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Abstract

We present PepTune, a multi-objective discrete
diffusion model for simultaneous generation and
optimization of therapeutic peptide SMILES.
Built on the Masked Discrete Language Model
(MDLM) framework, PepTune ensures valid
peptide structures with a novel bond-dependent
masking schedule and invalid loss function. To
guide the diffusion process, we introduce Monte
Carlo Tree Guidance (MCTG), an inference-
time multi-objective guidance algorithm that bal-
ances exploration and exploitation to iteratively
refine Pareto-optimal sequences. MCTG inte-
grates classifier-based rewards with search-tree
expansion, overcoming gradient estimation chal-
lenges and data sparsity. Using PepTune, we
generate diverse, chemically-modified peptides
simultaneously optimized for multiple therapeutic
properties, including target binding affinity, mem-
brane permeability, solubility, hemolysis, and
non-fouling for various disease-relevant targets.
In total, our results demonstrate that MCTG for
masked discrete diffusion is a powerful and mod-
ular approach for multi-objective sequence design
in discrete state spaces.

1. Introduction
Peptides possess unique advantages as a therapeutic modal-
ity, including their low cytotoxicity and structural flexibility
to bind to a diverse set of binding motifs without requir-
ing stable binding pockets, making them ideal for target-
ing structurally diverse protein surfaces (Dang et al., 2017;
Wang et al., 2022). However, peptides containing only the
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20 wild-type amino acids have limitations, including sus-
ceptibility to enzymatic degradation and low membrane
permeability (Wang et al., 2022). To overcome these limita-
tions, non-natural amino acids (nAAs) containing diverse
chemical modifications to the peptide backbone and side
chains have been integrated into peptides to enhance their
therapeutic properties. Despite this progress in peptide drug
development, searching for the vast space of chemically
modified peptides remains a major limitation (Muttenthaler
et al., 2021; Vinogradov et al., 2019). This motivates the
development of generative deep learning models that can
effectively learn the space of clinically relevant peptides and
sample de novo peptides conditioned with various therapeu-
tic properties.

Generative structure-based models are considered state-of-
the-art for de novo binder design, but they often rely on
stable tertiary structures of target proteins (Rettie et al.,
2025; Bryant & Elofsson, 2023; Pacesa et al., 2024; Li et al.,
2024; Watson et al., 2023), precluding the design of peptide
binders to disordered and dynamic targets, which drive a
sizable portion of diseases (Uversky et al., 2008). Gener-
ative peptide design language models that depend only on
the target sequence (Bhat et al., 2025; Chen et al., 2023)
have demonstrated robust success on disordered and struc-
turally diverse targets, but their use of only 20 wild-type
amino acids limits these models from sampling from the
space of chemically-modified or cyclic peptides. Further-
more, discrete generative models still face significant limita-
tions in multi-objective-guided generation and optimization
(Austin et al., 2021; Lou et al., 2024; Shi et al., 2024; Sahoo
et al., 2024; Gat et al., 2024; Rector-Brooks et al., 2024;
Peng et al., 2025a; Davis et al., 2024; Tang et al., 2025b).
Classifier-based and classifier-free guidance strategies have
been explored to steer discrete diffusion objectives toward
specific properties (Wang et al., 2024; Rector-Brooks et al.,
2024; Stark et al., 2024; Nisonoff et al., 2024), yet these ap-
proaches often struggle with conflicting objectives, gradient
estimation, and the sparsity of quality data.

In this work, we introduce PepTune, the first multi-
objective-guided discrete diffusion model for de novo pep-
tide SMILES generation. Our key contributions include:
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1. Masked Diffusion Language Model for Peptide
SMILES. We introduce the first discrete diffusion
model for generating peptide SMILES with non-
canonical amino acids and cyclic modifications.

2. Bond-Dependent Masking Schedule. We derive the
NELBO and reverse-posterior for a bond-dependent
masking schedule that increases the structural validity
of our generated peptide SMILES.

3. Global Sequence Invalid Loss. We introduce a novel
invalid loss based on our peptide SMILES filter that ef-
ficiently propagates penalties from a discrete sequence
to continuous probability distributions.

4. Monte Carlo Tree Guidance. We develop a ro-
bust framework for classifier-based multi-objective
guidance for discrete diffusion by iteratively refining
Pareto-optimal peptide sequences across therapeutic
properties without gradient estimation or re-training.

5. Property Prediction Toolkit. We train a set of clas-
sifiers and regressors for binding affinity, membrane
permeability, solubility, hemolysis, and non-fouling.

2. Bond-Dependent Masked Discrete Diffusion
2.1. Masked Discrete Diffusion Model

We based our unconditional generator on the Masked Diffu-
sion Language Model (MDLM) framework, which learns to
reconstruct clean sequences from sequences corrupted with
[MASK] tokens (Figure 1) (Sahoo et al., 2024; Shi et al.,
2024; Ou et al., 2024; Zheng et al., 2024). The backbone
model used to generate the predicted probabilities, denoted
xθ(zt, t) : VL × [0, 1] → ∆|V|, of transitioning from a
masked state to any token in the vocabulary V is predicted
by a backbone RoFormer architecture (See Appendix D.2).
RoFormer leverages rotary positional embeddings (RoPE)
(Su et al., 2021), which effectively captures the relative inter-
token interactions in peptide SMILES, especially for cyclic
peptides.

2.2. Bond-Dependent Masking Schedule

Since all peptides follow a distinct SMILES structure con-
sisting of un-modified or modified peptide bonds before and
after each central carbon atom with an amino acid side chain,
we hypothesized that applying bond-dependent masking and
unmasking schedules would allow the reverse diffusion pro-
cess to learn to unmask the crucial structural components
of a peptide SMILES that are common across all peptides
before filling in the segments in-between with diverse amino
acid side-chains.

Extending previous work in state-dependent masking (Shi
et al., 2024), we devised a masking schedule where the

probability of masking a token within a peptide bond in-
creases at a slower rate in earlier times t in the masking
process compared to non-peptide bond tokens. To achieve
this, we define the discrete-time log-linear masking sched-
ule σ(t) = − log(1 − t) for non-peptide bond tokens and
the log-polynomial masking schedule σ(t) = − log(1− tw)
for peptide-bond tokens. We show in Appendix G.1 that the
continuous-time probability of remaining unmasked at time
t in the forward diffusion process is given by the function
αt(x0) : R|V| → R that takes the vector encoding the token
x0 and returns a probability

αt(x0) =

{
1− tw x0 = b

1− t x0 ̸= b
(1)

where b is the vector with ones at indices of peptide bond
tokens and zeroes in remaining indices. The tokens corre-
sponding to peptide bonds are identified with our BOND-
MASK function (Algorithm 7). Since the probability of tran-
sitioning to a [MASK] token at time t is given by 1−αt(x0),
there is a lower probability tw for t ∈ (0, 1] of masking
a peptide bond token than the probability t of masking a
non-peptide bond token, especially in earlier time steps for
smaller t (Figure 15A). As t → 1, the probability of re-
maining unmasked approaches 0 (αt(x0) → 0) and the
probability of masking for both peptide and non-peptide
bond tokens approaches 1, ensuring that the model can learn
to reconstruct the full token sequence during the reverse
diffusion process.

With our bond-dependent masking rate αt(x0), we define
the forward transition matrix as

q(zt|x0) = Cat(zt;αt(x0)x0 + (1− αt(x0))m) (2)

Proposition 2.1 (Bond-Dependent Reverse Posterior). The
reverse posterior defining the probability distribution of the
token zs at time s = t−∆t given the token zt at time t with
our bond-dependent forward masking schedule is defined as

q(zs|zt,x0) =
〈(

s
t −

sw

tw

)
b+ t−s

t 1,x0

〉
x0+〈(

sw

tw −
s
t

)
b+ s

t1,x0

〉
m zt = m

zt zt ̸= m

(3)

When the clean token is a peptide bond token (i.e. x0 = b),
the transition distribution for a masked token zs = m re-
duces to q(zs|zt = m,x0 = b) =

(
1− sw

tw

)
x0 +

(
sw

tw

)
m.

When the clean token is not a peptide bond token (i.e. x0 ̸=
b), the transition distribution for a masked token zs = m
reduces to q(zs|zt = m,x0 ̸= b) =

(
1− s

t

)
x0 +

(
s
t

)
m.

If the token is already unmasked, it remains unmasked at
the same token with probability 1.

The derivation is provided in Appendix G.2. To estimate
the reverse posterior, we define a parameterized RoFormer
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Figure 1. PepMDLM. PepMDLM is a discrete masked diffusion model for unconditional de novo generation of peptide SMILES
representations.

model xθ(zt, t) : VL× [0, 1]→ ∆|V| that takes the partially
masked sequence at time t and predicts a vector of token
probabilities over the |V|-dimensional simplex for each po-
sition in the sequence. By substituting x0 ≈ xθ(zt, t) into
the true reverse transition, we get the predicted reverse tran-
sition distribution.

pθ(zs|zt) =
〈(

s
t −

sw

tw

)
b+ t−s

t 1,xθ(zt, t)
〉
zs+〈(

sw

tw −
s
t

)
b+ s

t1,xθ(zt, t)
〉
m zt = m

zt zt ̸= m

(4)

For larger w, peptide bonds are masked at later timesteps,
encouraging earlier unmasking in the reverse diffusion pro-
cess. However, setting w too large can result in the model
over-fitting to the dataset (Shi et al., 2024). Empirically, we
found that w = 3 increased peptide validity while maintain-
ing diversity across generated samples.

2.3. Loss Functions

Bond-Dependent Continuous-Time Diffusion Loss To
optimize the parameters θ of the reverse diffusion model, we
maximize the evidence lower bound (ELBO) of the distribu-
tion log p(x0), which is the log-probability distribution of
generating the peptide sequences x0 present in the dataset.
Therefore, we define our loss function as the negative ELBO
(NELBO) (Appendix B.2).

Training on samples masked for continuous values of t ∼
Uniform(0, 1) yields a tighter lower bound compared to dis-
crete values of t (Kingma et al., 2021). When the predicted

probability distribution xθ(zt, t) is exactly the one-hot en-
coding vector x0 for each position ℓ in the true sequence,
the loss reduces to 0, which supports our objective.

Proposition 2.2 (Bond-Dependent NELBO). The bond-
dependent continuous-time NELBO decomposes into the
sum of the negative log-losses (NLLs) for all non-peptide
bond tokens that follow a log-linear masking schedule and
the sum of the NLLs for all peptide bond tokens that follow
a log-polynomial schedule.

