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Abstract

While large pretrained vision models have achieved widespread success, their1

post-training adaptation in continual learning remains vulnerable to catastrophic2

forgetting. We challenge the conventional use of cross-entropy (CE) loss, a surro-3

gate for 0-1 loss, by reformulating classification through reinforcement learning.4

Our approach frames classification as a one-step Markov Decision Process (MDP),5

where input samples serve as states, class labels as actions, and a fully observable6

reward model is derived from ground-truth labels. From this formulation, we7

derive Expected Policy Gradient (EPG), a gradient-based method that directly8

minimizes the 0-1 loss (i.e., misclassification error). Theoretical and empirical9

analyses reveal a critical distinction between EPG and CE: while CE encourages10

exploration via high-entropy outputs, EPG adopts an exploitation-centric approach,11

prioritizing high-confidence samples through implicit sample weighting. Building12

on this insight, we propose an adaptive entropy annealing strategy (aEPG) that13

transitions from exploratory to exploitative learning during continual adaptation14

of a pre-trained model. Our method outperforms CE-based optimization across15

diverse benchmarks (Split-ImageNet-R, Split-Food101, Split-CUB100, CLRS) and16

parameter-efficient modules (LoRA, Adapter, Prefix). More broadly, we evaluate17

various entropy regularization methods and demonstrate that lower entropy of18

the output prediction distribution enhances adaptation in pretrained vision models.19

These findings suggest that excessive exploration may disrupt pretrained knowledge20

and establish exploitative learning as a crucial principle for adapting foundation21

vision models to evolving classification tasks.22

1 Introduction23

Modern vision models are prone to catastrophic forgetting when trained on non-stationary data.24

Traditional continual learning (CL) methods address this through memory replay mechanisms [5].25

However, with the rise of large-scale pretrained vision transformers, research has shifted toward26

parameter-efficient fine-tuning (PEFT), which freezes most pretrained parameters and updates only a27

small subset of adaptable parameters. PEFT achieves state-of-the-art CL performance without relying28

on data replay [29, 28, 25]. Recent research has integrated various parameter injection techniques29

into continual learning, such as prompts, LoRA, and adapters, and proposed CL strategies like EMA30

ensembles and subspace initialization [9, 16] to further reduce forgetting. However, these approaches31

all rely on cross-entropy loss for optimization in classification tasks.32

In this work, we rethink the conventional use of cross-entropy loss by reformulating continual learning33

through a reinforcement learning (RL) lens. The ultimate goal of classification is to minimize the34

misclassification error (0-1 loss), but this objective is non-differentiable and discontinuous, making it35

incompatible with gradient-based optimization. As a result, cross-entropy loss has become the de36
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facto surrogate for training models, even though they are ultimately evaluated on 0-1 loss. Instead, we37

propose directly optimizing the 0-1 loss using reinforcement learning. To achieve this, we reformulate38

classification as a Markov Decision Process (MDP): input samples serve as states, predicted class39

labels as actions, and the reward function is defined as 1 for the correct label and 0 otherwise. This40

formulation yields an RL objective that maximizes classification accuracy over the model’s policy41

distribution, provably equivalent to minimizing 0-1 loss. To solve this, we introduce Expected Policy42

Gradient (EPG), a low-variance variant of the REINFORCE [30] policy gradient method.43

Our gradient analysis reveals an interesting relationship between EPG and cross-entropy optimization:44

1) Gradient alignment: EPG and CE share the same gradient direction for individual samples; 2)45

Sample weighting: EPG implicitly incorporates a sample-weighting mechanism that prioritizes easier46

samples, i.e., those where the model already exhibits high prediction confidence. This distinction47

also manifests in their entropy dynamics: RL optimization consistently produces output distributions48

with lower entropy than those trained with cross-entropy. Building on this insight, we propose49

an adaptive entropy annealing strategy (adaptive EPG): starting with CE to encourage exploration50

and gradually shifting toward exploitative learning (EPG). Empirically, this approach demonstrates51

superior performance across four continual learning benchmarks and multiple parameter-efficient52

training architectures (LoRA, Adapter, and Prefix-tuning).53

More broadly, we investigate entropy regularization strategies for continual fine-tuning: While54

prior research advocates high-entropy techniques (e.g., label smoothing, focal loss, and confidence55

penalty) to improve classification performance, we demonstrate that these approaches actually harm56

performance in class-incremental learning with pretrained vision transformers. In contrast, techniques57

with lower entropy consistently enhance continual fine-tuning results (Table 2). This result implies58

that aggressive exploration can destabilize a pretrained model’s learned knowledge, positioning59

exploitative learning as a critical strategy for continual learning with foundation models.60

Our contributions are summarized as follows:61

• We introduce Expected Policy Gradient (EPG), a gradient-based reinforcement learning62

method that directly optimizes the 0-1 loss instead of a surrogate objective, e.g. CE.63

• We conduct theoretical and empirical studies revealing EPG’s exploitative nature (vs. cross-64

entropy’s exploration bias) through analysis on the gradient, entropy, and objective function65

(see Fig 1 and Proposition 2).66

• We propose an adaptive entropy annealing strategy (aEPG) that combines the strengths of67

EPG and cross-entropy, achieving state-of-the-art performance in continual fine-tuning, as68

shown in Table 1 and 2.69

• We provide evidence showing that lower entropy, contrary to traditional classification70

literature, improves continual adaptation of pretrained vision models (see Fig 2).71

2 Related work72

Continual learning and parameter-efficient finetuning (PEFT) Parameter-efficient fine-tuning73

techniques have recently been used in continual learning, achieving state-of-the-art performance74

without the need for data replay. Early work in continual fine-tuning focused on learnable prompt75

parameters [28, 29, 25], maintained in memory. These approaches optimize prompts to guide model76

predictions while explicitly managing task-invariant and task-specific knowledge. Recent advances77

include unified frameworks combining adapters, LoRA, and prefix tuning [9], ensemble models78

with online/offline PEFT experts, and specialized LoRA initialization techniques to reduce task79

interference [16].80

RL for fine-tuning LLMs. RL has become pivotal for aligning large pretrained models with human81

preferences [2]. In the RL from human feedback (RLHF) framework, human feedback serves as82

the reward signal of MDP, and the model is optimized as a policy via policy gradient methods83

like PPO [21]. While reinforcement learning has proven highly effective for fine-tuning LLMs in84

generative tasks, its application to vision models and classification remains underexplored.85

