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ABSTRACT

Enhancing the FedProx federated learning algorithm (Li et al., 2020) with server-
side extrapolation, Li et al. (2024a) recently introduced the FedExProx method.
Their theoretical analysis, however, relies on the assumption that each client com-
putes a certain proximal operator exactly, which is impractical since this is virtu-
ally never possible to do in real settings. In this paper, we investigate the behav-
ior of FedExProx without this exactness assumption in the smooth and globally
strongly convex setting. We establish a general convergence result, showing that
inexactness leads to convergence to a neighborhood of the solution. Additionally,
we demonstrate that, with careful control, the adverse effects of this inexactness
can be mitigated. By linking inexactness to biased compression (Beznosikov et al.,
2023), we refine our analysis, highlighting robustness of extrapolation to inexact
proximal updates. We also examine the local iteration complexity required by
each client to achieved the required level of inexactness using various local opti-
mizers. Our theoretical insights are validated through comprehensive numerical
experiments.

1 INTRODUCTION

Distributed optimization is becoming increasingly essential in modern machine learning, especially
as models grow more complex. Federated learning (FL), a decentralized approach where multiple
clients collaboratively train a shared model while keeping their data locally to preserve privacy, is
a key example of this trend (Konečný et al., 2016; McMahan et al., 2017). Often, a central server
coordinates the process by aggregating the locally trained models from each client to update the
global model without accessing the raw data. The federated average algorithm (FedAvg), introduced
by McMahan et al. (2017) and Mangasarian & Solodov (1993), is one of the most popular strategies
for tackling federated learning problems. The algorithm comprises three essential components:
client sampling, data sampling, and local training. During its execution, the server first samples a
subset of clients to participate in the training process for a given round. Each selected client then
performs local training using stochastic gradient descent (SGD), with or without random reshuffling,
to enhance communication efficiency, as documented by Bubeck et al. (2015); Gower et al. (2019);
Moulines & Bach (2011); Sadiev et al. (2022b). FedAvg has proven to be highly successful in
practice, nevertheless it suffers from client drift when data is heterogeneous (Karimireddy et al.,
2020).

Various techniques have been proposed to address the challenges of data heterogeneity, with
FedProx, introduced by Li et al. (2020), being one notable example. Rather than having each client
perform local SGD rounds, FedProx requires each client to compute a proximal operator locally.
Computing the proximal operator can be regarded as an optimization problem that each client can
solve locally. Proximal algorithms are advantageous when the proximal operators can be evaluated
relatively easily (Parikh et al., 2014). Algorithms based on proximal operators, such as the proximal
point method (PPM) (Rockafellar, 1976; Parikh et al., 2014) and its extension to the stochastic set-
ting (SPPM) (Bertsekas, 2011; Asi & Duchi, 2019; Khaled & Jin, 2022; Richtárik & Takác, 2020;
Patrascu & Necoara, 2018), offer greater stability against inaccurately specified step sizes, unlike
gradient-based methods. PPM was introduced by Martinet (1972) and expanded by Rockafellar
(1976). Its extension into the stochastic setting are often used in federated optimization. The sta-
bility mentioned is particularly useful when problem-specific parameters, such as the smoothness
constant of the objective function, are unknown which renders determining the step size for SGD

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

becomes challenging. Indeed, an excessively large step size in SGD leads to divergence, while a
small step size ensures convergence but significantly slows down the training process.

Another approach to mitigating the slowdown caused by heterogeneity is the use of a server step
size. Specifically, in FedAvg, a local step size is employed by each client to minimize their in-
dividual objectives, while a server step size is used to aggregate the ‘pseudo-gradients’ obtained
from each client (Karimireddy et al., 2020; Reddi et al., 2021). The local step size is set relatively
small to mitigate client drift, while the server step size is set larger to avoid slowdowns. However,
the small step sizes result in a slowdown during the initial phase of training, which cannot be fully
compensated by the large server step size (Jhunjhunwala et al., 2023). Building on the extrapo-
lation technique employed in parallel projection methods to solve the convex feasibility problem
(Censor et al., 2001; Combettes, 1997; Necoara et al., 2019), Jhunjhunwala et al. (2023) introduced
FedExP as an extension of FedAvg, incorporating adaptive extrapolation as the server step size. Ex-
trapolation involves moving further along the line connecting the most recent iterate, xk, and the
average of the projections of xk onto different convex sets, Xi, in the parallel projection method,
which accelerates the algorithm. Extrapolation is also known as over-relaxation (Rechardson, 1911)
in fixed point theory. It is a common technique to effectively accelerate the convergence of fixed
point methods including gradient based algorithms and proximal splitting algorithms (Condat et al.,
2023; Iutzeler & Hendrickx, 2019). Recently, Li et al. (2024a) shows that the combination of ex-
trapolation with FedProx also results in better complexity bounds. The analysis of the resulting
algorithm FedExProx reveals the relationship between the extrapolation parameter and the step size
of gradient-based methods with respect to the Moreau envelope associated with the original objec-
tive function.1 However, it relies on the assumption that each proximal operator is solved accurately,
which makes it impractical and less advantageous compared to gradient-based algorithms.

1.1 CONTRIBUTIONS

Our paper makes the following contributions, please refer to Appendix A for notation details.

• We provide a new analysis of FedExProx based on Li et al. (2024a), focusing on the case where the
proximal operators are evaluated inexactly in the globally strongly convex setting, removing the
need for the assumption of exact proximal operator evaluations. By properly defining the notion
of approximation, we establish a general convergence guarantee of the algorithm to a neighbor-
hood of the solution utilizing the theory of biased SGD (Demidovich et al., 2024). Specifically,
our algorithm achieves a linear convergence rate of O

(
Lγ(1+γLmax)

µ

)
to a neighborhood of the

solution, matching the rate presented by Li et al. (2024a).
• Building on our understanding of how the neighborhood arises, we propose a new method of

approximation. This alternative characterization of inexactness eliminates the neighborhood from
the previous convergence guarantee, provided that the inexactness is properly bounded, and the
extrapolation parameter is chosen to be sufficiently small.

• By leveraging the similarity between the definitions of inexactness and compression, we enhance
our analysis using the theory of biased compression (Beznosikov et al., 2023). The improved
analysis offers a faster rate of O

(
Lγ(1+γLmax)
µ−4ε2Lmax

)
2, leading to convergence to the exact solution,

provided that the inexactness is bounded in a more permissive manner. More importantly, the op-
timal extrapolation 1/γLγ matches the exact case. This shows that extrapolation aids convergence
as long as sufficient accuracy is reached, even with inexact proximal evaluations.

• We then analyze how the aforementioned approximations can be obtained by each client. As ex-
amples, we provide the local iteration complexity when the client employs gradient descent (GD)
or Nesterov’s accelerated gradient descent (AGD), demonstrating that these approximations are
readily achievable. Specifically, for the i-th client, the local iteration complexity is Õ (1 + γLi)

when using GD, and Õ
(√

1 + γLi

)
when using AGD. See Table 1 and Table 2 for a detailed

comparison of complexities of all relevant quantities.

1A tighter convergence guarantee in some cases is obtained by Anyszka et al. (2024).
2The parameter ε2 is the parameter associated with accuracy of relative approximation as defined in Def-

inition 4. We use the notation O (·) to ignore constant factors and Õ (·) when logarithmic factors are also
omitted.
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Table 1: Comparison of FedExProx (Li et al., 2024a) and our proposed inexact versions of the
algorithms using different approximations. In the convergence column, we present the rate at which
each algorithm converges to either the solution or a neighborhood in the globally strongly convex
setting. Here, Lγ represents the smoothness constant of Mγ as defined before Theorem 1. The
neighborhood column indicates the size of the neighborhood, while the optimal extrapolation col-
umn suggests the best choice of α for each algorithm. The final column outlines the conditions on
the inexactness. All quantities are presented with constant factors omitted, K is the number of total
iterations, γ is the local step size for the proximal operator, S (ε2) defined in Theorem 2 is a factor of
slowing down due to inexactness in (0, 1]. For relative approximation, we first present the original
theory in the third row and then place the sharper analysis in the following row for comparison.

Algorithm Convergence Neighborhood Optimal
Extrapolation

Bound on
Inexactness

FedExProx exp
(
− Kµ

Lγ(1+γLmax)

)
0 1

γLγ
NA

(NEW) FedExProx with
ε1 approximation exp

(
− Kµ

Lγ(1+γLmax)

)
ε1

(
1
γ
+Lmax

µ

)2
(a) 1

4γLγ

(b) NA (c)

(NEW) FedExProx with
ε2 relative approximation

by biased SGD
exp

(
− KµS(ε2)

Lγ(1+γLmax)

)
(d) 0 < 1

γLγ
< µ2

4L2
max

(NEW) FedExProx with
ε2 relative approximation

by biased compression
exp

(
−K(µ−4ε2Lmax)

Lγ(1+γLmax)

)
0 1

γLγ

(e) < µ
4Lmax

(a) Note that when ε1 = 0, i.e., when the proximal operators are evaluated exactly, the neighborhood dimin-
ishes, and we recover the result of FedExProx by Li et al. (2024a), up to a constant factor.

(b) The optimal extrapolation parameter here is 4 times smaller than the exact case, results in a slightly slower
convergence. Note that constant factors for convergence are ommited in the table.

(c) Unlike relative approximations, the convergence guarantee here is more general, allowing for the analysis
of unbounded inexactness. However, as the inexactness increases, the neighborhood grows correspond-
ingly, rendering the result practically useless.

(d) Refer to Theorem 2 for the definition of S (ε2) and the corresponding optimal extrapolation parameter.
The theory indicates that inexactness will adversely affect the algorithm’s convergence.

(e) Surprisingly, our sharper analysis reveals that the optimal extrapolation parameter in this case remains
the same as in the exact setting, highlighting the effectiveness of extrapolation even when the proximal
operators are evaluated inexactly.

Table 2: Comparison of local iteration complexities of each client in order to obtain an approxi-
mation using either GD or AGD (Nesterov, 2004). We use the i-th client as an example, where the
local objective fi : Rd 7→ R is Li-smooth and convex, i ∈ {1, 2, . . . , n}.

Algorithm ε1 absolute approximation ε2 relative approximation

Gradient descent O
(
(1 + γLi) log

(
∥xk−proxγfi

(xk)∥2

ε1

))
(a) O

(
(1 + γLi) log

(
1
ε2

))
Accelerate gradient descent O

(√
1 + γLi log

(
∥xk−proxγfi

(xk)∥2

ε1

))
O
(√

1 + γLi log
(

1
ε2

))
(a) We can easily provide an upper bound of

∥∥xk − proxγfi
(xk)

∥∥2 for determining the number of local
computations needed.

• Finally, we validate our theoretical findings through numerical experiments. Our numerical re-
sults suggest that the proposed technique of relative approximation effectively eliminates bias. In
some cases, the algorithm even outperforms FedProx with exact updates, further validating the
effectiveness of server extrapolation, even when proximal updates are inexact.
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1.2 RELATED WORK

Arguably, stochastic gradient descent (SGD) (Robbins & Monro, 1951; Ghadimi & Lan, 2013;
Gower et al., 2019; Gorbunov et al., 2020) remains one of the foundational algorithm in the field of
machine learning. One can simply formulate it as

xk+1 = xk − η · g(xk),

where η > 0 is a scalar step size, g(xk) is a possibly stochastic estimator of the true gradient
∇f(xk). In the case when g(xk) = ∇f(xk), SGD becomes GD. Various extensions of SGD
have been proposed since its introduction, examples include compressed gradient descent (CGD)
(Alistarh et al., 2017; Khirirat et al., 2018), SGD with momentum (Loizou & Richtárik, 2017; Liu
et al., 2020), SGD with matrix step size (Li et al., 2024b) and variance reduction (Gower et al., 2020;
Johnson & Zhang, 2013; Gorbunov et al., 2021; Tyurin & Richtárik, 2024; Li et al., 2023). Gower
et al. (2019) presented a framework for analyzing SGD with unbiased gradient estimator in the
convex case based on expected smoothness. However, in practice, sometimes the gradient estimator
could be biased, examples include SGD with sparsified or delayed update (Alistarh et al., 2018;
Recht et al., 2011). Beznosikov et al. (2023) examined biased updates in the context of compressed
gradient descent. Demidovich et al. (2024) provides a framework for analyzing SGD with biased
gradient estimators in the non-convex setting.