L∞
NELBO = Et,q(zt|x0)

[
−

∑
ℓ:x

(ℓ)
0 =b

w

t
log⟨x(ℓ)

0 ,x
(ℓ)
θ (zt, t)⟩

−
∑

ℓ:x
(ℓ)
0 ̸=b

1

t
log⟨x(ℓ)

0 ,x
(ℓ)
θ (zt, t)⟩

]
(5)

where ℓ ∈ {1, . . . , L} denotes the position in the sequence.

The derivation is provided in Appendix G.3. Since the NLL
term is minimized when the predicted probability of the
ground truth token is close to 1, we show that applying the
log-polynomial masking schedule for an exponent w > 1
scales the diffusion loss NELBO by a factor of w from the
log-linear schedule. However, for earlier timesteps as t→ 0,
both NLL weights increase to∞, ensuring high precision
in the final unmasking steps (Appendix Figure 15).

Given that peptide bonds form the fundamental backbone
structure of a peptide, our bond-dependent masking strategy
for peptide bonds acts as a peptide bond loss that introduces
a higher penalty when the token predictions at positions of
peptide bonds are inconsistent from the ground truth tokens
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during training, forcing the model to learn the specific struc-
ture of peptide SMILES strings in a vast space of SMILES
strings that are not valid peptides.

Invalid Peptide Loss To further discourage the genera-
tion from predicting token logits that produce invalid pep-
tide SMILES, we incorporate a loss to penalize sampling
of invalid peptide SMILES during training by taking the
argmax of the predicted logits and assigning a penalty
based on our peptide validity filter (Appendix 8). Given
the clean peptide sequence x̃0 ∈ VL generated from the
argmax tokens with the highest probability from the pre-
dicted logits xθ(zt, t), we minimize a penalty determined
by our validity filter 1[x̃0 is Invalid] which returns 0 when
the sequence is a valid peptide SMILES and 1 when the
sequence either contains invalid SMILES notation or cannot
be decoded into a peptide sequence. Since the argmax
function is not differentiable, we use the softmax proba-
bility of the sampled tokens to scale the penalty score for
each token in the loss function.

Linvalid =

L∑
ℓ=1

x̃
(ℓ)⊤
0 SM

(
x
(ℓ)
θ (zt, t)

)
· 1[x̃0 is Invalid]

=

L∑
ℓ=1

exp(x
(ℓ)
θ,k)∑K

j=1 exp(x
(ℓ)
θ,j)
· 1[x̃0 is Invalid] (6)

where k = argmaxj(x
(ℓ)
θ

(
zt, t)

)
is the token with the high-

est predicted probability at position ℓ of the sequence.
Proposition 2.3 (Gradient Flow of Invalid Loss). By dif-
ferentiating the invalid loss with respect to the probability
vector x(ℓ)

θ (zt, t) for position ℓ, the gradient with respect to
the predicted probability of the sampled token j = k and
all other tokens in the vocabulary j ̸= k is given by

∇Linvalid =

{
SM(x

(ℓ)
θ,k)

(
1− SM(x

(ℓ)
θ.k)
)

j = k

−SM(x
(ℓ)
θ,j)SM(x

(ℓ)
θ,k) j ̸= k

(7)

The derivation is provided in Appendix G.4. Minimizing
this objective function updates the parameters to lower the
predicted probabilities for tokens that result in invalid pep-
tide SMILES and increase the probabilities of the remaining
tokens proportional to their original distribution, such that
the relative probability distribution of all other tokens j ̸= k
is maintained.

Training To train the MDLM to accurately approximate
the true reverse transition distribution q(zs|zt,x0) of a train-
ing sample x0 for all continuous timesteps t = 1 → 0,
we train a parameterized model that takes the partially
masked sequence zt and returns a probability distribution
xθ(zt, t) that approximates the clean one-hot vector x0 (Al-
gorithm 1). For each dynamic training batch B, we ran-
domly sample |B| values t ∈ Uniform(0, 1) and off-set

each time t by δ⃗ =
[
0, 1

|B| ,
2

|B| , . . . ,
|B|−1
|B| , 1

]
to get a vec-

tor t⃗ = (⃗t + δ⃗) mod 1 of evenly distributed time steps to
ensure the model learns to regenerate the clean sample zt
for a continuous range of time steps. After applying bond-
dependent masking to each training sequence, obtaining the
predicted probabilities xθ(zt, t) and sampling the discrete
sequence x̃0 from greedy argmax sampling, we minimize
the total loss function L given by

L = L∞
NELBO + Linvalid (8)

By increasing batch size and applying dynamic batching
(Appendix B.1), we obtain a tighter ELBO of the true dis-
tribution log p(x0). The model used to generate the vali-
dation results in this manuscript is trained on our in-house
8×A6000 Nvidia GPUs (50G memory) for 1600 GPU hours
using the AdamW optimizer with a learning rate of 0.0003
and weight decay of 0.075. After training for 8 epochs with
11 million peptide SMILES (Appendix C.1), we achieved a
train loss of 0.832 and a validation loss of 0.880.

Sampling To sample from the unconditional PepMDLM
model, we start with a sequence x0 = [MASK]L of length
L of only [MASK] tokens. We first compute the diffu-
sion time steps t ∈ { 1

T ,
2
T , . . . , 1} where T is the number

of denoising steps (T = 128). From the predicted token
probabilities xθ(zt, t) generated by feeding zt through the
trained RoFormer backbone, we compute the reverse transi-
tion token distribution pθ(zs|zt) following Equation (4) and
perform Gumbel-max sampling to get the next token zs.

zs ∼ argmax (log pθ(zs|zt) +G) (9)

Gj = − log(− log(uj + ϵ) + ϵ) is the i.i.d. sampled
Gumbel noise applied to the jth token probability, uj ∼
Uniform(0, 1), and ϵ = 1e− 10. Then, we return the newly
sampled tokens only when zt = m, while keeping all un-
masked tokens unchanged. After T timesteps, we obtain a
fully unmasked sequence x.

3. Multi-Objective Guided Discrete Diffusion
In this section, we describe the concept of Pareto dominance
and non-dominance for multiple objectives and introduce
Monte Carlo Tree Guidance (MCTG), a novel algorithm
that reformulates the Monte Carlo Tree Search (MCTS)
framework (Coulom, 2007) for multi-objective-guided dis-
crete diffusion.

Pareto Optimization When optimizing sequences for
multiple objectives (e.g., affinity to multiple protein targets,
membrane permeability, solubility, etc.), there is likely no
single best sequence that achieves the highest score across
all objectives. Optimizing one objective often leads to sacri-
ficing performance on another objective.
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Figure 2. PepTune. PepTune is a multi-objective discrete diffusion model with Monte Carlo Tree Guidance (MCTG). The full algorithm
is detailed in Algorithm 3.

Therefore, we focus on finding a set of Pareto optimal se-
quences that minimize the trade-offs between objectives to
achieve overall optimal performance across all objectives.
Formally, Pareto-optimal sequences (or non-dominated se-
quences) cannot be further optimized in any single objective
without sacrificing performance in another objective.

Let s(x) = [s1(x), . . . , sK(x)] ∈ RK be a vector of scores
that measures the performance of a sequence x in K differ-
ent objectives, with higher scores indicating better perfor-
mance. A sequence x∗ is said to dominate another sequence
x (denoted as s(x∗) ≻ s(x)) if and only if it satisfies the
following property. For all objectives k ∈ {1, . . . ,K}, the
score for the kth objective for x∗ is greater than or equal
to the score for the kth objective for x, and for at least one
objective k′, the score for x∗ is strictly greater than the score
for x.

A Pareto-optimal sequence x is a sequence where there does
not exist another sequence x∗ in the current Pareto-optimal
set P∗ that dominates it. Since there are trade-offs between
objectives, this does not mean that x is dominant over all
other sequences.

∄x∗ ∈ P∗ s.t. s(x∗) ≻ s(x)︸ ︷︷ ︸
x is non-dominated

(10)

We define the Pareto front as the set of non-dominated se-
quences x and their K-dimensional objective score vectors.

P∗ =
{(

x, s(x)
)
| ∄x∗ ∈ P∗ s.t. s(x∗) ≻ s(x)

}
(11)

Since infinitely many trade-offs can exist between the K
objectives, there can be an infinite number of Pareto-optimal
sequences. Therefore, multi-objective optimization aims to
approximate a finite set of Pareto-optimal sequences with a
reasonable number of iterations.

Notation Let zt denote the partially unmasked sequence
at time t. zt also corresponds to a node in the MCTS tree
with a set of M children nodes denoted as children(zt) =
{zs,1, . . . , zs,M}. Each child node is itself a partially un-
masked sequence at time s derived from sampling the
MDLM reverse posterior pθ(zs|zt). The children nodes
at each iteration of MCTS are rolled out into a set of clean
sequences denoted as {xs,1, . . . ,xs,M}, for each of which
we compute a score vector s(xs,i) ∈ RK and a rewards
vector r(xs,i) ∈ RK , where K is the number of objectives
guiding the MCTS search.

Let P∗ = {x∗
n} be the set of |P∗| Pareto non-dominated

sequences indexed n ∈ {1, . . . , |P∗|}, which is updated
at each iteration. At each node zt, we store a cumulative
rewards vector W(zt) and a counter for the number of times
the node has been visited across all iterations Nvisit(zt).
Finally, we denote the total number of search iterations with
Niter.

Initialization We initialize a sequence zt(T ) = [MASK]L

of length L of [MASK] tokens as the root node of the MCTS
tree corresponding to time t(T ) and an empty set P∗ that
will maintain clean sequences with Pareto-optimal score
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vectors. We initialize a set of scoring functions s : VL →
RK that takes a clean sequence xs,i ∈ VL generated from
the partially masked sequence zs,i and outputs a vector of
real values s(xs,i) ∈ RK that measures its performance in
each of the K objectives. We also set the hyperparameters,
including the number of iterations Niter and the number of
children M .

At each iteration, four steps are performed to update the
set of Pareto optimal solutions: traversing the tree by se-
lecting a Pareto-optimal unmasking step until reaching a
unexpanded leaf node (selection), expanding the leaf node
into M distinct partially unmasked sequences (expansion),
fully unmasking each child node into a clean sequence and
computing multi-objective score and reward vector (rollout),
and finally back-propagating the total rewards to the pre-
decessor nodes to guide the selection process at the next
iteration (backpropagation).

Selection At each iteration, we traverse the tree start-
ing at the root node (fully masked sequence) zt(T ) and
selecting a child node based on the selection score vector
U(zt, zs,i) that balances child nodes that generate high re-
ward sequences from previous iterations and unexplored
unmasking actions that could lead to a larger pool of diverse
sequences.