RL for continual learning Reinforcement learning has also been applied to improve continual learn-86

ing performance. For instance, [31] employs RL to dynamically select optimal neural architectures87

for incoming tasks, while [32] introduces a multi-armed bandit framework with bootstrapped policy88
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gradient to adapt augmentation strength and training iterations in online continual learning. Similarly,89

[18] proposes a bandit-based method for online hyperparameter optimization in offline continual90

learning. However, these approaches focus on tuning hyperparameters rather than directly optimizing91

classification model parameters.92

Entropy regularization. Entropy regularization is widely used in machine learning to influence93

the behavior of learned policies or predictions. 1) Increasing entroy: In reinforcement learning,94

entropy regularization encourages exploration by preventing premature convergence to suboptimal95

deterministic policies. Recent work by [3] applies this idea to continual RL, evaluating it on tasks96

such as Gridworld, CARL, and MetaWorld. Similarly, in supervised learning, entropy regularization97

mitigates overconfident predictions by promoting high-entropy output distributions. For instance, [22]98

introduces the confidence penalty, which subtracts a weighted entropy term from the loss function99

to produce more balanced predictions. Later, [19] unifies the understanding of label smoothing and100

confidence penalties, comparing their effectiveness in language generalization tasks. Additionally,101

[20] shows that focal loss implicitly increases entropy, improving model calibration. 2) Decreasing102

entropy. Conversely, entropy reduction is useful when training with unlabeled data and has been103

applied in the areas of semi-supervised learning, self-supervised learning and test-time adaptation[10].104

Our work investigates entropy regularization in continual learning, particularly when pretraining105

from large vision models.106

Direct minimization of 0-1 loss. Prior works have explored optimizing 0-1 directly via approxima-107

tions and alternative formulations. [11] proposes a smooth approximation using the posterior mean108

of a generalized Beta-Bernoulli distribution. [14] employs stochastic prediction with probabilistic109

embeddings, modeling predictions as a multivariate normal distribution and solving optimization via110

orthant integration of its probability density function. Unlike these approaches, our work studies the111

0-1 loss from a reinforcement learning perspective.112

Classification with bandit feedback Our work differs from classification with bandit feedback, a113

problem setting introduced by [13]. In the bandit feedback setting, the learner does not observe the114

true label for a given input but only receives binary feedback indicating whether its predicted label115

was correct. And this is typically studied in an online setting and the main objective is to minimize116

the regret and most works investigate the properties of the hypothesis class that allow for sublinear117

regret [7, 8, 4]. In this paper, we explore a one-step MDP (similar to contextual bandit) framework118

to model a standard supervised learning problem, rather than operating under the bandit feedback119

setting.120

3 Methodology121

3.1 Problem setting: Classification as a One-Step MDP122

We formulate classification and continual fine-tuning as a one-step MDP: the input samples x ∼ d(x)123

form the state space with state distribution d(x); and classification labels constitute the action space A,124

with a reward function r ∼ Rx,a indicating whether an action (predicted label) matches the ground-125

truth label for x, or not. Episodes terminate after one step. The policy πθ(a|x) is parameterized by a126

deep neural network. The objective is to maximize expected reward over the policy:127

Jπ(θ) = Ex∼d(x),a∼πθ(a|x)[r] =
∑
x∈X

d(x)
∑
a∈A

πθ(a|x)Rx,a (1)

More specifically, we define a deterministic reward function based on ground-truth labels:128

Rx,a =

{
1, if a = y

0, otherwise
(2)

This reward scheme assigns a value of one for correct classifications and zero otherwise, directly129

aligning the reinforcement learning objective with the goal of maximizing classification accuracy.130

We focus on the supervised classification setting, where ground truth labels are available during131

training. This means that the reward model is fully observable to the learning agent. This differs from132

the problem setting of classification under bandit feedback [13].133

3



Connection between RL Objective and 0-1 Loss. We establish the relationship between the134

reinforcement learning objective and the 0-1 classification loss. For a classifier hθ with true labels y135

and predictions hθ(x), the 0-1 loss is defined as:136

L01(y, hθ(x)) =

{
0, if hθ(x) = y (correct prediction)
1, if hθ(x) ̸= y (incorrect prediction)

(3)

Building upon the RL objective in Eq. 1 and the reward function in Eq. 2, we derive the following137

connection:138

Proposition 1. Minimizing the 0-1 loss of classifier hθ is equivalent to maximizing the RL objective:139

min
θ

L01(hθ) = max
θ

Jh(θ) (4)

This demonstrates that 0-1 loss minimization can be viewed as an RL problem.140

Proof. By interpreting hθ(x) as the policy πθ(a|y) in Eq 1 and applying a constant baseline of value141

1 to the reward function Rx,a (Eq. 2), we obtain:142

Jh(θ) = Ex∼d(x),a∼hθ
[r] = 1−

∑
x∈X

d(x)
∑
a∈A

hθ(a|x)(−Rx,a + 1) = 1− L01(hθ) (5)

The constant offset does not affect the optimization objective, thus establishing the equivalence.143

The 0-1 loss presents fundamental challenges for gradient-based optimization due to its discontinuous144

and non-differentiable nature. We address this limitation through a novel reinforcement learning145

perspective that reformulates classification as policy optimization. While conventional classification146

approaches typically implement a deterministic mapping hθ : X → Y (which could alternatively be147

viewed as a deterministic policy in the proposed framework and optimized via deterministic policy148

gradient methods [24]), this paper instead explores a stochastic policy with softmax parameterization:149

