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Abstract

Distributional reinforcement learning (dRL) — learning to predict not just the1

average return but the entire probability distribution of returns — has achieved2

impressive performance across a wide range of benchmark machine learning3

tasks. In vertebrates, the basal ganglia strongly encodes mean value and has long4

been thought to implement RL, but little is known about whether, where, and5

how populations of neurons in this circuit encode information about higher-order6

moments of reward distributions. To fill this gap, we used Neuropixels probes to7

acutely record striatal activity from well-trained, water-restricted mice performing8

a classical conditioning task. Across several measures of representational distance,9

odors associated with the same reward distribution were encoded more similarly to10

one another than to odors associated with the same mean reward but different reward11

variance, as predicted by dRL but not traditional RL. Optogenetic manipulations12

and computational modeling suggested that genetically distinct populations of13

neurons encoded the left and right tails of these distributions. Together, these results14

reveal a remarkable degree of convergence between dRL and the mammalian brain15

and hint at further biological specializations of the same overarching algorithm.16

1 Introduction17

Since the firing of dopamine neurons was first suggested to resemble the reward prediction errors18

(RPEs) of reinforcement learning (RL) algorithms almost thirty years ago[1, 2], RL has provided a19

powerful theoretical framework with which to understand the basal ganglia. However, neuroscientists20

have struggled to connect more recent developments in machine learning, most notably the rise21

of deep RL, to these brain circuits. Although deep RL encompasses a wide range of approaches22

and insights, a major step forward came from the realization that expanding the objective function23

from simply the value — defined as the expected sum of discounted future reward, or return —24

to the entire return distribution, greatly improves performance across a wide range of tasks [3–5].25

This technique, called "distributional reinforcement learning" (dRL), is an attractive candidate to26

consider in the context of the mammalian brain because (1) it can be implemented using only minor,27

biologically-plausible modifications to classic learning rules [6], (2) it is consistent with the observed28

structure of dopamine population activity [7, 8], and (3) it provides a natural mechanism to implement29

risk-sensitive policies, which are observed across a wide range of animal species [9–11].30

Models of the brain’s RL circuitry identify the striatum, the main input nucleus of the basal ganglia,31

as the site of coding for mean value [12] — or, more generally, return distributions — since it is the32

primary recipient of dopamine reward prediction errors (RPEs) which can modify the strength of33

corticostriatal synapses in a manner consistent with TD updates [13]. It is well-known that the basal34

ganglia circuitry is intimately involved in risk-sensitive decision-making in both healthy [14, 15] and35

diseased [16, 17] states, some of which has been captured by biologically-grounded computational36

models [18]. Nonetheless, it has proven remarkably difficult to identify the representational format37
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and underlying algorithms by which the basal ganglia learn about reward distributions beyond the38

mean, with virtually all striatal recordings limited to finding strong correlations with mean value,39

selected actions, or reward delivery itself [19–24].40

1.1 Experimental setup41

Here, we harnessed the theory of dRL to approach this question in a novel way. We designed a42

classical conditioning task in which water-restricted mice were trained to associate neutral odors with43

different reward distributions, with odor assignments randomized across mice (Fig. 1a). We used44

three separate reward distributions: Nothing (100% chance of 0 µL reward), Fixed (100% chance of45

4 µL reward) and Variable (50/50% chance of 2/6 µL reward; Fig. 1b). Because Fixed and Variable46

odors have the same mean but different variance, traditional RL does not distinguish between them47

on average, whereas dRL predicts that their representations should systematically differ. To get at48

whether any differences in odor representations were truly systematic, we paired each distribution49

with two unique odors, for a total of six odors. That way, we could ask whether odors associated with50

the same distribution were represented more similarly to one another than to odors associated with a51

different distribution of the same mean, as predicted by distributional but not traditional RL.52