U(zt, zs,i) =
W(zs,i)

Nvisit(zs,i)
+ c · pθ(zs,i|zt)

√
Nvisit(zt)

1 +Nvisit(zs,i)

The first term is the cumulative reward vector W(zs,i) nor-
malized by the number of times the node was previously
visited. This guides the selection process towards the un-
masking step that has resulted in fully unmasked sequences
with optimal properties without biasing towards highly vis-
ited nodes. The second term is a scalar added element-wise
to the normalized rewards. The scalar probability of the
unmasking step based on the unconditional reverse poste-
rior pθ(zs,i|zt) guides the selection towards the unmasking
step with the highest probability to generate a valid peptide
based on the pre-trained MDLM. When the number of times
the parent node has been explored is high and the number

of visits to a child node is low, the
√

Nvisit(zt)

1+Nvisit(zs,i)
term en-

courages exploration of the unexplored unmasking scheme
given that pθ(zs,i|zt) is sufficiently high. However, as the
number of visits to a child node increases, the impact of the
second term decreases and the cumulative rewards dominate
the selection score vector. c is a scalar hyperparameter that
determines the degree of exploration compared to exploiting
high-reward nodes, which is selected to be c = 0.1.

Then, we select uniformly at random from the pool of chil-
dren nodes zs,i ∈ P∗

select whose selection score vectors are
non-dominated, such that there does not exist another child
node zs,j where the selection score vector has a score strictly

greater than that of zs,i in at least one of the K objectives
and equal scores across all the remaining objectives.

P∗
select ={zs,i | ∄zs,j ∈ children(zt)

s.t. U(zt, zs,j) ≻ U(zt, zs,i)} (12)

If the selected node is a non-leaf node, the loop repeats
with the selected node zs,i as the new parent node. If a
fully unmasked node with t = 0 is reached, we restart the
selection process from the root node. Once a leaf node is
reached, the loop ends and the next step executes.

Expansion At the iteration at time t, we sample M se-
quences from the reverse posterior pθ(zs|zt) defined in
Equation (4) to get a set of partially masked sequences
which form the set of children nodes of zt: children(zt) =
{zs,1, . . . , zs,M}. All the children nodes are added to the
tree.

To ensure that the expansion step results in M distinct un-
masking steps, we experimented with two different batched
unmasking techniques from the single partially masked se-
quence at a parent node. For the first method, we repeated
the array corresponding to the parent node tokens over M
dimensions and added independently sampled Gumbel noise
values Gi,j , where i denotes the sequence in the batch and
j denotes the token index.

log p̃θ,i
(
zs,i|zt) = log pθ

(
zs,i|zt

)
+Gi (13)

Gi,j = − log (− log(ui,j + ϵ) + ϵ) (14)

where ui,j ∼ Uniform(0, 1) and p̃θ,i denotes the ith per-
turbed reverse transition distribution after applying Gum-
bel noise independently sampled for each sequence i in
the batch, where i ∈ {1, . . . ,M}. Then, we sample
M distinct child sequences from each of the distributions
zs,i ∼ p̃θ,i

(
zs,i|zt

)
.

The second method involves taking the softmax (denoted
as SM) across the top k probabilities after applying Gumbel
noise and drawing random samples from the re-normalized
softmax distribution over only the top k most probable to-
kens.

p̃θ,i
(
z
(ℓ)
s,i |z

(ℓ)
t ) = SM

(
topk

{
log pθ

(
z
(ℓ)
s,i |z

(ℓ)
t

)
+G

(ℓ)
i

})
(15)

After empirical experimentation, we found that the first
method results in higher diversity across sequences whereas
the second method prevents unlikely tokens. Since the re-
ward generated by a sequence ultimately determines whether
it is selected in subsequent iterations, we chose the first
method to allow for greater exploration during the expan-
sion step.

Rollout From each child node generated at time s, we
completely unmask the sequence by greedily sampling the
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argmax tokens from the predicted reverse transition distri-
bution pθ,i(zs′ |zs) for all remaining time steps s→ 0 and
s′ = s− 1

T to get a set of clean sequences {xs,1, . . . ,xs,M}
of SMILES tokens. We feed each clean sequence xs,i as in-
put to the scoring functions for all of the K objectives to gen-
erate the score vector s(xs,i) =

[
s1(xs,i), . . . , sK(xs,i)

]
∈

RK . Then, we use the score vector to compute a vector of
rewards r(xs,i) =

[
r1(xs,i), . . . , rK(xs,i)

]
∈ RK . To gen-

erate the property scores given an input peptide SMILES,
we train regression models for target-binding affinity and
cell membrane permeability and binary classification mod-
els for solubility, hemolysis, and non-fouling specifically on
peptide SMILES data (Appendix E).

The reward of a child node sequence for the kth objective is
the fraction of the sequences x∗

n in the current set of Pareto-
optimal sequences P∗ where the child node has a higher
classifier score in that objective. Specifically, the reward for
the ith child node zs,i and the resulting unmasked sequence
xs,i for the kth objective is given by

rk(xs,i) =
1

|P∗|

|P∗|∑
n=1

1
[
sk(xs,i) ≥ sk(x

∗
n)
]

(16)

where 1 is an indicator function that returns 1 if the score
for the kth objective of the ith child node is greater than
or equal to the score of the nth sequence in the Pareto-
optimal set P∗. In parallel to computing the reward, we add
all non-dominated children sequences to the set of Pareto
optimal sequences P∗ and remove all dominated sequences
(Algorithm 6).

P ′∗ = P∗ ∪
{
(zs,i, s(xs,i)) | ∀x̃ ∈ P∗ s(xs,i) ⪰ s(x̃)

}
P ′∗ = P∗ \

{
x̃ | ∃xs,i ∈ children(zt) s.t. s(xs,i) ≻ s(x̃)

}
In Appendix I.1, we show a proof-of-concept for a time-
dependent multi-objective guidance strategy where the up-
date to the Pareto-optimal set P∗ depends on the rewards for
only a subset of the K objectives that varies depending on
the current iteration, enabling the prioritization of properties
with larger influence on peptide structure and function in
earlier iterations and fine-tuning on additional properties in
later iterations.

Back-propagation At each child node zs,i, the reward
vector r(xs,i) is used to initialize the cumulative reward
vector W(zs,i), and the number of visits Nvisits(zs,i) is
initialized to 1.

W(zs,i)← r(xs,i), Nvisit(zs,i)← 1 (17)

Then, we backtrack through the predecessor nodes of zs,i
up to the root node zt(T ), adding the child reward vector to
the cumulative reward vector and incrementing the number
of visits for each node in the path. For all nodes from

zt = parent(zs,i) to zt = zt(T ) we apply the following
update

W(zt)←W(zt) +

M∑
i=1

r(xs,i) (18)

Nvisit(zt)← N(zt) + 1 (19)

These updated scores are used to guide the selection process
in the next iteration, such that the unmasking paths that
result in the highest reward sequences have a greater chance
of being selected and explored further.

Output The output after Niter iterations is the set P∗ of
Pareto-optimal sequences across the K objectives. Our
strategy simultaneously guides the unmasking process to-
wards optimality across multiple objectives directly in the
discrete state space while exploring the diverse space of
peptide sequences using the trained unconditional MDLM
generator. Furthermore, we generate a set of Pareto-optimal
sequences from a single run through the MCTS-search algo-
rithm which are non-dominated from the total of Niter ·M
total sequences sampled across all iterations.

4. Therapeutic Property Classifiers
While several classifiers exist for predicting properties of
small-molecule SMILES sequences and amino-acid repre-
sentations of peptides, there exists a gap in high-quality
property models trained specifically on peptide SMILES
data. To fill this gap, we train regression models for target-
binding affinity and cell membrane permeability (Appendix
Table 8; Figure 14) and binary classification models for sol-
ubility, hemolysis, and non-fouling specifically on peptide
SMILES data. Our prediction models achieve significantly
enhanced performance in peptide property prediction com-
pared to the state-of-the-art PeptideBERT (Guntuboina et al.,
2023) baseline (Table 2).

Table 2. Benchmarks of solubility, hemolysis, and non-fouling
prediction against PeptideBERT (Guntuboina et al., 2023). We
leveraged PeptideCLM embedding representations of the SMILES
tokens and trained XGBoost models for binary classification.

Solubility Hemolysis Non-fouling

Metric Ours PeptideBERT Ours PeptideBERT Ours PeptideBERT

F1 0.660 0.597 0.846 0.483 0.768 0.699
Accuracy 0.661 0.651 0.846 0.823 0.766 0.873

5. Experiments
PepMDLM generates diverse chemically-modified and
cyclic peptides. Our optimized unconditional MDLM
(PepMDLM) shows increased uniqueness and diversity with
lower SNN compared to the autoregressive generator of

7
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Table 1. Evaluation metrics for generative quality of peptide SMILES sequences of max token length set to 200.

Model Validity (↑) Uniqueness (↑) Diversity (↑) SNN (↓) Randomness (↑) KL-Divergence (↑)
Data 1.000 1.000 0.885 1.000 4.55 0 (Reference)
PepMDLM 0.450 1.000 0.705 0.513 4.11 0.174
PepTune 1.000 1.000 0.677 0.486 4.12 0.173

macrocyclic peptides, HELM-GPT (Xu et al., 2024), demon-
strating our capability to comprehensively search the sub-
space of valid peptide SMILES (Table 7). Furthermore, our
unconditional generator PepMDLM generates valid peptides
with a higher average nAA frequency than experimentally-
validated peptide SMILES for membrane permeability and
binding affinity (Figure 12), demonstrating our unique abil-
ity to design de novo peptides with cyclic and nAA modifi-
cations and expanding the search space of therapeutic pep-
tides well beyond any generative model trained on canonical
amino acid representations.

Even though the multi-objective selection process favors
high-reward unmasking steps, we show that the resulting
pool of PepTune-generated peptides retains similar unique-
ness and diversity scores to the peptides generated by Pep-
MDLM and in the training dataset (Table 1). In addition, the
fraction of valid peptides consistently reaches 100% after
only 20 iterations of the MCTS search algorithm, demon-
strating the effectiveness of backpropagating the classifier-
based rewards.

PepTune enables multi-objective generation of thera-
peutic peptide binders. Given the significant develop-
ment of glucagon-like peptide-1 (GLP-1R) peptide ago-
nists for the treatment of type-2 diabetes and obesity (Al-
faris et al., 2024), we compared GLP-1R binding affinity-
conditioned peptides generated using PepTune with recent
blockbuster GLP-1R agonists: semaglutide and liraglutide.
Both semaglutide and liraglutide are over 30 amino acids in
length and act by mimicking the binding of natural GLP-1 by
binding to the activation pocket of GLP-1R with high preci-
sion (Figure 3) (Mahapatra et al., 2022; Nauck & D‘Alessio,
2022).