Proximal point method (PPM) was originally introduced as a method to solve variational inequal-
ities (Martinet, 1972; Rockafellar, 1976). The transition to the stochastic case, driven by the need
to efficiently address large-scale optimization problems, leads to the development of SPPM. Due
to its stability and advantage over the gradient based methods, it has been extensively studied, as
documented by (Patrascu & Necoara, 2018; Bianchi, 2016; Bertsekas, 2011). For proximal algo-
rithms to be practical, it is commonly assumed that the proximal operator can be solved efficiently,
such as in cases where a closed-form solution is available. However, in large-scale machine learn-
ing models, it is rarely possible to find such a solution in closed form. To address this issue, most
proximal algorithms assume that only an approximate solution is obtained, achieving a certain level
of accuracy (Khaled & Jin, 2022; Sadiev et al., 2022a; Karagulyan et al., 2024). Various notions of
inexactness are employed, depending on the assumptions made, the properties of the objective, and
the availability of algorithms capable of efficiently finding such approximations.

Moreau envelope was first introduced to handle non-smooth functions by Moreau (1965). It is also
known as the Moreau-Yosida regularization. The use of the Moreau envelope as an analytical tool
to analyze proximal algorithms is not novel. Ryu & Boyd (2014) noted that running a proximal
algorithm on the objective is equivalent to applying gradient methods to its Moreau envelope. Davis
& Drusvyatskiy (2019) analyzed stochastic proximal point method (SPPM) for weakly convex and
Lipschitz functions based on this finding. Recently, Li et al. (2024a) provided an analysis of FedProx
with server-side step size in the convex case, based on the reformulation of the problem using the
Moreau envelope. The role of the Moreau envelope extends beyond analyzing proximal algorithms;
it has also been applied in the contexts of personalized federated learning (T Dinh et al., 2020) and
meta-learning (Mishchenko et al., 2023). The mathematical properties of the Moreau envelope are
relatively well understood, as documented by Jourani et al. (2014); Planiden & Wang (2019; 2016).

Projection methods initially emerged as an effective tool for solving systems of linear equations or
inequalities (Kaczmarz, 1937) and were later generalized to solve the convex feasibility problem
(Combettes, 1997). The parallel version of this approach involves averaging the projections of the
current iterates onto all existing convex sets Xi to obtain the next iterate, a process that is empir-
ically known to be accelerated by extrapolation. Numerous heuristic rules have been proposed to
adaptively set the extrapolation parameter, such as those by Bauschke et al. (2006) and Pierra (1984).
Only recently, the mechanism behind constant extrapolation was uncovered by Necoara et al. (2019),
who developed the corresponding theoretical framework. Additionally, Li et al. (2024a) provides ex-
planations for the effectiveness of adaptive rules, revealing the connection between the extrapolation
parameter and the step size of SGD when using the Moreau envelope as the global objective.
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2 MATHEMATICAL BACKGROUND

In this work, we are interested in the distributed optimization problem which is formulated in the
following finite-sum form

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where x ∈ Rd is the model, n is the number of devices/clients, f : Rd 7→ R is global objective, each
fi : Rd 7→ R is the empirical risk of model x associated with the i-th client. Each fi (x) often has
the form

fi(x) := Eξ∼Di [l (x, ξ)] , (2)
where the loss function l (x, ξ) represents the loss of model x on data point ξ over the training data
Di owned by client i ∈ [n] := {1, 2, . . . , n}. We first give the definitions for the proximal operator
and Moreau envelope, which we will be using in our analysis.
Definition 1 (Proximal operator). The proximal operator of an extended real-valued function ϕ :
Rd 7→ R ∪ {+∞} with step size γ > 0 and center x ∈ Rd is defined as

proxγϕ (x) := arg min
z∈Rd

{
ϕ {z}+ 1

2γ
∥z − x∥2

}
.

It is well-known that for any proper, closed, and convex function ϕ, the proximal operator with any
γ > 0 returns a singleton.
Definition 2 (Moreau envelope). The Moreau envelope of an extended real-valued function ϕ :
Rd 7→ R ∪ {+∞} with step size γ > 0 and center x ∈ Rd is defined as

Mγ
ϕ (x) := min

z∈Rd

{
ϕ (z) +

1

2γ
∥z − x∥2

}
.

By the definition of Moreau envelope, it is easy to see that

Mγ
ϕ (x) = ϕ

(
proxγϕ (x)

)
+

1

2γ

∥∥x− proxγϕ (x)
∥∥2 . (3)

Not only are their function values related, but for any proper, closed, and convex function ϕ, the
Moreau envelope is differentiable, specifically, we have:

∇Mγ
ϕ (x) =

1

γ

(
x− proxγϕ (x)

)
. (4)

The above identity indicates that ϕ and Mγ
ϕ are intrinsically related. This relationship plays a key

role in our analysis. We also need the following assumptions on f and fi to carry out our analysis.
Assumption 1 (Differentiability). The function fi : Rd 7→ R in (1) is differentiable and bounded
from below for all i ∈ [n].
Assumption 2 (Interpolation regime). There exists x⋆ ∈ Rd such that ∇fi(x⋆) = 0 for all i ∈ [n].

The same as Li et al. (2024a), we assume that we are in the interpolation regime. This situation
arises in modern deep learning scenarios where the number of parameters, d, significantly exceeds
the number of data points. For justifications, we refer the readers to Arora et al. (2019); Montanari
& Zhong (2022). The motivation for this assumption stems from the parallel projection methods (5)
used to solve convex feasibility problems, where the intersection of all convex sets Xi is assumed to
be non-empty, which is precisely the interpolation assumption of each fi being the indicator function
of Xi.

xk+1 =
1

n

n∑
i=1

ΠXi
(xk) . (5)

It is known that for (5), the use of extrapolation would enhance its performance both in theory and
practice (Necoara et al., 2019). Since proxγfi (xk) can be viewed as projection to some level set
of fi, it is analogous to ΠXi

(xk). Therefore, it is reasonable to assume that extrapolation would be
effective under the same assumption.

5
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Algorithm 1 Inexact FedExProx
1: Parameters: extrapolation parameter αk = α > 0, step size for the proximal operator γ > 0,

starting point x0 ∈ Rd, number of clients n, total number of iterations K, proximal solution
accuracy ε ≥ 0.

2: for k = 0, 1, 2 . . .K − 1 do
3: The server broadcasts the current iterate xk to each client
4: Each client computes an ε approximation of the solution x̃i,k+1 ≃ proxγfi (xk), and sends it

back to the server
5: The server computes

xk+1 = xk + αk

(
1

n

n∑
i=1

x̃i,k+1 − xk

)
. (8)

6: end for

Assumption 3 (Individual convexity). The function fi : Rd 7→ R is convex for all i ∈ [n]. This
means that for each fi,

0 ≤ fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ , ∀x, y ∈ Rd. (6)

Assumption 4 (Smoothness). The function fi : Rd 7→ R is Li-smooth, Li > 0 for all i ∈ [n]. This
means that for each fi,

fi(x)− fi(y)− ⟨∇fi(y), x− y⟩ ≤ Li

2
∥x− y∥2 , ∀x, y ∈ Rd. (7)

We will use Lmax to denote maxi∈[n] Li.
Assumption 5 (Global strong convexity). The function f is µ-strongly convex, µ > 0. That is

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ

2
∥x− y∥2 , ∀x, y ∈ Rd.

These are all standard assumptions commonly used in convex optimization. We first present our
algorithm as Algorithm 1. In the following sections, we provide the analysis of this algorithm under
different definitions of inexactness, respectively in Section 3 and Section 4. Details on how these
inexactness levels can be achieved by each client are provided in Section 5. Finally, numerical
experiments validating our results are presented in Section 6.

3 ABSOLUTE APPROXIMATION IN DISTANCE

As previously suggested, we assume that each proximal operator is solved inexactly, and we need
to quantify this inexactness in some way. Notice that client i is required to solve the following
minimization problem.

min
z∈Rd

Aγ
k,i (z) := fi (z) +

1

2γ
∥z − xk∥2 , (9)

where xk is the current iterate and γ > 0 is a constant. Since we have assumed each function fi
is convex, Aγ

k,i (z) is 1
γ -strongly convex with proxγfi (xk) being its unique minimizer. One of the

most straightforward ways to measure inexactness in this case is through the squared distance to the
minimizer, leading to the following definition.
Definition 3 (Absolute approximation). Given a proper, closed and convex function ϕ : Rd 7→ R,
and a step size γ > 0, we say that a point y ∈ Rd is an ε1-approximation of proxγϕ (x), if for some
ε1 ≥ 0, ∥∥y − proxγϕ (x)

∥∥2 ≤ ε1. (10)

In order to analyze Algorithm 1, we first transform the update rule given in (8) in the following way,

xk+1 = xk + αk

(
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
+

1

n

n∑
i=1

proxγfi (xk)− xk

)
(4)
= xk − αk · g(xk), (11)

6
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where

g(xk) :=
1

n

n∑
i=1

γ∇Mγ
fi
(xk)︸ ︷︷ ︸

Gradient

− 1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
︸ ︷︷ ︸

Bias

. (12)

The above reformulation suggests that Algorithm 1 is in fact, SGD with respect to global objective
γMγ (x) := 1

n

∑n
i=1 γM

γ
fi
(x) with a biased gradient estimator. Compared to SGD with an unbi-

ased gradient estimator, its biased counterpart is less well understood. However, we are still able to
obtain the following convergence guarantee using theories for biased SGD from Demidovich et al.
(2024).

Theorem 1. Assume Assumption 1 (Differentiability), 2 (Interpolation Regime), 3 (Individual con-
vexity), 4 (Smoothness) and 5 (Global strong convexity) hold. If each client computes a ε1-absolute
approximation x̃i,k+1 of proxγfi (xk) at every iteration, such that

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2 ≤ ε1.

We have the following convergence guarantee for Algorithm 1: For extrapolation parameter αk = α
satisfying 0 < α ≤ 1

4 · 1
γLγ

, where γ is the step size of the proximal operator, Lγ is the smoothness
constant of Mγ . The last iterate xK satisfy

EK ≤
(
1− αγµ

8 (1 + γLmax)

)K

E0 +
4ε1 (1 + γLmax)

µ
·
(
2αLγ +

1

γ

)
,

where Ek = γMγ (xk)− γMγ
inf . Specifically, when choosing α = 1

4 · 1
γLγ

, we have

∆K ≤
(
1− µ

32Lγ (1 + γLmax)

)K
Lγ (1 + γLmax)

µ
·∆0 + 12ε1 ·

(
1/γ + Lmax

µ

)2

,

where ∆K = ∥xK − x⋆∥2, x⋆ is a minimizer of f .

For the sake of brevity in the following discussion, we will use the notation Ek = γMγ (xk)−γMγ
inf ,

where Mγ
inf denotes the infimum of Mγ , ∆k = ∥xk − x⋆∥2, where x⋆ is a minimizer of Mγ .

Notice that since we are in the interpolation regime, according to Fact 7, the minimizer of Mγ is
also a minimizer of f . Note that instead of converging to the exact minimizer x⋆, the algorithm
converges to a neighborhood whose size depends on both ε1 and γ; the smaller γ is, the larger the
neighborhood becomes. This can be understood intuitively: A smaller γ means less progress is
made per iteration, leading to a larger accumulated error as the total number of iterations increases.
The parameter ε1 can be arbitrarily large, and the convergence guarantee still holds, indicating that
the theory presented is quite general. However, as ε1 increases, the size of the neighborhood grows
proportionally, which limits the practical significance of the result. When ε1 = 0, the neighborhood
diminishes, and we obtain an iteration complexity of Õ

(
Lγ(1+γLmax)

µ

)
3, which recovers the result

of Li et al. (2024a) up to a constant factor. The optimal constant extrapolation parameter is now
given by α⋆ = 1

4 · 1
γLγ

which is 4 times smaller than that of Li et al. (2024a).