πθ(a|x) = efθ(a|x)/
∑

k e
fθ(k|x), where fθ : X → RK denotes the model’s logit outputs. This150

parameterization not only maintains the familiar structure of softmax-based classification but also151

establishes a principled connection between policy gradient optimization and cross-entropy mini-152

mization. Through this formulation, we can directly investigate how policy gradient methods relate153

to traditional classification objectives (CE) while handling the non-differentiable 0-1 loss, as shown154

in the next section.155

3.2 Expected Policy Gradient156

We solve the RL problem described above using policy gradient methods. While traditional ap-157

proaches such as REINFORCE [30] and PPO [23] rely on stochastic action sampling, we derive a158

more efficient gradient estimator by exploiting the inherent structure of the classification MDP.159

Based on the policy gradient theorem, the gradient of Eq 1 can be computed using the likelihood ratio160

gradient estimator [26]. For one-step MDPs with immediate rewards, we have:161

∇θJ(θ) = Ex∼d(x),a∼πθ(a|x) [Rx,a∇θ log πθ(a|x)] (6)

The REINFORCE policy gradient algorithm [30] approximates this expectation through Monte Carlo162

sampling. Given the sampled trajectories {xi, ai, ri}N , the gradient can be estimated as:163

ĝREINFORCE =
1

N

∑
xi∼d(x),ai∼πθ

Rxi,ai
∇θ log πθ(ai|xi) (7)

This type of sampling-based policy gradient method, as employed by REINFORCE and Proximal164

Policy Optimization (PPO) [23], is widely used in deep reinforcement learning tasks and for fine-165

tuning large language models with human feedback. However, we observe that the sampling-based166

approach does not exploit the simplicity of classification tasks. Crucially, in our classification MDP167

formulation, the reward function is available to the learner, since the reward Rx,a for all actions168

is available once the class label for a sample is given (see Eq. 2). This allows us to compute169
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(a) Split-Food101-10 (b) Split-ImageNetR200-10

Figure 1: The entropy of the policy, i.e. the softmax output of the model, during training. Expected
policy gradient optimization (EPG) leads to higher entropy than cross-entropy (CE) optimization.

the expectation over actions exactly in the gradient estimator while only sampling from the state170

distribution d(x):171

ĝEPG =
1

N

∑
xi∼d(x)

∑
a∈A

πθ(a|xi)Rxi,a∇θ log πθ(a|xi) (8)

We term this the Expected Policy Gradient (EPG) to distinguish it from methods that need to sample172

actions. As EPG uses the exact expectation, it can eliminate the noise caused by action sampling. In173

other words, it maintains the true gradient’s expectation while reducing variance in gradient estimate,174

i.e., Var[ĝEPG] ≤ Var[ĝREINFORCE], and E[ĝEPG] = E[ĝREINFORCE].175

3.3 Over-exploration and entropy annealing176

Connection to cross entropy. We analyze the relationship between EPG and CE optimization. Given177

the target distribution q(a|x) and the softmax output πθ(a|x), the gradient of CE (Eq. 9) is:178

ĝCE = −
∑

x∼d(x)

∑
a

q(a|x)∇θ log πθ(a|x). (9)

Note that both EPG and CE gradients involve ∇θ log πθ(a|x). For one-hot labels (i.e. q(a|x)179

follows Dirac delta distribution), the gradient for a sample (xi, yi) simplifies to ĝiCE(xi, yi) =180

−∇θ log πθ(yi|xi). Comparing this with Eq. 8, we derive:181

ĝiEPG(xi, yi) = πθ(yi|xi)∇θ log πθ(yi|xi) = −πθ(yi|xi)ĝ
i
CE(xi, yi). (10)

Gradient and entropy analysis. This reveals that EPG and CE yield gradients in the same direction182

but with different sample weights: EPG upweights confident predictions (πθ(yi|xi) ≈ 1) while183

downweighting uncertain ones. To better understand how this sample weighting scheme affects184

gradient optimization, we analyze the entropy dynamics of both CE and EPG. Figure 1 shows185

the evolution of output distribution entropy during continual fine-tuning. Initially, when learning186

each new task, the model’s predictions are nearly random, resulting in high entropy. As training187

progresses, this entropy gradually decreases. Perhaps surprisingly, we observe that EPG reduces188

entropy significantly faster than CE and achieves lower final entropy levels (Fig. 1), despite EPG189

having smaller gradient magnitudes than CE (|ĝiEPG(xi, yi)| = πθ(yi|xi)|ĝiCE(xi, yi)| ≤ |ĝiCE(xi, yi)|).190

The entropy and gradient analysis demonstrate a key difference in their optimization behaviors: CE191

exhibits exploratory behavior, maintaining higher entropy in action space and promoting exploration192

through stochastic gradient updates that probe uncertain regions of the parameter space; EPG193

demonstrates exploitative tendencies, converging toward lower-entropy action distributions and more194

confident gradient solutions that exploit existing model knowledge.195

Beyond empirical observations, we also study this phenomenon from a theoretical perspective. We196

demonstrate that the RL objective underlying EPG inherently minimizes entropy while simultaneously197

reducing the KL divergence between the target and predicted distributions (see Proposition 2).198
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Proposition 2. For hard-label classification, the reinforcement learning objective satisfies:199

max
θ

JRL
pθ

(θ) ≡ min
θ

[DKL(pθ ∥ q) +H(pθ)] , (11)

where pθ is the model’s predictive distribution and q is the target distribution. This establishes200

that Expected Policy Gradient optimization simultaneously minimizes the KL divergence between201

predictions and targets and reduces the entropy of the output distribution202

Proof Sketch. The equivalence follows from 1) decomposing the RL objective using the baseline203

subtraction technique from policy gradient methods; 2) identifying the entropy and divergence terms204

through algebraic manipulation The complete derivation appears in Appendix A.205

Proposition 2 reveals a fundamental connection between the 0-1 loss and KL divergence. Specifically,206

while the CE loss explicitly minimizes the difference between the target and predicted distributions207

