € [0.0,0.1,0.2,0.5,0.7,1.0]. We observe that: 1) lower « values
(emphasizing the RL objective) generally produce superior results, and 2) our adaptive « scheduling
strategy consistently outperforms fixed « configurations. These findings suggest that dynamic
adjustment of the loss weighting with entropy annealing is crucial for optimal performance.

Entropy annealing mechanism We also explore alternative annealing schedules such as linear decay
(ap = %) and cosine decay (o = % + %cos 77%). Our analysis reveals that entropy annealing
performance remains stable across different schedule choices. Alternative approaches including linear
decay and cosine decay yield comparable results as shown in Fig[3]
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Table 3: The algorithm performance for training ResNet-50 from scratch.

Method a=0 a=0.2 a=0.5 a=1

CIFAR100 7.32+0.70 80.80 £0.13 79.95+0.20 77.95+0.78
CIFAR10 92224051 95.81+0.05 95.62+0.08 9531=£0.18

Train from scratch While this work primarily focuses on continual fine-tuning, our findings that RL
and EPG methods can optimize the 0-1 loss are broadly applicable to standard supervised learning.
To investigate this, we trained ResNet-50 from scratch on CIFAR-10 and CIFAR-100 for 350 epochs
using the optimal training and learning rate annealing schedule for cross-entropy loss as reported
in the literature [22] (see Appendix [C). Consistent with our finding in the continual fine-tuning
experiments, EPG optimization demonstrated faster entropy convergence than CE optimization,
as shown in Fig. 4 in the appendix. However, when training from a randomly initialized model,
we observe that EPG’s entropy decreases excessively, ultimately hindering the learning process,
a phenomenon not observed when initializing from pretrained models. Interestingly, combining
EPG and CE with an alpha value of 0.2 or 0.5 yields superior performance compared to CE alone,
achieving performance gains of approximately 2% on CIFAR-100 and 0.5% on CIFAR-10. These
results suggest that incorporating 0-1 loss into CE optimization not only benefits continual fine-tuning
but also enhances standard training from scratch. A plausible explanation is that entropy reduction
aligned with 0-1 loss facilitates faster convergence.

5 Discussion and conclusion

In this work, we re-examined the conventional use of cross-entropy loss in continual learning and
proposed a novel reinforcement learning framework that directly optimizes the 0-1 misclassification
error, i.e. the true objective of classification tasks. By reformulating classification as a Markov
Decision Process and introducing Expected Policy Gradient (EPG), we demonstrated that RL-based
optimization aligns with the ultimate goal of minimizing classification errors while exhibiting
distinct gradient and entropy dynamics compared to CE. Our theoretical and empirical analyses
revealed that EPG implicitly prioritizes high-confidence predictions, leading to lower-entropy output
distributions and improved stability in continual fine-tuning scenarios. To bridge the gap between
exploration (encouraged by CE) and exploitation (favored by EPG), we introduced an adaptive
entropy annealing strategy (aEPG) that transitions smoothly from CE to EPG, achieving state-of-
the-art performance across multiple CL benchmarks and parameter-efficient fine-tuning (PEFT)
architectures. Furthermore, we challenged the conventional wisdom that high-entropy regularization
benefits classification, showing instead that lower entropy consistently enhances class-incremental
learning with pretrained vision transformers.

Limitations. While our method demonstrates strong performance in continual fine-tuning with vision
transformers, it has several limitations. First, our theoretical and empirical analyses assume a standard
supervised setting with clean, hard labels, leaving EPG’s robustness to noisy or ambiguous samples
an open question for future work. Second, our experiments focus exclusively on class-incremental
learning with pretrained vision transformers, and further validation is needed to assess generalizability
to other architectures (e.g., CNNs) or modalities (e.g., language models).
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A Proof of Proposition 2

po(yk|z
Dxi.(po || @) Zpe Yk lz) log (( ||$))