4 RELATIVE APPROXIMATION IN DISTANCE

Theorem 1 offers a general theoretical framework for understanding the behavior of Algorithm 1.
However, a key challenge with Algorithm 1 which utilizes inexact proximal solutions that satisfy
Definition 3, is that, unless the proximal operators are solved exactly, convergence will always be
limited to a neighborhood of the solution. The underlying reason is that, as the algorithm pro-
gresses, the gradient term in the gradient estimator g(xk) diminishes, whereas the bias term remains
unchanged. Building on this observation, we propose employing a different type of approximation,
specifically an approximation in relative distance, as defined below.

Definition 4 (Relative approximation). Given a convex function ϕ : Rd 7→ R and a stepsize γ > 0,
we say that a point y ∈ Rd is a ε2-relative approximation of proxγϕ (x), if for some ε2 ∈ [0, 1),∥∥y − proxγϕ (x)

∥∥2 ≤ ε2 ·
∥∥x− proxγϕ (x)

∥∥2 . (13)
3We leave out the log factor in Õ (·) notation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The same concept of approximations have been extensively studied and widely applied in prior re-
search, as exemplified by Solodov & Svaiter (1999). We impose the requirement that the coefficient
ε2 be less than 1 to ensure that the next iterate is no worse than the current one. As we can observe,
if the approximation of the solution for each proximal operator satisfies Definition 4, both the gradi-
ent term and the bias term diminish as the algorithm progresses, ensuring convergence to the exact
solution. Using the theory of biased SGD, we can obtain the following theorem.
Theorem 2. Assume all the assumptions mentioned in Theorem 1 also hold here. If each client
only computes a ε2-relative approximation x̃i,k+1 in distance with ε2 < µ2

/4L2
max, such that∥∥x̃i,k+1 − proxγfi (xk)

∥∥2 ≤ ε2 ·
∥∥xk − proxγfi (xk)

∥∥2. If we are running Algorithm 1 with αk = α
satisfying

0 < α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4
√
ε2Lmax + 4ε2Lmax

.

Then the iterates generated by Algorithm 1 satisfies

EK ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0.

Specifically, if we choose the largest α possible, we have

∆K ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2)

)K

· Lγ (1 + γLmax)

µ
∆0,

where S(ε2) :=
(µ−2

√
ε2Lmax)(1−2

√
ε2

Lmax
µ )

µ+4
√
ε2Lmax+4ε2Lmax

satisfies 0 < S(ε2) ≤ 1 is the factor of slowing down
due to inexact proximal operator evaluation.

Observe that when ε2 = 0, meaning the proximal operators are solved exactly, the optimal extrapo-
lation is α = 1

γLγ
and the iteration complexity is Õ

(
Lγ(1+γLmax)

µ

)
. This recovers the exact result

from Li et al. (2024a). In the case of an inexact solution, as ε2 increases, both α and S(ε2) de-
crease, leading to a slower rate of convergence. Note that arbitrary rough approximations are not
permissible in this case, as ε2 must satisfy ε2 = c · µ2

4L2
max

, where c < 1.

It is worthwhile noting that Definition 4 is connected to the concept of compression. Indeed, in our
case we have xk − proxγfi (xk) = γ∇Mγ

fi
(xk), while x̃i,k+1 − proxγfi (xk) can be interpreted

as the gradient after compression, that is, C(γ∇Mγ
fi
(xk)). This indicates that Algorithm 1 with ap-

proximation satisfying Definition 4 can be viewed as compressed gradient descent with biased com-
pressor. We obtain the following convergence guarantee based on theory provided by Beznosikov
et al. (2023).
Theorem 3. Assume all assumptions of Theorem 1 hold. Let the approximation x̃i,k+1 all satisfies
Definition 4 with ε2 < µ/4Lmax, that is

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2 ≤ ε2 ·

∥∥xk − proxγfi (xk)
∥∥2. If

we are running Algorithm 1 with αk = α ∈ (0, 1
γLγ

], we have the iterates produced by it satisfying

EK ≤
(
1−

(
1− 4ε2Lmax

µ

)
· γµ

4 (1 + γLmax)
· α
)K

E0.

specifically, if we take the largest extrapolation (α = 1
γLγ

> 1) possible, we have

∆K ≤
(
1−

(
1− 4ε2Lmax

µ

)
· µ

4Lγ (1 + γLmax)

)K

· Lγ (1 + γLmax)

µ
∆0.

The convergence guarantee obtained in this way is sharper, indeed, Theorem 3 suggests that as long
as ε2 < µ/4L, we are able to pick α = 1/γLγ

4which is the optimal extrapolation for exact proxi-
mal computation given in Li et al. (2024a). Notably, this implies that extrapolation is an effective
technique for accelerating the algorithm in this setting, regardless of inexact proximal operator eval-
uations. Same as Theorem 2, the convergence is slowed down by the approximation, and in the case
of ε2 = 0, we recover the result in Li et al. (2024a)

4It is shown in Li et al. (2024a) that 1/γLγ > 1, which justifies why α is called the extrapolation parameter.
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Figure 1: Comparison of FedProx, FedExProx with exact proximal evaluations, FedExProx with
ε1-absolute approximations for inexact proximal evaluations and FedExProx with ε2-relative ap-
proximations for inexact proximal evaluations. Figure (a) presents a comparison of the four algo-
rithms discussed above. Figure (b) illustrates the impact of different values of ε1 on FedExProx with
absolute approximation. Figure (c) demonstrates how varying values of ε2 affect FedExProx with
relative approximation.

5 ACHIEVING THE LEVEL OF INEXACTNESS

To fully comprehend the overall complexity of Algorithm 1, it is essential to examine whether the in-
exactness in evaluating the proximal operators can be effectively achieved. Since each proxγfi (xk)
is computed locally by the corresponding client, the client has access to all the necessary data points
for the computation. Thus, the most straightforward approach is to have each client perform GD.
Based on existing theories for GD, we obtain the following theorem on the local complexities.

Theorem 4 (Local computation via GD). Assume Assumption 1 (Differentiability), Assumption 3
(Individual convexity) and Assumption 4 (Smoothness) hold. The iteration complexity for the i-th
client to provide an approximation using GD in the k-th iteration with local step size ηi =

γ
1+γLi

,

satisfying Definition 3 is O
(
(1 + γLi) log

(
∥xk−proxγfi

(xk)∥2

/ε1
))

, and for Definition 4, it is

O ((1 + γLi) log (1/ε2)) .

Note that there are no constraints on ε1, and since
∥∥xk − proxγfi (xk)

∥∥2 ≤ ∥γ∇f(xk)∥2 by (44),
it is straightforward to adjust GD to optimize the approximation. However, for ε2, we require
ε2 < µ

4Lmax
. In practice, ε2 can be set to a sufficiently small value to satisfy this condition, though

this will increase the number of local iterations performed by each client. The complexity bounds
also indicate that as the local step size γ increases, it becomes more challenging to compute the
approximation. Alternatively, other algorithms can be employed to find such an approximation. For
instance, by leveraging the structure in (2), SGD can be used as a local solver for the proximal
operator when computational resources are limited. We can use the accelerated gradient descent
(AGD) of Nesterov (2004) to obtain a better iteration complexity for each client.
Theorem 5 (Local computation via AGD). Assume all assumptions mentioned in Theorem 4 hold.
The iteration complexities for the i-th client to provide an approximation in the k-the iteration us-
ing AGD with local step size ηi = γ

1+γLi
and momentum parameter αi =

√
1+γLi−1√
1+γLi+1

, satisfying
Definition 3, Definition 4 are

O

(√
1 + γLi log

(
(1 + γLi) ·

∥∥xk − proxγfi
(xk)

∥∥2
ε1

))
; O

(√
1 + γLi log

(
1 + γLi

ε2

))
,

respectively.

6 EXPERIMENTS

Finally, we provide numerical evidence to support our theoretical findings. We refer the readers to
Appendix H for the details of the settings and the corresponding experiments.
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See Figure 1 for an overview of several experiments we conducted. In Figure 1 (a), we compare the
performance of FedProx, FedExProx with exact proximal evaluations, FedExProx with ε1-absolute
approximations for inexact proximal evaluations, and FedExProx with ε2-relative approximations
for inexact proximal evaluations. Interestingly, FedExProx with relative approximations delivers
strong performance when ε2 is appropriately selected, and in some cases, it even outperforms
FedProx with exact updates. This demonstrates the effectiveness of server extrapolation despite
inexact proximal evaluations. As predicted by Theorem 1, FedExProx converges only to a neigh-
borhood of the solution. As we Will see in Appendix H, the size of this neighborhood increases as
the local step size γ decreases, due to the accumulation of error.

In Figure 1 (b), we present a comparison of FedExProx with absolute approximations under different
levels of inexactness ε1. In all cases, the algorithm converges to a neighborhood of the solution, with
larger inexactness resulting in a larger neighborhood.

In Figure 1 (c), we compare FedExProx with relative approximations under varying levels of inex-
actness ε2. In all cases, the algorithm converges to the exact solution, validating the effectiveness of
relative approximation in eliminating bias. As predicted by Theorem 3, larger values of ε2 slow the
algorithm’s convergence.

7 CONCLUSIONS

7.1 LIMITATIONS

Despite achieving satisfactory results in the full-batch setting, the client sampling setting did not
yield similar outcomes. This may be attributed to the nature of biased compression, which likely
requires adjustments to the algorithm itself for resolution. Nonetheless, we provide the analysis in
Appendix F for reference. Unlike Li et al. (2024a), the presence of bias makes it unclear how to
incorporate adaptive step-size rules such as gradient diversity in our case. The only permissible
inexactness for gradient diversity arises from client sub-sampling in the interpolation regime.

7.2 FUTURE WORK

There are still open problems to be addressed. For example, can Algorithm 1 be modified to incor-
porate the benefits of error feedback? Is it possible to eliminate the interpolation regime assumption
while still demonstrating that extrapolation is theoretically beneficial for FedExProx? Another di-
rection that may be of independent interest is to develop adaptive rules of determining the step size
for SGD with biased update.
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Hanmin Li, Kirill Acharya, and Peter Richtárik. The power of extrapolation in federated learning.
arXiv preprint arXiv:2405.13766, 2024a.

Hanmin Li, Avetik Karagulyan, and Peter Richtárik. Det-CGD: Compressed gradient descent with
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A NOTATIONS

Throughout the paper, we use the notation ∥·∥ to denote the standard Euclidean norm defined on
Rd and ⟨·, ·⟩ to denote the standard Euclidean inner product. Given a differentiable function f :
Rd 7→ R, its gradient is denoted as ∇f(x). We use the notation Df (x, y) to denote the Bregman
divergence associated with a function f : Rd 7→ R between x and y. The notation inf f is used
to denote the minimum of a function f : Rd 7→ R. We use proxγϕ (x) to denote the proximity
operator of function ϕ : Rd 7→ R with γ > 0 at x ∈ Rd, and Mγ

ϕ (x) to denote the corresponding
Moreau Envelope. We denote the average of the Moreau envelope of each local objective fi by the
notation Mγ : Rd 7→ R. Specifically, we define Mγ (x) = 1

n

∑n
i=1 M

γ
f (x). Note that Mγ (x) has

an implicit dependence on γ, its smoothness constant is denoted by Lγ . We say an extended real-
valued function f : Rd 7→ R∪{+∞} is proper if there exists x ∈ Rd such that f(x) < +∞. We say
an extended real-valued function f : Rd 7→ R∪{+∞} is closed if its epigraph is a closed set. We use
the notation Ek = γMγ (xk)−γMγ

inf to denote the function value suboptimality of γMγ at xk, and
∆k = ∥xk − x⋆∥2 to denote the squared distance. The notation O (·) is used to describe complexity
while omitting constant factors, whereas Õ (·) is used when logarithmic factors are also omitted.
For approximation y ∈ Rd of proxγf (x), we use ε1 as the accuracy of absolute approximation such

that
∥∥y − proxγf (x)

∥∥2 ≤ ε1, and we use ε2 as the accuracy of relative approximation such that∥∥y − proxγf (x)
∥∥2 ≤ ε2 ·

∥∥x− proxγf (x)
∥∥2.

