
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WAVELET DIFFUSION NEURAL OPERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulating and controlling physical systems described by partial differential equa-
tions (PDEs) are crucial tasks across science and engineering. Recently, diffusion
generative models have emerged as a competitive class of methods for these tasks
due to their ability to capture long-term dependencies and model high-dimensional
states. However, diffusion models typically struggle with handling system states
with abrupt changes and generalizing to higher resolutions. In this work, we pro-
pose Wavelet Diffusion Neural Operator (WDNO), a novel PDE simulation and
control framework that enhances the handling of these complexities. WDNO com-
prises two key innovations. Firstly, WDNO performs diffusion-based generative
modeling in the wavelet domain for the entire trajectory to handle abrupt changes
and long-term dependencies effectively. Secondly, to address the issue of poor
generalization across different resolutions, which is one of the fundamental tasks
in modeling physical systems, we introduce multi-resolution training. We validate
WDNO on five physical systems, including 1D advection equation, three challeng-
ing physical systems with abrupt changes (1D Burgers’ equation, 1D compressible
Navier-Stokes equation and 2D incompressible fluid), and a real-world dataset
ERA5, which demonstrates superior performance on both simulation and control
tasks over state-of-the-art methods, with significant improvements in long-term
and detail prediction accuracy. Remarkably, in the challenging context of the
2D high-dimensional and indirect control task aimed at reducing smoke leakage,
WDNO reduces the leakage by 33.2% compared to the second-best baseline.

1 INTRODUCTION

Many systems across science and engineering are described by partial differential equations (PDEs).
Simulating and controlling these PDE systems are fundamental tasks with numerous applications, in-
cluding weather forecasting (Lynch, 2008), controlled nuclear fusion (Carpanese, 2021), astronomical
simulation (Courant et al., 1967), and aviation (Paranjape et al., 2013).

With developments of neural networks, deep learning-based methods have emerged to address this
problem (Li et al., 2021; Lu et al., 2021; Tripura & Chakraborty, 2022; Hu et al., 2022). Among them,
diffusion generative models (Ho et al., 2020b) achieve impressive results in both simulation (Cachay
et al., 2023; Price et al., 2023; Rühling Cachay et al., 2023) and control (Chi et al., 2023; Ajay et al.,
2022; Wei et al., 2024). On the one hand, simulation and control tasks are typically long-term, where
small variations in the early stage can have a long-term impact on the full trajectory, making their
accurate prediction and control difficult. Diffusion models alleviate the long-term challenge by the
noise-learning mechanism and recovering the full trajectory from a Gaussian distribution as a whole.
Therefore, they can better capture long-term dynamics and generate coherent plans for certain goals
(Janner et al., 2022; Chi et al., 2023; Wei et al., 2024). On the other hand, PDE dynamics are typically
high-dimensional and nonlinear, and the diffusion model demonstrates strong capabilities in modeling
complex high-dimensional data (Ho et al., 2022; Harvey et al., 2022; Li et al., 2024; Vahdat et al.,
2022). See Appendix D for more related works.

However, for PDE simulation and control with diffusion models, two key challenges arise. Firstly, the
evolution of physical systems is often accompanied by abrupt changes, which reflect key mechanisms
of the system (Ben-Dor & Ben-Dor, 2007; Rassweiler et al., 2011). Due to their rapid and intense
local variations, and even discontinuities, these changes are difficult to capture. Secondly, existing
diffusion models typically operate on a fixed spatial-temporal resolution, and cannot generalize to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Original Domain

Transform Add Noise

… …

BRM

BR
M

SRM

Denoise

SR
M

Wavelet Domain

…… …

Original Domain

Inverse

…

Condition

Training Inference

Do
w

ns
am

pl
e

Su
pe

r r
es

ol
ut

io
n

Figure 1: Overview of WDNO. The figure shows the training and inference of the Base-Resolution
Model (BRM) and Super-Resolution Model (SRM).

finer resolutions (Croitoru et al., 2023; Yue et al., 2024; Shang et al., 2024), which is a fundamental
requirement of neural PDE solvers (Li et al., 2021; Boussif et al., 2022; Yin et al., 2022).

In this work, we introduce Wavelet Diffusion Neural Operator (WDNO) to address the above
two challenges. Our WDNO method consists of two key innovations: (1) Generation in the
wavelet domain. Since the wavelet transform is both space and frequency localized and excels
at approximating functions with abrupt changes (Tripura & Chakraborty, 2022), generation in the
wavelet space endowed by the wavelet transform is ideal for modeling abrupt changes. Besides, due to
the linearity and locality of the wavelet transform, it can integrate seamlessly with the multi-resolution
training. (2) Multi-resolution training. To enable generalization to finer resolutions, we prepare
training datasets across multiple spatial and temporal resolutions utilizing the approximate scale
invariance. Since changes of the equation forms are approximately the same across resolutions, the
model is trained to generalize to finer resolutions conditioned on coarser resolutions, which opens up
the capability to generalize to even finer resolutions not seen during training.

Concretely, our contributions include the following: (1) We introduce the WDNO method that
comprises diffusion in the wavelet space, addressing the challenges of modeling states with abrupt
changes in simulation and control. (2) We propose multi-resolution training to address the issue of
poor generalization to higher-resolution simulations, which is a fundamental task in PDE modeling.
(3) We evaluate our method on 1D advection equation, complex PDEs with abrupt changes including
1D Burgers’ equation, 1D compressible fluid, and 2D incompressible fluid, and a real-world dataset
ERA5. Compared with strong baselines in physical simulation and control, our method shows
competitive performance. Particularly, the 2D experiments are extremely challenging as they involve
indirect control with 1,792 spatial control variables at each time step, for a total of 32 time steps. It is
noteworthy that WDNO reduces 33.2% of the leaked smoke compared to the prior state-of-the-art.

2 PRELIMINARY

2.1 PROBLEM SETUP

We consider a PDE on [0, T]×D ⊂ R× Rd with the following form

∂u

∂t
= F

(
u,
∂u

∂x
,
∂2u

∂x2
, . . .

)
+ f(t, x), (t, x) ∈ [0, T]×D, (1)

u(0, x) = u0(x), x ∈ D, B[u](t, x) = 0, (t, x) ∈ [0, T]× ∂D,

where u : [0, T] × D → Rn is the solution, with the initial condition u0(x) at time t = 0 and
boundary condition B[u](t, x) = 0 on the boundary. F is a function and f(t, x) is the force term.

For such PDE systems, there are two fundamental tasks: simulation and control. The former involves
learning a mapping from certain parameter functions a, such as initial conditions and boundary
conditions, to the solutions u that represent a mapping from an infinite-dimensional function space to
another infinite-dimensional function space. The latter task involves identifying the external control f
for a specific objective J (u, f) which is a function of u and f , aiming at finding f that minimizes J .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 DIFFUSION MODEL

A representative instance of diffusion models is the Denoising Diffusion Probabilistic Model (DDPM)
(Ho et al., 2020b), which contains a forward and a reverse process to generate samples. In the forward
process, noise is progressively added to clean data x0 until it is corrupted into Gaussian noise xK ∼
N (0, I). This process follows the Gaussian transition kernel q(xk+1|xk) = N (xk+1;

√
αkxk, (1−

αk)I), where {αk}Kk=1 denotes the variance schedule. In the reverse process, data is sampled from
Gaussian noise N (0, I) and a denoising model ϵθ gradually removes the noise from the data until
it returns the original clean data distribution. The model predicts the mean µθ(xk) of xk−1 and the
reverse process is defined with the transition pθ(xk−1|xk) = N (xk−1;µθ(xk, k), σkI).

To train the denoising model ϵθ, the training loss is defined as follows, which optimizes a simplified
variant of the variational lower-bound for the data’s log-likelihood (Ho et al., 2020b).

L = Ek∼U(1,K),x0∼p(x),ϵ∼N (0,I)[∥ϵ− ϵθ(
√
ᾱkx0 +

√
1− ᾱkϵ, k)∥22], where ᾱk :=

k∏
i=1

αi. (2)

Guided Diffusion Generation. Modeling the conditional distribution q(x|y) enables controllable
sample generation. Methods for conditioning in diffusion models include classifier-based guidance
(Du et al., 2023) and classifier-free guidance (Ho & Salimans, 2022; Ajay et al., 2022). The former
employs an additional classifier model trained on clean data to directly modify the denoising direction
of the data during generation. The classifier-free conditioning simplifies the architecture and enables
guided generation without an explicit classifier. It trains the model to learn both conditional and
unconditional probabilities ϵθ(x,∅) ∝ ∇x log q(x) and ϵθ(x,y) ∝ ∇x log q(x|y), where ∅ is an
identifier that tells the model ϵθ to output p(x) instead of p(x|y) (Ho & Salimans, 2022). During
sample generation, it combines noise terms following ϵθ(x,∅) + ω(ϵθ(x,y) − ϵθ(x,∅)), where
ω ∈ [0, 1] is the weight. In this paper, we combine the use of both guidance methods.

3 METHOD

In this section, we detail our proposed WDNO from two perspectives: Section 3.1 describes how we
perform the generative process within the wavelet domain, including basic concepts and practical
implementation of wavelet transforms, and algorithms for applying WDNO to simulation and control
problems. Section 3.2 presents the approximate scale invariance of PDE systems and our proposed
multi-resolution training based on this property. The overall algorithm is presented in Figure 1.

3.1 GENERATION IN THE WAVELET DOMAIN

The WDNO performs generative control and simulation in the wavelet domain. Compared to the
Fourier transform, the wavelet transform features locality while simultaneously retaining information
in both space-time and frequency domains, allowing more accurate modeling for abrupt changes.

Wavelet basis. Intuitively, we use wavelet analysis to represent signals with basis functions localized
in both space-time and frequency domains, taking values only within finite intervals. Specifically, this
set of basis functions can be divided into two categories: one type is the scaling function ϕ used to
represent the general outline (low-frequency information) of the original signal, and the other type is
the mother wavelet ψ, which is used to depict the detailed information (high-frequency information)
of the original signal (Alpert et al., 2002; Selesnick et al., 2005).

By scaling the function ϕ and mother wavelets ψ, we obtain ϕl,m and ψl,m:

ϕl,m(x) = 2l/2ϕ(2lx−m), ψl,m(x) = 2l/2ψ(2lx−m),

where m adjusts the position of the wavelet along the x-axis and l represents the level of the basis.
When l increases, the wavelet narrows, and its frequency increases. Then, the entire space can be
spanned by ϕl,m at a particular level l0 and ψl,m at levels greater than or equal to l0, which can be
presented as follows:

u(x) =
∑
m

cl0(m)ϕl0,m(x) +

∞∑
l=l0

∑
m

dl(m)ψl,m(x).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Thus we get the coarse wavelet coefficients cl0(m) and the detail wavelet coefficients dl(m).

Practical implementation. However, due to the discrete nature of real-world data, the levels of ψl,m

will have an upper bound L, meaning there exists a minimum length interval for ψ. As mentioned in
the introduction (Sec. 1), to preserve the locality of the data for integration with the multi-resolution
training, we choose l0 = L. So, the decomposition can be presented as:

u(x) =
∑
m

cL(m)ϕL,m(x) +
∑
m

dL(m)ψL,m(x).

To verify the reliability of the wavelet decomposition’s implementation, in Appendix A, we conduct
tests of the reconstruction error on training data and discover that the relative l2 errors of such
reconstructions are on the order of 10−7, indicating that there is nearly no information loss. Further
details about the wavelet transform can be found in Appendix A.

WDNO for simulation. For simulation, as introduced in Section 2.1, the objective is to learn a
mapping from the equation parameter function a to the solution function u[0,T]. We can view the
learning of this mapping as learning a conditional probability p(u[0,T]|a). However, we consider
the conditional probability in the wavelet space, p(Wu[0,T]

|Wa), where Wu and Wa are the wavelet-
transformed values of u[0,T] and a. Here, we adopt classifier-free conditioning to guide the sampling
process in diffusion models. Specifically, to ensure that the generated wavelet-transformed values
Wu[0,T]

align with the corresponding Wa, we include Wa as a conditioning factor. Specifically, we

initialize an optimization variable W (k)
u[0,T]

with Gaussian noise N (0, I), and iteratively update it via:

W (k−1)
u[0,T]

=W (k)
u[0,T]

− ηϵθ(W
(k)
u[0,T]

,Wa, k) + ξ, ξ ∼ N
(
0, σ2

kI
)
, (3)

where k denotes the denoising step, η is the scaling factor and σk represents the noise schedules.
Repeatedly applying this denoising procedure from k =M down to k = 1 yields the final solution
W

(0)
u[0,T]

. Besides, during inference, we follow the Denoising Diffusion Implicit Model (DDIM) (Song
et al., 2020), which can largely speed up the sampling process.