Shorter agonists or antagonists to GLP-1R would serve sev-
eral benefits to the treatment of insulin-related disorders,
including reduced cost and complexity of synthesis, lower
immunogenicity, and faster tissue penetration. Therefore,
we sought to generate shorter-chain peptides that are capable
of binding to GLP-1R with comparable affinity to the exist-
ing agonists. We first generated a pool of peptide binders
conditioned on binding affinity with the GLP-1R sequence,
solubility, hemolysis, and non-fouling. After selecting the
peptides with the highest predicted binding affinity scores
from the Pareto non-dominated set, we performed docking
and determined docking scores of -7.4 kcal/mol and -7.0

Figure 3. Comparison of docked PepTune-generated peptides
to existing GLP-1R agonists. (A, B) Docking images of semaglu-
tide (score: -5.7 kcal/mol) and liraglutide (score: -5.1 kcal/mol)
binding to GLP-1R. (C) Full view of the positive control GLP-1R
agonists and the PepTune-generated binders on GLP-1R. (D, E)
Docking images of binder 1 (score: -7.4 kcal/mol) and 2 (score:
-7.0 kcal/mol) were generated using PepTune conditioned on pre-
dicted affinity to GLP-1R, solubility, hemolysis, and non-fouling.
Shared polar contacts between binder 1 and either controls are
highlighted in pink, shared polar contacts between binder 2 and
either controls are highlighted in green, and the shared contacts
across both binders are highlighted in purple.

kcal/mol for the two best candidates. Our peptides show
superior docking affinity to GLP-1R while interacting at
overlapping binding motifs to semaglutide and liraglutide
derived from the natural hormone ligand, GLP-1 (Figure 3).
These results suggest that our PepTune-derived peptides can
serve as potent agonists or antagonists of GLP-1R signaling.

PepTune generates optimized dual-target-binding pep-
tides. Multi-target drug discovery is of significant interest
in various fields, including cancer therapeutics and drug
delivery for neurological disorders, given their ability to
perform multiple different functions such as binding to bi-
ological barriers like the blood-brain barrier, penetrating
target cells, and inhibiting protein-protein interactions (Tang
et al., 2025a; Li et al., 2023b; Chan et al., 2016).

To evaluate PepTune’s capabilities in multi-target guid-
ance, we generate bi-specific peptide binders to TfR and
glutamate-aspartate transporter (GLAST) protein abundant
on the surface of astrocytes, a type of glial cell in the
brain. Successfully generating these peptides can facili-
tate BBB-crossing via TfR binding and uptake in astrocytes
via GLAST binding for intravenous delivery of therapeutics

8
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Table 3. Property metrics for PepTune-generated dual-target binders to TfR and GLAST. The predicted binding affinity scores by
our trained classifier are placed in brackets beside the docking score. Larger scores indicate stronger binding for our classifier.

Binder ID TfR Docking Score (kcal/mol) (↓) GLAST Docking Score (kcal/mol) (↓) Solubility (↑) Hemolysis (↑) Non-fouling (↑)
Binder 1 -8.8 (8.800) -8.9 (7.775) 0.975 0.743 0.118
Binder 2 -8.0 (7.599) -7.9 (6.751) 0.938 0.835 0.309
Binder 3 -8.3 (7.537) -8.2 (6.662) 0.972 0.914 0.214
Binder 4 -7.6 (7.748) -7.5 (6.946) 0.959 0.902 0.290
Binder 5 -10.5 (8.714) -8.5 (7.398) 0.811 0.748 0.202
Binder 6 -8.4 (8.197) -7.5 (7.076) 0.971 0.855 0.165
Binder 7 -9.3 (8.321) -9.2 (7.190) 0.881 0.860 0.212

Figure 4. PepTune-generated peptides to TfR and GLAST. Full protein binding location and close-up binding position for (A) dual
binder 1, (B) dual binder 6, and (C) dual binder 8 with TfR (left) and GLAST (right). Polar contacts within 3.5 Å are highlighted.

for a multitude of neurological disorders where astrocytes
are involved, including Alexander disease (Li et al., 2018),
Alzheimer’s disease (Habib et al., 2020), Parkinson’s dis-
ease (Yun et al., 2018), Huntington’s disease (Khakh et al.,
2017), multiple sclerosis (Wheeler et al., 2020), and several
psychiatric disorders (Martin-Fernandez et al., 2017).

We generated 100 peptide binders conditioned on five prop-
erties: predicted binding affinity to TfR, binding affinity to
GLAST, solubility, hemolysis, and non-fouling. Remark-
ably, all property scores improved over iterations, with final
solubility, hemolysis, and non-fouling scores surpassing
binders conditioned solely on TfR binding affinity (Ap-
pendix Figure 10). This highlights that our multi-target
guidance strategy avoids significant property trade-offs.

To validate binding to both TfR and GLAST, we selected
seven binders and docked them against each target. All
seven achieved docking scores ≤ −7.5 kcal/mol, with
the top binder scoring −10.5 kcal/mol for TfR and −9.2
kcal/mol for GLAST (Table 3). These top binders exhibited
diverse secondary structures (Figure 4), positive solubil-
ity, and low hemolysis probabilities (Table 3). Candidates’
binding positions and polar interactions varied, showing
PepTune can discover diverse, high-affinity peptides with-
out relying on specific motifs.

6. Discussion
We introduce PepTune, a multi-objective-guided discrete
diffusion model for de novo generation of peptide SMILES
containing non-natural amino acids and cyclic modifications.
We propose a bond-dependent masking schedule and invalid
loss to ensure peptide validity. PepTune leverages Monte
Carlo Tree Guidance (MCTG), a novel multi-objective
guidance framework for discrete diffusion, to identify pep-
tide sequences optimized across multiple therapeutic proper-
ties. Unlike previous discrete guidance methods (Nisonoff
et al., 2024; Gruver et al., 2023), MCTG operates strictly in
the discrete state space and can be integrated at inference
time with no additional training. By balancing exploration
through batched unmasking with Gumbel noise and reward-
based exploitation of optimal unmasking paths, MCTG en-
ables the generation of a diverse set of Pareto-optimal se-
quences across an arbitrary number of objectives. Unlike
recent binder design methods (Rettie et al., 2025; Pacesa
et al., 2024; Li et al., 2024; Watson et al., 2023), PepTune
requires no 3D target structures, enabling the design of pep-
tides for conformationally diverse proteins—such as fusion
oncoproteins (Vincoff et al., 2025) and post-translationally
modified isoforms (Peng et al., 2025b)—while optimizing
for properties beyond local geometric interactions.
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Overview of Appendix
In Appendix A, we discuss additional case studies demonstrating PepTune’s ability to generate peptides with high binding
affinity and enhanced therapeutic properties to several therapeutic targets, including receptors on the blood-brain barrier
(A.1), intracellular proteins with enhanced cell permeability (A.2), targets without existing peptide binders (A.3), and
dual-targeting for target-protein degradation (A.4).

Appendix B provides a background on continuous-time discrete diffusion (B.1), the NELBO loss objective (B.2), and
guidance for diffusion models (B.3). Appendix C provides details on data curation and tokenization. Appendix D provides
additional implementation details and generation results of our unconditional bond-dependent masked discrete diffusion
model, PepMDLM. Appendix E provides details on the model architecture and training of our property prediction models
for binding affinity (E.1), membrane permeability (E.2), solubility, hemolysis, and non-fouling (E.3). Appendix F contains
details on our evaluation methods, including our SMILES2PEPTIDE filter (F.1).

In Appendix G, we provide the theoretical basis for Section 2, including formal proofs for Proposition 2.2 (G.2), Proposition
2.1 (G.3), and Proposition 2.3 (G.4). Appendix H discusses the choices of hyperparameters. Appendix I provides results of
additional experiments, including one that integrates time-dependence into the MCTG algorithm (I.1) and ablation studies
investigating the impact of bond-dependent masking and the invalid loss on generation quality (I.2). Finally, we provide
pseudo code for all of our algorithms in Appendix J.

A. Additional Case Studies
With our trained property classifiers, we conduct experiments for diverse, therapeutically relevant protein targets to evaluate
our multi-objective MCTS guidance strategy. To demonstrate generalizability, we include targets with known peptide binders
such as TfR, and proteins with no known binders, including GFAP, NCAM1, and AMHR2. We also design bi-specific
binders for GFAP and RBX1 as a case study for Alexander disease therapeutics. These targets include both receptor proteins
involved with active transport pathways as well as intracellular targets where cell membrane permeability is crucial to
achieving therapeutic effects. For each target, we condition the generation on the binding affinity score given the target
protein sequence, along with solubility, hemolysis, non-fouling, and cell membrane permeability for intracellular targets.
For external testing and validation, we use Autodock Vina (Eberhardt et al., 2021) to compute in silico binding affinities of
our generated binders (Appendix F.3).

A.1. Targeting Receptors on the Blood-Brain Barrier

The Transferrin receptor (TfR) is a receptor protein abundant on the selectively permeable blood-brain barrier (BBB) that is
responsible for transporting iron-binding transferrin (Tf) proteins into the brain parenchyma (Johnsen et al., 2017). Given its
selective expression on brain endothelial cells and glioma cells and its ability to recycle back to the luminal surface after
facilitating the internalization of cargo through the BBB (Jefferies et al., 1984), TfR has been extensively studied as a target
for the intravenous delivery of various therapeutics and therapeutic nanocarriers through the BBB (Gosk et al., 2004; Zhang
et al., 2024).

To generate relevant binders for TfR, we condition PepTune on binding affinity with the TfR sequence, in addition to
solubility, hemolysis, and non-fouling. At each iteration, we measured the mean of the property scores across all rolled-out
sequences from the selected node to evaluate the effectiveness of the optimization strategy. We show that all properties,
except solubility, exhibited an upward trend over iterations, with the average score of the binding affinity classifier exhibiting
a significant increase in score to over 9.0 (Figure 5B). After plotting the distribution of 100 peptides generated from a single
run of PepTune with the minimum number of sequences set to 100, we confirm that our multi-objective MCTS algorithm
shifted the distribution to a higher predicted binding affinity than the unconditionally generated peptides (PepMDLM) and
the data used to train the binding regression model (Figure 5A). Despite being conditioned on four distinct properties,
PepTune is capable of generating higher-affinity binders than the unconditional model, supporting the effectiveness of our
multi-objective guidance strategy.