B FACTS AND LEMMAS

Fact 1 (Young’s inequality). For any two vectors x, y ∈ Rd, the following inequality holds,

∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 . (14)

Fact 2 (Property of convex smooth functions). Let ϕ : Rd 7→ R be differentiable. The following
statements are equivalent:

1. ϕ is convex and L-smooth.

2. 0 ≤ 2Dϕ (x, y) ≤ L ∥x− y∥2 for all x, y ∈ Rd.

3. 1
L ∥∇ϕ(x)−∇ϕ(y)∥2 ≤ 2Dϕ (x, y) for all x, y ∈ Rd.

The notation Dϕ (x, y) denotes the Bregman divergence associate with ϕ at x, y ∈ Rd, defined as

Dϕ (x, y) = ϕ (x)− ϕ (y)− ⟨∇ϕ(y), x− y⟩ .

The following two facts establish that the convexity and smoothness of a function ϕ : Rd 7→ R
ensure the convexity and smoothness of its Moreau envelope.
Fact 3 (Convexity of Moreau envelope). (Beck, 2017, Theorem 6.55) Let ϕ : Rd 7→ R ∪ {+∞} be
a proper and convex function. Then Mγ

ϕ is a convex function.

Fact 4 (Smoothness of Moreau envelope). (Li et al., 2024a, Lemma 4) Let ϕ : Rd 7→ R be a convex
and L-smooth function. Then Mγ

ϕ is L
1+γL -smooth.

The following fact illustrates the relationship between the minimizer of a function ϕ and its Moreau
envelope Mγ

ϕ .
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Fact 5 (Minimizer equivalence). (Li et al., 2024a, Lemma 5) Let ϕ : Rd 7→ R∪ {+∞} be a proper,
closed and convex function. Then for any γ > 0, ϕ and Mγ

ϕ has the same set of minimizers.

In our case, we assume each fi from (1) is convex and Li-smooth. Therefore by Fact 3 and Fact 4,
we know that each Mγ

fi
is also convex and Li

1+γLi
-smooth. This means that Mγ = 1

n

∑n
i=1 M

γ
fi

is
also convex and smooth. We denote its smoothness constant as Lγ , and the following fact provides
a range for this constant.
Fact 6 (Global convexity and smoothness). (Li et al., 2024a, Lemma 7) Let each fi be proper, closed
convex and Li-smooth. Then Mγ is convex and Lγ-smooth with

1

n2

n∑
i=1

Li

1 + γLi
≤ Lγ ≤ 1

n

n∑
i=1

Li

1 + γLi
.

The following fact establishes that the minimizer of f and Mγ are the same.
Fact 7 (Global minimizer equivalence). (Li et al., 2024a, Lemma 8) If we let every fi : Rd 7→
R∪{+∞} be proper, closed and convex, then f(x) = 1

n

∑n
i=1 fi(x) has the same set of minimizers

and minimum as

Mγ (x) =
1

n

n∑
i=1

Mγ
fi
(x) ,

if we are in the interpolation regime and 0 < γ < ∞.

The above fact demonstrates that running SGD on the objective Mγ will lead us to the correct
destination, as the minimizers of Mγ and f are identical in our setting. In problem (1), if we assume
that f is strongly convex, then we have Mγ satisfies the following star strong convexity inequality.
Fact 8 (Star strong convexity). (Li et al., 2024a, Lemma 11) Assume Assumption 1 (Differentia-
bility), Assumption 2 (Interpolation Regime), Assumption 3 (Individual convexity), Assumption 4
(Smoothness) and Assumption 5 (Global strong convexity) hold, then the convex function Mγ (x)
satisfies the following inequality,

Mγ (x)−Mγ
inf ≥

µ

1 + γLmax
· 1
2
∥x− x⋆∥2 ,

for any x ∈ Rd and a minimizer x⋆ of Mγ (x).

The above fact implies that the strong convexity of f translates to the star strong convexity of Mγ .
Star strong convexity is also known as quadratic growth (QG) condition (Anitescu, 2000). In the case
of a convex function, it is also known as optimal strong convexity (Liu & Wright, 2015) and semi-
strong convexity (Gong & Ye, 2014). It is known that for a convex function satisfying quadratic
growth condition, it also satisfies the Polyak-Lojasiewicz inequality (Polyak, 1964) which is de-
scribed by the following lemma. Notice that since Algorithm 1 can be viewed as running SGD
with objective γMγ and a fixed step size αk = α, we describe the inequality based on γMγ in the
following lemma.
Lemma 1 (PL-inequality). Let Assumption 1 (Differentiability), Assumption 2 (Interpolation
Regime), Assumption 3 (Individual convexity), Assumption 4 (Smoothness) and Assumption 5
(Global strong convexity) hold, then γMγ (x) satisfies the following Polyak-Lojasiewicz inequal-
ity,

∥γ∇Mγ (x)∥2 ≥ 2 · γµ

4 (1 + γLmax)
(γMγ (x)− γMγ

inf) , (15)

where x ∈ Rd is an arbitrary vector and x⋆ is a minimizer of Mγ (x).

C THEORY OF BIASED SGD

For completeness, we provide the theory of biased SGD we used to analyze our algorithm in this
paper. It is adapted from Demidovich et al. (2024), which offers a comprehensive study of various
assumptions employed in the analysis of SGD with biased gradient updates. In addition, the authors
introduced a new set of assumptions, referred to as the Biased ABC assumption, which are less
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restrictive than all previous assumptions. The authors provided convergence guarantees for SGD
with biased gradient updates in the non-convex and convex setting. Specifically, they considered the
case of minimizing a function f : Rd 7→ R,

min
x∈Rd

f(x),

with
xk+1 = xk − ηg(xk), (biased SGD)

where η > 0 is the stepsize, g(xk) is a possibly stochastic and biased gradient estimator. They
introduced the biased ABC assumption,
Assumption 6 (Biased-ABC). (Demidovich et al., 2024, Assumption 9) There exists constants
A,B,C, b, c ≥ 0 such that the gradient estimator g(x) for every x ∈ Rd satisfies

⟨∇f(x),E [g(x)]⟩ ≥ b ∥∇f(x)∥2 − c

E
[
∥g(x)∥2

]
≤ 2A (f(x)− finf) +B ∥∇f(x)∥2 + C.

A convergence guarantee was provided for biased SGD under Assumption 6 given that f is L̂-
smooth and µ̂-PL, that is, there exists µ̂ > 0, such that

∥∇f(x)∥2 ≥ 2µ̂ (f(x)− finf) ,

for all x ∈ Rd.
Theorem 6 (Theory of biased SGD). (Demidovich et al., 2024, Theorem 4) Let f be L̂-smooth and
µ̂-PL and Assumption 6 hold. If we choose a step size η satisfying

0 < η < min

{
µ̂b

L̂ (A+ µ̂B)
,
1

µ̂b

}
. (16)

Then we have

E [f(xk)− finf ] ≤ (1− ηµ̂b)
k
(f(x0)− finf) +

LCη

2µ̂b
+

c

µ̂b
.

Under the special case of
µ̂b

L̂ (A+ µ̂B)
<

1

µ̂b
,

The range of the step size can be simplified to

0 < η ≤ µ̂b

L̂ (A+ µ̂B)
,

and if we take the largest possible step size, we have

E [f(xk)− finf ] ≤

(
1− µ̂2b2

L̂ (A+ µ̂B)

)k

(f(x0)− finf) +
LC

2L̂ (A+ µ̂B)
+

c

µ̂b
.

The constants C, c determine whether the algorithm is converging to the exact solution or just a
neighborhood. For g(x) = ∇f(x), clearly we have A = 0, B = 1, b = 1, C = 0, c = 0, and there
is no neighborhood. This is expected because the algorithm reduces to standard GD The iteration
complexity is give by Õ

(
L̂
µ̂

)
, which is also expected for GD.

D THEORY OF BIASED COMPRESSION

In this section, we present the theory of SGD with biased compression. The theory is adapted from
Beznosikov et al. (2023). The authors introduced theory for analyzing compressed gradient descent
(CGD) with biased compressor, both in the single node case and in the distributed case when the
objective function is assumed to be strongly convex. Here, we are only concerned with the single

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

node case because distributed compressed gradient descent (DCGD) with biased compressor may
fail to converge. To address this issue, error feedback mechanism (Seide et al., 2014; Karimireddy
et al., 2019; Richtárik et al., 2021) is needed. In the single node case, the authors considered solving

min
x∈Rd

f(x),

where f : Rd 7→ R is L̂-smooth and µ̂-strongly convex, with the following compressed gradient
descent algorithm

xk+1 = xk − ηC (∇f(xk)) , (CGD)

where C : Rd 7→ R are potentially biased compression operators, η > 0 is a step size. The author
proved that if certain conditions on C is satisfied, a corresponding convergence guarantee can then
be established. Three classes of compressor/mapping were introduced.

Definition 5 (Class B1). We say a mapping C ∈ B1 (α, β) for some α, β > 0 if

α ∥x∥2 ≤ E
[
∥C (x)∥2

]
≤ β ⟨E [C (x)] , x⟩ , ∀x ∈ Rd.

Definition 6 (Class B2). We say a mapping C ∈ B2 (ξ, β) for some ξ, β > 0 if

max

{
ξ ∥x∥2 , 1

β
E
[
∥C (x)∥2

]}
≤ ⟨E [C (x)] , x⟩ , ∀x ∈ Rd.

Definition 7 (Class B3). We say a mapping C ∈ B3 (δ) for some δ > 0, if

E
[
∥C (x)− x∥2

]
≤
(
1− 1

δ

)
∥x∥2 .

The authors proved the following theorem about the convergence of the algorithm, the notation Fk

is used to denote E [f(xk)]− finf , with F0 = f(x0)− finf ,

Theorem 7. Let C ∈ B1 (α, β). Then we have Fk ≤
(
1− α/βηµ̂

(
2− ηβL̂

))
Fk−1, as long as

0 ≤ η ≤ 2

βL̂
. If we choose η = 1

βL̂
, we have

Fk ≤
(
1− α

β2
· µ̂
L̂

)K

F0. (17)

Let C ∈ B2 (ξ, β). Then we have Fk ≤
(
1− ξη (2− ηβ) L̂

)
Fk−1, as long as 0 ≤ η ≤ 2

βL̂
. If we

choose η = 1

βL̂
, we have

Fk ≤
(
1− ξ

β
· µ̂
L̂

)k

F0. (18)

Let C ∈ B3 (δ). Then we have Fk ≤
(
1− 1

δ ηµ̂
)
Fk−1, as long as 0 ≤ η ≤ 1

L̂
. If we choose η = 1

L̂
,

we have

Fk ≤
(
1− 1

δ
· µ̂
L̂

)k

F0. (19)

Notice that when C (x) = x, that is, when no compression happens, we have α = β = ξ = δ = 1.
In this case, the iteration complexity of CGD is given by Õ

(
L̂
µ̂

)
and we recover the result of GD.

It is worth noting that Theorem 7 remains valid if the condition of f being µ̂-strongly convex is
replaced with f being µ̂-PL.

E DISCUSSION OF USED ASSUMPTIONS

In this section, we provide a discussion of the assumptions used in the paper.
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Convexity: The motivation behind FedExProx stems from the parallel projection method Com-
bettes (1997) of solving the convex feasibility problem. Initially, it was observed that extrapolation
can accelerate the parallel projection method (in this convex interpolation setting). Given the simi-
larity between projection operators and proximal operators (the latter can be viewed as a projection
to a level set of the function), the FedExProx algorithm was developed. In this context, extrapolation
is considered in conjunction with convexity; whether it remains beneficial in non-convex settings is
still unclear. This rationale led us to focus on the convex case first.