WDNO for control. For the control problem, in a task aimed to minimize J , our goal is to find the
optimal f[0,T] based on an environment determined by a parameter function a, such as the initial
condition. Consequently, this problem can be naturally modeled as learning p(f[0,T]|a). Here, we
also transform it into the wavelet domain, thus learning p(Wf[0,T]

|Wa). Similar to the simulation,
we employ a conditional diffusion model. However, a challenge arises in that we can only model
and train p(Wf[0,T]

|Wa) as represented in the training set, where f is typically not optimal. To
address this issue, we view the control problem from an energy optimization perspective, and thus
during inference, we enhance the denoising process with guidance J to steer the generation of f
towards a smaller J . Note that without this term, the model can only generate control sequences that
follow the same distribution as the dataset, without optimizing for the control objectives. Specifically,
initializing W (k)

f[0,T]
from Gaussian noise N (0, I), we iteratively update

W
(k−1)
f[0,T]

=W
(k)
f[0,T]

− η
(
ϵθ(W

(k)
f[0,T]

,Wa, k) + λ∇Wf[0,T]
J (Ŵ

(k)
f[0,T]

)
)
+ ξ, ξ ∼ N

(
0, σ2

kI
)
, (4)

where σk and η are the noise schedule and the scaling factor respectively, and λ is the weight of
guidance. Here Ŵ (k)

f[0,T]
is the approximate noise-free W (0)

f[0,T]
estimated from W

(k)
f[0,T]

by:

Ŵ
(k)
f[0,T]

= (W
(k)
f[0,T]

−
√
1− ᾱkϵθ(W

(k)
f[0,T]

,Wa, k))/
√
ᾱk, (5)

We calculate J in Eq. 4 based on Ŵ (k)
f[0,T]

instead of directly using W (k)
f[0,T]

because otherwise noise

in W (k)
f[0,T]

could bring errors to J . Repeatedly applying this denoising procedure yields the final

solution W (0)
f[0,T]

. Similar to the simulation, we also employ the DDIM to accelerate the denoising.

3.2 MULTI-RESOLUTION FRAMEWORK

Next, to enable the diffusion model to generalize across different resolutions, we will introduce our
multi-resolution framework based on the approximate scale invariance, which we will introduce in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the following. In contrast to the model mentioned in the previous section, which we refer to as the
Base-Resolution Model (BRM), we will introduce a Super-Resolution Model (SRM) in this section.
The framework integrates seamlessly with the wavelet transform technique and enables zero-shot
super-resolution, which is one of the fundamental requirements of a neural operator.

Approximate scale invariance. We first introduce the approximate scale invariance. For simplicity,
let us first assume that the spatial domain of the PDE in Eq. 1 is D = [0, 1]. Given the high-resolution
data d+ of size N ×M , and low-resolution data d− of size (N/2) × (M/2), although both are
originally defined over the same spatiotemporal domain [0, T]×D, we can rescale the low-resolution
data into a new spatiotemporal domain [0, T/2]× D̃, where the spatial domain D̃ is scaled to [0, 1/2].
In this case, d+ and d− can be aligned to the same precision. However, note that the coordinates of
d− are now scaled, meaning that the system no longer follows the original equation.

For any arbitrary spatial domain, we can always achieve such alignment through a linear transforma-
tion. We denote the linear transformations of time and space as a1t+ b1 and a2x+ b2 respectively.
Then the stretched function actually satisfies the transformed version of the original equation:

∂u

a1∂t
= F

(
u,

∂u

a2∂x
,

∂2u

a2
2∂x

2
, . . .

)
+ f(t, x), (t, x) ∈ [0, T/2]× D̃. (6)

Note that if we consistently consider the same factor of resolution change, this linear transformation
remains constant, meaning that the coefficients a1 and a2 are fixed. Therefore, the pattern of change
between different resolutions is consistent. Additionally, since the wavelet transform is linear and
localized, this pattern remains consistent in the wavelet domain.

Correspondingly, in practical operations, we consider that each refinement of the discrete observations
of the physical system follows the same pattern, which inspires us to develop the idea of multi-
resolution training. Specifically, based on the training dataset at a given resolution, we downsample it
to create a multi-resolution training dataset and then use this dataset for training to learn this pattern.
Thus, during inference, we can naturally follow this pattern to achieve zero-shot super-resolution.

Multi-resolution training data. In practical implementation, we introduce the Super-Resolution
Model, which is a conditional diffusion model. Assuming the resolution of the original training
dataset is N ×M , that is, N time steps and M spatial points, we obtain data at the resolution of
(N/2)× (M/2) through downsampling, which means we do not need finer-resolution data. We thus
get the data pairs of sizesN×M and (N/2)×(M/2). This downsampling process can be repeated to
obtain data pairs of (N/2)× (M/2) and (N/4)× (M/4), (N/4)× (M/4) and (N/8)× (M/8), and
so forth, to compose the multi-resolution training dataset for training the Super-Resolution Model.

Training. We take the conditional diffusion model (Ho & Salimans, 2022) to model the conditional
probability p(Wh | Wl,Wah

), where h and l respectively present high- and low-resolution data of
data pairs in the multi-resolution training dataset, ah is the high-resolution equation parameter, and
Wh, Wl and Wah

are the corresponding wavelet-transformed values. In detail, to align low-resolution
with high-resolution data, we duplicate the low-resolution data to match the size of high-resolution
data. During training, each batch randomly selects data pairs from a given resolution.

Inference. During the inference process, when super-resolution is required, we first downsample
the high-resolution equation parameters a to the same resolution N ×M as the training data and
perform a wavelet transform. Then, using the Base-Resolution Model, we first generate the wavelet
coefficients of the base low resolution. Subsequently, we utilize the Super-Resolution Model to
generate the data based on both the wavelet coefficients of lower-resolution results with size N ×M
and the wavelet coefficients of ah at the post-super-resolution resolution 2N × 2M . This process is
iterated, allowing us to ultimately generate results with the same resolution as the original a.

4 EXPERIMENTS

In this section, we aim to test (1) the advantages of WDNO in handling complex long-term dynamics
with abrupt changes on simulation and control problems, (2) the effectiveness of multi-resolution
training in performing zero-shot super-resolution, and (3) the benefits of integrating wavelet transform.

We report the Mean Squared Error (MSE) measured on entire state sequences excluding initial
conditions for the simulation tasks, and the control objective J for control problems. Besides, we
consider state-of-the-art baselines from different fields. For control tasks, the following methods are

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

compared: (1) the classical control algorithm Proportional-Integral-Derivative (PID) (Li et al., 2006)
(2) Supervised Learning method (SL) (Hwang et al., 2022), reinforcement learning and imitation
learning methods including (3) Soft Actor-Critic (SAC) (Haarnoja et al., 2018), (4) Behavior Cloning
(BC) (Pomerleau, 1988), (5) Behavior Proximal Policy Optimization (BPPO), and (6) DDPM (Zhuang
et al., 2023). For simulation, we consider (1) DDPM (Ho et al., 2020a), (2) Wavelet Neural Operator
(WNO) (Tripura & Chakraborty, 2022), (3) Multiwavelet Neural Operator (MWT) (Gupta et al.,
2021), (4) Fourier Neural Operator (FNO) (Li et al., 2021), (5) CNN (Hwang et al., 2022), (6)
Operator Transformer (OFormer) (Li et al., 2023), and (7) U-Net (Ronneberger et al., 2015). Details
can be referenced in Appendix I, J and K. For reproducibility, the code is available here.

4.1 1D BURGERS’ EQUATION

Experiment setting. We first consider the 1D Burgers’ equation, a fundamental equation describing
shock waves and turbulence in fluid dynamics, with the Dirichlet boundary condition and external
force f , which follows previous works (Hwang et al., 2022; Mowlavi & Nabi, 2023) and is more
difficult due to the long time horizon of 81 steps. The visualizations are presented in Figure 6. More
details about the setting are in Appendix F. The simulation task is to learn the mapping from the
initial condition u0 and force term f to the entire trajectory u[0,T], while the control objective J
corresponding to the target state u∗(x) and the fixed weight α is

J =

∫
D

|u(T, x)− u∗(x)|2dx+ α

∫
[0,T]×D

|f(t, x)|2dtdx. (7)

Data preparation. We perform a 2D wavelet transform on the original data using the bior2.4 wavelet
basis and the ‘periodization’ mode, implemented using the pytorch_wavelets package (Cotter,
2019). Since the initial condition and the target state are 1D, we take the 1D wavelet transform, repeat
the coefficients, and then concatenate them with the 2D coefficients.

Results We report results of simulation and control tasks in Table 1 and Table 2a. From Table 1, it is
evident that WDNO and DDPM achieve results that far surpass other baselines in simulation, demon-
strating the capability of diffusion models for long-term predictions. In this particular simulation
experiment, the performance of WDNO and DDPM is quite similar, while advantages of WDNO
over DDPM are detailed in Section 4.6 and Section 4.7. For the control problem, WDNO achieves
the best results, which clearly illustrates the superior performance of WDNO.

Table 1: Results of simulation. Bold font denotes the best model and the runner-up is underlined.

Methods
1D 2D

Burgers’ Advection Navier-Stokes Fluid ERA5

WNO 0.00572 4.216e-02 6.5428 0.07975 –
MWT 0.00052 3.468e-04 1.3830 0.01556 21.85750
OFormer 0.00023 1.858e-04 0.6227 0.04303 18.26230
FNO 0.01091 9.712e-04 0.2575 0.00403 14.38638
CNN (1D) / U-Net (2D) 0.00198 5.033e-04 12.4966 0.00737 15.51342
DDPM 0.00013 4.209e-05 5.5228 0.01578 15.21103

WDNO (ours) 0.00014 2.898e-05 0.2195 0.00231 12.83291

4.2 1D ADVECTION EQUATION

Experiment setting. Next, we consider the advection equation, which models pure advection
behavior without nonlinearity. This dataset, sourced from PDEBench (Takamoto et al., 2022), is
set up to predict 80 timesteps of evolution based on the one-time-step initial condition. The system
exhibits relatively smooth and simple dynamics. We aim to observe the performance of various
methods on a system without abrupt changes using this dataset.

Data preparation. Since the data shape is similar to that of the 1D Burgers’ equation, the data
preparation process is consistent with that of the first experiment.

Results. From results in Table 1, we can observe that most models achieve low prediction errors.
However, WDNO still delivers the best results.

6

https://anonymous.4open.science/r/WDNO_anonymous-CD11/README.md

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0

x

6

8

10

12

14

st
at

e

WDNO
DDPM
Ground truth

(a) Results of WDNO and
DDPM on the 1D Navier-
Stokes equation.

t = 0 t = 7 t = 14 t = 21 t = 28

(b) Results of WDNO on the 2D indirect control. The objective is to navigate
the yellow smoke to get around grey obstacles and reach the target bucket located
at the top center.

Figure 2: Visualizations of 1D Navier-Stokes equation and 2D incompressible fluid.

4.3 1D COMPRESSIBLE NAVIER-STOKES EQUATION

Experiment setting. We also consider the important 1D compressible Navier-Stokes equation which
can describe complex phenomena, such as shock wave formation and propagation in aerodynamics
around airplane wings and interstellar gas dynamics. We consider a particularly challenging scenario
from the 1D CFD dataset in PDEBench (Takamoto et al., 2022). We select extremely small viscosity
coefficients, η = 10−8 and ζ = 10−8. The initial conditions are shock-tube fields consisting of
piecewise constant values generating shocks and rarefactions. Boundary conditions allow waves to
exit the domain. Since this pre-existing dataset does not include time-varying control terms, we only
perform the simulation task on it. We provide more details in Appendix G.

Data preparation. The data preparation process is also similar to the above ones.

Results. From Table 1, we can observe that WDNO still gains the best performance among strong
baselines. It is particularly noteworthy that the MSE of DDPM exceeds that of WDNO by over 25
times. In Figure 2a and Figure 7, we further present the detailed prediction results of DDPM and
WDNO. It can be seen that for physical dynamics with abrupt changes, DDPM struggles to model
shocks and loses many fine details. This highlights the necessity of introducing the wavelet transform.
More results, including MSEs, MAEs, and L∞, and other baselines can be found in Appendix C.1.

Table 2: Results of control tasks. Bold font denotes the best model and the runner-up is underlined.
(a) 1D Burgers’ equation.

Methods J
PID (surrogate-solver) 0.6645
SAC (pseudo-online) 0.1376
SAC (offline) 0.3210
BC (surrogate-solver) 0.2998
BC (solver) 0.1879
BPPO (surrogate-solver) 0.3075
BPPO (solver) 0.1867
SL 0.0235
DDPM 0.0272

WDNO (ours) 0.0205

(b) 2D incompressible fluid.

Methods J
BC 0.3085
BPPO 0.3066
SAC (pseudo-online) 0.3212
SAC (offline) 0.6503
DDPM 0.3124

WDNO (ours) 0.2047

4.4 2D INCOMPRESSIBLE FLUID

Experiment setting. Next, we experiment on 2D fluid problems following the incompressible
Navier-Stokes equation. The experiment setting, a complex scenario close to real-world, follows
previous works (Wei et al., 2024), where the control can only be exercised out of the frame as shown
in Figure 2b. The boundary condition at obstacles is the no-slip condition, meaning that the velocities
are set to 0 at the boundary. This experiment thus includes fluid-solid coupling, where functions have
discontinuities and are hard to model. The different data trajectories share the same initial velocity
field; the variations are in initial smoke positions, specifically the smoke’s initial density, and control

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

sequences. The simulation task is to predict the smoke’s density, velocity field, and the percentage of
smoke passing through the target bucket based on the initial smoke density and control sequences.

For the control problem, our goal is to move the smoke from its initial position, located beneath the
central obstacle, into the middle bucket at the top. To be more specific, J is defined as the percentage
of smoke not passing through the target bucket. Firstly, this objective presents considerable challenges
due to the restriction that forces can only be applied in the peripheral regions. This problem requires
the model to plan ahead in the middle of the entire trajectory to avoid entry into the wrong opening.
Furthermore, we need to generate 1,792 control parameters over a time span of 32 steps in these
peripheral zones to indirectly control the velocity field in the central region.

Data preparation. We perform a 3D wavelet transform on original data using bior1.3 wavelet basis
and ‘zero’ mode, implemented through Pytorch Wavelet Toolbox (ptwt) (Wolter et al.,
2024). Since the initial condition and percentage of smoke are 2D and 1D respectively, we take the
2D and 1D wavelet transform and repeat the coefficients to concatenate them.