(via minimizing DKL(q||pθ)), the 0-1 loss not only reduces this distributional disparity (via minimiz-208

ing DKL(pθ||q)) but also implicitly minimizes entropy. This dual optimization mechanism provides a209

theoretical explanation for the empirical observation that EPG drives the model toward lower-entropy210

solutions compared to CE.211

While prior work has shown that increased entropy can benefit classification models by promoting212

exploration [22, 19, 6], these advantages have primarily been observed in train-from-scratch settings.213

We hypothesize that this relationship may fundamentally differ for pretrained models, where excessive214

exploration could prove detrimental. Specifically, aggressive exploration may: 1) cause substantial215

deviation from the pretrained weights, compromising their inherent generalization capabilities, and216

2) in continual learning settings, disrupt previously acquired task knowledge, thereby accelerating217

catastrophic forgetting. This necessitates a careful re-examination of the exploration-exploitation218

tradeoff when continually fine-tuning pretrained models.219

Adaptive entropy annealing. To effectively balance exploration (via cross-entropy optimization) and220

exploitation (via expected policy gradient optimization), we propose an adaptive entropy annealing221

method that combines both objectives through a time-dependent weighting scheme. The combined222

gradient formulation is given by:223

gaEPG(θ) = αtgCE(θ) + (1− αt)(−gEPG(θ)). (12)

where αt ∈ [0, 1] is an annealing coefficient that evolves during training. This design provides a224

smooth transition from initial exploration to final exploitation: beginning with pure cross-entropy225

optimization (αt = 1) to maintain high entropy during early training, we progressively shift to226

pure EPG (αt = 0) to optimize the 0-1 loss in later stages. The transition follows a sigmoid227

annealing schedule of αt = σ
(
τ T−2t

T

)
, where T represents the total number of training steps, and228

σ(x) = (1 + e−x)−1 is the sigmoid function. τ = 6 controls transition rate. This schedule smoothly229

interpolates from α0 = σ(6) ≈ 1 (initialization) to αT = σ(−6) ≈ 0 (convergence). Extensive230

experiments demonstrate that this choice of hyperparameter value is robust across diverse datasets231

and architectures.232

4 Experiments233

Datasets. We evaluate our approach on four diverse datasets spanning different image classification234

challenges. ImageNet-R [12] has renditions of 200 ImageNet classes with 24,000 training and235

6,000 test samples, naturally exhibiting class imbalance. We partition it into 10 sequential tasks.236

Food-101 [1] provides balanced classification across 101 food categories (750 training/250 test237

images per class, 101k total), split into 10 tasks. CUB200 [27] contains 11,788 bird images across238

200 species, which we organize into 10 incremental tasks (20 classes each). Finally, CLRS [15] offers239

large-scale remote sensing with 25 scene classes (600 images/class, 256×256 resolution) collected240

from multiple sensors, divided into 5 sequential tasks.241

Baselines. We compare our approach (adaptive EPG, aEPG) against four state-of-the-art continual242

fine-tuning methods for pretrained vision transformers: Dual Prompt, LAE, InferLoRA, and standard243

LoRA. DualPrompt [28] is one of the early works that use parameter-efficient fine-tuning in continual244

learning by optimizing learnable prompts stored in memory. LAE [9] is a recent work which employs245

an ensemble of online and offline PEFT experts (labelled as d-lora), and InferLoRA [16], mitigates246
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Table 1: Performance comparison of continual PEFT methods on Split-ImageNet-R datasets.

Tasks 5 Tasks 10 Tasks 20 Tasks

Methods PEFT Loss A5 Ã5 A10 Ã10 A20 Ã20

DualPrompt prefix CE 72.9 ± 0.3 76.0 ± 0.3 71.2 ± 0.1 75.4 ± 0.1 71.2 ± 0.1 74.8 ± 0.1
InferLoRA i-lora CE 76.8 ± 0.4 80.8 ± 0.3 74.2 ± 0.1 79.5 ± 0.2 68.6 ± 0.5 74.8 ± 0.4
LoRA lora CE 74.8 ± 0.0 79.8 ± 0.1 74.3 ± 0.1 79.2 ± 0.3 73.2 ± 0.1 78.7 ± 0.0
LAE d-lora CE 76.1 ± 0.2 80.6 ± 0.1 75.4 ± 0.0 79.9 ± 0.3 73.9 ± 0.3 79.2 ± 0.1

LoRA + aEPG lora aEPG 77.2 ± 0.0 81.9 ± 0.0 75.8 ± 0.3 80.9 ± 0.0 74.1 ± 0.2 79.7 ± 0.2
LAE + aEPG d-lora aEPG 78.3 ± 0.1 82.3 ± 0.0 76.7 ± 0.3 81.4 ± 0.2 75.0 ± 0.3 80.0 ± 0.1

task interference via carefully initialized LoRA subspaces (labeled as i-lora). We also evaluate247

standard LoRA, applied in continual fine-tuning with local cross-entropy loss; this baseline has been248

shown to outperform DualPrompt [9]. Our experiments adopt the unified framework of [9], which249

supports diverse PEFT methods, including Adapter, LoRA, and Prefix.250

We further compare EPG and aEPG against entropy regularization techniques, including: Focal251

loss [17], Label smoothing [19], and Confidence penalty [22]. Following previous CL works [9, 16],252

all losses are applied locally in the continual fine-tuning experiments, computed exclusively over the253

current task’s categories.254

Training details. We adopt a ViT-B/16 backbone (vit_base_patch16_224 from timm library), pre-255

trained on ImageNet-21k and fine-tuned on ImageNet-1k. All experiments use PyTorch with the Adam256

optimizer (learning rate=0.0005, batch size=256,). We initialize classifier heads from N (0, 0.001), an257

aspect previously uncontrolled in the release code of previous continual fine-tuning works. Following258