2 Results53

2.1 Mice learn the task and value Fixed and Variable rewards equally54

To ensure that the mice understood the task, we quantified anticipatory licking in the second that55

preceded reward delivery. Unsurprisingly, animals licked more to the Fixed and Variable odors than56

to the Nothing odors, showing that they learned the associations (Fig. 1c). Importantly, though,57

individual mice did not show a preference between the Fixed and Variable odors, which suggests that58

they valued them equally. To more rigorously rule out behavioral confounds, we analyzed not only59

licking but also the mice’s face motion, pupil area, and running [25] and built classifiers to distinguish60

trial types from one another using only these behavioral observables. While we could easily decode61

Nothing odors from Fixed or Variable odors, we could not significantly distinguish between Fixed62

and Variable trials using behavior alone (Fig. 1d). This implies that any systematic neural differences63

between these trial types must be due to the learned associations with probability distributions and64

not to low-level behavior.65

2.2 The first principal component of striatal activity reflects the mean66

To interrogate the neural basis of a possibly distributional code, we recorded activity across a broad67

swath of the anterior striatum using Neuropixels probes (N=12 mice, 71 sessions, 13,997 neurons;68

Fig. 1e). We first verified that we could replicate previous findings of mean value coding in these69

regions [19–24]. Indeed, simply taking the grand average across the entire dataset (Fig. 1f) or70

projection onto the first principal component (PC; Fig. 1g) of z-scored firing rates revealed a strong71

tendency for neurons to fire more to rewarded (Fixed and Variable) than to unrewarded (Nothing)72

trial types.73

2.3 Neurons represent information about higher-order moments of the return distribution74

Unlike the observed behavior and population averages, not all neurons responded identically to Fixed75

and Variable odors; some neurons preferred Fixed while other preferred Variable odors (Fig. 1h).76

Importantly, these did not reflect idiosyncratic odor or risk preferences, as responses were consistent77

for both examples of the Nothing, Fixed, and Variable odors yet could differ for simultaneously-78

recorded neurons. To see if this was true of the population as a whole, we took activity during the79

Late Trace period and projected it into two-dimensional PC space independently for each mouse. PC180

again corresponded to mean value, but interestingly, PC2 seemed to separate out Fixed and Variable81

odors (Fig. 1i). To quantify this, we measured distances along PC2 between pairs of Rewarded odors.82

Across-distribution (one Fixed and one Variable) pairs were better-separated along PC2 than are83

within-distribution pairs, as predicted by distributional but not traditional RL (Fig. 1j).84

To determine whether this distributional signature is detectable on a single-trial basis, we quantified85

the cross-condition generalization performance (CCGP) between different distributions with the same86
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Figure 1: dRL in the striatum. a, Water-restricted, head-fixed mice were trained to associate odors
with rewards. b, Probability distributions over reward amounts that were paired with odors. c,
Anticipatory lick rates for each trial type. Gray lines denote individual mice. d, Accuracy of a linear
classifier trained on licking, pupil area, whisking and running. Left, behavioral classifier accuracy
across time. Right, quantification of behavioral classifier accuracy when trained on the entire Late
Trace period. e, Reconstructed Neuropixels probe trajectories, aligned to the Allen Mouse Brain
Common Coordinate Framework [27]. f, Grand average timecourse of z-scored firing rates, computed
across all recorded neurons. g, Projection onto the first PC of neural activity, computed from the
concatenated timecourse of average responses to each trial type. h, Raster plots (top) and PSTHs
(bottom) for two simultaneously-recorded example neurons that prefer either Variable (left) or Fixed
(right) odors. i, Projection of Late Trace activity into first two PCs for an example mouse. j, Distances
along PC2 were greater for across distribution pairs (green arrows) than within-distribution pairs
(orange arrows). k, Schematic showing an example dichotomy used for cross-condition generalization
performance (CCGP) [26]. l, Average CCGP for simultaneously recorded populations. Each colored
dot is the average across sessions for an individual mouse; black dot is the mean across mice. In all
panels, error bars denote mean and 95% confidence intervals across mice.