Results. Table 1 are the simulation results, showing our method is far superior to DDPM and exceeds
all the baselines. It is worth noting that the prediction error of WDNO is an order of magnitude lower
than that of DDPM. As for the results of the control problem shown in Table 2b, our method can
make more than 80% of the smoke pass through the target bucket, and its J is 67% of the next best
method’s J , showing our model’s superiority under complex dynamics with abrupt changes.

4.5 ERA5

Experiment setting. The ERA5 dataset (Kalnay et al., 2018), provided by ECMWF, is a challenging
real-world dataset for weather forecasting. It offers hourly atmospheric estimates with a 0.25°
latitude-longitude resolution from the Earth’s surface to 100 km altitude, spanning from 1979 to the
present. We conduct simulation experiments on this dataset to demonstrate the superior performance
of WDNO. The selected variable is temperature, and the specific task involves predicting the system’s
evolution over the next 20 hours based on its state over the past 12 hours.

Data preparation. Due to similar data size, the process of data preparation is similar to Section 4.4.

Results. We present the results in Table 1. Here we experiment with different parameters for WNO,
but all configurations fail to converge. It is clear that WDNO still achieves the best performance, with
a relative L2 error as low as 0.0161, demonstrating its outstanding capability on challenging datasets.

4.6 ZERO-SHOT SUPER RESOLUTION

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

No upsampling Single upsampling Double upsampling

Figure 3: 1D zero-shot super-resolution. The first
row shows WDNO’s simulation results with no super
resolution, one-level super resolution, and two-level
super resolution. The second row is the ground truth,
and the third row is the difference between the first
and second rows. As resolution increases, WDNO’s
output gets closer to the ground truth, demonstrating its
zero-shot super resolution capability.

In this subsection, we will present the
super-resolution simulation results for the
1D Burgers’ equation and 2D incompress-
ible fluid. For the 1D experiments, the
resolution of the training dataset is of the
time-space resolution 80×120. We demon-
strate the results of single, double, and
triple super-resolution steps on both time
and space, with the corresponding unseen
resolutions of 160 × 240, 320 × 480, and
640× 960 respectively. For the 2D experi-
ments, the training dataset has a resolution
of 32×64×64, and we transfer to the reso-
lution 32×128×128. The visualization of
1D zero-shot super resolution is presented
in Figure 3.

To evaluate the performance across dif-
ferent resolutions, we interpolate the out-
comes of each super-resolution step to the
highest resolution level. This allows us to
assess whether the model can accurately

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3
Number of Upsampling

8

6

4

2

0

2

4

Lo
g(

M
SE

)

WDNO(linear)
FNO(linear)
WNO(linear)

WDNO(nearest)
FNO(nearest)
WNO(nearest)

(a)

0 1
Number of Upsampling

5

4

3

2

1

Lo
g(

M
SE

)

WDNO(linear)
FNO(linear)

WDNO(nearest)
FNO(nearest)

(b)

0 1 2 3
Number of Upsampling

8

7

6

5

Lo
g(

M
SE

)

DDPM(linear)
WDNO(linear)

DDPM(nearest)
WDNO(nearest)

(c)

Figure 4: Results in Section 4.6 and Section 4.7 after n super-resolution steps. All MSEs are
calculated at the finest resolution through linear or nearest interpolation. (a), (b) are 1D Burgers’ and
2D results in Section 4.6, respectively, and (c) is the results in Section 4.7.

0 5 10 15 20 25 30
Time Step

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
SE

WNO
MWT
OFormer
FNO
U-Net
DDPM
WDNO (ours)

(a) Long-term dependencies.

20 40 60 80 100
Percentage of Trajectories Used (%)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
M

SE
WDNO (ours)

(b) Number of training samples.

Diffusion
+FFT

FNO
Denoiser

DDPM WDNO

Models

0
50

100
150

M
SE

3.0258

145.0469

5.5228 0.2195

(c) Comparison with Fourier
transform.

0.01 0.001 0.0001 0
Scale

12
15
18
21

M
SE

 (×
10

5) 21

17
15 14

(d) Measurement noise.

Figure 5: Results of ablation studies.

generate data on finer grid points beyond the resolutions encountered during training. We consider
linear interpolation and nearest interpolation, taking the mesh-invariant model FNO and WNO as the
baselines. Due to WNO’s implementation, it can only perform spatiotemporal super-resolution simul-
taneously, making it unsuitable for 2D super-resolution experiments. As shown in Figure 4a, Figure
4b, Table 16 and Table 17, in both 1D and 2D scenarios, our method surpasses results of interpolation
by achieving significantly improved outcomes with each super-resolution step. It can effectively
reconstruct the values on the newly added grid points at the highest resolution, outperforming the
mesh-invariant FNO and WNO.

4.7 ABLATION STUDY

𝑥

𝑡

Figure 6: MAE and state trajectories.

Abrupt changes. We first verify whether the wavelet
transform can enhance DDPM’s ability to model abrupt
changes. To this end, we present the system’s states and
prediction errors of WDNO and DDPM over time in Fig-
ure 6 and Figure 9. Note that, although WDNO and DDPM
have similar overall MSEs in Table 1, we can observe that
at moments when the state exhibits abrupt changes in
space, WDNO achieves a lower prediction error compared
to DDPM. This demonstrates that the wavelet transform
helps to model dynamics with abrupt changes that are
otherwise difficult to learn.

Combination of wavelet and multi-resolution training.
To assess the efficacy of integrating wavelet transform with multi-resolution training due to the
wavelet transform’s locality, we provide outcomes from DDPM combined with multi-resolution
training by applying the framework directly in the space-time domain, as depicted in Figure 4c.
Notably, in the 1D experiment, as the number of super-resolution steps increases, evaluations at the
highest resolution reveal that the disparity between WDNO and the application of the multi-resolution
training in the original space-time domain becomes more pronounced, verifying the efficiency of
utilizing wavelet transforms for super resolution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Comparison with Fourier transform. We also evaluate the diffusion model in the Fourier domain
(Diffusion + FFT). The implementation strictly follows WDNO, except for replacing the wavelet
transform with Fourier transform. The MSEs on the 1D compressible Navier-Stokes equation are
shown in figure 5c. While the Fourier transform also provides some improvement over DDPM, its
performance is significantly inferior to that of the wavelet transform, which verifies that wavelet
transforms inherently decompose information into low-frequency components and high-frequency
details across different directions, making them more effective for learning complex system dynamics,
such as those with abrupt changes. In addition, we take the FNO as the noise prediction model (FNO
Denoiser), but the results indicate inferior performance. This may be because FNO tends to filter out
high-frequency information, which is crucial for a noise prediction mode.

Long-term dependencies. Long-time predictions tend to perform poorly due to error accumulation
and prediction instability. Therefore, capturing long-term dependencies allows WDNO to grasp the
dynamics over extended periods better, naturally improving WDNO performance. To further verify it,
in Figure 5a, we provide errors of baselines and WDNO at different time steps in the 2D simulation
experiment. It is obvious that WDNO exhibits the slowest error growth, confirming its ability to
capture long-term dependencies.

Measurement noise. To evaluate on datasets with increasing measurement noise, we add noise to
both the training and testing datasets of 1D Burgers’ equation, sampled as Gaussian noise scaled by
the original data’s standard deviation multiplied by a scale factor. We test scale factors of 0.01, 0.001,
and 0.0001. As shown in the Figure 5d, WDNO ’s results exhibit minimal variation with changes in
scale, demonstrating its robustness to noise.

Number of training samples. We reduce the training dataset size to 0.2, 0.4, 0.6, and 0.8 times
the current size (9000 samples) and measure WDNO’s MSE on the 1D compressible Navier-Stokes
equation. The results in Figure 5b show that even when the dataset size is reduced to 0.4 times,
WDNO ’s error remains within a relatively small range. When the dataset size is reduced to 0.2 times,
the error shows a noticeable increase.

Additional results. Due to space constraints, we provide additional details in Appendix C, which
include sensitivity analysis of key hyperparameters, verifying approximate scale invariance, evaluating
the sensitivity of baselines and WDNO to noise in control sequences, comparing computational
resource usage between baselines and WDNO, and analyzing the impact of the guidance parameter.

5 LIMITATION AND FUTURE WORK

Firstly, although we do not conduct real-world experiments, WDNO is not limited to the specific
environments, which means that it can be applied to real scenarios, such as turbulence, structural
materials and plasma, which we will leave as future work. Secondly, due to the wavelet transform and
denoising model U-Net, WDNO is only applicable to static, uniform grid data. We are considering
applying WDNO to irregular data by using geometric wavelets (Xu et al., 2018) combined with
diffusion models designed for graph structures (Vignac et al., 2023), or projecting data from irregular
grids onto regular uniform grids (Li et al., 2020b; Lin et al., 2023), among others. Finally, our current
approach does not yet incorporate information from equations, such as adding physics-informed loss
based on the PDEs, which can enhance the model’s accuracy, robustness, and generalizability.

6 CONCLUSION

In this paper, we have introduced Wavelet Diffusion Neural Operator (WDNO), a method for
simulation and control of PDE systems. By introducing two innovations of generation in the wavelet
domain and multi-resolution training, WDNO addresses the challenges of modeling states with abrupt
changes and generalizing across resolutions typical in PDE systems. Experiments on challenging
settings including the 1D Burgers’ equation, 1D compressible Navier-Stokes equation, and 2D
incompressible fluid demonstrate WDNO’s superior performance and its ability to generalize to much
finer spatial and temporal resolutions than in training. We believe that WDNO will be useful for
complex physical simulation and control in a wide range of scientific and engineering domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh International
Conference on Learning Representations, 2022.

Beylkin Alpert, Gregory Beylkin, David Gines, and Lev Vozovoi. Adaptive solution of partial
differential equations in multiwavelet bases. Journal of Computational Physics, 182(1):149–190,
2002.

Gerben Beintema, Alessandro Corbetta, Luca Biferale, and Federico Toschi. Controlling rayleigh–
bénard convection via reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.

Gabi Ben-Dor and Gabi Ben-Dor. Shock wave reflection phenomena, volume 2. Springer, 2007.

Oussama Boussif, Yoshua Bengio, Loubna Benabbou, and Dan Assouline. Magnet: Mesh agnostic
neural pde solver. Advances in Neural Information Processing Systems, 35:31972–31985, 2022.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022a.

Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural pde solvers. In
International Conference on Learning Representations, 2022b.

Salva Rühling Cachay, Bo Zhao, Hailey James, and Rose Yu. Dyffusion: A dynamics-informed
diffusion model for spatiotemporal forecasting. arXiv preprint arXiv:2306.01984, 2023.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, 6(6):631–640, 2024.

Francesco Carpanese. Development of free-boundary equilibrium and transport solvers for simulation
and real-time interpretation of tokamak experiments. Technical report, EPFL, 2021.

Boyuan Chen, Kuang Huang, Sunand Raghupathi, Ishaan Chandratreya, Qiang Du, and Hod Lipson.
Automated discovery of fundamental variables hidden in experimental data. Nature Computational
Science, 2(7):433–442, 2022a.

Peter Yichen Chen, Jinxu Xiang, Dong Heon Cho, Yue Chang, GA Pershing, Henrique Teles Maia,
Maurizio M Chiaramonte, Kevin Carlberg, and Eitan Grinspun. Crom: Continuous reduced-order
modeling of pdes using implicit neural representations. arXiv preprint arXiv:2206.02607, 2022b.

Ricky T.Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems, 2018-Decem:6571–
6583, 2018. ISSN 10495258.

Sihao Cheng, Rudy Morel, Erwan Allys, Brice Ménard, and Stéphane Mallat. Scattering spectra
models for physics. PNAS nexus, 3(4):pgae103, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Fergal Brian Cotter. Uses of Complex Wavelets in Deep Convolutional Neural Networks. PhD thesis,
Trinity College, 2019.

Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of mathematical
physics. IBM journal of Research and Development, 11(2):215–234, 1967.

FA Croitoru, V Hondru, RT Ionescu, and M Shah. Diffusion models in vision: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Jie Ding, Min Wu, and Min Xiao. Nonlinear decoupling control with pi λ d µ neural network for
mimo systems. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–8, 2022. doi:
10.1109/TNNLS.2022.3225636.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and mcmc. In International conference on
machine learning, pp. 8489–8510. PMLR, 2023.

MA Elhawary. Deep reinforcement learning for active flow control around a circular cylinder using
unsteady-mode plasma actuators. arXiv preprint arXiv:2012.10165, 2020.

Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A
Tchelepi, Philip Marcus, Mr Prabhat, Anima Anandkumar, et al. Meshfreeflownet: A physics-
constrained deep continuous space-time super-resolution framework. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2020.

Haodong Feng, Yue Wang, Hui Xiang, Zhiyang Jin, and Dixia Fan. How to control hydrodynamic
force on fluidic pinball via deep reinforcement learning. Physics of Fluids, 35(4), 2023.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive
convolutional neural networks for solving parameterized steady-state pdes on irregular domain.
Journal of Computational Physics, 428:110079, 2021.

Tiantong Guo, Hojjat Seyed Mousavi, Tiep Huu Vu, and Vishal Monga. Deep wavelet prediction for
image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, pp. 104–113, 2017.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Florentin Guth, Simon Coste, Valentin De Bortoli, and Stéphane Mallat. Wavelet score-based genera-
tive modeling. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=xZmjH3Pm2BK.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Elie Hachem, Hassan Ghraieb, Jonathan Viquerat, Aurélien Larcher, and P Meliga. Deep reinforce-
ment learning for the control of conjugate heat transfer. Journal of Computational Physics, 436:
110317, 2021.

Paul Hagemann, Sophie Mildenberger, Lars Ruthotto, Gabriele Steidl, and Nicole Tianjiao Yang.
Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation,
November 2023. URL http://arxiv.org/abs/2303.04772. arXiv:2303.04772 [cs,
math, stat].

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank
Wood. Flexible diffusion modeling of long videos. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 27953–27965. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf.