[9], the ViT backbone remains frozen for the first 30 epochs before full fine-tuning for 20 additional259

epochs (50 total). All PEFT modules (LoRA, Adapters, or Prefix Tuning) are applied to the first260

5 transformer blocks (results for 10 blocks show a similar pattern and are omitted), with LoRA261

configured to rank 4. Unless otherwise specified, we report mean performance metrics with standard262

deviations across 5 independent runs with different random seeds.263

Evaluation metrics. We evaluate all models with a widely used incremental metric: the end accuracy264

on all the seen tasks AT = 1/T
∑i=T

i=1 ai,T , where T is the total number of tasks and ai,j denotes265

the accuracy of the j-th task once the model has learned the t-th task. We also report the average266

accuracy ÃT = 1
T

∑t=T
t=1 At.267

4.1 Results268

Continual fine-tuning results. Our first evaluation is based on ImageNet-R with 5, 10, and 20269

task splits. Table 1 demonstrates aEPG outperforming the baseline methods. In addition, unlike270

DualPrompt or InferLoRA, which rely on a specific architectural design, our method introduces a271

novel loss formulation that can be easily combined with different continual learning frameworks.272

Table 1 demonstrates that aEPG can be combined with LAE to achieve the best results.273

We further validate aEPG’s effectiveness through comprehensive experiments on Split-ImageNetR200,274

Split-Food101, Split-CUB200, and CLRS datasets, demonstrating consistent improvements over275

cross-entropy optimization across diverse post-training architectures, including LoRA, Adapter, and276

Prefix tuning (see Table 2).277

Entropy dynamics. Inspired by the promising results of aEPG in Table 1, we systematically
investigate the effects of increasing or decreasing entropy during fine-tuning of pretrained models. To
increase entropy, we employ established methods such as label smoothing, confidence penalty, and
focal loss. Conversely, to decrease entropy, we leverage EPG and aEPG, which have been shown to
reduce entropy in Section 3.3 and Fig. 1. Additionally, we evaluate an entropy-penalized (EP) loss
adapted from CE, structured similarly to Proposition 2. This objective simultaneously minimizes the
KL divergence and entropy:

minLEP = min [LCE +H(pθ)] = min [DKL(q||pθ) +H(pθ)]

The objective functions are summarized in Table 4 in the Appendix.278

Fig. 2 illustrates the entropy dynamics and continual learning performance. Generally, entropy-279

increasing methods (focal loss, label smoothing, confidence penalty) degrade performance, whereas280
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Table 2: Algorithm performance comparison across four datasets and different PEFT modules.

PEFT Algo H(pθ)
Split-ImageNetR200 Split-Food101 Split-Cub200 CLRS25

A10 Ã10 A10 Ã10 A10 Ã10 A5 Ã5

LoRA

CE - 74.1 ± 0.4 79.3 ± 0.3 83.2 ± 0.2 88.8 ± 0.2 83.3 ± 0.2 86.2 ± 0.1 74.2 ± 0.8 83.9 ± 0.2
Focal ↑ 72.4 ± 0.3 77.9 ± 0.3 82.7 ± 0.3 88.4 ± 0.2 82.9 ± 0.3 86.1 ± 0.2 73.0 ± 0.9 82.5 ± 0.4

LS ↑ 70.6 ± 0.2 76.7 ± 0.2 77.5 ± 0.4 85.2 ± 0.2 82.9 ± 0.2 86.6 ± 0.2 74.8 ± 1.1 85.1 ± 0.5
CP ↑ 72.4 ± 0.8 77.9 ± 0.7 83.0 ± 0.2 88.9 ± 0.2 83.3 ± 0.3 86.5 ± 0.2 74.0 ± 1.0 83.9 ± 0.3

EPG ↓ 75.1 ± 0.4 80.0 ± 0.2 83.5 ± 0.3 88.9 ± 0.2 84.2 ± 0.1 85.9 ± 0.1 74.6 ± 0.8 84.3 ± 0.7
aEPG ↓ 75.5 ± 0.1 80.9 ± 0.1 84.4 ± 0.1 89.5 ± 0.1 84.7 ± 0.3 86.7 ± 0.1 76.3 ± 0.4 85.5 ± 0.3

EP ↓ 75.1 ± 0.2 80.4 ± 0.3 84.0 ± 0.2 89.2 ± 0.2 85.0 ± 0.2 87.2 ± 0.1 74.8 ± 0.8 84.6 ± 0.5

Adapter

CE - 73.7 ± 0.2 79.4 ± 0.1 82.9 ± 0.1 88.5 ± 0.1 83.7 ± 0.3 86.3 ± 0.2 75.6 ± 1.2 83.7 ± 0.9
Focal ↑ 72.1 ± 0.2 77.9 ± 0.2 82.4 ± 0.2 88.1 ± 0.1 82.7 ± 0.3 86.2 ± 0.3 73.2 ± 0.9 82.7 ± 1.0

LS ↑ 70.7 ± 0.7 77.2 ± 0.5 77.3 ± 0.3 85.1 ± 0.2 83.2 ± 0.3 86.2 ± 0.1 75.5 ± 1.0 84.9 ± 0.8
CP ↑ 71.8 ± 0.4 77.9 ± 0.1 83.5 ± 0.2 89.1 ± 0.1 84.1 ± 0.2 87.0 ± 0.2 74.5 ± 0.7 83.6 ± 0.9

EPG ↓ 75.1 ± 0.3 80.3 ± 0.2 83.5 ± 0.3 88.8 ± 0.1 84.7 ± 0.3 86.4 ± 0.2 77.5 ± 1.1 84.9 ± 1.2
aEPG ↓ 75.4 ± 0.2 81.3 ± 0.1 84.4 ± 0.1 89.4 ± 0.1 85.0 ± 0.2 86.9 ± 0.2 77.9 ± 0.6 85.5 ± 1.3