mean [26]. A linear decoder trained to discriminate one Fixed and one Variable odor reliably general-87

ized to the other Fixed and Variable odors not seen during training (Fig. 1k-l). Thus, distributional88

coding in the striatum is factorized, allowing the same representation to be shared across multiple89

sensory inputs.90

2.4 Opponency within the striatum may support distributional RL91

The striatum consists of two principal populations of cells: dopamine receptor D1 and D2-expressing92

medium spiny neurons (MSNs) [28]. One challenge for biological implementations of RL has been93

how to harness these two separate populations because of their opposite plasticity rules and activity94

patterns. Synaptic weights onto D1 MSNs increase in response to increases in dopamine, while95

those onto D2 MSNs increase in response to decreases in dopamine [13, 29, 30]; analogously, D196

MSNs tend to correlate positively with expected value, while D2 MSNs correlate negatively [23, 31].97

However, rather than being a bug in the RL architecture, such diversity could in principle be a feature,98

amplifying responses to positive or negative prediction errors and thereby biasing convergence to99

optimistic or pessimistic value predictors, respectively.100
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Figure 2: Opponency between D1 and D2 MSNs may support distributional RL. a, Differences in
licking during the Late Trace period produced by optogenetic inhibition of D1 (blue) or D2 (purple)
MSNs, relative to no stimulation. b. Same as (a), but for optogenetic activation. Asterisks with lines
indicate significant differences between trial types for the given color, and asterisks on the right side
indicate that all trial types of that color differed from zero. (c) Learned value predictors (left) and
their corresponding reward distributions (right) in an expectile distributional RL simulation [7, 32] of
the optogenetic manipulation task. Blue markers and lines show the results of optimistic (τ > 0.5)
perturbations and purple show pessimistic perturbations (τ < 0.5). Faded markers and lines represent
the "reflected" model, in which the activity of pessimistic predictors is inversely correlated with the
value they convey. (d-e) Predicted mean differences in response to inhibition (a) or excitation (b)
for the Reflected Expectile model in (c). (f) Opponent models (Categorical, Reflected Quantile, and
Reflected Expectile) vastly outperform other models in their predictions of D1 and D2 manipulations.

We therefore selectively inhibited [33, 34] or activated [35] D1 or D2 MSNs [36] in the ventral101

striatum using optogenetics, a technique that allows targeted delivery of light-sensitive ion channels102

to genetically-identified neurons [37]. In general, inhibiting D1 or activating D2 MSNs decreased103

licking, while activating D1 or inhibiting D2 MSNs increased licking (Fig. 2a-b). However, changes104

were not uniform across trial types; for example, activating D1 MSNs caused a much greater increase105

in licking for Nothing odors than for Fixed and Variable odors. We then compared these trends106

to a variety of dRL models, in which inhibition and and excitation were simulated by clamping107

value predictors to low or high levels, respectively, separately for optimistic and pessimistic neurons.108

To account for the inverse coding of D2 MSNs, we also fit "reflected" variants of these models in109

which inhibition increased and excitation decreased the associated values specifically for pessimistic110

predictors (Fig. 2c). Only models with inherent opponency could capture our data (Fig. 2d-f). The111

Reflected Expectile model is particularly interesting in this regard, since midbrain dopamine neurons112

have been previously suggested to form an expectile RPE code [7], and using D2 MSNs to encode113

expectiles below the mean would allow the striatum to learn from negative RPEs.114

3 Discussion115

Together, these findings highlight an impressive correspondence between dRL and the mammalian116

basal ganglia, with both learning the distribution of returns. However, only the brain instantiates value117

predictors in two distinct yet complementary populations. Part of the explanation for this difference118

is the simple fact that biological neurons, unlike artificial ones, are restricted to non-negative firing119

rates. Yet given the widespread observation of opponency throughout the brain, there might be a more120

fundamental reason for this division. One possibility is that neurons specialized in positive or negative121

outcomes can speed learning in rich or lean environments, respectively [38], or guide exploration122

[39]. In addition, just as is the case with ON/OFF pathways in vision [40], optimistic and pessimistic123

predictors may sometimes operate independently (as when assessing best or worst-case outcomes)124

and other times must be combined (as when computing expected value). Separate pathways would125

thereby enable maximum flexibility and speed of downstream computations. It remains to be seen126

whether such a division might also be of some benefit in machine learning, closing the loop between127

our algorithmic understanding of the basal ganglia and reinforcement learning [41].128
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