12

https://openreview.net/forum?id=xZmjH3Pm2BK
https://openreview.net/forum?id=xZmjH3Pm2BK
http://arxiv.org/abs/2303.04772
https://proceedings.neurips.cc/paper_files/paper/2022/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b2fe1ee8d936ac08dd26f2ff58986c8f-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020b.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv:2204.03458, 2022.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable physics.
In International Conference on Learning Representations, 2020.

Peiyan Hu, Qi Meng, Bingguang Chen, Shiqi Gong, Yue Wang, Wei Chen, Rongchan Zhu, Zhi-Ming
Ma, and Tie-Yan Liu. Neural operator with regularity structure for modeling dynamics driven by
spdes. arXiv e-prints, pp. arXiv–2204, 2022.

Huaibo Huang, Ran He, Zhenan Sun, and Tieniu Tan. Wavelet-srnet: A wavelet-based cnn for multi-
scale face super resolution. In Proceedings of the IEEE international conference on computer
vision, pp. 1689–1697, 2017.

Jiahe Huang, Guandao Yang, Zichen Wang, and Jeong Joon Park. Diffusionpde: Generative pde-
solving under partial observation. In ICML 2024 AI for Science Workshop, 2024.

Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural Wavelet-domain Diffusion for
3D Shape Generation, September 2022. URL http://arxiv.org/abs/2209.08725.
arXiv:2209.08725 [cs].

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving PDE-Constrained
Control Problems Using Operator Learning. AAAI, 36(4):4504–4512, June 2022. ISSN 2374-3468,
2159-5399. doi: 10.1609/aaai.v36i4.20373. URL https://ojs.aaai.org/index.php/
AAAI/article/view/20373.

Valerii Iakovlev, Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Latent neural odes
with sparse bayesian multiple shooting. In The Eleventh International Conference on Learning
Representations, 2022.

Valerii Iakovlev, Markus Heinonen, and Harri Lähdesmäki. Learning space-time continuous neural
pdes from partially observed states. arXiv preprint arXiv:2307.04110, 2023a.

Valerii Iakovlev, Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Latent neural ODEs
with sparse bayesian multiple shooting. In The Eleventh International Conference on Learning
Representations, 2023b. URL https://openreview.net/forum?id=moIlFZfj_1b.

Devendra K Jangid, Neal R Brodnik, Michael G Goebel, Amil Khan, SaiSidharth Majeti, McLean P
Echlin, Samantha H Daly, Tresa M Pollock, and BS Manjunath. Adaptable physics-based super-
resolution for electron backscatter diffraction maps. npj Computational Materials, 8(1):255,
2022.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162, pp. 9902–9915. PMLR, 17–23 Jul 2022.

Eugenia Kalnay, Masao Kanamitsu, Robert Kistler, William Collins, Dennis Deaven, Lev Gandin,
Mark Iredell, Suranjana Saha, Glenn White, John Woollen, et al. The ncep/ncar 40-year reanalysis
project. In Renewable energy, pp. Vol1_146–Vol1_194. Routledge, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

13

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
http://arxiv.org/abs/2209.08725
https://ojs.aaai.org/index.php/AAAI/article/view/20373
https://ojs.aaai.org/index.php/AAAI/article/view/20373
https://openreview.net/forum?id=moIlFZfj_1b

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Georg Kohl, Liwei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. In ICML 2024 AI for Science Workshop, 2024.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Kai Lagemann, Christian Lagemann, and Sach Mukherjee. Invariance-based learning of latent
dynamics. In The Twelfth International Conference on Learning Representations, 2023.

Qiufu Li, Linlin Shen, Sheng Guo, and Zhihui Lai. Wavelet integrated cnns for noise-robust image
classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7245–7254, 2020a.

Tianyi Li, Luca Biferale, Fabio Bonaccorso, Martino Andrea Scarpolini, and Michele Buzzicotti.
Synthetic lagrangian turbulence by generative diffusion models. Nature Machine Intelligence, pp.
1–11, 2024.

Yun Li, Kiam Heong Ang, and G.C.Y. Chong. Pid control system analysis and design. IEEE Control
Systems Magazine, 26(1):32–41, 2006. doi: 10.1109/MCS.2006.1580152.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=EPPqt3uERT.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzade-
nesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal,
Arash Vahdat, and Anima Anandkumar. Score-based Diffusion Models in Function Space, Novem-
ber 2023. URL http://arxiv.org/abs/2302.07400. arXiv:2302.07400 [cs, math, stat].

Haitao Lin, Lirong Wu, Yongjie Xu, Yufei Huang, Siyuan Li, Guojiang Zhao, and Stan Z Li. Non-
equispaced fourier neural solvers for pdes. In ICLR 2023 Workshop on Physics for Machine
Learning, 2023.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
refiner: Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information
Processing Systems, 36, 2024.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45(1):503–528, August 1989. ISSN 1436-4646. doi: 10.1007/
BF01589116. URL https://doi.org/10.1007/BF01589116.

Pengju Liu, Hongzhi Zhang, Wei Lian, and Wangmeng Zuo. Multi-level wavelet convolutional neural
networks. IEEE Access, 7:74973–74985, 2019.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

14

https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=c8P9NQVtmnO
http://arxiv.org/abs/2302.07400
https://doi.org/10.1007/BF01589116

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Peter Lynch. The origins of computer weather prediction and climate modeling. Journal of computa-
tional physics, 227(7):3431–3444, 2008.

Saviz Mowlavi and Saleh Nabi. Optimal control of pdes using physics-informed neural networks.
Journal of Computational Physics, 473:111731, 2023.

Guido Novati, Siddhartha Verma, Dmitry Alexeev, Diego Rossinelli, Wim M Van Rees, and Petros
Koumoutsakos. Synchronisation through learning for two self-propelled swimmers. Bioinspiration
& biomimetics, 12(3):036001, 2017.

Yi Pan, Amir-massoud Farahmand, Martha White, Samira Nabi, Pulkit Grover, and Daniel Nikovski.
Reinforcement learning with function-valued action spaces for partial differential equation control.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80, pp. 3986–3995, Stockholm, Sweden, 10–15 July 2018. PMLR.

Aditya A Paranjape, Jinyu Guan, Soon-Jo Chung, and Miroslav Krstic. Pde boundary control for
flexible articulated wings on a robotic aircraft. IEEE Transactions on Robotics, 29(3):625–640,
2013.

Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, and Sven Wang. Infinite-Dimensional
Diffusion Models, October 2023. URL http://arxiv.org/abs/2302.10130.
arXiv:2302.10130 [cs, math, stat].

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Timo Ewalds, Andrew El-Kadi, Jacklynn Stott,
Shakir Mohamed, Peter Battaglia, Remi Lam, and Matthew Willson. Gencast: Diffusion-based
ensemble forecasting for medium-range weather. arXiv preprint arXiv:2312.15796, 2023.

Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade, and Nicolas Cerardi. Artificial neural
networks trained through deep reinforcement learning discover control strategies for active flow
control. Journal of fluid mechanics, 865:281–302, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
and accurate learning of pdes. Advances in Neural Information Processing Systems, 36, 2024.

Jens J Rassweiler, Thomas Knoll, Kai-Uwe Köhrmann, James A McAteer, James E Lingeman,
Robin O Cleveland, Michael R Bailey, and Christian Chaussy. Shock wave technology and
application: an update. European urology, 59(5):784–796, 2011.

Pu Ren, Chengping Rao, Yang Liu, Zihan Ma, Qi Wang, Jian-Xun Wang, and Hao Sun. Physr:
Physics-informed deep super-resolution for spatiotemporal data. Journal of Computational Physics,
492:112438, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

15

http://arxiv.org/abs/2302.10130

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. Dyffusion: A dynamics-informed
diffusion model for spatiotemporal forecasting. Advances in Neural Information Processing
Systems, 36, 2023.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Ivan W Selesnick, Richard G Baraniuk, and Nick C Kingsbury. The dual-tree complex wavelet
transform. IEEE signal processing magazine, 22(6):123–151, 2005.

Shuyao Shang, Zhengyang Shan, Guangxing Liu, LunQian Wang, XingHua Wang, Zekai Zhang,
and Jinglin Zhang. Resdiff: Combining cnn and diffusion model for image super-resolution. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8975–8983, 2024.

Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
flow field reconstruction. Journal of Computational Physics, 478:111972, 2023.

Sabrine Slama, Ayachi Errachdi, and Mohamed Benrejeb. Neural adaptive pid and neural indi-
rect adaptive control switch controller for nonlinear mimo systems. Mathematical Problems in
Engineering, 2019, 2019.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
arXiv:2010.02502, October 2020. URL https://arxiv.org/abs/2010.02502.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: a neural operator for parametric
partial differential equations. arXiv preprint arXiv:2205.02191, 2022.

Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al. Lion:
Latent point diffusion models for 3d shape generation. Advances in Neural Information Processing
Systems, 35:10021–10039, 2022.

Siddhartha Verma, Guido Novati, and Petros Koumoutsakos. Efficient collective swimming by
harnessing vortices through deep reinforcement learning. Proceedings of the National Academy of
Sciences, 115(23):5849–5854, 2018.

Clément Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In Proceedings of the 11th International
Conference on Learning Representations, 2023.

Rui Wang, Yihe Dong, Sercan Ö Arik, and Rose Yu. Koopman neural forecaster for time series with
temporal distribution shifts. arXiv preprint arXiv:2210.03675, 2022.

Tao Wang, Changhua Lu, Yining Sun, Mei Yang, Chun Liu, and Chunsheng Ou. Automatic ecg
classification using continuous wavelet transform and convolutional neural network. Entropy, 23
(1):119, 2021.

ZP Wang, RJ Lin, ZY Zhao, X Chen, PM Guo, N Yang, ZC Wang, and DX Fan. Learn to flap: foil
non-parametric path planning via deep reinforcement learning. Journal of Fluid Mechanics, 984:
A9, 2024.

Long Wei, Peiyan Hu, Ruiqi Feng, Haodong Feng, Yixuan Du, Tao Zhang, Rui Wang, Yue Wang,
Zhi-Ming Ma, and Tailin Wu. A generative approach to control complex physical systems. arXiv
preprint arXiv:2407.06494, 2024.

Moritz Wolter, Felix Blanke, Jochen Garcke, and Charles Tapley Hoyt. ptwt - the pytorch wavelet
toolbox. Journal of Machine Learning Research, 25(80):1–7, 2024. URL http://jmlr.org/
papers/v25/23-0636.html.

16

https://arxiv.org/abs/2010.02502
http://jmlr.org/papers/v25/23-0636.html
http://jmlr.org/papers/v25/23-0636.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. In Forty-first International Conference on
Machine Learning, 2024a.

Tailin Wu, Takashi Maruyama, Long Wei, Tao Zhang, Yilun Du, Gianluca Iaccarino, and Jure
Leskovec. Compositional generative inverse design. In The Twelfth International Confer-
ence on Learning Representations, 2024b. URL https://openreview.net/forum?id=
wmX0CqFSd7.

Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural network.
In International Conference on Learning Representations, 2018.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Galli-
nari. Continuous pde dynamics forecasting with implicit neural representations. arXiv preprint
arXiv:2209.14855, 2022.

Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image
super-resolution by residual shifting. Advances in Neural Information Processing Systems, 36,
2024.

Mykhaylo Zayats, Małgorzata J Zimoń, Kyongmin Yeo, and Sergiy Zhuk. Super resolution for
turbulent flows in 2d: stabilized physics informed neural networks. In 2022 IEEE 61st Conference
on Decision and Control (CDC), pp. 3377–3382. IEEE, 2022.

Yi Zhu, Fang-Bao Tian, John Young, James C Liao, and Joseph CS Lai. A numerical study of fish
adaption behaviors in complex environments with a deep reinforcement learning and immersed
boundary–lattice boltzmann method. Scientific Reports, 11(1):1691, 2021.

Zifeng Zhuang, Kun Lei, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
optimization. arXiv preprint arXiv:2302.11312, 2023.

17

https://openreview.net/forum?id=wmX0CqFSd7
https://openreview.net/forum?id=wmX0CqFSd7

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A DETAILS OF WAVELET DECOMPOSITION

In this section, we provide a detailed introduction to wavelet transforms. Let Vl be the space spanned
by scaling functions ϕl,m, m ∈ Z, and Wl be the space spanned by wavelets ψl,m, m ∈ Z. The
scaling functions possess two fundamental properties:

1. The scale function is orthogonal for its integer translation.

2. The wavelet spaces satisfy a nested and increasing sequence of spaces:

V−∞ ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ V∞.

As for the space Vl and Wl, they have the following relationship:

Vl+1 = Vl ⊕Wl.

Intuitively, the spaces Wl spanned by the wavelet functions complement the missing information
between the scaling function spaces of different levels.

Then, the process of wavelet transform can be viewed as convolving the scaling and wavelet functions
of a certain level with the original signal, effectively splitting the signal into low-frequency and
high-frequency components. Subsequently, the low-frequency part is further decomposed. This
results in obtaining coefficients cl0 and dl0 , dl0+1, dl0+2,

There are numerous types of wavelet bases that have different waveforms. Here we provide further
insights into the criteria used for wavelet selection. For the wavelets we consider (bior, db, sym),
bior and sym wavelets offer symmetry, which reduces phase distortion during processing and allows
for more accurate reconstruction compared to db, as also reflected in the reconstruction loss table.
Regarding the choice of wavelet scale, despite the higher smoothness of higher-order wavelets, they
generally have larger value ranges. Therefore, for data with small spatiotemporal size, high-order
wavelets may not be suitable. For example, in the 1D data with a size of N × 81× 120, we choose
bior2.4, while for the 2D data with a size ofN×32×64×64, we select bior1.3, a lower-order wavelet.
Using wavelets with excessively large support lengths may distort coefficients near the boundaries
and fail to effectively decompose signal details, hindering the effectiveness of multi-resolution
decomposition.