EP ↓ 74.8 ± 0.2 80.4 ± 0.1 83.8 ± 0.1 89.1 ± 0.1 85.4 ± 0.4 87.3 ± 0.2 76.6 ± 0.8 85.2 ± 0.5

Prefix

CE - 73.5 ± 0.2 77.8 ± 0.2 82.9 ± 0.2 88.8 ± 0.2 81.7 ± 0.3 85.1 ± 0.2 70.7 ± 1.3 80.6 ± 0.9
Focal ↑ 72.2 ± 0.3 76.7 ± 0.3 82.6 ± 0.4 88.4 ± 0.3 81.6 ± 0.2 85.5 ± 0.2 68.9 ± 1.3 79.0 ± 1.2

LS ↑ 69.9 ± 1.2 74.7 ± 1.2 77.2 ± 0.4 85.5 ± 0.3 82.9 ± 0.5 86.4 ± 0.6 74.4 ± 0.7 83.3 ± 0.3
CP ↑ 70.4 ± 0.2 74.8 ± 0.2 83.7 ± 0.1 89.2 ± 0.1 83.0 ± 0.3 86.7 ± 0.2 71.7 ± 1.2 81.2 ± 0.9

EPG ↓ 74.7 ± 0.1 78.7 ± 0.2 83.2 ± 0.4 88.8 ± 0.1 82.3 ± 0.2 84.8 ± 0.2 74.1 ± 1.0 82.6 ± 0.5
aEPG ↓ 75.2 ± 0.1 79.2 ± 0.1 84.2 ± 0.2 89.5 ± 0.1 82.4 ± 0.2 85.3 ± 0.2 73.7 ± 0.8 82.6 ± 0.5

EP ↓ 74.6 ± 0.1 78.7 ± 0.1 83.9 ± 0.2 89.3 ± 0.1 83.0 ± 0.2 85.8 ± 0.2 73.1 ± 0.7 82.0 ± 0.4

(a) Incremental test accuracy (b) Entropy of output distribution

Figure 2: Entropy dynamics in continual fine-tuning of VisionTransformers on Split-ImagenetR200.
Compared to the cross-entropy loss, Expected Policy Gradient (EPG), adaptive EPG (aEPG), and
Entropy Penalty (EP) lead to lower entropy and improved accuracy. In contrast, focal loss, label
smoothing, and confidence penalty (CP) lead to higher entropy and worse performance. Results for
Split-Food101 datasets can be found in Appendix D.2

entropy-decreasing methods (EPG, aEPG, EP) improve it. Detailed quantitative results with optimal281

hyperparameters are provided in Table 2. Notably, we observe that aEPG achieves the best perfor-282

mance on ImageNet-R, Food101, and CLRS, and EP performs best on CUB200. All entropy-reducing283

methods (EPG, aEPG, EP) outperform the cross-entropy baseline.284

4.2 Ablation studies285

Effect of α on objective combination. We analyze the impact of the weighting coefficient α286

when combining cross-entropy Lce(θ) and the reinforcement learning objective −J(θ). Fig. 3287

compares performance across α ∈ [0.0, 0.1, 0.2, 0.5, 0.7, 1.0]. We observe that: 1) lower α values288

(emphasizing the RL objective) generally produce superior results, and 2) our adaptive α scheduling289

strategy consistently outperforms fixed α configurations. These findings suggest that dynamic290

adjustment of the loss weighting with entropy annealing is crucial for optimal performance.291

Entropy annealing mechanism We also explore alternative annealing schedules such as linear decay292

(αt =
T−t
T ) and cosine decay (αt =

1
2 + 1

2 cosπ
t
T ). Our analysis reveals that entropy annealing293

performance remains stable across different schedule choices. Alternative approaches including linear294

decay and cosine decay yield comparable results as shown in Fig 3.295
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(a) ImageNetR (b) CUB200 (c) alpha schedule in aEPG

Figure 3: The effect of alpha when combining CE and EPG with αLCE + (1− α)LEPG

Table 3: The algorithm performance for training ResNet-50 from scratch.

Method α = 0 α = 0.2 α = 0.5 α = 1

CIFAR100 7.32 ± 0.70 80.80 ± 0.13 79.95 ± 0.20 77.95 ± 0.78
CIFAR10 92.22 ± 0.51 95.81 ± 0.05 95.62 ± 0.08 95.31 ± 0.18

Train from scratch While this work primarily focuses on continual fine-tuning, our findings that RL296

and EPG methods can optimize the 0-1 loss are broadly applicable to standard supervised learning.297

To investigate this, we trained ResNet-50 from scratch on CIFAR-10 and CIFAR-100 for 350 epochs298

using the optimal training and learning rate annealing schedule for cross-entropy loss as reported299

in the literature [22] (see Appendix C). Consistent with our finding in the continual fine-tuning300

experiments, EPG optimization demonstrated faster entropy convergence than CE optimization,301

as shown in Fig. 4c in the appendix. However, when training from a randomly initialized model,302

we observe that EPG’s entropy decreases excessively, ultimately hindering the learning process,303

a phenomenon not observed when initializing from pretrained models. Interestingly, combining304

EPG and CE with an alpha value of 0.2 or 0.5 yields superior performance compared to CE alone,305

achieving performance gains of approximately 2% on CIFAR-100 and 0.5% on CIFAR-10. These306

results suggest that incorporating 0-1 loss into CE optimization not only benefits continual fine-tuning307

but also enhances standard training from scratch. A plausible explanation is that entropy reduction308

aligned with 0-1 loss facilitates faster convergence.309

5 Discussion and conclusion310

In this work, we re-examined the conventional use of cross-entropy loss in continual learning and311

proposed a novel reinforcement learning framework that directly optimizes the 0-1 misclassification312

error, i.e. the true objective of classification tasks. By reformulating classification as a Markov313