Encouraged by these results, we sampled the Pareto-optimal sequences from the generated peptides and used Vina docking
to compute their optimized docking score. Notably, we observed that all of the generated binders that were selected for
docking produced affinity scores below -6.0 kcal/mol, with our top-performing binder achieving a -8.4 kcal/mol binding
affinity (Figure 5C). From the docking scores, we took the two binders with the best docking scores and visualized their
binding conformation with TfR, showing that they bind to distinct motifs on the protein surface (Figure 5B, F, G).
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Figure 5. PepTune-generated peptide binders to TfR. (A) Density plot depicting the frequency of predicted binding affinity scores
from our trained regression model for the sequences in the data used to train the regression model, the generated peptides from our
unconditional PepMDLM model, and our PepTune model conditioned on TfR binding affinity, solubility, hemolysis, and non-fouling. (B)
Plots depicting the mean scores for each property over the number of iterations or traversals of the MCTS algorithm for 128 iterations and
a maximum token length of 200. The shaded region represents the standard deviation. (C) Two-dimensional visualization of generated
binders with token length 100, their corresponding docking scores (↓) computed using Vina docking, and predicted classifier scores (↑)
from the trained classifiers. (D) Visualizations of generated binders with token length 200, their docking scores, and predicted classifier
scores.

To further confirm binding affinity to TfR, we compared our peptides to the well-established 7-amino acid peptide T7
(sequence: HAIYPRH) that selectively binds to an alternative site as compared to endogenous Tf on TfR (Lee et al., 2001).
T7 has been extensively explored for targeted delivery of nanoparticles to the brain (Kuang et al., 2013; Kim et al., 2020;
Bi et al., 2016; Cai et al., 2020; Wang et al., 2015; Zhao et al., 2016; Liang et al., 2018), and has demonstrated 7.89-fold
enhanced brain penetration in in vivo mice models (Yu et al., 2018). After docking T7 with TfR, we obtained a docking
score of -8.4 kcal/mol. Notably, our peptides optimized on all four therapeutic properties, including TfR binding affinity
show competitive docking scores to T7 (Figure 6A, C, E), suggesting that PepTune is capable of generating promising
candidates for in vivo targeting and delivery across the BBB. Furthermore, after annotating polar contacts within 3.5 Å we
determine that both of the generated peptides with the best binding affinity scores have shared residue contacts when binding
with TfR as T7 (Figure 6B, D, F), indicating that our generated peptides have similar binding properties to T7, enabling it to
bind strongly to a shared binding site. Furthermore, our generated binders have diverse structural features, such as cycles in
binder 1 and side-chain modifications in binder 2. Since T7 is known to bind to an alternative site than endogenous Tf (Lee
et al., 2001), we show that PepTune can generate viable candidates for non-competitive binding to TfR for BBB-targeting
applications.

A.2. Targeting Intracellular Proteins

Glial fibrillary acidic protein (GFAP) is an intracellular protein differentially expressed in astrocytes, a family of glial
cells in the brain (Hol & Pekny, 2015). Dysregulation of GFAP expression has been found to cause Rosenthal fibers,
astrocytic cytoplasmic inclusions that are responsible for Alexander disease, a fatal neurodegenerative disease affecting
infants (Brenner et al., 2001; Grossi et al., 2024). Discovering potent binders that inhibit or degrade GFAP proteins can have
significant therapeutic implications. However, no established peptide binders exist to GFAP, which motivates their de novo
design. In addition to achieving high binding affinity with GFAP, we posit that an optimal peptide binder must also cross
the astrocyte cell membrane into the cytosol to access GFAP. Therefore, we condition the generation of GFAP binders on
five properties: binding affinity to GFAP, solubility, hemolysis, non-fouling, and cell membrane permeability using our
permeability regression model, demonstrating optimization across all of these properties (Figure 7). To confirm GFAP
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Figure 6. Comparison of PepTune-generated peptides and established T7-peptide to TfR. Two-dimensional chemical structure of (A)
PepTune-generated binder 1, (C) established T7 peptide, and (E) PepTune-generated TfR binder 2 and their Vina docking scores to TfR
(↓). Zoomed-in visualization of the docked binding positions of (A) binder 1, (B) T7, and (C) binder 2 with TfR. Polar contacts within 3.5
Å are annotated, and shared contacts between T7 and binder 1 (purple) and between T7 and binder 2 (blue) are highlighted. (C) Overlay
of peptide binders on full TfR protein

engagement, our docking peptides demonstrate strong affinities below -7 kcal/mol, motivating downstream experimental
validation in astrocyte cultures (Figure 7B and D).

A.3. Targeting Proteins Without Existing Binders

To test the ability of our model to generate binders to challenging extracellular targets without existing binders, we evaluate
PepTune-generated peptides for NCAM1 and AMHR2, two therapeutically relevant receptor proteins. Neural cell adhesion
molecule 1 (NCAM1) is a transmembrane protein expressed on the surface of neurons and glial cells (Paratcha et al., 2003).
Beyond its roles in neuronal migration and synaptogenesis, NCAM1 is also crucial for memory formation, highlighting its
significance in brain development (Vukojevic et al., 2020). As NCAM1 is an extracellular protein, we generated a library
of peptides with PepTune-optimized NCAM1 binding affinity, solubility, hemolysis, and non-fouling (Figure 8F, G). All
properties exhibited an upward trend across optimization iterations.

We selected two binders with the highest Vina docking scores for visualization (Figure 8A-E). Notably, in silico docking
analysis revealed that binder 1 exhibits markedly high affinity binding (-8.6 kcal/mol) while binder 2 wraps around the
NCAM1 structure via numerous polar contacts, suggesting extensive and specific interactions (Figure 8B and D).
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Figure 7. PepTune-generated peptide binders to intracellular protein GFAP. (A, C) Two-dimensional structures of GFAP binder 1
and 2 with predicted property scores, including cell membrane permeability. (B, D) GFAP binders 1 and 2 docked to GFAP with scores
of -8.5 kcal/mol and -7.1 kcal/mol, respectively. (E) Full GFAP protein structure with docked binders 1 and 2. (F) The distribution of
PAMPA membrane permeability scores from 34,853 experimentally-validated peptides compared to 100 peptides generated using our
unconditional PepMDLM model, and 100 peptides generated with PepTune conditioned on both cell membrane permeability and affinity
to GFAP. The permeability curve shifted towards higher permeability with a mean of -6.295. (G) Simultaneously, the distribution of
predicted binding affinity scores to GFAP for the PepTune-generated peptides is shifted to higher scores with a mean of 8.053 compared
to a set of experimentally-tested peptides and unconditional PepMDLM-generated peptides.

Figure 8. PepTune-generated peptide binders to NCAM1. Two-dimensional structures of (A) binder 1 and (C) binder 2 genered with
PepTune. Docking positions of (B) binder 1 and (C) binder 2 on NCAM1 with annotated polar contacts within 3.5 Å(̇G) Full NCAM1
protein structure with docked peptide binders 1 and 2. (H) (Top) Density plot of NCAM1 binding affinity scores for PepTune (mean:
6.708), PepMDLM (mean: 5.298), and peptides from a control set of experimentally-tested peptide SMILES (mean: 5.360). (Bottom)
Plots depicting the average predicted score for NCAM1 binding affinity, solubility, hemolysis, and non-fouling over iterations of MCTS.

Anti-Müllerian hormone type-2 receptor (AMHR2) is a transmembrane receptor involved in sex differentiation. Mutations
in the AMHR2 gene are a leading cause of Persistent Müllerian duct syndrome (PMDS) in males, resulting in the retention
of female gonads alongside male reproductive structures (Imbeaud et al., 1996). In females, polymorphisms of AMHR2
have been associated with infertility (Rigon et al., 2010; Lazaros et al., 2016). Most interestingly, antagonism of AMHR2
with therapeutic peptides can potentially serve as a specific therapy for polycystic ovarian syndrome (PCOS), which affects
an estimated 4% to 10% of women globally (Singh et al., 2023), as AMHR2 signaling has been implicated in follicular
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Figure 9. PepTune-generated peptides to AMHR2. Two-dimensional structures of (A) binder 1 and (B) binder 2 generated with PepTune.
Docking positions of (A) binder 1 and (B) binder 2 on NCAM1 with annotated polar contacts. (G) Full AMHR2 protein structure with
docked peptide binders 1 and 2. (H) (Top) Density plot of AMHR2 binding affinity scores for PepTune (mean: 8.212), PepMDLM (mean:
6.832), and peptides from a control set of experimentally-tested peptide SMILES (mean: 6.740). (Bottom) Plots depicting the average
predicted score for AMHR2 binding affinity, solubility, hemolysis, and non-fouling over iterations of MCTS.

Table 4. PepTune-generated dual-target binders to GFAP and RBX1. The predicted binding affinity scores by our trained classifier are
placed in brackets beside the docking score. Larger scores indicate stronger binding for our classifier.

Binder ID GFAP Docking Score (kcal/mol) (↓) E3 Docking Score (kcal/mol) (↓) Solubility (↑) Hemolysis (↑) Non-fouling (↑)
Binder 1 -8.0 (8.384) -8.4 (7.468) 0.730 0.894 0.111
Binder 2 -8.3 (7.395) -9.3 (7.089) 0.972 0.869 0.134
Binder 3 -7.3 (7.925) -8.7 (7.158) 0.935 0.812 0.143
Binder 4 -8.8 (7.144) -8.7 (7.000) 0.897 0.807 0.158

arrest and dysregulated ovarian function (di Clemente et al., 2022).

Following similar computational setups as described previously, we generated in silico binders with high Vina predicted
binding affinities (<-6 kcal/mol), despite observing a decrease in the predicted solubility along iterations (Figure 9). However,
our observation of reduced solubility upon binder docking can be attributed to the presence of hydrophobic patches within
the AMHR2 extracellular domain, particularly near the binding site to its ligand AMH (Hart et al., 2021). This phenomenon
highlights the importance of balancing solubility and binding affinity in binder development. With further optimization of
their therapeutic properties, we hope to demonstrate the potential of these binders for applications in fertility treatment in
the future.

The examples above demonstrate the versatility of our method, which can be effectively applied to discover peptide binders
for single target proteins lacking known ligands, thereby unlocking their therapeutic potential.

A.4. Dual-Targeting of GFAP and an E3 Ubiquitin Ligase for Target Protein Degradation

As another dual-target case study, we used PepTune to generate peptides with high binding affinity to the GFAP protein and
an E3 ubiquitin ligase protein RBX1, a protein in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that recruits
E2 to catalyze ubiquitination and subsequent degradation (Yang et al., 2021). A peptide generated for this task would be
capable of binding to GFAP proteins overexpressed in Alexander disease and mediate their proteasomal degradation, which
could alleviate the production of disease-causing Rosenthal fibers in astrocytes (Sosunov et al., 2017). After conditioning
PepTune generation on binding affinity to GFAP, binding affinity to RBX1, solubility, hemolysis, and non-fouling (Table
4), we selected three non-dominated binders with predicted affinities greater than 7.0 for docking experiments. For these
Pareto-optimal peptides, we indeed observed strong binding affinities for both GFAP and RBX1 post-docking, indicating
their unique potential for multi-target interaction (Figure 11). GFAP is an intermediate filament protein (Eng, 1985) and
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Figure 10. Property Scores Over Iteration for Dual-Target Conditioning on TfR and GLAST. (A) Plot of average predicted binding
affinity score to GLAST over iterations. (B) Plot of average predicted binding affinity score to TfR over iterations. (C, D, E) Plot of
average predicted solubility, hemolysis, and non-fouling scores over iterations.

thus forms a unique rod-like structure with a head domain and a tail domain. The docking positions of all three candidates
were along the rod domain, binding in the gap between adjacent rods in the filament. Contrarily, docked candidates to RBX1
consistently bound close to its interaction site of Cullin, rather than at the Skp2 F-box adaptor site (Figure 11), indicating
that further motif conditioning, as done with recent peptide design language models (Chen et al., 2024), would benefit
PepTune’s clinical potential.