Specifically, we select bior2.4 and bior1.3 from the Biorthogonal wavelet family for our experiments
on the 1D Burgers’ equation and 2D incompressible fluid, respectively. And we we use the ‘peri-
odization’ mode in 1D and the ‘zero’ mode in 2D. Due to the presence of the temporal dimension,
we perform a two-dimensional wavelet transform on data from the 1D Burgers’ equation and a
three-dimensional wavelet transform on data from the 2D incompressible fluid.

In Table 3, we report the reconstruction errors of wavelet transforms using different wavelet bases on
the 1D Burgers’ equation and 2D incompressible fluid, the results show that the reconstruction is
significantly low.

Table 3: Reconstruction relative L2 errors on 1D Burgers’ equation and 2D incompressible
fluid.

Types of wavelet 1D 2D

bior1.3 1.09e-07 3.32e-07
bior2.4 8.32e-08 2.65e-07

db4 1.39e-07 4.39e-07
sym4 1.17e-07 3.74e-07

Besides, in Table 4, we provide the total time consumption for Fourier and wavelet transforms on the
training set of the 1D compressible Navier-Stokes equation. The Fourier transform is implemented
using PyTorch’s 2D Fast Fourier Transform function. Both times are recorded on an A100 GPU with
a batch size of 2000. From the results, we can observe wavelet transform’s efficiency.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Total time consumption for Fourier and wavelet transforms on the training set of the
1D compressible Navier-Stokes equation.

Wavelet transform Fourier transform

Time (s) 1.0171 1.3810

B VISUALIZATION OF EXPERIMENT RESULTS

B.1 VISUALIZATIONS OF 1D COMPRESSIBLE NAVIER-STOKES EQUATION

In Figure 7, we present visualizations of predictions from WDNO and DDPM. It is clear that WDNO
is far better at modeling states with abrupt changes. While DDPM can not capture details, WDNO
can successfully predict these precise changes.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Visualizations of WDNO’s and DDPM’s performance on simulation of the 1D com-
pressible Navier-Stokes equation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.2 VISUALIZATIONS OF 2D INCOMPRESSIBLE FLUID

We provide visual results of WDNO on challenging 2D control tasks in Figure 8. It can easily be
observed that, for many trajectories, our method successfully guides the smoke to pass essentially
through the target bucket, which is not achieved by other baselines.

t = 0 t = 7 t = 14 t = 21 t = 28

Figure 8: Visualizations of WDNO’s performance on the 2D incompressible fluid control task.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C ADDITIONAL RESULTS OF EXPERIMENTS

C.1 MORE COMPARISONS ON 1D COMPRESSIBLE NAVIER-STOKES EQUATION

Here, we provide more results on simulation of 1D Compressible Navier-Stokes Equation. We
further compare WDNO with Transolver (Wu et al., 2024a), CNO (Raonic et al., 2024), MSVI
(Iakovlev et al., 2022), ACDM (Kohl et al., 2024), and DiffusionPDE (Huang et al., 2024). We
also add comparisons with diffusion models in Fourier domain and FNO denoiser. The results in
Table 5 demonstrate that WDNO still achieves the best performance on MSE. It can be observed
that the trends of MAE align closely with MSE. However, the L∞ error values across different
methods are relatively similar because this metric only considers the maximum value across the entire
spatiotemporal domain, thus capturing less information.

Table 5: Comparison of Various Models Based on Error Metrics

Model MSE MAE L∞ Error
Transolver 4.9984 0.4025 4.87284
CNO 0.3987 0.2765 9.9169
MSVI 1.7063 0.6047 17.0386
ACDM 4.6574 0.8946 60.9370
DiffusionPDE 5.5936 0.9792 16.0514
WNO 6.5428 1.1921 21.3860
MWT 1.3830 0.5196 11.3677
OFormer 0.6227 0.4006 30.9019
FNO 0.2575 0.1985 11.1495
CNN 12.4966 1.2111 17.6116
DDPM 5.5228 0.9795 16.0532

Diffusion + FFT 3.0258 0.8498 14.6670
FNO Denoiser 145.0469 6.6406 31.7515

WDNO (ours) 0.2195 0.1049 13.0626

C.2 ABRUPT CHANGES

Here we provide more visualizations of the comparison between WDNO’s and DDPM’s MAE of
different time steps. Figure 9 verifies that WDNO can better model abrupt changes due to the wavelet
transform.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

𝑥

𝑡

Figure 9: Visualizations of WDNO’s and DDPM’s MAE on the 1D Burgers’ equation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.3 APPROXIMATE SCALE INVARIANCE

We conduct experiments to verify approximate scale invariance by training FNOs on original, once-
downsampled, twice-downsampled, and mixed datasets, then testing at these three resolutions. From
Table 6, it is evident that the model trained on the mixed dataset performs better than those trained at
specific resolutions.

Table 6: Approximate scale invariance on the 1D Burgers’ equation.

Original Once-downsampled Twice-downsampled

Mix 4.35e-04 4.35e-04 4.57e-04

Individual 6.36e-04 4.96e-04 4.91e-04

C.4 SENSITIVITY ANALYSIS

To conduct a sensitivity analysis of key hyper-parameters, we analyze the impact of wavelet type,
guidance weight λ, DDIM sampling steps, and coefficient η on 1D simulation and control. As shown
in Table 7 and Table 8, WDNO is not sensitive to hyper-parameters.

Table 7: Results of simulation on 1D Burgers’ equation.

(a) DDIM step.

MSE

20 0.00022
40 0.00017
50 0.00014
100 0.00015
200 0.00017

(b) DDIM η.

MSE

0.2 0.00020
0.5 0.00020
0.8 0.00017
1 0.00014

(c) Wavelet type.

MSE

0.2 0.00020
0.5 0.00020
0.8 0.00017
1 0.00014

Table 8: Results of control on 2D incompressible fluid.

(a) DDIM step.

Results

20 0.0223
40 0.0215
50 0.0205
100 0.0200
200 0.0217

(b) DDIM η.

Results

0.2 0.2285
0.5 0.0694
0.8 0.0244
1 0.0205

(c) Guidance weight (1e4).

Results

9 0.0213
10 0.0207
11.5 0.0205
12.5 0.0205
13 0.0215

C.5 ROBUSTNESS

In addition, to test the robustness of WDNO, we first conduct 1D experiments with a 0.1 probability of
noise in the control sequence. Table 9 shows that WDNO outperforms other learning-based methods,
showing its robustness. We also give the results (mean ± std) of 1D control averaged over 50 testing
samples in Table 10, showing that WDNO’s std is relatively low.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 9: 1D control experiments with a 0.1 probability of noise in the control sequences.

Methods J
PID (surrogate-solver) 0.6644
SAC (pseudo-online) 0.2166
SAC (offline) 0.3979
BC 0.2457
BPPO 0.2392
SL 0.0348
DDPM 0.0701

WDNO (ours) 0.0305

Table 10: Results of control tasks (mean±std). Bold font denotes the best model and the runner-up
is underlined.

Method Results

PID (surrogate) 0.6645± 0.5940
SAC (pseudo-online) 0.1376± 0.1729
SAC (offline) 0.3210± 0.2733
BC (surrogate) 0.2998± 0.1137
BPPO (surrogate) 0.3075± 0.1178
SL 0.0235± 0.0171
DDPM 0.0272± 0.0198

WDNO (ours) 0.0205± 0.0198

C.6 COMPUTATIONAL RESOURCES

We provide inference times for a batch size of 1 on A100 in Table 11. It is evidence that WDNO’s
runtime is moderate, and its relatively large parameter count is due to the U-Net base model, which
can be replaced with smaller models. In addition, we test WDNO’s total training and inference times.
As shown in Table 12, WDNO has reasonable spatial and temporal costs. Notably, for the 1D Burgers’
equation, WDNO achieves the lowest training time, as shown in Table 13.

Table 11: Number of parameters and inference time (s) results of 1D Burgers’ equation.

(a) Control task.

Methods Parameters Time

PID (surrogate) 4034952 0.081
SAC (pseudo-online) 89011116 0.503
SAC (offline) 88854770 0.466
BC 1543408 0.075
BPPO 6579171 0.079
SL 156346 181.35
DDPM 140703746 1.903

WDNO (ours) 140748553 1.131

(b) Simulation task.

Methods Parameters Time

WNO 153408 0.0105
MWT 2733978 0.0093
OFormer 2556321 0.0338
FNO 4769601 0.003
CNN 156346 0.277
DDPM 140703746 1.884

WDNO (ours) 140748553 0.966

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 12: Total training and inference time of WDNO.

Control Simulation

Time Space (MB) Time Space (MB)

1D train (A100) 2.4h 7165 2.5h 7165
1D inference (A100) 455s 3691 5.2s 3761

2D train (2A100) 7.8h 8043+8039 7.9h 8043+8039
2D inference (A100) 2676s 30255 70.9s 16621

Table 13: Training time (h) results of 1D Burgers’ equation.

Methods Time (h)

WNO 4.5
MWT 6.5
OFormer 19.7
FNO 10.5
CNN 63.8
DDPM 7.8

WDNO (ours) 2.5

Moreover, in Table 14, we provide the time and space required for WDNO to generate a batch of
size 5 during inference on the 1D Burgers’ equation experiment, without super-resolution, and with
one, two, and three levels of super-resolution. As shown in Table, with each increase in the level of
resolution, the required time and space increase, and the growth rate is increasing. We can infer that
as the level of super-resolution increases, the spatiotemporal costs also rise, indicating potential areas
for further algorithm optimization.

Table 14: Inference time and space of 1D super resolution.

Level of super resolution 0 1 2 3

Time (s) 1.7 1.8 6.9 28.1
Space (MB) 1711 1831 3503 10631

C.7 IMPORTANCE OF GUIDANCE

Since λ in Eq. 4 is a hyperparameter, it can be set to zero, which means not including this term during
denoising. In practice, we have selected the best-performing λ. To further show the effectiveness, we
have also provided the 1D control results with and without this term in Table 15. We see that without
this term, the performance drops a lot.

Table 15: Results of control on the 1D Burgers’ equation.

λ Results

0 0.3360
120000 0.0205

C.8 ZERO-SHOT SUPER-RESOLUTION

In Table 16 and Table 17, we provide results in Section 4.6, which reveal that our method is
outstanding in zero-shot super-resolution.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 16: Mean squared error of zero-shot super-resolution on the 1D Burgers’ equation.

Methods 0 times 1 times 2 times 3 times

WNO (linear) 0.0110 0.6284 1.4474 2.0588
FNO (linear) 0.00401 0.03161 0.05722 0.07200
WDNO (linear) 0.00259 0.00074 0.00036 0.00035
WNO (nearest) 0.0079 0.6491 1.5007 2.0588
FNO (nearest) 0.00564 0.03174 0.05711 0.07200
WDNO (nearest) 0.00382 0.00110 0.00046 0.00035

Table 17: Mean squared error of zero-shot super-resolution on the 2D incompressible fluid.

Methods 0 times 1 times

FNO (linear) 0.15532 0.01118
WDNO (linear) 0.09309 0.00765
FNO (nearest) 0.19978 0.01118
WDNO (nearest) 0.12002 0.00765

D RELATED WORK

PDE simulation. Solving a family of PDEs can be regarded as approximating nonlinear operators in
the functional space, where neural operators have recently proved effective (Kovachki et al., 2023),
such as DeepONet (Lu et al., 2019), FNO (Li et al., 2021). GNOT (Hao et al., 2023), LNPDE
(Iakovlev et al., 2023a), CROM (Chen et al., 2022b), DINo (Yin et al., 2022), MagNet (Boussif
et al., 2022), Transolver (Wu et al., 2024a) and CNO (Raonic et al., 2024). Additionally, scientific
knowledge such as Clifford algebras (Brandstetter et al., 2022a) and Koopman theory (Wang et al.,
2022) has been incorporated into neural networks to improve neural operators’ performance. There
are also neural ODE based approaches able to simulate PDE systems (Iakovlev et al., 2022; Lagemann
et al., 2023). Among them, some models explicitly learn inside functional spaces, such as the Fourier
domain (Li et al., 2021) and the wavelet domain (Gupta et al., 2021; Tripura & Chakraborty, 2022;
Cheng et al., 2024). However, most existing works mainly focus on simulating physical systems,
lacking physical system control problems. Our work proposes a wavelet diffusion neural operator that
excels in simulating physical systems and can naturally manage both control and super-resolution
simulation tasks.

Super-resolution tasks. Super-resolution tasks aim to reconstruct high-resolution data from low-
resolution data. In recent years, many studies on physical system simulation have focused on super
resolution tasks. Some methods transfer the learning of dynamics into function space, naturally
enabling zero-shot super resolution capabilities (Li et al., 2021; Tripura & Chakraborty, 2022; Cao
et al., 2024). Additionally, some studies attempt to incorporate physical information, such as equation
forms, into the model’s learning process to achieve super-resolution (Gao et al., 2021; Jangid et al.,
2022; Zayats et al., 2022; Jangid et al., 2022). Other studies primarily achieve super-resolution
by injecting high-resolution information into a super-resolution model (Esmaeilzadeh et al., 2020;
Ren et al., 2023; Shu et al., 2023). Given the importance of the super-resolution task, we propose
leveraging approximate scale invariance to enable diffusion models to achieve super-resolution
capabilities.