Decision Process and introducing Expected Policy Gradient (EPG), we demonstrated that RL-based314

optimization aligns with the ultimate goal of minimizing classification errors while exhibiting315

distinct gradient and entropy dynamics compared to CE. Our theoretical and empirical analyses316

revealed that EPG implicitly prioritizes high-confidence predictions, leading to lower-entropy output317

distributions and improved stability in continual fine-tuning scenarios. To bridge the gap between318

exploration (encouraged by CE) and exploitation (favored by EPG), we introduced an adaptive319

entropy annealing strategy (aEPG) that transitions smoothly from CE to EPG, achieving state-of-320

the-art performance across multiple CL benchmarks and parameter-efficient fine-tuning (PEFT)321

architectures. Furthermore, we challenged the conventional wisdom that high-entropy regularization322

benefits classification, showing instead that lower entropy consistently enhances class-incremental323

learning with pretrained vision transformers.324

Limitations. While our method demonstrates strong performance in continual fine-tuning with vision325

transformers, it has several limitations. First, our theoretical and empirical analyses assume a standard326

supervised setting with clean, hard labels, leaving EPG’s robustness to noisy or ambiguous samples327

an open question for future work. Second, our experiments focus exclusively on class-incremental328

learning with pretrained vision transformers, and further validation is needed to assess generalizability329

to other architectures (e.g., CNNs) or modalities (e.g., language models).330
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A Proof of Proposition 2428

DKL(pθ ∥ q) =

K∑
k=1

pθ(yk|x) log
pθ(yk|x)
q(yk|x)

=
∑
k

pθ(yk|x) log pθ(yk|x)︸ ︷︷ ︸
−H(pθ)

−
∑
k

pθ(yk|x) log q(yk|x)

= −H(pθ)− Epθ
[R′(yk, x)]

(13)

where R′(yk, x)
.
= log q(yk|x). For Dirac delta distributions q(yk|x) = δyk,y∗ :429

R′(yk, x) =

{
log(1) if yk = y∗

log(0) otherwise
(14)

Reward Baseline Adjustment. Using the policy gradient invariance to constant baselines, we set430

A
.
= − log(0) and define:431

Epθ
[R′] = −A+ Epθ

[R′ +A]

= −A+A · Epθ
[R]

(15)

where R(yk, x) is the 0-1 reward:432

R(yk, x) =

{
1 if yk = y∗

0 otherwise
(16)

Final Equivalence. Substituting (15) into (13) yields:433

DKL(pθ ∥ q) = −H(pθ)−A · Epθ
[R] +A (17)

Since A > 0 is constant, maximizing the expected reward is equivalent to:434

max
θ

Epθ
[R] ≡ min

θ
(DKL(pθ ∥ q) +H(pθ)) (18)

Generalization to Label Smoothing. The same equivalence holds when q follows a uniform435

label smoothing distribution, with the proof following analogous steps by substituting q(y|x) =436

ϵ/K + (1− ϵ)δy,y∗ , where K is the number of classes and ϵ controls the smoothing intensity.437

B Loss function details438

Table 4 compares the objective functions of different entropy regularization methods. Focal loss,439

label smoothing, and confidence penalty increase entropy, whereas EPG, aEPG, and entropy penalty440

reduce it.

Table 4: Loss functions and their effects on entropy

Training Method Loss Function Entropy
Cross Entropy LCE = −

∑
q log pθ Baseline

Confidence Penalty LCP = LCE − βH(pθ)
Label Smoothing LLS = (1− γ)LCE + γDKL (u∥pθ) Increase entropy ↑
Focal loss LFL = (1− pθ)

γLCE

Expected Policy Gradient LEPG = −Epθ
[q]

Entropy penalty LEP = LCE +H(pθ) Decrease entropy ↓
aEPG LaEPG = αtLCE + (1− αt)LEPG

441
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Table 5: Hyperparameter setting in the continual fine-tuning experiments.

Hyperparameters Settings

Pretrained model vit_base_patch16_224
Training epoch 50

Backbone freeze epoch 30
Batch size 256

Learning rate 0.0005
Optimizer Adam (β1 = 0.9, β2 = 0.999, eps=1e-08)

Weight decay 0
Gradient clipping None

Classifier initialization Normal distribution with std of 0.001

Augmentation Random Resized Crop: scale = (0.05, 1.0), ratio = (3. / 4., 4. / 3.),
Random Horizontal Flip (p=0.5)

Focal loss gamma: 0.5,1,2
Label smoothing smooth parameter: 0.01, 0.05, 0.1

Confidence penalty penalty intensity: 0.1,0.2
aEPG tau = 6

EP beta = 1
Dualprompt Lg = 5, Le = 20
InferLoRA ϵ = 1e− 8, lamb=0.99, lame=1.0, rank=5

LAE EMA decay: 0.999

LoRA block: [0-4], rank = 4
Adapter block: [0-4], down_sample = 5
Prefix block: [0-4], length = 10

C Implementation details442

Continual fine-tuning experiments. We evaluate all methods using consistent pretraining weights1443

and optimization settings. The detailed hyperparameter settings for all algorithms are listed in444

Table 5. For DualPrompt, InferLoRA, and LAE, we adopt the key algorithm-specific hyperparameters445

following their original papers and official implementations. Our implementation builds upon the446

LAE codebase 2. For DualPrompt, we use the PyTorch implementation from 3, while the results for447

InferLoRA are based on the code released at 4.448

Our experiments were conducted on NVIDIA RTX A6000 and NVIDIA A100 GPUs. The average449

runtime for a single dataset in one independent run ranges between 1–5 hours, depending on the task450

complexity.451

Train from sratch. All models were trained for 350 epochs with a learning rate reduced by a factor452

of 10 at epochs 150 and 225. We used Stochastic Gradient Descent (SGD) with a batch size of453

256 and momentum of 0.9. We report mean performance metrics with standard deviations across 3454

independent runs with different random seeds.455

D Additional experiment results456

D.1 Training from scratch457

Figure 4 illustrates the test accuracy and entropy evolution during training on CIFAR100 and CIFAR10458

from random initialization. We observe that smaller alpha values accelerate entropy convergence,459

with α = 0.2 achieving optimal performance (2% improvement over standard cross-entropy). This460

demonstrates the advantage of combining 0-1 loss with cross-entropy. Notably, pure 0-1 optimization461