B. Extended Background
B.1. Continuous-Time Discrete Diffusion

Discrete diffusion models (Austin et al., 2021) are a subset of diffusion models where the forward corruption and reverse
denoising processes operate in the discrete latent space via categorical probability distributions for discrete variables.

We denote a token in a sequence from the dataset as a one-hot vector x(ℓ)
0 ∈ {0, 1}|V|. The discrete-time forward diffusion

process involves applying categorical noise to x0 at varying degrees based on a noise schedule σ(t) for a total of T time
steps ranging from no noise at t = 0 to maximum noise at t = 1. To clearly distinguish each step, we denote the nth
transition in the forward pass as the transition from s(n) to t(n), where s(n) = n−1

T and t(n) = n
T . The marginal noise that

transforms the sequence zs(n) at time s(n) to a progressively noisier sequence zt(n) at the next time step t(n) = s(n) + 1
T

is given by a |V| × |V| marginal transition matrix Qt|s = σ(t)I|V| + (1− σ(t))1π⊤, where the (i, j)th entry denotes the
probability of transitioning from token i to token j at each position in the sequence.

Therefore, the marginal categorical distribution of zt(n) in the discrete-time forward-pass diffusion process can be derived as

q(zt(n)|zs(n)) = Cat(zt(n);Q⊤
t|szs(n))

= Cat(zt(n);σ(t(n))zs(n) + (1− σ(t(n)))π) (20)

where σ(t(n)) the marginal probability of a single position in the sequence remaining the same token during the transition
s(n)→ t(n) and

(
1−σ(t(n))) is the marginal probability of transitioning to a different token based on the token probability

distribution π ∈∆|V|. For simplicity, we denote σ(t(n)) = σ(n).
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Figure 11. PepTune-generated peptides with dual GFAP and RBX1 affinity. Full protein binding location and close-up binding
position for (A) dual binder 3, (B) dual binder 2, and (C) dual binder 4 with GFAP (left) and RBX1 (right). Polar contacts within 3.5 Å
are annotated, and shared polar contacts between binders are highlighted.

The cumulative transition from time 0 to time t(t) is denoted as the product of the marginals Qt =
∏t

n=0 Qt|s, which is the
product of marginal transitions s(n)→ t(n) for n ranging from 0 to t applied to the clean input sequence x0.

Qt =

(
t∏

n=0

(1− σ(n))

)
I+

(
1−

t∏
n=0

(1− σ(n))

)
1π⊤ (21)

For the continuous-time forward pass diffusion process where T → ∞ and 1
T → 0, we can take the limit as T → ∞ to

derive an expression for the continuous-time transition probability, αt.

lim
T→∞

t∏
n=0

(1− σ(n)) = lim
T→∞

exp

(
log

t∏
n=0

(1− σ(n))

)

= lim
T→∞

exp

(
t∑

n=0

log(1− σ(n))

)

≈ lim
T→∞

exp

(
t∑

n=0

−σ(n)

)
(log(1− x) ≈ −x for small x)

= exp

(
−
∫ t

n=0

σ(n)dn

)
= exp

(
−
∫ t(t)

s=0

σ(s)ds

)
(22)

We have shown that the continuous-time forward transition probability from t = 0 to t = t(t) is αt =

exp
(
−
∫ t(t)

s=0
σ(s)ds

)
= exp(−σ̄(t)) where σ̄(t) =

∫ t(t)

s=0
σ(s)ds. Letting t = t(t), we can define the continuous-time

cumulative transition matrix Qt at the limit where T →∞ and the continuous-time distribution q(zt|x0) as

Qt = αtI+ αt1π
⊤ (23)

q(zt|x0) = Cat(zt;Qtx0)

= Cat(zt;αtx0 + (1− αt)π) (24)
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It follows that the marginal transition Qs|t is the cumulative transition Qt divided by all previous transition probabilities,
denoted as Qs =

∏s
r=0 Qs|r, so αs|t =

αt

αs
.

Following Austin et al. (Austin et al., 2021) and substituting the marginal and cumulative probability distributions, we
derive the true reverse transition from t→ s conditioned on a clean sequence x0 as

q(zs|zt,x0) =
q(zt|zs,x0)q(zs|x0)

q(zt|x0)

= Cat

(
zs;

Qt|szt ⊙Q⊤
s x0

z⊤t Q
⊤
t x0

)

= Cat

(
zs;

[αt|szt + (1− αt|s)1π
⊤zt]⊙ [αsx0 + (1− αs)π]

αtz⊤t x0 + (1− αt)z⊤t π

)
(25)

where the numerator is the element-wise product of |V|-dimensional vectors representing the marginal probability distribution
of sampling zt given zs and the cumulative probability distribution for zs from the original clean sequence x0. The
denominator is a scalar probability of the specific token zt being drawn from the noisy probability distribution at time t.

B.2. Continuous-Time Negative Evidence Lower Bound (NELBO)

The objective of denoising diffusion probabilistic models (DDPMs) (Hol & Pekny, 2015) is to iteratively sample slightly less
noisy intermediate sequences zt until obtaining a clean sequence x that has a high probability of being drawn from the data
distribution p(x0). To train a model that accurately samples from p(x0), we maximize the Evidence Lower Bound (ELBO)
of log pθ(x0) which measures how accurately the model parameterized by θ generates true samples x0 given a corrupted
sequence zT by iterative sampling from the reverse posterior pθ(zs|zt). The ELBO is maximized when pθ(x0) = 1 and
log(pθ(x0)) = 0 for all sequences x0 in the dataset, which supports the objective of accurately generating sequences
from the data distribution. To convert this into a loss minimization objective, we define the loss function as the negative
ELBO (NELBO). First, we compute log pθ(x0) by integrating over the joint probability of all possible paths of intermediate
states from the noisy state zT at t = T to the clean sample x0 at t = 0, denoted by pθ(x0:T ). Since our goal is to reverse
the forward masking of the clean sample x0 from all time steps, we introduce an encoder term q(z1:T |x0) denoting the
combined distribution of obtaining any noisy sequence between times t = 1 to t = T from the clean sequence x0.

log pθ(x0) = log

∫
pθ(z0:T )dz1:T

= log

∫
q(z1:T |x0)

[
pθ(z0:T )

q(z1:T |x0)

]
dz1:T

= log

(
Eq(z1:T |x0)

[
pθ(z0:T )

q(z1:T |x0)

])
(26)

where z0:T includes x0.

Using Jenson’s inequality, we move the logarithm inside the expectation and reverse the sign to get the NELBO for
log pθ(x0). We split the terms associated with the forward noising process q(z1:T |x0) and the reverse denoising model
pθ(z0:T ) into reconstruction term, the prior term, and the intermediate diffusion term.

LNELBO = Eq(z1:T |x0)

[
− log

pθ(z0:T )

q(z1:T |x0)

]
= Eq(z1:T |x0)

[
− log

pθ(x0|zt(1))pθ(zt(T ))
∏T−1

n=1 pθ(zs(n)|zt(n))
q(zt(T )|zt(T−1))

∏T−1
n=1 q(zt(n)|zs(n))

]

= Eq(z1:T |x0)

[
− log pθ(x0|zt(1))− log

pθ(zt(T ))

q(zt(T )|zs(T ))
− log

∏T−1
t=1 pθ(zs(n)|zt(n))∏T−1
n=1 q(zt(n)|zs(n))

]

= Eq(z1:T |x0)

[
− log pθ(x0|zt(1))− log

pθ(zt(T ))

q(zt(T )|zs(T ))
−

T−1∑
n=1

log
pθ(zs(n)|zs(n))
q(zt(n)|zs(n))

]
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= Eq(z1:T |x0)

[
− log pθ(x0|zt(1))

]
+ Eq(z1:T |x0)

[
− log

pθ(zt(T ))

q(zt(T )|zs(T ))

]

+

T−1∑
n=1

Eq(z1:T |x0)

[
− log

pθ(zs(n)|zt(n))
q(zt(n)|zs(n))

]
= Eq(zt(1)|x0)

[
− log pθ(x0|zt(1))

]
︸ ︷︷ ︸

reconstruction loss

+Eq(zt(T ),zs(T )|x0)

[
− log

pθ(zt(T ))

q(zt(T )|zs(T ))

]
︸ ︷︷ ︸

prior loss

+

T−1∑
n=1

Eq(zs(n),zt(n),zt(n+1)|x0)

[
− log

pθ(zs(n)|zt(n))
q(zt(n)|zs(n))

]
︸ ︷︷ ︸

diffusion loss

(27)

Now, we can take the limit for each of the loss terms as T →∞ to derive the continuous-time MDLM objective.

Reconstruction Loss Lreconst The reconstruction loss evaluates the final step of the reverse diffusion process that denoises
the sequence at time t(1) to the clean sequence at time t = 0. Since t(0) = 1

T , the distribution that the sequence zt(1) is
drawn from in the forward pass diffusion is given by

p(zt(1)|x0) = Cat(zt(1);αt(1)(x0)x0 + (1− αt(1)(x0))m) (28)

Since we have αt(x0) = 1− tw for x0 = b and αt(x0) = 1− t for x0 ̸= b, we can write

αt(1)(x0)x0 + (1− αt(1)(x0))m =

{(
1− 1

Tw

)
x0 +

1
Twm x0 = b(

1− 1
T

)
x0 +

1
T m x0 ̸= b

(29)

In the limit as T →∞, both cases converge to x0, so we have zt(1) ∼ Cat(zt(1);x0) and zt(1) = x0. Since q(zt(1)|x0) = x0

in the forward pass, by parameterizing the reverse posterior to copy-over unmasked tokens, we get pθ(x0|zt(1)) = x0.
Therefore, the reconstruction loss reduces to 0.

Eq(zt(1)|x0)

[
− log pθ(x0|zt(1))

]
= Eq(zt(1)|x0)

[
− log pθ(x0|x0)

]
= 0

Prior Loss Lprior The prior loss measures the first reverse transition from the fully masked sequence zt(T ) to a slightly
unmasked sequence zs(T ).