Wavelet transform. The wavelet transform, a powerful tool for signal processing and analysis, is
widely utilized in designing deep learning algorithms. Due to its ability to decompose signals into
high-frequency and low-frequency components, it is used to enhance robustness (Li et al., 2020a),
improve accuracy (Li et al., 2020a; Liu et al., 2019), enable super-resolution (Guo et al., 2017; Huang
et al., 2017), and extract features (Wang et al., 2021), among other applications. Two closely related
works (Hui et al., 2022; Guth et al., 2022) incorporate the wavelet transform into the diffusion model,
but these works do not involve space-time multi-resolution correlations. Also, our paper focuses on
different tasks and emphasizes the operator characteristics in PDE systems, such as mapping between
infinite-dimensional function spaces.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Long-term predictions. Error accumulation is a common challenge for transient PDE predictions,
and several methods have been proposed to address it. Some works suggest training prediction
models over multiple steps rather than a single step to enhance robustness in multi-step predictions
(Lusch et al., 2018; Brandstetter et al., 2022b). Techniques such as noise injection into training
data and adversarial training are employed to improve the model’s resilience to small disturbances
(Sanchez-Gonzalez et al., 2020; Lippe et al., 2024), while other works use geometric manifold
learning to identify the intrinsic dimensions of observed systems, enabling robust predictions of
underlying dynamics (Chen et al., 2022a).

PDE control. For the task of controlling physical systems governed by PDEs, various deep learning-
based techniques have been proposed (Feng et al., 2023; Zhu et al., 2021; Degrave et al., 2022).
A prominent class of methods is supervised learning (SL) (Holl et al., 2020; Hwang et al., 2022)
which optimizes control input via backpropagation through a neural surrogate model. Unlike these
methods, our approach does not rely on auto-regressive surrogate models but instead learns both
entire state trajectories and control sequences. Besides, deep reinforcement learning (DRL) has
been applied to various physical problems such as drag reduction (Rabault et al., 2019; Elhawary,
2020; Feng et al., 2023; Wang et al., 2024), heat transfer (Beintema et al., 2020; Hachem et al.,
2021), and swimming (Novati et al., 2017; Verma et al., 2018). These methods often implicitly
incorporate physical information and make decisions sequentially. In contrast, our approach generates
entire trajectories, facilitating trajectory-level optimization while embedding physical insights learned
by models. Additionally, physics-informed neural networks (PINNs) (Raissi et al., 2019) have
recently been used for control (Mowlavi & Nabi, 2023), but they require explicit formulations of PDE
dynamics. In contrast, our method is data-driven and can address a broader spectrum of complex
physical system control problems without knowledge of the explicit PDE dynamics.

Diffusion models. The diffusion model (Ho et al., 2020b) is proficient in learning high-dimensional
distributions and has succeeded in image and text generation (Dhariwal & Nichol, 2021). It has
also demonstrated remarkable ability, including strong modeling capabilities in complex and high-
dimensional systems and temporal stability, in scientific or engineering problems such as robot
control (Janner et al., 2022; Ajay et al., 2022), fluid prediction (Li et al., 2024; Kohl et al., 2024),
weather forecasting (Price et al., 2023), 3D human motion generation (Vahdat et al., 2022), PDE
simulation based on sparse observation (Huang et al., 2024) and PDE control (Wei et al., 2024;
Wu et al., 2024b). Among them, ACDM (Kohl et al., 2024) is an autoregressive model for fluid
simulation, which means both training and inference are performed sequentially. The model predicts
the next k steps u[k,2k−1] based on the previous k steps u[0,k−1]. Then, using u[k,2k−1], it predicts
u[2k,3k−1], and this process continues iteratively until the entire trajectory u[0,T−1] of T steps is
generated. In contrast, our proposed method predicts the entire trajectory u[0,T−1] directly in a single
inference step based on the given k initial steps, significantly reducing computational overhead.
Bisides, generalization across different resolutions and modeling states with abrupt changes remain
challenging, and our WDNO proposes a promising direction to tackle the challenges. Many works
have focused on improving the well-posedness of functional space diffusion generation (Pidstrigach
et al., 2023; Hagemann et al., 2023; Lim et al., 2023). Previous works commonly choose the Fourier
space as the functional space (Lim et al., 2023; Hagemann et al., 2023). Our method differs by using
the wavelet transform since it is better at approximating the important abrupt changes.

E PSEUDOCODE

To help understand the entire algorithm, we provide the pseudocode of WDNO’s training and
inference in Algorithm 1, and the visualization of WDNO’s entire training and inference on 1D
Burgers’ equation in Figure 10.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Downsample

Super-resolution

SRMSRM
...

diffuse

Inference
(simulation/control)

Base-Resolution Model (BRM) Training

Super-resolution

SRMSRMBRM

BRM

Output

Guidance
∇�

denoise

80 × 120 40 × 60 20 × 30

80 × 120

40 × 30 × 4 20 × 30 × 4 10 × 15 × 4

40 × 30 × 4 80 × 120 × 4 160 × 240 × 4 320 × 480 × 4

160 × 240 320 × 480 640 × 960 ...

PDE conditions:
initial conditon,
force term, ...

Wavelet Transform

Inverse Wavelet Transform

Space-time domain

Wavelet domain

∼ � (0, �)

∇� Objective guidance
(only in control)

Super-Resolution Model (SRM) Training

40 × 60 × 4

80 × 120

SRM

Condition of model

Figure 10: Overview of WDNO. The figure illustrates the training of Base-Resolution Model
(BRM, top left), training of Super-Resolution Model (SRM, top right), and inference (bottom) of
WDNO on 1D Burgers’ equation. Through multi-resolution training and generation in wavelet space,
WDNO is capable of generating superior simulation and control trajectories and conducting zero-shot
super-resolution.

Algorithm 1 Training and Sampling for WDNO

Require Diffusion models ϵθ(W
(k)
u[0,T]

,Wa, k), objective J (·) for control task, covariance matrix
σ2(k)I, condition Wa, schedule ᾱk, hyperparameters λ, η,K
Training:

1: repeat
2: u

(0)
[0,T] ∼ q(u

(0)
[0,T])

3: Apply the discrete wavelet transform to u(0)[0,T] to get W (0)
u[0,T]

4: k ∼ Uniform(1, . . . ,K)
5: ϵ ∼ N (0, I)

6: Take gradient descent step on ∇θ∥ϵ− ϵθ(
√
ᾱkW

(0)
u[0,T]

+
√
1− ᾱkϵ, k)∥2

7: until converged
Sampling:

1: W (K)
u[0,T]

∼ N (0, I)
2: for k = K, . . . , 1 do
3: ξ ∼ N (0, I) if k > 1, else ξ = 0

4: W
(k−1)
u[0,T]

=W
(k)
u[0,T]

− η(ϵθ(W
(k)
u[0,T]

,Wa, k) + ξ for simulation task

W
(k−1)
u[0,T]

=W
(k)
u[0,T]

− η(ϵθ(W
(k)
u[0,T]

,Wa, k) + λ∇J (W
(k)
u[0,T]

) + ξ for control task
5: end for
6: Apply the inverse discrete wavelet transform to W (0)

u[0,T]
to get u(0)[0,T]

7: return u∗ = u
(0)
[0,T]

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

F ADDITIONAL DETAILS FOR 1D BURGERS’ EQUATION CONTROL

F.1 EXPERIMENT SETTING

The equation takes the form
∂u(t,x)

∂t = −u(t, x) · ∂u(t,x)
∂x + ν ∂2u(t,x)

∂x2 + f(t, x) in [0, T]×D,

u(t, x) = 0 on [0, T]× ∂D,

u(0, x) = u0(x) at {t = 0},
(8)

where u0 is the initial condition, the diffusion coefficient ν = 0.01, T = 8 and D = [0, 1].

During inference, alongside the control sequence f(t, x), our diffusion model generates states µ(t, x).
Besides, some models produce surrogate states µ(t, x) when fed with the control f(t, x). However,
the state deviation

∫
D
|u(T, x)− u∗(x)|dx in our reported evaluation metric J is always based on

the output u(T, x) = ug.t.(T, x) of the ground-truth solver given the control force f(t, x).

The solver solves the Burgers’ equation (Eq. 8) as described in Appendix F.2, where the internal
grid size of the ground-truth numerical solver is consistently at high-resolution ([80× 16, 120× 16]).
When model outputs are at a lower resolution, we linearly interpolate them before feeding them into
the solver.

F.2 DATA GENERATION

We use the finite difference method (referred to as the solver or ground-truth solver henceforth) to
solve the Burgers’ equation of Eq. 8 and generate the training data for the 1D Burgers’ equation.
Specifically, the initial state u0(x) and the control force f(t, x) are both randomly generated, and then
the state’s evolution u(t, x) is numerically simulated using the solver. In the numerical simulation
using the ground-truth solver, a domain of x = [0, 1], t = [0, 8] is simulated. The space is discretized
into 120 × 16 grids and time discretized into 4800 × 16 steps. However, only 80 time stamps are
stored in the dataset, and the control sequence f is kept constant between two time stamps.

After simulation, we downsample by 16 times both spatially and temporally before saving the dataset.
Therefore, the data size of each trajectory is [81, 120] for the state u and [80, 120] for the force f . As
for the super-resolution dataset for super-resolution simulation, we downsample the original data
with shapes [80×N + 1, 120×N] for u and [80×N, 120×N] where N = 2, 3, 4 corresponding
to 1, 2, 3 times super-resolution in Table 16.

The initial value u(0, x) is a superposition of two Gaussian functions u(0, x) =
∑2

i=1 aie
− (x−bi)

2

2σ2
i ,

where ai, bi, σi are all randomly sampled from uniform distributions: a1 ∼ U(0, 2), a2 ∼
U(−2, 0), b1 ∼ U(0.2, 0.4), b2 ∼ U(0.6, 0.8), σ1 ∼ U(0.05, 0.15), σ2 ∼ U(0.05, 0.15). Sim-
ilarly, the control sequence f(x, t) is also a superposition of 8 Gaussian functions f(t, x) =∑8

i=1 aie
−

(x−b1,i)
2

2σ2
1,i e

−
(t−b2,i)

2

2σ2
2,i , where each parameter is independently generated as follows: b1,i ∼

U(0, 1), b2,i ∼ U(0, 1), σ1,i ∼ U(0.1, 0.4), σ2,i ∼ U(0.1, 0.4), while a1 ∼ U(−1.5, 1.5) and
for i ≥ 2, ai ∼ U(−1.5, 1.5) or 0 with equal probabilities. u(t, x), (t ̸= 0) is then numerically
simulated (using the ground-truth solver) given u(0, x) and f(t, x) based on Eq. 8. The dataset
generation setting is based on previous works Hwang et al. (2022); Wei et al. (2024).

we generate 40000 trajectories for the training set. For the Burgers’ equation control task, we
generate another 50 trajectories for testing. For the super-resolution task, we generate another 2000
trajectories for testing in the 0× super-resolution task (which is the original resolution). In 1, 2, 3×
super-resolution tasks, another 100 samples are generated and shared across the three different
super-resolution settings.

F.3 DATA PREPARATION FOR WDNO

We perform a 2D wavelet transform on the original data using the bior2.4 wavelet basis and the
‘periodization’ mode, implemented using the pytorch_wavelets package (Cotter, 2019). This
transform the data, originally sized 81×120, into four sets of wavelet coefficients, each sized 41×60.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Among these four sets of coefficients, there is one set of coarse coefficients and three sets of detail
coefficients. For the multi-resolution dataset used to train the Super-Resolution Model, obtained
through downsampling, we conduct wavelet transforms on data sizes 41× 60, 21× 31, and 11× 15,
which correspond to four sets of wavelet coefficients sized 21× 30, 11× 15, and 6× 8 respectively.

Notably, since the initial condition and the target state are 1D, we take the 1D wavelet transform,
repeat the coefficients, and then concatenate them to other data.

When aligning the sizes of low-resolution wavelet coefficients with high-resolution ones by duplica-
tion, special handling is required at the boundaries due to the presence of odd numbers. Specifically,
we duplicate the last temporal dimension of the high-resolution data once more to ensure that the
sizes match perfectly.

F.4 MODEL

The model architecture in this experiment follows the Denoising Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020b). In simulations, the Base-Resolution Model conditions on u0 and f to
predict u0,T . For control tasks, we condition on u0, uT and apply guidance related to J to generate
f[0,T]. The Super-Resolution Model conditions the same variables as the Base-Resolution Model,
with the addition of conditioning on the low-resolution data. Besides, to make the generation meet
the initial condition and target state better, we involve the loss between the inverse wavelet transform
of the initial condition and the target state’s wavelet coefficient channel and the ground truth into the
guidance. The hyperparameters on WDNO are recorded in Table 18.

Table 18: Hyperparameters of the UNet architecture and training for the results of 1D Burgers’
equation in Table 2a and Table 1.

Hyperparameter name Base-Resolution Model Super-Resolution Model
UNet ϵϕ(f)

Initial dimension 128 128
Downsampling/Upsampling layers 4 4
Convolution kernel size 3 3
Dimension multiplier [1, 2, 4, 8] [1, 2, 4, 8]
Resnet block groups 8 8
Attention hidden dimension 32 32
Attention heads 4 4

UNet ϵθ(u, f)
Initial dimension 128 128
Downsampling/Upsampling layers 4 4
Convolution kernel size 3 3
Dimension multiplier [1, 2, 4, 8] [1, 2, 4, 8]
Resnet block groups 8 8
Attention hidden dimension 32 32
Attention heads 4 4

Training
Training batch size 16 16
Optimizer Adam Adam
Learning rate 1e-4 1e-4
Training steps 190000 290000
Learning rate scheduler cosine annealing cosine annealing

Inference
DDIM sampling iterations 50 50
η of DDIM Sampling 1 1
Intensity of guidance in control 120000 0
Scheduler of guidance cosine cosine

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G ADDITIONAL DETAILS FOR 1D COMPRESSIBLE NAVIER-STOKES
EQUATION

G.1 EXPERIMENT SETTING

This fluid dynamic equation takes the form
∂tρ+∇ · (ρv) = 0,

ρ (∂tv + v · ∇v) = −∇p+ η∆v +
(
ζ + η

3

)
∇(∇ · v),

∂t

(
ϵ+ ρv2

2

)
+∇ ·

[(
ϵ+ p+ ρv2

2

)
v − v · σ′

]
= 0,

(9)

where ρ is the density, v is the velocity, p is the pressure, ϵ = p/(Γ− 1) is the internal energy with
Γ = 5/3, σ′ is the viscous stress tensor, and η, ζ are the shear and bulk viscosity, respectively. The
sound velocity is defined as:

cs =

√
Γ
p

ρ
, (10)

and the Mach number is:

M =
|v|
cs
. (11)

The velocity field for turbulence is initialized as:

v(x, t = 0) =

n∑
i=1

Ai sin(kix+ ϕi), (12)

where Ai =
v̄

|k|d , d = 1, 2 for 2D and 3D cases, and v̄ = csM .