Smoothness: The smoothness assumption Assumption 4 is pretty common in convex optimiza-
tion, and we adopt it here for simplicity of discussion and presentation. In fact, even if we do not
assume each local objective function fi to be Li-smooth, the corresponding Moreau envelope Mγ

fi

is still 1
γ -smooth as illustrated in Li et al. (2024a). Consequently, the inexact FedExProx still yields

a form of SGD with a biased gradient estimator on the convex smooth objective Mγ . This allows
us to leverage the relevant theoretical framework to analyze the convergence result in this scenario.
Although some technical nuances arise, they do not impact the validity of our conclusion.

Interpolation regime: Notice that, FedProx itself does not require the interpolation regime as-
sumption. However, like FedExProx and its inexact variant, it converges to a neighborhood of the
solution rather than the exact solution. The interpolation assumption was initially introduced based
on the motivation behind FedExProx. It is known that the parallel projection method for solving
convex feasibility problems is accelerated by extrapolation. Given the similarity between projection
operators to convex sets and proximal operators of convex functions (which are, in fact, projections
onto certain level sets of the function), FedExProx was proposed. The interpolation assumption
here corresponds to the assumption that the intersection of these convex sets is non-empty in the
convex feasibility problem. Although this assumption may seem somewhat arbitrary in the context
of FedProx, it feels more intuitive when considering FedExProx through the lens of the parallel pro-
jection method. In the absence of the interpolation regime assumption, the algorithm will converge
to a neighborhood of the true minimizer, x⋆, of f . This occurs because f and Mγ are guaranteed to
share the same minimizer only under the interpolation regime assumption, as established in Fact 7.
Since inexact FedExProx can be formulated as SGD with a biased gradient estimator on the objec-
tive Mγ = 1

n

∑n
i=1 M

γ
fi

, it converges to the minimizer x′
⋆, provided that inexactness is properly

bounded. As a result, the algorithm converges to x′
⋆, located within a ∥x⋆ − x′

⋆∥-neighborhood of
x⋆. Notably, the effects of inexactness and interpolation are, in some sense, “orthogonal”, meaning
they do not interfere with each other.

Global strong convexity: Notice that we do not assume each function fi is strongly convex, but
rather, the global objective f is strongly convex. This is for the simplicity of presentation and
discussion. One may consider extend the algorithm into the general convex case. To establish a
convergence guarantee, one may notice that in the general convex case, FedExProx still results in
biased SGD on the Moreau envelope objective Mγ in the general convex and smooth case. The
specific approximation used in the algorithm allows for the application of various existing tools for
biased SGD. Biased SGD has been extensively studied in recent years; for example, Demidovich
et al. (2024) provides a comprehensive overview of its analysis across different settings. Depending
on the assumptions, one can adopt different theoretical frameworks to analyze FedExProx, as it is
effectively equivalent to biased SGD applied to the envelope objective. For more details on those
assumptions, we refer the readers to Demidovich et al. (2024). In our work, we demonstrate that the
theory of biased compression provides a tighter convergence guarantee for relative approximation.
However, existing theories for biased compression are limited to the strongly convex case, and ex-
tending them to the stochastic setting offers no advantages due to the bias introduced. To generalize
this approach to a broader context, incorporating error feedback alongside biased compression is a
promising direction. This, however, necessitates modifications to the original algorithm, which we
leave as a future work.
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F ANALYSIS OF INEXACT FEDEXPROX IN THE CLIENT SAMPLING SETTING

In this section, we will discuss the case where we do client sampling in algorithm 1, we first for-
mulate the algorithm as below. For the sake of simplicity, we use τ -nice sampling as an example.

Algorithm 2 Inexact FedExProx with τ -nice sampling
1: Parameters: extrapolation parameter αk = α > 0, step size for the proximal operator γ > 0,

starting point x0 ∈ Rd, number of clients n, size of minibatch τ , total number of iterations K,
proximal solution accuracy ε2 ≥ 0.

2: for k = 0, 1, 2 . . .K − 1 do
3: The server broadcasts the current iterate xk to a selected set of client Sk of size τ
4: Each selected client computes a ε approximation of the solution x̃i,k+1 ≃ proxγfi (xk), and

sends it back to the server
5: The server computes

xk+1 = xk + αk

(
1

τ

∑
i∈Sk

x̃i,k+1 − xk

)
. (20)

6: end for

F.1 RELATIVE APPROXIMATION IN DISTANCE

The failure of biased compression theory: Similar to Theorem 7, we initially apply the theory
from Beznosikov et al. (2023), as it provides improved results in the full-batch scenario. We first
define the compressing mapping Cτ in this case,

Cτ (γ∇Mγ (xk)) =
1

τ

∑
i∈Sk

(
γ∇Mγ

fi
(xk)−

(
x̃i,k+1 − proxγfi (xk)

))
. (21)

One can verify for every xk and ε2-approximation x̃i,k+1 of proxγfi (xk), we have

Cτ ∈ B3

(
δ =

µ

µ− 4ε2Lmax − n−τ
τ(n−1) [4 (2 + ε2)Lmax − 2µ]

)
In the case of τ = n, we have Cn ∈ B3

(
µ

µ−4ε2Lmax

)
, which recovers the result of (42). When

τ = 1, ε2 = 0, however, this is problematic, as C1 ∈ B3
(
δ = µ

3µ−8Lmax

)
. Notice that we require

δ > 0, so we require 3µ > 8Lmax which only holds in a very restrictive setting. This is due to the
stochasticity contained in (21), which arises from client sampling.

Theory of biased SGD: The algorithm does converge, however, and one can use the theory of
Demidovich et al. (2024) to obtain a convergence guarantee.
Theorem 8. Assume Assumption 1 (Differentiability), Assumption 2 (Interpolation regime), As-
sumption 3 (Individual convexity), Assumption 4 (Smoothness) and Assumption 5 (Global strong
convexity) hold. Let the approximation x̃i,k+1 all satisfies Definition 4 with ε2 < µ2

4L2
max

, that is∥∥x̃i,k+1 − proxγfi (xk)
∥∥2 ≤ ε2 ·

∥∥xk − proxγfi (xk)
∥∥2 ,

holds for all client i at iteration k. If we are running Algorithm 2 with minibatch size τ and extrap-
olation parameter αk = α > 0 satisfying

α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4ε2Lmax + 4
√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

)
Then the iterates generated by Algorithm 2 satisfies

E [EK ] ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0. (22)
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Specifically, if we choose the largest α possible, we have

E [∆K ] ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2, τ)

)K

· Lγ (1 + γLmax)

µ
∆0,

where S (ε2, τ) is defined as

S (ε2, τ) :=

(
µ− 2

√
ε2Lmax

) (
1− 2

√
ε2

Lmax

µ

)
µ+ 4ε2Lmax + 4

√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

) ,
satisfying

0 < S (ε2, τ) ≤ 1.

Notice that we have S (ε2, τ = n) = S (ε2), which appears in Theorem 2. For the special case when
ε2 = 0, every proximal operator is solved exactly. The range of α becomes,

0 < α ≤ 1

γLγ
· µ

n−τ
τ(n−1) · 4Lmax +

n(τ−1)
τ(n−1)µ

.

According to Li et al. (2024a),

0 < α ≤ 1

γLγ
· Lγ (1 + γLmax)

n−τ
τ(n−1)Lmax +

n(τ−1)
τ(n−1) · Lγ (1 + γLmax)

.

Clearly the bound we obtain here is suboptimal, since we have µ ≤ Lγ (1 + γLmax) according to
(27). This is due to the previously mentioned issue: the nature of biased compression. When client
sampling is used together with biased compressors, it does not necessarily guarantee any benefits.
To solve this, the modification of the algorithm itself may be needed, which we consider as a future
work direction.

F.2 ABSOLUTE APPROXIMATION IN DISTANCE

Similarly to Theorem 8, by applying the theory of biased SGD (Demidovich et al., 2024), we can
derive a convergence guarantee for the minibatch case, though with a suboptimal convergence rate.
For brevity and clarity, we do not include the details here.

G PROOF OF THEOREMS AND LEMMAS

G.1 PROOF OF LEMMA 1

Using Fact 8, we have

Mγ (x)−Mγ
inf ≥

µ

1 + γLmax
· 1
2
∥x− x⋆∥2 , (23)

where x ∈ Rd is any vector, x⋆ is a minimizer of Mγ , by Fact 5, it is also a minimizer of f . Since
we assume each function fi is convex, by Fact 3, we know that Mγ

fi
is also convex. As a result, the

average of Mγ
fi

, Mγ is also a convex function. Utilizing the convexity of Mγ , we have,

Mγ
inf ≥ Mγ (x) + ⟨∇Mγ (x) , x⋆ − x⟩ .

Rearranging terms we get,

⟨∇Mγ (x) , x− x⋆⟩ ≥ Mγ (x)−Mγ
inf . (24)

As a result, we have

⟨∇Mγ (x) , x− x⋆⟩
(23)+(24)

≥ µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .
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Using Cauchy-Schwarz inequality, we have

∥∇Mγ (x)∥ ∥x− x⋆∥ ≥ ⟨∇Mγ (x) , x− x⋆⟩ ≥
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 .

When ∥x− x⋆∥ > 0, the above inequality leads to

∥∇Mγ (x)∥ ≥ µ

2 (1 + γLmax)
· ∥x− x⋆∥ , (25)

which also holds when ∥x− x⋆∥ = 0. Now using (24) and (25), we obtain

Mγ (x)−Mγ
inf

(24)

≤ ⟨∇Mγ (x) , x− x⋆⟩
≤ ∥∇Mγ (x)∥ ∥x− x⋆∥
(25)

≤ 2 (1 + γLmax)

µ
∥∇Mγ (x)∥2 .

A simple rearranging of terms result in

∥γ∇Mγ (x)∥2 ≥ 2 · γµ

4 (1 + γLmax)
(γMγ (x)− γMγ

inf) .

Up till here we have already proved the statement in the lemma, but we want to look at the strongly
constant µ of f a little bit. In order to provide an upper bound of µ, we notice that due to Fact 4, each
Mγ

fi
is Li

1+γLi
-smooth and therefore Mγ is smooth. We use the notation Lγ to denote its smoothness

constant. Applying the smoothness of Mγ (x), we have

Mγ (x) ≤ Mγ (x⋆) + ⟨∇Mγ (x⋆) , x− x⋆⟩+
Lγ

2
∥x− x⋆∥2 .

Utilizing the fact that ∇Mγ (x⋆) = 0, we have

Mγ (x)−Mγ
inf ≤

Lγ

2
∥x− x⋆∥2 (26)

Combining (26) and (23), we can deduce that
µ

1 + γLmax
· 1
2
∥x− x⋆∥2 ≤ Mγ (x)−Mγ

inf ≤
Lγ

2
∥x− x⋆∥2 .

which results in the estimate that
µ ≤ Lγ (1 + γLmax) . (27)

G.2 PROOF OF THEOREM 1

Let us first recall that after reformulation, Algorithm 1 can be written as

xk+1 = xk − α · g(xk),

where g(xk) is defined as

g(xk) :=
1

n

n∑
i=1

γ∇Mγ
fi
(xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
.

We view this as running full batch biased SGD with stepsize α and global objective γMγ (x). We
first examine if Assumption 6 (Biased-ABC) holds for arbitrary xk. Since we are in the full batch
case, it is easy to see that

E [g(xk)] = g(xk).

Since our objective now is γMγ (x), we have that

⟨γ∇Mγ (xk) , g(xk)⟩ =

〈
γ∇Mγ (xk) , γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉

= ∥γ∇Mγ (xk)∥2 −

〈
γ∇Mγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
︸ ︷︷ ︸

:=P1

.
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Now let us focus on P1, we have the following upper bound,

P1 ≤ 1

2
∥γ∇Mγ (xk)∥2 +

1

2

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

(10)

≤ 1

2
∥γ∇Mγ (xk)∥2 +

ε1
2
.

As a result, we have

⟨γ∇Mγ (xk) , g(xk)⟩ ≥
1

2
∥γ∇Mγ (xk)∥ −

ε1
2
,

which holds for arbitrary xk. This suggests that b = 1
2 , c =

ε1
2 . On the other hand,

E
[
∥g(xk)∥2

]
=

∥∥∥∥∥γ∇Mγ (xk) +
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

(14)

≤ 2 ∥γ∇Mγ (xk)∥2 + 2

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

(10)

≤ 2 ∥γ∇Mγ (xk)∥2 + 2ε1.