= Zpe (yx|z) log po(yx|z) = > po(yx|z) log q(yk|2) (13)
k k
—H (py)
= —H(po) — Ep,[R'(yk, )]
where R (yx, ) = log q(yx|z). For Dirac delta distributions g(yx|x) = 0, +:

log(1) ify =y~
Ry o) = {log(O) otherwise (14

Reward Baseline Adjustment. Using the policy gradient invariance to constant baselines, we set
A = —log(0) and define:

E,[R|=—-A+E,,[R' + 4]

15
— A+ A-E,[R] (1
where R (yg, ) is the 0-1 reward:
1 ify,=y*
R 16
(g @) = {O otherwise (16)
Final Equivalence. Substituting into yields:
Dxi(po || 9) = —H(pe) — A-Ep,[R] + A (17)
Since A > 0 is constant, maximizing the expected reward is equivalent to:
max Ey, [R] = mn (Dxv(po || @) + H(po)) (18)

Generalization to Label Smoothing. The same equivalence holds when ¢ follows a uniform
label smoothing distribution, with the proof following analogous steps by substituting ¢(y|z) =
e/K + (1 — €)dy -, where K is the number of classes and € controls the smoothing intensity.

B Loss function details

Table ] compares the objective functions of different entropy regularization methods. Focal loss,
label smoothing, and confidence penalty increase entropy, whereas EPG, aEPG, and entropy penalty
reduce it.

Table 4: Loss functions and their effects on entropy

Training Method Loss Function Entropy

Cross Entropy Lep =—> qlogpy Baseline
Confidence Penalty Lep = Lo — BH(py)

Label Smoothing Lis =(1—7)Leg +vDxL (ullpe) Increase entropy 1
Focal loss Lrr =(1—py)'Ler

Expected Policy Gradient Lgpg = —E,,[q]

Entropy penalty Lgp=Lcg + H(pp) Decrease entropy .,
aBPG Ligpa = atLog + (1 — ay)Lepa

12
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Table 5: Hyperparameter setting in the continual fine-tuning experiments.

Hyperparameters Settings
Pretrained model vit_base_patch16_224
Training epoch 50
Backbone freeze epoch 30
Batch size 256
Learning rate 0.0005
Optimizer Adam (81 = 0.9, 52 = 0.999, eps=1e-08)
Weight decay 0
Gradient clipping None
Classifier initialization Normal distribution with std of 0.001

Random Resized Crop: scale = (0.05, 1.0), ratio = (3. / 4.,4./ 3.),

Augmentation Random Horizontal Flip (p=0.5)
Focal loss gamma: 0.5,1,2
Label smoothing smooth parameter: 0.01, 0.05, 0.1
Confidence penalty penalty intensity: 0.1,0.2
aEPG tau=06
EP beta = 1
Dualprompt Ly=5,L.=20
InferLoRA € = le — 8, lamb=0.99, lame=1.0, rank=5
LAE EMA decay: 0.999
LoRA block: [0-4], rank = 4
Adapter block: [0-4], down_sample = 5
Prefix block: [0-4], length = 10

C Implementation details

Continual fine-tuning experiments. We evaluate all methods using consistent pretraining weightﬂ
and optimization settings. The detailed hyperparameter settings for all algorithms are listed in
Table[5] For DualPrompt, InferLoRA, and LAE, we adopt the key algorithm-specific hyperparameters
following their original papers and official implementations. Our implementation builds upon the
LAE codebase ﬂ For DualPrompt, we use the PyTorch implementation from ﬂ while the results for
InferLoRA are based on the code released atff

Our experiments were conducted on NVIDIA RTX A6000 and NVIDIA A100 GPUs. The average
runtime for a single dataset in one independent run ranges between 1-5 hours, depending on the task
complexity.

Train from sratch. All models were trained for 350 epochs with a learning rate reduced by a factor
of 10 at epochs 150 and 225. We used Stochastic Gradient Descent (SGD) with a batch size of
256 and momentum of 0.9. We report mean performance metrics with standard deviations across 3
independent runs with different random seeds.