1https://storage.googleapis.com/vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_m
edium1-wd_0.1-do_0.0-sd_0.0--imagenet2012-steps_20k-lr_0.01-res_224.npz

2https://github.com/gqk/LAE
3https://github.com/JH-LEE-KR/dualprompt-pytorch
4https://github.com/liangyanshuo/InfLoRA
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Table 6: Train from scratch hyperparameter setting

Hyperparameters Setting

Batch size 256
Training epoch 350
LR milestone 100,225
Learning rate 0.1,0.01,0.001

Optimizer SGD
Momentum 0.9

Weight decay 0
Gradient clipping None

Augmentation Random Crop: padding=4,
Random Horizontal Flip (p=0.5)

(a) Test accuracy (b) Entropy

Figure 4: Training CIFAR100 with ResNet50 from scratch. CE-EPG with an alpha value of 0.2
outperforms the standard CE loss (Best test accuracy: 81% vs. 78%.)

(α = 0.2) fails to converge effectively for CIFAR100, unlike in pretrained models. This suggests that462

randomly initialized networks require stronger initial exploration.463

D.2 Continual fine-tuning results464

Figure 5 illustrates the entropy dynamics on the Split-Food101 dataset, revealing trends similar to465

those observed on Split-ImageNetR. Compared to cross-entropy loss, Expected Policy Gradient466

(EPG), adaptive EPG (aEPG), and Entropy Penalty (EP) achieve lower entropy and higher accuracy.467

In contrast, focal loss, label smoothing, and confidence penalty (CP) result in higher entropy and468

degraded performance. Label smoothing is particularly detrimental: even with a small smoothing469

parameter (0.01), it reduces final accuracy by approximately 5%.470

Figure 6 analyzes the effect of entropy regularization strength in focal loss, label smoothing, and471

confidence penalty. Increasing regularization typically leads to substantially higher entropy, which472

in turn degrades performance. For example, label smoothing with a parameter of 0.1 performs473

worse than with 0.01, reinforcing our observation that excessive exploration harms continual fine-474

tuning. The only exception is focal loss: both gamma=2 and gamma=0.5 underperform compared to475

gamma=1.476
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(a) Incremental test accuracy (b) Entropy of output distribution

Figure 5: Entropy dynamics in continual fine-tuning VisionTransformers on Split-Food101. Com-
pared to the cross-entropy loss, Expected Policy Gradient (EPG), adaptive EPG (aEPG), and Entropy
Penalty (EP) lead to lower entropy and improved accuracy. In contrast, focal loss, label smoothing,
and confidence penalty (CP) lead to higher entropy and worse performance.

(a) Focal loss

(b) Label smoothing

(c) Confidence penalty

Figure 6: The performance of entropy regularization methods (Focal loss, label smoothing, confidence
penalty) in continual fine-tuning ViT in Split-ImageNetR using different regularization strengths.
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Question: Does the paper discuss the limitations of the work performed by the authors?487
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Question: Does the paper provide open access to the data and code, with sufficient instruc-506
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Justification: The code used in this paper is attached in the supplementary material.510
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the513
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Answer: [Yes] ,515

Justification: The implementation details are clearly stated in Section 4.1, including the516

dataset formulation, pretrained model version, optimizer, batch size, learning rate etc.517
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Question: For each experiment, does the paper provide sufficient information on the com-525

puter resources (type of compute workers, memory, time of execution) needed to reproduce526

the experiments?527

Answer: [Yes]528

Justification: We provide the compute resource details in Appendix C.529

9. Code of ethics530
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Answer: [Yes]533

Justification: This paper does not meet any of the concerns for potential harms.534

10. Broader impacts535

Question: Does the paper discuss both potential positive societal impacts and negative536

societal impacts of the work performed?537

Answer: [Yes] ,538

Justification: This work focuses on mitigating catastrophic forgetting in continual fine-tuning539

of pretrained vision models. While our technical contributions primarily advance machine540

learning methodology, we acknowledge that any progress in continual learning systems541

could indirectly influence their deployment in real-world applications. To the best of our542

knowledge, this research carries no immediate positive or negative societal consequences,543

as it addresses fundamental algorithmic challenges rather than specific use cases.544

11. Safeguards545

Question: Does the paper describe safeguards that have been put in place for responsible546

release of data or models that have a high risk for misuse (e.g., pretrained language models,547

image generators, or scraped datasets)?548
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the paper, properly credited and are the license and terms of use explicitly mentioned and553

properly respected?554

Answer: [Yes]555

Justification: The datasets used in the paper are properly cited.556
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Question: Are new assets introduced in the paper well documented and is the documentation558

provided alongside the assets?559

Answer: [NA] .560

Justification: No new assets are created.561

14. Crowdsourcing and research with human subjects562

Question: For crowdsourcing experiments and research with human subjects, does the paper563

include the full text of instructions given to participants and screenshots, if applicable, as564

well as details about compensation (if any)?565

Answer: [NA] .566

Justification: The paper does not involve crowdsourcing nor research with human subjects.567

15. Institutional review board (IRB) approvals or equivalent for research with human568

subjects569

Question: Does the paper describe potential risks incurred by study participants, whether570

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)571

approvals (or an equivalent approval/review based on the requirements of your country or572

institution) were obtained?573
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Answer: [NA] .574

Justification: The paper does not involve user study with human subjects.575

16. Declaration of LLM usage576

Question: Does the paper describe the usage of LLMs if it is an important, original, or577

non-standard component of the core methods in this research? Note that if the LLM is used578

only for writing, editing, or formatting purposes and does not impact the core methodology,579

scientific rigorousness, or originality of the research, declaration is not required.580

Answer: [NA] .581

Justification: The core method development in this research does not involve LLMs as any582

important, original, or non-standard components.583
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