Thus, we can choose A = 0, B = 2, C = 2ε1. Since we have assumed Assumption 3 (Individual
convexity) and Assumption 4 (Smoothness), it is easy to see that Mγ is smooth, and we denote its
smoothness constant as Lγ . It is therefore straightforward to see that our global objective γMγ is
γLγ-smooth. We also assume f is µ-strongly convex, which by Fact 8 indicates that Mγ is µ

1+γLmax

star strongly convex. We immediately obtain using Lemma 1 that γMγ is γµ
4(1+γLmax)

-PL. Now, we
have validated all the assumptions for using Theorem 6. Applying Theorem 6, we obtain that when
the extrapolation parameter satisfies

0 < α <
1

4
·min

{
1

γLγ
,
2 (1 + γLmax)

γµ

}
,

the last iterate xK of Algorithm 1 with each proximal operator solved inexactly according to Defi-
nition 1 satisfies

EK ≤
(
1− αγµ

8 (1 + γLmax)

)K

E0 +
8ε1αLγ (1 + γLmax)

µ
+

4ε1 (1 + γLmax)

γµ
,

where Ek = γMγ (xk)−Mγ
inf . Let us now prove that

1

γLγ
<

2 (1 + γLmax)

γµ
.

This is equivalent to prove

µ < 2Lγ (1 + γLmax) ,

which is always true since (27) holds. As a result, we can simplify the range of the extrapolation
parameter to

0 < α ≤ 1

4γLγ
.

If we pick the largest possible α, we have

EK ≤
(
1− µ

32Lγ (1 + γLmax)

)K

E0 +
6ε1 (1 + γLmax)

γµ
.

This result is not directly comparable to that of Li et al. (2024a). However, using smoothness of
γLγ , if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and f since we assume
we are in the interpolation regime (Assumption 2), we have

E0 ≤ γLγ

2
∆0.
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Using star strong convexity, we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

∆K ≤
(
1− µ

32Lγ (1 + γLmax)

)K
Lγ (1 + γLmax)

µ
·∆0 + 12ε1 ·

(
1/γ + Lmax

µ

)2

.

This completes the proof.

G.3 PROOF OF THEOREM 2

Since we based our analysis on the theory of biased SGD, we first verify the validity of Assump-
tion 6.

Finding b and c: Let us start with finding a lower bound on ⟨γ∇Mγ (xk) ,E [g(xk)]⟩. We have

⟨γMγ (xk) ,E [g(xk)]⟩ =

〈
γMγ (xk) , γM

γ (xk)−
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉

= ∥γMγ (xk)∥2 −

〈
γMγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉

≥ ∥γMγ (xk)∥2 − ∥γMγ (xk)∥ ·

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ ,
where the last inequality is obtained using Cauchy-Schwarz inequality. We then utilize the convexity
of ∥·∥ and obtain,

⟨γMγ (xk) ,E [g(xk)]⟩ ≥ ∥γMγ (xk)∥2 − ∥γMγ (xk)∥ ·
1

n

n∑
i=1

∥∥(x̃i,k+1 − proxγfi (xk)
)∥∥

(13)

≥ ∥γMγ (xk)∥2 −
√
ε2 ∥γMγ (xk)∥ ·

1

n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥

= ∥γMγ (xk)∥2 −
√
ε2 ∥γMγ (xk)∥ ·

1

n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥ .
Notice that ∥∥∥γ∇Mγ

fi
(xk)

∥∥∥ =
∥∥∥γ∇Mγ

fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥ ,
holds for any x⋆ that is a minimizer of Mγ (x) due to interpolation regime assumption. As a result,
we can provide an upper bound based on smoothness of each individual γMγ

fi
(x) using Fact 2,∥∥∥γ∇Mγ

fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥ ≤ γLi

1 + γLi
∥xk − x⋆∥ . (28)

Thus,

1

n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥ ≤ 1

n

n∑
i=1

γLi

1 + γLi
∥xk − x⋆∥ ≤ γLmax

1 + γLmax
· ∥xk − x⋆∥ .

In addition, we have due to Cauchy-Schwarz inequality and the convexity of Mγ (x)

∥∇Mγ (xk)∥ · ∥xk − x⋆∥ ≥ ⟨∇Mγ (xk) , xk − x⋆⟩ ≥ Mγ (xk)−Mγ
inf , (29)

and due to quadratic growth condition that

Mγ (xk)−Mγ
inf ≥

µ

1 + γLmax
· 1
2
∥xk − x⋆∥2 . (30)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Combining (29) and (30), we have

µ

2 (1 + γLmax)
· ∥xk − x⋆∥2

(29)+(30)

≤ ∥∇Mγ (xk)∥ · ∥xk − x⋆∥ .

This indicates that

∥xk − x⋆∥ ≤ 2 (1 + γLmax)

µ
∥∇Mγ (xk)∥ . (31)

Combining (28) and (31), we generate the following lower bound

⟨γMγ (xk) ,E [g(xk)]⟩
(28)

≥ ∥γMγ (xk)∥2 −
√
ε2 ∥γMγ (xk)∥ ·

γLmax

1 + γLmax
∥xk − x⋆∥

(31)

≥ ∥γMγ (xk)∥2 −
√
ε2 ·

Lmax

1 + γLmax
· 2 (1 + γLmax)

µ
∥γMγ (xk)∥2

=

(
1−

√
ε2 ·

2Lmax

µ

)
· ∥γMγ (xk)∥2 .

Thus, as long as ε2 < µ2

4L2
max

, we have b = 1−√
ε2 · 2Lmax

µ , and c = 0.

Finding A,B and C: We start with expanding ∥g(xk)∥2,

E
[
∥g(xk)∥2

]
=

∥∥∥∥∥γMγ (xk)−
1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

= ∥γMγ (xk)∥2 +

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

︸ ︷︷ ︸
:=T2

−2

〈
γMγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
︸ ︷︷ ︸

:=T3

. (32)

It is easy to bound T2 utilizing the convexity of ∥·∥2,

T2 ≤ 1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2

(13)

≤ ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥2 =

ε2
n

n∑
i=1

∥∥∥γMγ
fi
(xk)

∥∥∥2 .
Let x⋆ be a minimizer of Mγ , since we assume Assumption 2 holds, it is also a minimizer of each
Mγ

fi
. As a result,

T2 ≤ ε2
n

n∑
i=1

∥∥∥γMγ
fi
(xk)− γMγ

fi
(x⋆)

∥∥∥2
≤ ε2

n

n∑
i=1

2γLi

1 + γLi

(
γMγ

fi
(xk)− γMγ

fi
(x⋆)

)
≤ 2ε2γLmax

1 + γLmax
· (γMγ (xk)− γMγ

inf) . (33)

We then consider T3, and start with applying Cauchy-Schwarz inequality

T3 ≤ 2 ∥γ∇Mγ (xk)∥

∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ . (34)
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Using the convexity of ∥·∥, we have∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ ≤ 1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥

(13)

≤
√
ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥

(4)
=

√
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥
Fact 2
≤

√
ε2
n

n∑
i=1

γLi

1 + γLi
∥xk − x⋆∥

≤
√
ε2γLmax

1 + γLmax
· ∥xk − x⋆∥ .

Utilizing (31), we have∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥ ≤
√
ε2γLmax

1 + γLmax
· 2 (1 + γLmax)

µ
∥∇Mγ (xk)∥

=
2
√
ε2Lmax

µ
· ∥γ∇Mγ (xk)∥ (35)

Plug the above inequality into (34), we have

T3 ≤
4
√
ε2Lmax

µ
· ∥γ∇Mγ (xk)∥2 . (36)

Combining (36) and (33), plug them into (32), we have

E
[
∥g (xk)∥2

]
≤ 2ε2γLmax

1 + γLmax
· (γMγ (xk)− γMγ

inf) +

(
1 +

4
√
ε2Lmax

µ

)
· ∥γ∇Mγ (xk)∥2 .

Thus, we have

A =
ε2γLmax

1 + γLmax
, B =

µ+ 4
√
ε2Lmax

µ
, C = 0.

Applying Theorem 6: First, we list our the values appeared respectively,

A =
ε2γLmax

1 + γLmax
, B =

µ+ 4
√
ε2Lmax

µ
, b =

µ− 2
√
ε2Lmax

µ
,

C = c = 0.

We know that the PL constant of γMγ is given by γµ
4(1+γLmax)

and the corresponding smoothness
constant is γLγ . Applying Theorem 6, the range of α is given by

0 < α < min


1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4
√
ε2Lmax + 4ε2Lmax︸ ︷︷ ︸
:=B1

,
4 (1 + γLmax)

γ
(
µ− 2

√
ε2Lmax

)︸ ︷︷ ︸
:=B2

 . (37)

Now notice that actually we can prove that for ε2 < µ2

4L2
max

, we have B2 > B1, and we can simplify
the range of α to

0 < α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4
√
ε2Lmax + 4ε2Lmax

.
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Proof of B2 > B1 : It is easy to verify that the above inequality (B2 > B1) can be equivalently
written as

4Lγ (1 + γLmax) (µ+ 4
√
ε2Lmax + 4ε2Lmax) > (µ− 2

√
ε2Lmax)

2
,

since when
√
ε2 < µ

2Lmax
, we have µ− 2

√
ε2Lmax > 0. We expand the right-hand side and obtain:

(µ− 2
√
ε2Lmax)

2
= µ2 − 4

√
ε2Lmax + 4ε2L

2
max < 2µ2 − 4

√
ε2Lmax < 2µ2.

For the left-hand side, as we have already shown in 27, we have

4Lγ (1 + γLmax) (µ+ 4
√
ε2Lmax + 4ε2Lmax) ≥ 4µ (µ+ 4

√
ε2Lmax + 2ε2Lmax) > 4µ2.

Combining the above inequality we arrive at B2 > B1.

The convergence guarantee : Given that we select α properly, we have

EK ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0,

where Ek = γMγ (xk) − γMγ
inf . We do not have expectation here since we are in the full batch

case. Specifically, if we choose the largest α possible, we have

EK ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2)

)k

E0,

where

S(ε2) =

(
µ− 2

√
ε2Lmax

) (
1− 2

√
ε2

Lmax

µ

)
µ+ 4

√
ε2Lmax + 4ε2Lmax

,

satisfies 0 < S(ε2) ≤ 1 is the factor of slowing down due to inexact proximity operator evaluation.
Using smoothness of γLγ , if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and
f since we assume we are in the interpolation regime (Assumption 2), we have

E0 ≤ γLγ

2
∆0.

Using star strong convexity (quadratic growth property), we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

∆K ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2)

)K

· Lγ (1 + γLmax)

µ
∆0.

This completes the proof.

G.4 PROOF OF THEOREM 3

We start with formalizing the problem. Using (11) and (12), we can write the update rule of Algo-
rithm 1 as

xk+1 = xk − α ·

(
1

n

n∑
i=1

γ∇Mγ
fi
(xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

))
. (38)

Since by Definition 4, we have
∥∥x̃i,k+1 − proxγfi (xk)

∥∥2 ≤ ε2

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2, we can view the
left hand side as a compressed version of the true gradient. Specifically, there are two possible
perspectives:

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(I). Let Ci (·) be the compressing mapping with the i-th client, i ∈ {1, 2, . . . , n}, defined as

Ci
(
γ∇Mγ

fi
(xk)

)
:= γ∇Mγ

fi
(xk)−

(
x̃i,k+1 − proxγfi (xk)

)
.

In this way, we reformulate (38) as

xk+1 = xk − α · 1
n

n∑
i=1

Ci
(
γ∇Mγ

fi
(xk)

)
. (39)

(39) is exactly DCGD with biased compression. We can easily prove that

Ci ∈ B1

(
α = 1− 2

√
ε2, β =

1−√
ε2

1 + ε2

)
Ci ∈ B2

(
ξ = 1−

√
ε2, β =

1−√
ε2

1 + ε2

)
Ci ∈ B3

(
δ =

1

1− ε2

)
.