D Additional experiment results

D.1 Training from scratch

Figure[]illustrates the test accuracy and entropy evolution during training on CIFAR100 and CIFAR10
from random initialization. We observe that smaller alpha values accelerate entropy convergence,
with a = 0.2 achieving optimal performance (2% improvement over standard cross-entropy). This
demonstrates the advantage of combining 0-1 loss with cross-entropy. Notably, pure 0-1 optimization

"https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-1r_0.001-aug_m
ediuml-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-1r_0.01-res_224.npz

“https://github.com/gqk/LAE

*https://github.com/JH-LEE-KR/dualprompt-pytorch

*https://github.com/liangyanshuo/InfLoRA
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Table 6: Train from scratch hyperparameter setting

Hyperparameters Setting
Batch size 256
Training epoch 350
LR milestone 100,225
Learning rate 0.1,0.01,0.001
Optimizer SGD
Momentum 0.9
Weight decay 0
Gradient clipping None

Random Crop: padding=4,

Augmentation Random Horizontal Flip (p=0.5)
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Figure 4: Training CIFAR100 with ResNet50 from scratch. CE-EPG with an alpha value of 0.2
outperforms the standard CE loss (Best test accuracy: 81% vs. 78%.)

(o = 0.2) fails to converge effectively for CIFAR100, unlike in pretrained models. This suggests that
randomly initialized networks require stronger initial exploration.

D.2 Continual fine-tuning results

Figure[3]illustrates the entropy dynamics on the Split-Food101 dataset, revealing trends similar to
those observed on Split-ImageNetR. Compared to cross-entropy loss, Expected Policy Gradient
(EPG), adaptive EPG (aEPG), and Entropy Penalty (EP) achieve lower entropy and higher accuracy.
In contrast, focal loss, label smoothing, and confidence penalty (CP) result in higher entropy and
degraded performance. Label smoothing is particularly detrimental: even with a small smoothing
parameter (0.01), it reduces final accuracy by approximately 5%.

Figure [6] analyzes the effect of entropy regularization strength in focal loss, label smoothing, and
confidence penalty. Increasing regularization typically leads to substantially higher entropy, which
in turn degrades performance. For example, label smoothing with a parameter of 0.1 performs
worse than with 0.01, reinforcing our observation that excessive exploration harms continual fine-
tuning. The only exception is focal loss: both gamma=2 and gamma=0.5 underperform compared to
gamma=1.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes],

Justification: Our key contributions and underlying assumptions are explicitly outlined in
both the abstract and introduction. Furthermore, in the final paragraph of the introduction,
we directly link these claims to supporting evidence, including relevant figures, tables, and
theoretical propositions.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes],

Justification: Limitations are explicitly discussed in Section 5.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proof of Proposition 1 is in the main paper. We provide a proof sketch for
Proposition 2 and the full proof can be found in Appendix A. Assumptions are clearly stated
in the propositions.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes],

Justification: Our main contribution is a new loss, can be easily implemented based on
Eq[I0] The implementation details are clearly stated in Section 4.1, including the dataset
formulation, pretrained model version, optimizer, batch size, learning rate etc.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The code used in this paper is attached in the supplementary material.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes],

Justification: The implementation details are clearly stated in Section 4.1, including the
dataset formulation, pretrained model version, optimizer, batch size, learning rate etc.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes],

Justification: We reported the mean as well as the standard deviation in the performance
table. The figures also include error bars or confidence intervals.

8. Experiments compute resources
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10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute resource details in Appendix [C]

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper does not meet any of the concerns for potential harms.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes],

Justification: This work focuses on mitigating catastrophic forgetting in continual fine-tuning
of pretrained vision models. While our technical contributions primarily advance machine
learning methodology, we acknowledge that any progress in continual learning systems
could indirectly influence their deployment in real-world applications. To the best of our
knowledge, this research carries no immediate positive or negative societal consequences,
as it addresses fundamental algorithmic challenges rather than specific use cases.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: This paper does not release data or models.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The datasets used in the paper are properly cited.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: No new assets are created.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA] .
Justification: The paper does not involve user study with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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