Eq(zt(T ),zs(T )|x0)

[
− log

p(zt(T ))

q(zt(T )|zs(T ))

]
= −Eq(zs(T )|x0) Eq(zt(T )|zs(T ))

[
log

p(zt(T ))

q(zt(T )|zs(T ))

]
︸ ︷︷ ︸

KL Divergence

= −Eq(zs(T )|x0)

[
KL
(
q(zt(T )|zs(T ))||pθ(zt(T ))

)]
(30)

Since t(T ) = 1, we have αt(T )(x0) = 1− 1 = 0. Therefore, we derive

q(zt(T )|x0) = Cat
(
zt(T ) ; αt(T )(x0)x0 + (1− αt(T )(x0))m

)
= Cat

(
zt(T ) ; 0x0 + (1− 0)m

)
= Cat

(
zt(T );m

)
(31)

Since all sequences are completely masked at time T , it follows that the marginal distribution q(zt(T )|zs(T )) =

Cat
(
zt(T );m

)
and the prior distribution pθ(zt(T )) = Cat

(
zt(T );m

)
, so the KL divergence reduces to 0.
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Diffusion Loss LT The diffusion loss measures the consistency of each predicted reverse transition with the forward
marginal transition for all T time steps.

T−1∑
n=1

Eq(zs(n),zt(n),zt(n+1)|x0)

[
− log

pθ(zs(n)|zt(n))
q(zt(n)|zs(n))

]
(32)

= −
T−1∑
n=1

Eq(zs(n),zt(n+1)|x0) Eq(zt(n)|zs(n))

[
log

pθ(zs(n)|zt(n))
q(zt(n)|zs(n))

]
︸ ︷︷ ︸

KL divergence

= −
T−1∑
n=1

Eq(zs(n),zt(n+1)|x0)

[
KL
(
q(zt(n)|zs(n))||pθ(zs(n)|zt(n))

)]
Since the objective is to accurate predict zs(n) given zt(n), we cannot condition on the term zs(n). Instead, we can condition
q(zt(n)|zs(n)) on x0 and use Bayes’ theorem to derive

q(zt(n)|zs(n),x0) =
q(zs(n)|zt(n),x0)q(zt(n)|x0)

q(zs(n)|x0)

Rearranging the terms we get an expression for the true reverse transition q(zs(n)|zt(n),x0) conditioned on the clean data
x0. By minimizing the KL divergence between the learned reverse transition pθ(zs(n)|zt(n)) and q(zs(n)|zt(n),x0), we can
rewrite the diffusion loss as

LT =

T−1∑
n=1

Eq(zt(n)|x0)

[
KL
(
q(zs(n)|zt(n),x0)||pθ(zs(n)|zt(n))

)]
(33)

In Appendix G.3, we derive the bond-dependent continuous-time NELBO loss from its general form above.

B.3. Guided Diffusion Models

Guided diffusion aims to sample from the data distribution conditioned on some property y, x ∼ q(x0, y), such that q(y|x)
is maximized. Therefore, the marginal reverse transition aims to sample zs from a distribution q(zs|zt, y) conditioned on
the current sequence zt and a property y. Using Bayes’ theorem, we can decompose the guided conditional distribution as

q(zs|zt, y) =
q(y|zs, zt)q(zs|zt)

q(y|zt)
(34)

There are two strategies to generate samples from this conditional distribution: classifier-free and classifier-based guidance.

Classifier-Free Guidance Classifier-free guidance strategies aim to model the conditional distribution q(zs|zt, y) by
directly training the diffusion model on a subset of the unconditional data with property y, such that after training, the
model samples from a learned distribution pθ(zs|zt, y). However, classifier-free guidance fails at tasks where high-quality
annotated data is scarce, including peptide sequences. Furthermore, this strategy cannot scale to multiple objectives, which
would require data conditioned on more than one property.

Classifier-Based Guidance Classifier-based guidance trains an unconditional diffusion model pθ(zs|zt) and a classifier
model pϕ(y|zs) with learned parameters ϕ that generates a score measuring the probability that the intermediate sequence
zs has property y. By Bayes’ theorem, we can model the conditional distribution as

pθ,ϕ(zs|zt, y) =
pϕ(y|zs)pθ(zs|zt)

pϕ(y|zt)
(35)

Since the model parameters implicitly learn the normalized distribution, we can drop the pϕ(y|zt) term. Then, at each
iteration, we update the parameters θ, ϕ in the direction of the gradient of log pθ,ϕ(zs|zt, y) obtained as the sum of the
gradients of the unconditional distribution log pθ(zs|zt) and classifier probability pϕ(y|zs) with respect to the sampled
sequence zs.

∇zs
log pθ,ϕ(zs|zt, y) = ∇zs

log pϕ(y|zs) +∇zs
log pθ(zs|zt) (36)
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After joint training with the classifier and unconditional data distribution, we can sample from the learned conditional
distribution pθ,ϕ(zs|zt, y).

Unlike classifier-free guidance, classifier-based guidance does not require training a generative model from a conditioned
dataset. However, the gradient-based strategy for classifier-based guidance is not directly applicable to discrete state spaces
due to the lack of a defined gradient. To mimic gradient-based updates to each sampling step, Gruver et al. (Gruver et al.,
2023) leveraged iterative guidance steps on continuous latent embeddings for each token before decoding back to a discrete
sequence at each time step. However, projecting to and from the continuous and discrete spaces results in inconsistencies in
the guided diffusion process, where optimized hidden embeddings do not always map to optimal tokens.

Guidance in the Discrete State Space To directly guide the diffusion objective in the discrete space, we must compute
the optimality of a single discrete reverse transition zs against all other possible transitions to maximize the conditional
probability p(y|zs, zt). That is, we need to compute Equation (34) with the denominator expanded to represent all possible
transitions from zt.

pθ,ϕ(zs|zt, y) =
pϕ(y|zs)pθ(zs|zt)∑
z′
s
pϕ(y|z′s)pθ(z′s|zt)

(37)

However, computing pϕ(y|z′s) for all the possible transitions from state zt is computationally intractable. Previous work has
bypassed this limitation by approximation. For continuous and differentiable classifier functions p(y|x) : RL×|V| → R, we
can approximate the denominator using the first-order Taylor expansion given by

log pϕ(y|zs, zt) ≈ log pϕ(y|zt) + (zs − zt)
⊤∇z log p(y|z)|z=zt (38)

which approximates the likelihood of observing property y at the slightly denoised state zs = zt− 1
T

given the known
log-probability of observing y for state zt. This eliminates the need to explicitly sample zs for all possible state transitions
and compute log pϕ(y|zs, zt).

Digress (Vignac et al., 2022) has used this approximation strategy for guided discrete diffusion on categorical graph
generation. Furthermore, Nisonoff et al. (Nisonoff et al., 2024) uses the Taylor-approximated conditional distribution
log pϕ(y|zs) to adjust the unconditional transition rates Rt(zt, zs|y) given the unconditional rates Rt(zt, zs) for predictor-
guidance of Continuous-Time Markov Chains (CTMCs) in the discrete state space.

Rt(zt, zs|y) = Rt(zt, zs)
log pϕ(y|zs, zt)
log pϕ(y|zt)

(39)

where Rt(zt, zs|y) is the predictor-adjusted rate of transitioning from state zt to state zs

However, this strategy fails to scale to multiple objective guidance since it would require computing the joint probability
over K objectives pϕ(y1, y2, . . . , yK |zs, zt) for some K > 1. If all properties are mutually independent, we can factorize
the distribution and compute the estimated probability of each objective and take their product pϕ(y1, y2, . . . , yK |zs, zt) =∏K

k=1 pϕ(yk|zs, zt). For the majority of multi-objective tasks, including therapeutic peptide generation, independence
across properties is not a reasonable assumption, and computing the joint distribution is required. Moreover, for objectives
that guide toward contradictory optimal rates or transitions, training a model conditioned on these objectives could prevent
the model from generating optimal sequences for either objective. Given these limitations, there remains a gap for efficient
classifier-based conditioning for discrete diffusion that is robust to multi-objective tasks, which we address in this work.

C. Data Curation and Tokenization
C.1. PepMDLM Training Data

To train the unconditional masked diffusion language model generator, we collected 11 million peptide SMILES consisting
of 7451 sequences from the CycPeptMPDB database (Li et al., 2023a), 825,632 unique peptides from SmProt (Li et al.,
2021), and approximately 10 million modified peptides generated from CycloPs (Duffy et al., 2011; Feller & Wilke, 2024),
which consists of 90% canonical amino acids, 10% unnatural amino acids from SwissSidechain (Gfeller et al., 2012),
10% dextro-chiral alpha carbons, 20% N-methylated amine backbone atoms, and 10% PEGylated peptides. All possible
cyclization conformations were attempted on the peptides generated with CycloPs. We used SELFIES (Krenn et al., 2020)
to check the integrity of the SMILES sequences.
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We split our data by k-means clustering into 1000 groups of sequences with similar chemical properties based on their
Morgan fingerprint (Rogers & Hahn, 2010), which is a bit-vector representation of the full peptide sequence where each bit
encodes a feature relating to the SMILES atom types, connectivity, and bonding environment. The final dataset was a 0.8 to
0.2 split based on the clusters, maintaining similar diversities of the SMILES strings. Since the degree of masking is evenly
spread between t = 0 to t = 1 within each training batch, grouping similar SMILES in the same batch ensures the model
learns to reconstruct a diverse set of peptide SMILES from various degrees of masking.

C.2. Dynamic Batching

We applied dynamic batching to handle variable-length token sequences and increase computational efficiency. Inspired by
ESM-2’s dynamic batching technique (Lin et al., 2023), input SMILES are sorted by length to maximize the utility of GPU
memory. The maximum tokens per GPU was set to 16,000.

C.3. SMILES Tokenization

To enable the novel generation of non-natural amino acids containing cyclizations and diverse backbone and side-chain
modifications, we trained our generative diffusion model on Simplified Molecular-Input Line-Entry System (SMILES)
(Weininger, 1988) representations of peptides. We experimented with several tokenization schemes that capture common
motifs in the training data to enhance the generation of valid peptide SMILES. We find that the SMILES Pair Encoding
(SPE) tokenization scheme (Li et al., 2021) with the PeptideCLM (Feller & Wilke, 2024) vocabulary of 581 SMILES tokens
and 5 special tokens with an average length of four characters per token, demonstrated superior performance, generating
precise but valid peptides (Appendix H).