However, DCGD with biased compression may fail to converge even if the above formu-
lation of compression mapping seems quite nice. For an example of such failure, we refer
the readers to Beznosikov et al. (2023, Example 1). This limitation can be circumvented by
employing an error feedback mechanism; however, this approach requires modifications to
the original algorithm. We therefore leave it as a future research direction.

(II). We can also view it as if we are in the single node case. Let C (·) be the compressing
mapping defined as

C (∇Mγ (xk)) :=
1

n

n∑
i=1

γ∇Mγ
fi
(xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
= γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
. (40)

This formulation leads us to the convergence guarantee appeared in Theorem 3, as we
illustrate below.

Let us first analyze C defined in (40). We will verify it belongs to B3 (δ). The inequality we want to
prove can be written equivalently as∥∥∥∥∥γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)
− γ∇Mγ (xk)

∥∥∥∥∥
2

≤
(
1− 1

δ

)
∥γ∇Mγ (xk)∥2 ,

(41)

which is exactly ∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

≤ ∥γ∇Mγ (xk)∥2

For the left-hand side, using the convexity of ∥·∥2 in combination with Definition 4, we obtain∥∥∥∥∥ 1n
n∑

i=1

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2

≤ ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥2 .

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Let x⋆ be a minimizer of f , since we assume Assumption 2 holds, by Fact 7, it is also a minimizer
of γMγ ,

ε2
n

n∑
i=1

∥∥xk − proxγfi (xk)
∥∥2 (4)

=
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2
=

ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥2
Fact 2
≤ 2ε2

n

n∑
i=1

γLi

1 + γLi

(
γMγ

fi
(xk)− γMγ

fi
(x⋆)

)
≤ 2ε2γLmax

1 + γLmax
(γMγ (xk)− γMγ (x⋆)) .

We then notice that as it is illustrated by Lemma 1, we have(
1− 1

δ

)
∥γ∇Mγ (xk)∥2 ≥

(
1− 1

δ

)
γµ

2 (1 + γLmax)
(γMγ (xk)− γMγ (x⋆)) .

Combining the above two inequalities, we know that the following inequality is a sufficient condition
for (41),

2ε2γLmax

1 + γLmax
(γMγ (xk)− γMγ (x⋆)) ≤

(
1− 1

δ

)
γµ

2 (1 + γLmax)
(γMγ (xk)− γMγ (x⋆)) .

It is easy to check that if we pick

δ =
µ

µ− 4ε2Lmax
> 0, (42)

the condition is met. However, for this to hold, we must ensure that ε2 < µ
4Lmax

.

As we mentioned in Appendix D, Beznosikov et al. (2023) provided the theory of CGD with biased
compressor belongs to B3 (δ). We have already shown that C ∈ B3

(
δ = µ

µ−4ε2Lmax

)
, when ε2 <

4Lmax

µ . Notice that our objective γMγ is γLγ-smooth and γµ
1+γLmax

-PL.5 Therefore, as long as
0 < α ≤ 1

γLγ
and ε2 < µ

4Lmax
, we have

EK ≤
(
1− µ− 4ε2Lmax

µ
· γµ

4 (1 + γLmax)
· α
)K

E0,

Taking α = 1
γLγ

, which is the largest step size possible, we can further simplify the above conver-
gence into

Mγ (xk)−Mγ
⋆ ≤

(
1−

(
1− 4ε2Lmax

µ

)
· µ

4Lγ (1 + γLmax)

)K

(Mγ (x0)−Mγ⋆) .

Using smoothness of γLγ , if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and
f since we assume we are in the interpolation regime (Assumption 2), we have

E0 ≤ γLγ

2
∆0.

Using star strong convexity (quadratic growth property), we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

∆K ≤
(
1−

(
1− 4ε2Lmax

µ

)
· µ

4Lγ (1 + γLmax)

)K

· Lγ (1 + γLmax)

µ
∆0.

This completes the proof.
5Theorem 7 remains valid if we replace f being strongly convex with PL.
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G.5 PROOF OF THEOREM 4

Notice that we assume each fi is Li-smooth and convex. The local optimization of each client can
be written as

min
z∈Rd

{
Aγ

k,i (z) = fi (z) +
1

2γ
∥z − xk∥2

}
,

It is easy to see that Aγ
k,i (z) is Li +

1
γ -smooth and 1

γ -strongly convex. We first provide the conver-
gence theory of GD for reference.

Theory of GD: For a µ̂-strongly convex, L̂-smooth function ϕ, the algorithm can be formulated
as

zt+1 = zt − η∇ϕ(zt), (GD)
where zt is the iterate in the t-th iteration, and η > 0 is the step size. GD with step size η ∈ (0, 1

L̂
]

generates iterates that satisfy

∥zt − z⋆∥2 ≤ (1− ηµ̂)
t ∥z0 − z⋆∥2 ,

where z⋆ is a minimizer of ϕ, t is the number of iterations (number of gradient evaluations).

Approximation satisfying Definition 3: Notice that proxγfi (xk) is the minimizer of Aγ
k,i (z) and

z0 = xk. As a result, if we run GD with the largest step size γ
1+γLi

,∥∥zt − proxγfi (xk)
∥∥2 ≤

(
1− 1

1 + γLi

)t ∥∥xk − proxγfi (xk)
∥∥2 (43)

We have

t = O

(
(1 + γLi) log

(∥∥xk − proxγfi (xk)
∥∥2

ε1

))
.

The unknown term
∥∥xk − proxγfi (xk)

∥∥2 within the log can be bounded by∥∥xk − proxγfi (xk)
∥∥2 = ∥z0 − z⋆∥2

≤ γ2
∥∥∥∇Aγ

k,i (z0)−∇Aγ
k,i (z⋆)

∥∥∥2 = ∥γ∇fi (xk)∥2 , (44)

which can be easily calculated.

Approximation satisfying Definition 4: According to (43), we have

t = O
(
(1 + γLi) log

(
1

ε2

))
.

This completes the proof.

G.6 PROOF OF THEOREM 5

We first provide the theory of AGD (Nesterov, 2004).

Theory of AGD: For a µ̂-strongly convex, L̂-smooth function ϕ, the algorithm can be formulated
as

yt+1 = zt + α (zt − zt−1)

zt+1 = yt+1 − η∇ϕ (yt+1) , (AGD)
where zt, yt are iterates, η > 0 is the step size, α > 0 is the momentum parameter. AGD with step

size η = 1

L̂
, momentum α =

√
L̂−

√
µ̂√

L̂+
√

µ̂
generates iterates that satisfy

∥zt − z⋆∥2 ≤ 2L̂

µ̂
·

(
1−

√
µ̂

L̂

)t

∥z0 − z⋆∥2 ,

where z⋆ is a minimizer of ϕ, t is the number of iterations (number of gradient evaluations).
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Approximation satisfying Definition 3: Notice that proxγfi (xk) is the minimizer of Aγ
k,i (z) and

z0 = xk. As a result, if we run AGD with the step size γ
1+γLi

and momentum α =
√
1+γLi−1√
1+γLi+1

,

∥∥zt − proxγfi (xk)
∥∥2 ≤ 2 · (1 + γLi)

(
1− 1√

1 + γLi

)t ∥∥xk − proxγfi (xk)
∥∥2 . (45)

We have

t = O

(√
1 + γLi log

(
(1 + γLi) ·

∥∥xk − proxγfi (xk)
∥∥2

ε1

))
Similar to the proof of Theorem 4, since we have according to (44),∥∥xk − proxγfi (xk)

∥∥2 ≤ ∥γ∇fi (xk)∥2 ,

it is straightforward to determine the number of local iterations needed.

Approximation satisfying Definition 4: Using (45), we have

t = O
(√

1 + γLi log

(
1 + γLi

ε2

))
.

G.7 PROOF OF THEOREM 8

In this case, the gradient estimator is defined as

g(xk) =
1

τ

∑
i∈Sk

(
γ∇Mγ

fi
(xk)−

(
x̃i,k+1 − proxγfi (xk)

))
. (46)

Notice that we have

⟨γ∇Mγ (xk) ,E [g(xk)]⟩

=

〈
γ∇Mγ (xk) ,E

[
1

τ

∑
i∈Sk

γ∇Mγ
fi
(xk)−

1

τ

∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)]〉

=

〈
γ∇Mγ (xk) , γ∇Mγ (xk)−

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
.

Using the same technique in the proof of Theorem 2, we are able to obtain that

⟨γ∇Mγ (xk) ,E [g(xk)]⟩ ≥
(
1−

2
√
ε2Lmax

µ

)
· ∥γ∇Mγ (xk)∥2 .

Thus, as long as we pick ε2 < µ2

4L2
max

, we can pick b = 1−√
ε2 · 2Lmax

µ and c = 0. We then compute

E
[
∥g(xk)∥2

]
,

E
[
∥g(xk)∥2

]
= E

∥∥∥∥∥1τ ∑
i∈Sk

γ∇Mγ
fi
(xk)−

1

τ

∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2


= E

∥∥∥∥∥1τ ∑
i∈Sk

γ∇Mγ
fi
(xk)

∥∥∥∥∥
2


︸ ︷︷ ︸
:=T1

+E

∥∥∥∥∥1τ ∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)∥∥∥∥∥
2


︸ ︷︷ ︸
:=T2

−2E

[〈
1

τ

∑
i∈Sk

γ∇Mγ
fi
(xk) ,

1

τ

∑
i∈Sk

(
x̃i,k+1 − proxγfi (xk)

)〉]
︸ ︷︷ ︸

:=T3

.

We try to provide upper bounds for those terms separately.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Term T1: We have

T1 =
n− τ

τ (n− 1)
· 1
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2 + n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2 .

Using smoothness of γMγ
fi

and the fact that we are in the interpolation regime, we have

T1 =
n− τ

τ (n− 1)
· 1
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥2 + n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2

≤ n− τ

τ (n− 1)
· 1
n

n∑
i=1

2γLi

1 + γLi
·
(
γMγ

fi
(xk)− γ

(
Mγ

fi

)
inf

)
+

n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2

≤ n− τ

τ (n− 1)
· 2γLmax

1 + γLmax
· (γMγ (xk)− γMγ

inf) +
n (τ − 1)

τ (n− 1)
· ∥γ∇Mγ (xk)∥2 . (47)

Term T2: It is easy to see that using convexity of the squared Euclidean norm, we have

T2 ≤ E

[
1

τ

∑
i∈Sk

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2]

=
1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥2 (13)

≤ ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2 .
Using smoothness of each individual γMγ

fi
(xk) and the fact we are in the interpolation regime, we

have

T2 ≤ 2ε2γLmax

1 + γLmax
(γMγ (xk)− γMγ

inf) . (48)

Term T3: We have

T3 = −2 · n− τ

τ (n− 1)
· 1
n

n∑
i=1

〈
γ∇Mγ

fi
(xk) , x̃i,k+1 − proxγfi (xk)

〉
− 2 · n (τ − 1)

τ (n− 1)
·

〈
γ∇Mγ (xk) ,

1

n

n∑
i=1

(
x̃i,k+1 − proxγfi (xk)

)〉
.