The shock-tube field is initialized as:

Q(x, t = 0) = (QL, QR), (13)

where Q = (ρ,v, p), with random constants QL and QR.

In detail, we use a 1D compressible Navier-Stokes equation dataset provided by PDEBench.
The initial conditions include random fields, turbulent fields, and shock-tube fields. The ran-
dom and turbulence fields are prepared by adding perturbations to a uniform background, while
the shock-tube setup consists of piecewise constant values generating shocks and rarefactions.
Boundary conditions allow waves to exit the domain, and numerical solutions are computed using
second-order HLLC and central difference schemes. And we choose the most challenging dataset
’1D_CFD_Shock_Eta1.e-8_Zeta1.e-8_trans_Train.hdf5’

Since the original data is of quite high resolution, we downsample it and the final resolution of the
used data is 81× 120, the same as the 1D Burgers’ equation.

G.2 DATA PREPARATION FOR WDNO

Since the data size is the same as Appendix F, the data preparation is almost the same. We also perform
a 2D wavelet transform on the original data using the bior2.4 wavelet basis and the ‘periodization’
mode, implemented using the pytorch_wavelets package (Cotter, 2019). As for the initial
condition, we take the 1D wavelet transform repeat the coefficients, and then concatenate them to
other data.

G.3 MODEL

The model architecture in this experiment follows Appendix F. The hyperparameters on WDNO are
recorded in Table 19.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 19: Hyperparameters of the UNet architecture and training for the results of 1D com-
pressible Navier-Stokes equation in Table 1.

Hyperparameter name Base-Resolution Model
UNet ϵϕ(f)

Initial dimension 128
Downsampling/Upsampling layers 4
Convolution kernel size 3
Dimension multiplier [1, 2, 4, 8]
Resnet block groups 8
Attention hidden dimension 32
Attention heads 4

UNet ϵθ(u, f)
Initial dimension 128
Downsampling/Upsampling layers 4
Convolution kernel size 3
Dimension multiplier [1, 2, 4, 8]
Resnet block groups 8
Attention hidden dimension 32
Attention heads 4

Training
Training batch size 16
Optimizer Adam
Learning rate 1e-4
Training steps 190000
Learning rate scheduler cosine annealing

Inference
DDIM sampling iterations 850
η of DDIM Sampling 1
Scheduler of guidance cosine

H ADDITIONAL DETAILS FOR 2D INCOMPRESSIBLE FLUID

H.1 EXPERIMENT SETTING

The equation takes the form
∂v(t,x)

∂t + v(t, x) · ∇v(t, x)− ν∇2v(t, x) +∇p(t, x) = f(t, x),

∇ · v(t, x) = 0,

v(0, x) = v0(x),

(14)

where f is the external force, p denotes pressure, v is the velocity and ν is the viscosity coefficient.

H.2 DATA PREPARATION FOR WDNO

We performed a 3D wavelet transform on the original data using the bior1.3 wavelet basis and
‘zero’ mode, implemented through the Pytorch Wavelet Toolbox (ptwt) (Wolter et al.,
2024). The data of size 32× 64× 64 are transformed into eight sets of wavelet coefficients, each
sized 18 × 34 × 34. Among these, there is one set of coarse coefficients and seven sets of detail
coefficients. For the multi-resolution dataset used to train the Super-Resolution Model, obtained
through downsampling, we do wavelet transforms on data sizes 32 × 32 × 32 and 32 × 16 × 16
corresponding to wavelet coefficient with sizes 18× 18× 18, 18× 10× 10 respectively.

Specifically, since the initial condition and the percentage of smoke through the target bucket are
2D and 1D respectively, we take the 2D and 1D wavelet transform and repeat the coefficients to
concatenate them.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Similarly, to align the duplicated low-resolution data with the high-resolution data, we duplicate the
boundary values on both sides of the dimensions requiring super-resolution in the high-resolution
data.

H.3 MODEL

In this paper, the architecture of the three-dimensional U-net we employ is inspired by the previous
work (Ho et al., 2022). In this experiment, we use spatial-temporal 3D convolutions. Specifically,
there are three main modules in our U-net: a downsampling encoder, a middle module, and an
upsampling decoder.

In the simulation, the diffusion model conditions the initial density and control to generate the entire
trajectories of density, velocity, and percentage of smoke passing the target bucket. In the control
problem, the diffusion model conditions on the initial density and takes the negative percentage of
smoke through the target bucket at the last time step as the guidance. Same as the 1D case, to satisfy
the initial condition better, the guidance also involves loss between the inverse wavelet transform
of the initial condition’s wavelet coefficient channel and the ground truth initial condition. The
hyperparameters of the 3D-Unet architecture are in the Table 20.

Table 20: Hyperparameters of 3D-Unet architecture in 2D experiments.

Hyperparameter Name Value
Number of attention heads 4
Kernel size of conv3d (3, 3, 3)
Padding of conv3d (1,1,1)
Stride of conv3d (1,1,1)
Kernel size of downsampling (1, 4, 4)
Padding of downsampling (1, 2, 2)
Stride of downsampling (0, 1, 1)
Kernel size of upsampling (1, 4, 4)
Padding of upsampling (1, 2, 2)
Stride of upsampling (0, 1, 1)
DDIM sampling iterations 100
η of DDIM Sampling 1
Intensity of guidance in control 100

I 1D CONTROL BASELINES

I.1 PID

Propercentageal Integral Derivative (PID) control (Li et al., 2006) is a versatile and effective method
widely employed in numerous control scenarios. It operates by using the error, i.e., the difference
between the desired target and the current state of a system. Due to its simplicity and effectiveness,
PID control is often the default choice for many control problems. However, despite its widespread
use, PID control faces challenges such as parameter adaptation and limitations in Single Input Single
Output (SISO) systems.

In our study, the 1D Burgers’ Equation Control problem presents a Multiple Input Multiple Output
(MIMO) scenario, rendering direct application of PID control infeasible. Inspired by early works
(Slama et al., 2019; Ding et al., 2022) that employed neural networks as PID parameter adapters, we
integrated deep learning with PID control to address the MIMO control problem. As illustrated in
Figure 11, the ANN (artificial neural network) PID uses a neural network to adapt PID parameters,
enabling multiple sets of SISO PID control.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 11: The architecture of ANN PID Controller. To use the MIMO PID controller to control
state ut to target state ud, we train a neural-network-based PID parameter planner to output MIMO
PID parameters based on Errt, then use the PID controller to output the control sequence ft.

The neural network generating the PID parameters consists of two 1D convolutional layers, two fully
connected layers, and four activation layers. We utilize the L1 loss between the current and target
states as the training loss, and the Adam optimizer (Kingma & Ba, 2014) to train the model. Detailed
architecture information is provided in Table 21.

Table 21: Hyperparameters of network architecture and training for ANN PID.

Hyperparameter name Full observation
Kernel size of conv1d 3
Padding of conv1d 1
Stride of conv1d 1
Activation function Softsign
Batch size 16
Optimizer Adam
Learning rate 0.0001
Loss function MAE

Given that PID is inherently a SISO control method, the ANN PID employs a neural network to
derive multiple PID parameter sets, facilitating multiple SISO PID controls for MIMO control in the
context of the Burgers’ equation. However, ANN PID requires that the input and output dimensions
match, thus it can only address problems with full observation and full control, or partial observation
and partial control.

Additionally, the ANN PID controller has two training setups: one involving direct interaction with
the solver, and the other involving interaction with the 1D surrogate model.

I.2 SAC

The Soft Actor-Critic (SAC) algorithm, developed by Haarnoja et al. (2018), represents a significant
advancement in reinforcement learning techniques. Designed as an enhancement of the conventional
Actor-Critic frameworks, SAC sets itself apart by incorporating an entropy regularization term in its
loss function. This addition promotes more effective exploration by simultaneously maximizing the
expected cumulative reward and the entropy of the policy itself, leading to improved decision-making
processes in complex environments.

Compared to the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2015; Pan
et al., 2018), the Soft Actor-Critic (SAC) algorithm introduces entropy regularization that promotes
more effective exploration and avoids premature convergence to suboptimal policies, a common
drawback of DDPG’s deterministic nature. Furthermore, SAC’s twin Q-networks counteract the
overestimation bias that can affect DDPG’s value updates, resulting in more stable learning processes.
The automatic adjustment of the temperature parameter in SAC also eases the balancing act between
exploration and exploitation, minimizing the necessity for careful hyperparameter tuning. As a result,
these features make SAC generally more sample-efficient and robust, especially in complex and
continuous action spaces.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

During training, experiences are stored in a replay buffer and sampled randomly to update the
networks. Initially, the entire training set is loaded into the replay buffer. For offline SAC, this
replay buffer remains unchanged. In contrast, online SAC alternates between gathering experiences
through environment interaction and updating the networks using the replay buffer. Offline SAC,
however, utilizes a surrogate model trained on the training set to gather experiences instead of the
real environment. The policy network is optimized to maximize the expected return by considering
both the Q-value and the entropy term. The critic networks are trained to minimize the error between
their Q-value predictions and the target Q-values. To further stabilize training, SAC employs a target
critic network, which is slowly updated with the weights from the main critic network. For inference,
SAC uses the policy network to select the action with the highest probability.

To effectively guide the system towards the target state with accuracy and speed, it is essential to
incorporate the distance between the state at each time step and the target state into the reward
function. Therefore, the reward function for a given time step t, state ut, target state uT , and action
wtis defined as follows:

r(t, ut, yT , wt) = −
∫
Ω

|ut − ud|2 dx− α

∫
Ω

|wt|2 dx, (15)

where Ω is the space domain and α is the weight of energy. We take the Adam optimizer (Kingma
& Ba, 2014) to train the networks and update the temperature parameter. The detailed values of
hyperparameters are provided in Table 22.

Table 22: Hyperparameters of 1D SAC.

Hyperparameter name Value
Hyperparameters for 1D Burgers’ equation control:
Discount factor for reward 0.5
Target smoothing coefficient 0.05
Learning rate of critic loss 0.0003
Learning rate of entropy loss 0.003
Learning rate of policy loss 0.003
Training batch size 8192
Number of episodes 1500
Number of model updates per simulator step 50
Value target updates per step 15
Size of replay buffer 1000000
weight of energy cost 0.00002
Number of trajectories interacted with the environment per step 1
Number of layers of critic networks 3
Number of hidden dimensions of critic networks 4096
Number of layers of the policy network 5
Number of hidden dimensions of the policy network 4096
Activation function ReLU
Clipping’s range of policy network’s standard deviation output

[
e−20, e2

]

I.3 SUPERVISED LEARNING

The paper (Hwang et al., 2022) proposes a supervised-learning-based control algorithm that takes a
neural operator as a surrogate model to solve control problems. It contains two stages. In the first
stage, we take a neural operator to learn the PDE constraint as Hwang et al. (2022). Two VAEs based
on CNN learn to project state u, control signal f into the latent space, and a CNN learns the transition
from ut to ut+1 in the latent space. In the second stage, these three neural networks are used as
surrogate models to calculate the gradient of the objective function with respect to the control input
and optimize the control signal f .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

During optimization, the reconstruction loss for the control force is also included to guide it out of
the adversarial mode of the surrogate model. We consider the control f as a learnable parameter and
update it with the LBFGS optimizer (Liu & Nocedal, 1989). The hyperparameters of this supervised
learning method are recorded in Table 23.

Table 23: Hyperparameters of inference the 1D supervised learning method.

Hyperparameter name Value
Hyperparameters for 1D Burgers’ equation control
Learning rate of w updating 0.1
Number of epochs 100
Weight of average objective function loss 1
Weight of average reconstruction loss 0.01
Termination tolerance on first-order optimality of LBFGS optimizer 1e-5
Termination tolerance on parameter changes LBFGS optimizer 1e-5

I.4 BC

The Behavior Cloning (BC) algorithm, introduced by (Pomerleau, 1988), is a foundational technique
in imitation learning. BC is designed to derive policies directly from expert demonstrations, utilizing
supervised learning to associate states with corresponding actions. This method eliminates the
necessity for exploratory steps commonly required in reinforcement learning by replicating the
actions observed in expert demonstrations. One of the significant advantages of BC is that it does not
involve interacting with the environment during the training phase, which streamlines the learning
process and diminishes the demand for computational resources.

In this approach, a policy network is trained using standard supervised learning strategies aimed at
reducing the discrepancy between the actions predicted by the model and those performed by the
expert in the dataset. The commonly used loss function for this purpose is the mean squared error
between the predicted actions and expert actions. The dataset for training comprises state-action pairs
harvested from these expert demonstrations. During inference, the model is evaluated using the same
objective function as used in SAC. The specific hyperparameters utilized are detailed in Table 24.

Table 24: Hyperparameters of 1D BC.