Using Cauchy-Schwarz inequality and convexity, we further obtain

T3 ≤ 2 · n− τ

τ (n− 1)
· 1
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥ ∥∥x̃i,k+1 − proxγfi (xk)
∥∥

+ 2 · n (τ − 1)

τ (n− 1)
∥γ∇Mγ (xk)∥ ·

1

n

n∑
i=1

∥∥x̃i,k+1 − proxγfi (xk)
∥∥ .
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Using similar approaches in the previous paragraphs, we have

T3

(13)

≤ 2 (n− τ)

τ (n− 1)
·
√
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥2 + 2n (τ − 1)

τ (n− 1)
∥γMγ (xk)∥

√
ε2
n

·
n∑

i=1

∥∥∥γ∇Mγ
fi
(xk)

∥∥∥
≤ 2 (n− τ)

τ (n− 1)
·
√
ε2
n

n∑
i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(x⋆)

∥∥∥2
+

2n (τ − 1)

τ (n− 1)
∥γMγ (xk)∥

√
ε2
n

·
n∑

i=1

∥∥∥γ∇Mγ
fi
(xk)− γ∇Mγ

fi
(xk)

∥∥∥
≤

4
√
ε2 (n− τ)

τ (n− 1)
· γLmax

1 + γLmax
(γMγ (xk)− γMγ

inf)

+
4
√
ε2n (τ − 1)

τ (n− 1)
· γLmax

1 + γLmax
∥xk − x⋆∥ ∥γ∇Mγ (xk)∥

(25)

≤
4
√
ε2 (n− τ)

τ (n− 1)
· γLmax

1 + γLmax
(γMγ (xk)− γMγ

inf)

+
4
√
ε2n (τ − 1)

τ (n− 1)
· Lmax

µ
∥γ∇Mγ (xk)∥2 . (49)

Combining (47), (48) and (49), we have
3∑

i=1

Ti ≤ 2

(
ε2 +

2
√
ε2 (n− τ)

τ (n− 1)
+

(n− τ)

τ (n− 1)

)
· γLmax

1 + γLmax
· (γMγ (xk)− γMγ

inf)

+

(
n (τ − 1)

τ (n− 1)
+

4
√
ε2n (τ − 1)

τ (n− 1)

)
· Lmax

µ
· ∥γMγ (xk)∥2 . (50)

Therefore, it is easy to see that we can pick

A =

(
ε2 +

2
√
ε2 (n− τ)

τ (n− 1)
+

(n− τ)

τ (n− 1)

)
· γLmax

1 + γLmax

B =

(
n (τ − 1)

τ (n− 1)
+

4
√
ε2n (τ − 1)

τ (n− 1)

)
· Lmax

µ
, C = 0.

Applying Theorem 4 of Demidovich et al. (2024), we list the corresponding values of A,B,C, b, c ≥
0 below,

A =
γLmax

1 + γLmax

(
ε2 +

2
√
ε2 (n− τ)

τ (n− 1)
+

(n− τ)

τ (n− 1)

)
B =

n (τ − 1)

τ (n− 1)

(
1 +

4
√
ε2Lmax

µ

)
, C = 0

b =
µ− 2

√
ε2Lmax

µ
, c = 0.

We know that the PL constant of γMγ is given by γµ
4(1+γLmax)

and the corresponding smoothness
constant is γLγ . As a result, when α > 0 satisfies

α <
1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4ε2Lmax + 4
√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

)︸ ︷︷ ︸
:=B′

1

,

and

α <
4 (1 + γLmax)

γ
(
µ− 2

√
ε2Lmax

)︸ ︷︷ ︸
=B2

,
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we can obtain a convergence guarantee for the algorithm. Notice that B′
1 ≤ B1 < B2

6, thus we can
further simplify the range of α to

α ≤ 1

γLγ
·

µ− 2
√
ε2Lmax

µ+ 4ε2Lmax + 4
√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

)︸ ︷︷ ︸
:=B′

1

.

Given that we select α properly, we have

E [EK ] ≤

(
1− α ·

γ
(
µ− 2

√
ε2Lmax

)
4 (1 + γLmax)

)K

E0.

Specifically, if we choose the largest α possible, we have

E [EK ] ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2, τ)

)K

E0,

where S (ε2, τ) is defined as

S (ε2, τ) =

(
µ− 2

√
ε2Lmax

) (
1− 2

√
ε2

Lmax

µ

)
µ+ 4ε2Lmax + 4

√
ε2Lmax +

n−τ
τ(n−1) ·

(
4Lmax + 4

√
ε2Lmax − µ

) ,
satisfying

0 < S (ε2, τ) ≤ 1.

Using smoothness of γLγ , if we denote ∆k = ∥xk − x⋆∥2 where x⋆ is a minimizer of both Mγ and
f since we assume we are in the interpolation regime (Assumption 2), we have

E0 ≤ γLγ

2
∆0.

Using star strong convexity (quadratic growth property), we have

EK ≥ γµ

2 (1 + γLmax)
∆K .

As a result, we can transform the above convergence guarantee into

E [∆K ] ≤
(
1− µ

4Lγ (1 + γLmax)
· S (ε2, τ)

)K

· Lγ (1 + γLmax)

µ
∆0.

This completes the proof.

H EXPERIMENTS

We describe the settings for the numerical experiments and the corresponding results to validate
our theoretical findings. We are interested in the following optimization problem in the distributed
setting,

min
x∈Rd

{
f(x) =

1

n

n∑
i=1

fi (x)

}
.

Here n denotes the number of clients, d is the dimension, each function fi : Rd 7→ R has the
following form

fi(x) =
1

2
x⊤Aix+ b⊤i x+ ci,

where Ai ∈ Sd+, bi ∈ Rd, ci ∈ R. Specifically, we pick n = 20 and d = 300 for the experiments.
Notice that we have

∇fi(x) = Aix− bi; ∇2fi(x) = Ai ⪰ Od,

6The definition of B1 is given in (37)
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Figure 2: Comparison of FedProx, FedExProx with exact proximal evaluations, FedExProx with
ε1-absolute approximation and FedExProx with ε2-relative approximation. In this case, we fix ε1 =
0.001, ε2 = 0.01 and pick the local step size γ ∈ {1000, 100, 10, 1, 0.1.0.01}. The y-axis is the
squared distance to the minimizer of f , and the x-axis denotes the iterations.

which suggests that each fi is convex and smooth. We can easily compute that in this case, we have

proxγfi (x) =

(
Ai +

1

γ
Id

)−1(
1

γ
x− bi

)
.

All experiment codes were implemented in Python 3.11 using the NumPy and SciPy libraries. The
computations were performed on a system powered by an AMD Ryzen 9 5900HX processor with
Radeon Graphics, featuring 8 cores and 16 threads, running at 3.3 GHz. Code availability: https:
//anonymous.4open.science/r/Inexact-FedExProx-code-E783/

H.1 COMPARISON OF FEDPROX, FEDEXPROX, FEDEXPROX WITH ABSOLUTE
APPROXIMATION AND RELATIVE APPROXIMATION

In this section, we compare the convergence of FedProx, FedExProx and FedExProx with absolute
approximation and relative approximation. For FedProx, we simply set the server extrapolation to
be 1 while for FedExProx, we set its extrapolation parameter to be 1

γLγ
. We assume exact proximal

evaluation for the above two algorithms. For FedExProx with approximations, we fix ε1 and ε2 to
be reasonable values, respectively. We then set their extrapolation parameter to be the optimal value
under the specific setting. Throughout the experiment, we vary the value of the local step size γ to
see its effect on all the algorithms. Specifically, we select γ from the set {1000, 100, 10, 1, 0.1.0.01},
and we fix ε1 = 0.001, ε2 = 0.01 first, then we set them to ε1 = 1e− 6, ε2 = 0.001.

Notably in Figure 2 and Figure 3, in all cases, FedExProx with absolute approximation exhibits the
poorest performance and converges only to a neighborhood of the solution. This is expected, since
the bias in this case does not go to zero as the algorithm progresses. It is worth mentioning that as
the local step size γ increases, the size of the neighborhood decreases, which supports our claim
in Theorem 1. As anticipated, in all cases, FedExProx outperforms FedProx due to server extrapo-
lation. However, as γ increases, the performance gap between them diminishes. The performance
of FedExProx with relative approximation is surprisingly good, outperforming FedProx in several
cases. This suggests the effectiveness of server extrapolation even when the proximal evaluations
are inexact.
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Figure 3: Comparison of FedProx, FedExProx with exact proximal evaluations, FedExProx with
ε1-absolute approximation and FedExProx with ε2-relative approximation. In this case, we fix ε1 =
1e − 6, ε2 = 0.001 and pick the local step size γ ∈ {1000, 100, 10, 1, 0.1.0.01}. The y-axis is the
squared distance to the minimizer of f , and the x-axis denotes the iterations.
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Figure 4: Comparison of FedExProx with ε1-absolute approximation under different level of inex-
actness. We select γ from the set {0.1, 1, 10} and for each choice of γ, we select ε1 from the set
{0.001, 0.005, 0.01, 0.05, 0.1}. The y-axis denotes the squared distance to the minimizer and the
x-axis is the number of iterations.

H.2 COMPARISON OF FEDEXPROX WITH ABSOLUTE APPROXIMATION UNDER DIFFERENT
INACCURACIES

In this section, we compare FedExProx with absolute approximations under different level of inac-
curacies. We fix the local step size γ to be a reasonable value, and we vary the level of inexactness
for the algorithm. Specifically, we select γ from the set {0.1, 1, 10} and for each choice of γ, we
select ε1 from the set {0.001, 0.005, 0.01, 0.05, 0.1}.

As observed in Figure 4, the size of the neighborhood increases with ε1, further corroborating our
theoretical findings in Theorem 1. Before reaching the neighborhood, the convergence rates of
FedExProx with different level of inexactness are similar, which is expected.
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Figure 5: Comparison of FedExProx with ε2-relative approximation under different level of inex-
actness. We select γ from the set {0.01, 0.05, 0.1} and for each choice of γ, we select ε2 from the
set {0.001, 0.005, 0.01, 0.05, 0.1}. The y-axis denotes the squared distance to the minimizer and the
x-axis is the number of iterations.

H.3 COMPARISON OF FEDEXPROX WITH RELATIVE APPROXIMATION UNDER DIFFERENT
INACCURACIES

In this section, we compare FedExProx with relative approximations under different level of relative
inaccuracies. We fix the local step size γ to be a reasonable value, and we vary the level of inexact-
ness for the algorithm. Specifically, we select γ from the set {0.1, 0.05, 0.01} and for each choice
of γ, we select ε2 from the set {0.001, 0.005, 0.01, 0.05, 0.1}.

As observed in Figure 5, in all cases, a smaller ε2 corresponds to faster convergence of the algorithm.
This supports the claim of Theorem 3. All the tested algorithm converges to the exact solution
linearly, which validates the effectiveness of the proposed technique of relative approximation to
reduce the bias term.

H.4 ADAPTIVE EXTRAPOLATION FOR INEXACT PROXIMAL EVALUATIONS

In this section, we study the possibility of applying adaptive extrapolation to FedExProx with relative
approximations. We do not consider the case of absolute approximation since it converges only to
a neighborhood, which causes problems when combined with adaptive step sizes such as gradient
diversity and Polyak step size.

We are using the following definition of gradient diversity based extrapolation,

αk = αk,G :=
1 + γLmax

γLmax
·

1
n

∑n
i=1

∥∥xk − proxγfi (xk)
∥∥2∥∥ 1

n

∑n
i=1

(
xk − proxγfi (xk)

)∥∥2 .
for Polyak type extrapolation, we use

αk = αk,S :=

1
n

∑n
i=1

(
Mγ

fi
(xk)− infMγ

fi

)
γ
∥∥∥ 1
n

∑n
i=1 ∇Mγ

fi
(xk)

∥∥∥2 .

As it can be observed from Figure 6, in all cases, the use of a gradient diversity based adaptive ex-
trapolation results in faster convergence of the algorithm. This suggests the possibility of developing
an adaptive extrapolation for our methods. However, as we can see from Figure 7, a direct imple-
mentation of Polyak step size type extrapolation results in divergence of the algorithm, indicating
that the challenge may be more complex than anticipated. In our case, this is equivalent to designing
adaptive step sizes for SGD with biased updates or CGD with biased compression. To the best of
our knowledge, this field remains open and requires further investigation, as biased updates are quite
common in practice.
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Figure 6: Comparison of FedExProx with ε2-relative approximation under different level of inex-
actness using gradient diversity based extrapolation. we select γ from the set {1, 0.1, 0.01} and for
each choice of γ, we select ε2 from the set {0.0001, 0.05}. The y-axis denotes the squared distance
to the minimizer and the x-axis is the number of iterations.
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Figure 7: Comparison of FedExProx with ε2-relative approximation under different level of inex-
actness using Polyak step size based extrapolation. we select γ from the set {10, 100, 1000} and
for each choice of γ, we select ε2 from the set {1e− 4, 1e− 5}. The y-axis denotes the squared
distance to the minimizer and the x-axis is the number of iterations.
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