Hyperparameter name Value
Hyperparameters for 1D Burgers’ equation control:
Learning rate 1× 10−4

Training batch size 512
Number of episodes 5× 105

Size of replay buffer 2× 106

Number of layers of policy networks 2
Number of hidden dimensions of policy networks 1024
Activation function ReLU

I.5 BPPO

The Behavior Proximal Policy Optimization (BPPO) algorithm, introduced by (Zhuang et al., 2023),
is an advanced reinforcement learning method that combines the strengths of Proximal Policy
Optimization (PPO) with elements of behavior cloning. BPPO is an offline algorithm designed to
monotonically improve the behavior policy in a manner akin to PPO. Due to the inherent conservatism
of PPO, BPPO restricts the ratio of the learned policy to the behavior policy within a specific range,
similar to other offline RL methods, which ensures the learned policy closely aligns with the behavior
policy. By leveraging the conservatism of online on-policy algorithms, BPPO effectively addresses
the overestimation issue often encountered in offline RL settings.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

The algorithm begins by estimating a behavior policy using behavior cloning and then iteratively
improves a target policy using the PPO objective with a behavior constraint. This process of policy
improvement, advantage estimation, and policy update enables BPPO to refine the target policy while
ensuring it remains close to the behavior policy. By integrating the strengths of online on-policy
methods with tailored offline RL techniques, BPPO has demonstrated promising results on the D4RL
benchmark, surpassing state-of-the-art offline RL algorithms.

During training, BPPO first initializes the behavior policy πβ and the target policy πθ. The behavior
policy πβ is then estimated using behavior cloning to replicate the behavior demonstrated in the
offline dataset. Subsequently, the target policy πθ is optimized using the PPO objective with a
behavior constraint, ensuring the target policy remains close to the behavior policy. The advantage
function Aπβ is then estimated using the behavior policy πβ to evaluate the quality of actions taken
by the target policy. Finally, the target policy is updated by maximizing the PPO objective with the
estimated advantage function, and adjusting the policy parameters to enhance performance. In the
implementation, a state value network and a Q value network are pre-trained using the state, action,
and reward data from the offline dataset.

In practice, to enable the system to approximate the target state accurately and swiftly, it is essential
to incorporate the distance between the state at each time step and the target state into the reward
function. Thus, the reward function at time step t, given the state ut, target state ud, and action ft, is
defined as follows:

r(t, ut, ud, ft) = −
∫
Ω

|ut − ud|2dx− α

∫
Ω

|ft|2dx,

where Ω is the space domain and α is the weight of energy. We use the Adam optimizer (Kingma
& Ba, 2014) to train the networks and update the temperature parameter. The specific values of the
hyperparameters used are detailed in Table 25.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 25: Hyperparameters of 1D BPPO.

Hyperparameter name Value
Hyperparameters for 1D Burgers’ equation control:
State value network:
Learning rate of value network 1× 10−4

Steps of value network 2× 106

Number of layers of value network 3
Batch size of value network 512
Number of hidden dimensions of value network 512
Q value network:
Learning rate of Q network 1× 10−4

Steps of Q network 2× 106

Number of layers of Q network 2
Batch size of Q network 512
Number of hidden dimensions of Q network 1024
Target Q network updates per step 2
Soft update factor 0.005
Discount factor for reward 0.99
Behavior cloning:
Learning rate of BC 1× 10−4

Training batch size of BC 512
Number of episodes of BC 5× 105

BPPO:
Number of episodes of BPPO 1× 102

Number of layers of policy networks 2
Number of hidden dimensions of policy networks 1024
Learning rate of BPPO 1× 10−5

Training batch size of BPPO 512
Clip ratio of BPPO 0.25
Weight decay factor 0.96
Weight of advantage function 0.9
Size of replay buffer 2× 106

Activation function ReLU

J 1D SIMULATION BASELINES

J.1 FNO

FNO represents a deep learning framework capable of mapping between infinite-dimensional spaces.
By parameterizing the integral kernel in Fourier space, FNO processes input through a sequence of
Fourier layers, performing linear transformations in the Fourier domain for efficient convolutions.
This architecture supports zero-shot super-resolution, allowing models trained on lower resolutions to
predict at higher resolutions without retraining.

In 1D experiments, we train the FNO model using the initial state and all controls as the input and
using the rest states as the output. The parameters are outlined in Table 26.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 26: Hyperparameters of 1D FNO.

Hyperparameter name Value
Hyperparameters for 2D Burgers’ equation:
Number of modes to keep in Fourier Layer 16
Width of the FNO (i.e. number of channels) 64
Number of input channel 3
Number of output channel 1
Number of hidden channels of the lifting block 256
Number of hidden channels of the projection block 256
Number of Fourier Layers 4
Expansion parameter of MLP layer 0.5
Non-Linearity module Gelu
Rank of the tensor factorization of the Fourier weights 1.0
Mode of domain padding one-sided
Learning rate 1× 10−4

Optimizer Adam
Training epochs 1000
Learning rate scheduler Cosine
Training batch size 50

J.2 WNO

The Wavelet Neural Operator (WNO) (Tripura & Chakraborty, 2022) is a novel operator learning
algorithm that blends integral kernel with wavelet transformation. We record the hyperparameters
of it in 1D simulation in Table 27. On 1D Burgers’ equation and 1D compressible Navier-Stokes
equation, we choose ‘sym4’, ‘bior2.4’ wavelet respectively.

Table 27: Hyperparameters of 1D WNO.

Hyperparameter name Value
Hyperparameters of the model architecture
Type of wavelet sym4
Level of wavelet decomposition 5
Uplifting dimension 40
Number of wavelet layers 4

Training
Training batch size 100
Optimizer Adam
Learning rate 1e-3
Training epochs 1000
Learning rate scheduler StepLR

J.3 CNN

Convolutional Neural Network is the key block in deep learning. For 1D simulation, our CNN model
is based on Hwang et al. (2022). Details of model architecture and training can be found in Table 28

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 28: Hyperparameters of 1D CNN.

Hyperparameter name Value
Autoencoder of state

Convolution kernel size 5
Convolution padding 2
Activation function ELU
Latent vector size 256

Autoencoder of force
Convolution kernel size 5
Convolution padding 2
Activation function ELU
Latent vector size 256

Training
Training batch size 5100
Optimizer Adam
Learning rate 1e-3
Training epochs 500
Learning rate scheduler cosine annealing

J.4 MWT

To compare with other wavelet-based methods, we mainly implement the 1D baseline adapted
from Gupta et al. (2021). We select ‘legendre’ wavelet here, following the original work. More
configurations can be found in Table 29.

Table 29: Configuration of 1D MWT.

Hyperparameter name Value
Wavelet basis legendre
Number of Fourier modes 10
Kernel size 4
Training batch size 256
Training epochs 300
Optimizer Adam
Learning rate scheduler MultiStepLR

J.5 OFORMER

The Operator Transformer (OFormer)Li et al. (2023) is a novel framework built upon self-attention,
cross-attention, and a set of point-wise multilayer perceptrons. Details of model architecture and
training can be found in Table 30.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 30: Hyperparameters of 1D OFormer.

Hyperparameter name Value
Encoder

Type SpatialEncoder2D
Input Channels 3
Embedding Dim of Token 96
Embedding Dim of Encoded Sequence 256
Heads 4
Depth 6
Resolution 120
Dropout of Embedding 0.05

Decoder
Type PointWiseDecoder2DSimple
Latent Channels 256
Out Channels 1
Scale 0.5
Res 120

Training
Training batch size 32
Iteration 50000
Learning rate 1e-4

J.6 LADID

In the dynamics trajectory prediction community, predicting trajectories of dynamical systems is
of interest (Chen et al., 2018). Among them, MS-L-NODE (Iakovlev et al., 2023b) is a represen-
tative method that is dedicated to learning the system invariant dynamics. Since MS-L-NODE
effectively operates on high-dimensional spatial-temporal data, we include it as a baseline for a more
comprehensive empirical comparison.

Since the original work only considers spatially 2D input, we modify the encoder and decoder from
stacked 2D CNNs to 1D CNNs, tune the latent dimension in {4, 8, 16, 64}, and the CNN base output
dimension in {16, 64, 128}. Important hyperparameters are reported in Table 31 and the rest are kept
the same as in Iakovlev et al. (2023b).

Table 31: Hyperparameters of MS-L-NODE.

Hyperparameter name Value
Encoder

Encoder CNN channels 128
Latent dimension 8

Decoder
Encoder CNN channels 128
Latent dimension 8

Aggregation Network
Heads 16
Static layers 4
Dynamical layers 8

Training
Training batch size 64
Training iterations 37500
Learning rate 1e-3

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

K 2D SIMULATION BASELINES

K.1 FNO

In 2D experiments, we train the FNO model using the density, velocity, control, and percentage of
smoke through the target bucket of the previous step as the input and using the rest step’s density,
velocity, and percentage of smoke through the target bucket as the output. The parameters are outlined
in Table 32.

Table 32: Hyperparameters of 2D FNO.

Hyperparameter name Value
Hyperparameters for 2D incompressible fluid:
Number of modes to keep in Fourier Layer 16
Width of the FNO (i.e. number of channels) 64
Number of input channel 6
Number of output channel 4
Number of hidden channels of the lifting block 256
Number of hidden channels of the projection block 256
Number of Fourier Layers 4
Expansion parameter of MLP layer 0.5
Non-Linearity module Gelu
Rank of the tensor factorization of the Fourier weights 1.0
Mode of domain padding one-sided
Learning rate 1× 10−4

Optimizer Adam
Training epochs 1000
Learning rate scheduler Cosine
Training batch size 50

K.2 WNO

The hyperparameters of WNO for the 2D simulation task are in Table 33. And the wavelet we choose
is ‘bior1.3’.

Table 33: Hyperparameters of 2D WNO.

Hyperparameter name Value
Hyperparameters of the model architecture
Type of wavelet db4
Level of wavelet decomposition 2
Uplifting dimension 8
Number of wavelet layers 3

Training
Training batch size 50
Optimizer Adam
Learning rate 0.05
Training epochs 500
Learning rate scheduler StepLR

K.3 MWT

For a more comprehensive comparison with other wavelet-based approaches, we focus primarily on
implementing the 2D baseline inspired by the work in Gupta et al. (2021). Following the previous
work, we select the ‘Legendre’ wavelet. More details on the configurations can be found in Table 34.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 34: Configuration of 2D MWT.

Hyperparameter name Value
Wavelet basis legendre
Number of Fourier modes 12
Kernel size 3
Training batch size 200
Training epochs 300
Optimizer Adam
Learning rate scheduler MultiStepLR

K.4 OFORMER

The Operator Transformer (OFormer) Li et al. (2023) is an attention-based framework for learning
solution operators of partial differential equations using self-attention, cross-attention, and point-wise
MLPs, designed to handle various input sampling patterns and query locations. More details on the
configurations can be found in Table 35.

Table 35: Hyperparameters of 2D OFormer.

Hyperparameter name Value
Encoder

Type SpatialTemporalEncoder2D
Input Channels 34
Embedding Dim of Token 96
Embedding Dim of Encoded Sequence 192
Heads 1
Depth 5

Decoder
Type PointWiseDecoder2D
Out Channels 1
Embedding Dim of Token 96
Propagate forward 1
Length of output sequence 32
Propagator depth 1
Curriculum ratio 0.16
Curriculum steps 10

Training
Training batch size 8
Iteration 100000
Learning rate 1e-4

L BROADER IMPACTS

Our research proposes a method to simulate and control complex physical systems. We believe our
research will bring in significant progress for various scientific and engineering domains, including
climate forecasting, fluid control, robotic control, et al. However, there is also a potential that
the method might be abused to incur negative social consequences, upon which we should remain
vigilant.

M EXPERIMENTS COMPUTE RESOURCES

The training of our WDNO on the 1D experiment takes about 3 hours to run on a single Tesla-A100
GPU with 80GB memory. As for the 2D experiment, the training of our WDNO needs about 12 hours

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

on two Tesla-A100 GPUs with 40GB memory. The inference of all experiments can be conducted on
a single Tesla-A6000 GPU with 48GB memory.

45

	Introduction
	Preliminary
	Problem Setup
	Diffusion Model

	Method
	Generation in the Wavelet Domain
	Multi-Resolution Framework

	Experiments
	1D Burgers' Equation
	1D Advection Equation
	1D Compressible Navier-Stokes Equation
	2D Incompressible Fluid
	ERA5
	Zero-Shot Super Resolution
	Ablation Study

	Limitation and Future Work
	Conclusion
	Details of Wavelet Decomposition
	Visualization of Experiment Results
	Visualizations of 1D Compressible Navier-Stokes Equation
	Visualizations of 2D Incompressible Fluid

	Additional Results of Experiments
	More Comparisons on 1D Compressible Navier-Stokes Equation
	Abrupt changes
	Approximate Scale Invariance
	Sensitivity Analysis
	Robustness
	Computational Resources
	Importance of Guidance
	Zero-shot Super-resolution

	Related Work
	Pseudocode
	Additional Details for 1D Burgers' Equation Control
	Experiment Setting
	Data Generation
	Data Preparation for WDNO
	Model

	Additional Details for 1D Compressible Navier-Stokes Equation
	Experiment Setting
	Data Preparation for WDNO
	Model

	Additional Details for 2D Incompressible Fluid
	Experiment Setting
	Data Preparation for WDNO
	Model

	1D Control Baselines
	PID
	SAC
	Supervised Learning
	BC
	BPPO

	1D Simulation Baselines
	FNO
	WNO
	CNN
	MWT
	OFormer
	LaDID

	2D Simulation Baselines
	FNO
	WNO
	MWT
	OFormer

	Broader Impacts
	Experiments Compute Resources