D. PepMDLM Implementation Details
D.1. Notation

Let x0 ∈ {0, 1}|V| represent the one-hot vector of a token in a sequence in the training data and xθ(zt, t) ∈ ∆|V| be the
vector of predicted token probabilities across the vocabulary V given the current state zt at time t. In most contexts, x0

will be used to denote a single token, but when discussing the full sequence, x(ℓ)
0 is used to denote the token at position ℓ

in the sequence. Let T denote the total number of time steps in the discrete forward and reverse diffusion processes. In
the context of all time steps, we expand t to t(n) ∈ (0, 1] when denoting a single time step in the forward and backward
diffusion process with n ∈ [1 . . . T − 1]. Let s(n) = t(n) − 1

T denote the previous time step in the forward process.
Then, let zt(n) and zs(n) denote the state of a specific token at time t(n) and s(n) in the diffusion process, respectively.
Let αt(x0) : R|V| → R denote a function that takes the unmasked token x0 and outputs a value in [0,1] representing the
probability of remaining unmasked at time t in the forward diffusion process. Let b ∈ R|V| denote a vector with ones at
indices of peptide bond tokens and zeroes at all remaining indices, and let x0 = b indicate that x0 is a peptide-bond token.

D.2. Model Architecture

To predict the token probabilities at each reverse step xθ(zt, t), we trained a RoFormer model (Su et al., 2021) that leverages
rotary positional embeddings (RoPE) robust to varying input lengths and long-range dependencies between tokens. The
specific hyperparameters of our model are given below.

Table 5. Roformer Architecture Hyperparameters

Hyperparameter PepTune

Input Dimension 581 (vocab size)
Hidden Dimension 768
Intermediate Dimension 3072
Number of Layers 8
Attention Heads 8
Max Positional Embeddings 1035
Hidden and Attention Dropout Probability 0.1
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Table 6. Training and Validation Loss of PepMDLM. Loss values are taken after convergence at 8 epochs when training PepMDLM on
11 million peptide SMILES with bond-dependent masking and invalid loss.

Model Train Loss (↓) Train PPL (↓) Val Loss (↓) Val PPL (↓)
PepMDLM 0.832 2.460 0.880 2.277

D.3. Unconditional Generation Results

Here, we provide additional tables and figures demonstrating the performance of our unconditional PepMDLM model. Table
6 shows the training and validation metrics after 8 epochs of training on 11 million peptide SMILES. Table 7 presents our
benchmark results in comparison to the HELM-GPT model (Xu et al., 2024). We demonstrate that PepMDLM generates
peptides with higher uniqueness, diversity, and lower similarity to their nearest neighbor (SNN) (details on metrics are
provided in Appendix F.2). While peptide unconditional peptide validity is lower, peptides generated by HELM-GPT are
represented in HELM notation (Zhang et al., 2012), where each token corresponds to an amino acid. In contrast, PepMDLM
is trained on SMILES tokens that decompose amino acids into smaller tokens that can be pieced together into valid amino
acids during generation. While this enables us to represent a greater diversity of non-natural amino acids, even a single
token generated in the wrong position can result in an invalid peptide sequence, resulting in a lower validity rate. However,
we note that our MCTS guidance strategy increases the validity rate to 100% due to its iterative unmasking process that is
rewarded on high-scoring and valid peptides.

In Figure 12, we show that the frequency of non-natural amino acids from Swiss-Sidechain (Gfeller et al., 2012) present in
our PepMDLM-generated peptides is similar to the membrane permeability and binding datasets containing experimentally-
validtated modified peptides that we used to train our property classifiers (Appendix B.1). In addition, we show that 10% of
unconditionally generated peptides from PepMDLM contain modifications that result in cyclicization (Figure 12). In total,
we demonstrate PepMDLM’s unique capability of generating diverse non-natural and cyclic peptides.

Table 7. Benchmark of PepMDLM unconditional model against HELM-GPT. The best scores are bolded. HELM-GPT was trained on
HELM notation, where each token is a monomer encoding natural and modified residues. Since there are no existing peptide SMILES
generative models, we chose HELM-GPT as the closest comparison. The validity is assessed differently, as all HELM sequences
correspond to a valid peptide, while not all SMILES sequences can be decoded into a peptide.

Model Validity (↑) Uniqueness (↑) Diversity (↑) SNN (↓)
HELM-GPT 0.839 0.913 0.595 0.975
PepMDLM 0.450 1.000 0.705 0.513
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Permeability Data Binding Data PepMDLM

Mean nAAs Per Peptide 2.215 2.150 2.940
Cyclic Peptides (%) 0.467 0.027 0.100

Figure 12. PepMDLM generates cyclic and modified peptides. (Above) Distribution comparison of non-natural amino acid frequency
for 100 unconditionally-generated peptide SMILES with the peptide SMILES dataset of experimentally-validated peptides for membrane
permeability (PAMPA) and binding affinity (Appendix B.1). (Bottom) Per peptide frequency of non-natural amino acids (nAAs) and
percentage of cyclic peptides in PepMDLM-generated sequences and experimentally validated membrane-permeable peptides.

E. Therapeutic Property Prediction for Peptide SMILES
While several classifiers exist for predicting properties of small-molecule SMILES sequences and amino-acid representations
of peptides, there exists a gap in high-quality property models trained specifically on peptide SMILES data. To fill this gap,
we train regression models for target-binding affinity and cell membrane permeability and binary classification models for
solubility, hemolysis, and non-fouling specifically on peptide SMILES data (Table 2).

E.1. Protein Target-Binding Prediction

To guide the generation of peptides with high binding affinity to a given protein target, we trained a Transformer-based
model with cross multi-head attention layers that learn the joint latent space of ESM-2-650M (Lin et al., 2023) embeddings
of the protein amino acid sequence and PeptideCLM (Feller & Wilke, 2024) embeddings of the peptide SMILES sequence
(Figure 13; Table 8).

We trained on 1806 sequences from the PepLand (Zhang et al., 2023) canonical and non-canonical binding datasets
containing the protein-target sequence, peptide SMILES sequence, and the experimentally-validated Kd/Ki/IC50 binding
affinity score. Given a peptide SMILES sequence and a protein amino acid sequence, the model predicts a score that
indicates weak binding (< 6.0), medium binding (6.0− 7.5), and high binding (≥ 7.5). After training for 50 epochs, our
regression model achieved a strong Spearman correlation coefficient of 0.869 on the training data and 0.633 on the held-out
validation data.

E.2. Cell Membrane Permeability Prediction

For cell membrane permeability, we trained an XGBoost (Chen & Guestrin, 2016) boosted tree regression model on
PeptideCLM (Feller & Wilke, 2024) embeddings which returns the predicted PAMPA lipophilicity score (logP ) given a
peptide SMILES sequence, where values ≥ −6.0 indicate strong permeability and values < 6.0 indicate weak permeability.
The XGBoost regression parameters were optimized with 50 trials of OPTUNA search and are provided in Table 10.
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Table 8. Cross-Attention Model Architecture for Target-Binding Affinity Prediction

Layers Protein Dimension Peptide Dimension

Embedding Module 1280 768
Linear Layer 512 512
Layer Norm 512 512
Cross-Attention ×3

Multi-Head Attention (h = 8) 512 512
Linear Layer 2048 2048
ReLU 2048 2048
Dropout 2048 2048
Linear Layer 512 512

Shared Prediction Head
Linear Layer 1024
ReLU 1024
Dropout 1024

Regression Head 1
Classification Head 3

Figure 13. Architecture of binding affinity regression model. Embeddings for the target protein sequence are generated with ESM-2
and embeddings for the peptide SMILES are generated using PeptideCLM. Cross multi-head attention layers combine the embeddings
and predict a binding affinity score.

The dataset contains 34,853 experimentally validated peptide SMILES, consisting of 22,040 SMILES sequences obtained
from the ChEMBL database (Mendez et al., 2018) and 7451 sequences from the CycPeptMPDB database (Li et al., 2023a).
Data was randomly shuffled and split into 0.8/0.1/0.1 ratio for train, validation, and test. Our model achieved a strong
Spearman correlation coefficient of 0.998 on the training dataset and 0.943 on the test dataset (Figure 14, Table 9).

Table 9. Held-out validation performance of binding affinity and membrane permeability regression models trained on peptide
SMILES. Spearman rank correlation and MSE were calculated on the 20 percent held-out validation set.

Metric Binding Affinity Membrane Permeability

Spearman Rank Correlation 0.633 0.943
MSE 0.566 0.088
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Figure 14. Correlation plots for binding affinity and membrane permeability classifiers. Plot of true permeability (logP) on the x-axis
and predicted permeability on the y-axis for the (A) validation set and (B) training set. Plot of true binding affinity (log-scale) on the
x-axis and predicted permeability on the y-axis for the (C) validation set and (D) training set.

E.3. Solubility and Toxicity Prediction

For solubility, hemolysis, and non-fouling, we collected binary data from the PepLand and PeptideBERT datasets (Zhang
et al., 2023; Guntuboina et al., 2023), where 1 indicates the positive class and 0 indicates the negative class. Since increased
solubility improves drug-loading, we seek to maximize the probability of the positive class. Since positive hemolysis
indicates that the peptide sequence induces destruction of red blood cells, we seek to minimize the probability of the positive
class, or maximize the inverse. Positive non-fouling indicates lower off-target binding, so we seek to maximize positive
non-fouling.

We leveraged PeptideCLM embedding representations of the SMILES tokens and trained XGBoost models for binary
classification. The optimal thresholds for the positive class were determined to be 0.500 for solubility, 0.800 for hemolysis
(non-hemolysis), and 0.450 for non-fouling. The XGBoost binary classification parameters were optimized with 50 trials of
OPTUNA search and are provided in Table 10. We achieved strong Spearman correlations across all three tasks, showing
improvements against the state-of-the-art PeptideBERT (Guntuboina et al., 2023) baseline model (Table 2).

F. Evaluation
F.1. Peptide Validity Filter

Among the sequential representations of peptides, including amino acid sequences, HELM (Zhang et al., 2012), and
SMILES (Weininger, 1988), SMILES is the most intricate representation of peptide sequences. Although this enables the
representation of non-natural amino acids, diverse side chains, backbone modifications, and cyclic peptides, it also means
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Table 10. XGBoost Hyperparameters for Classification and Regression. Classification hyperparameters were used for the solubility,
hemolysis, and non-fouling binary classification models (left). Regression hyperparameters were used for the membrane permeability
regression model (right).

Classification Hyperparameters Regression Hyperparameters

Hyperparameter Value/Range Hyperparameter Value/Range

Objective binary:logistic Objective reg:squarederror
Lambda [1e−8, 10.0] Lambda [0.1, 10.0] (log scale)
Alpha [1e−8, 10.0] Alpha [0.1, 10.0] (log scale)
Colsample by Tree [0.1, 1.0] Gamma [0, 5]
Subsample [0.1, 1.0] Colsample by Tree [0.5, 1.0]
Learning Rate [0.01, 0.3] Subsample [0.6, 0.9]
Max Depth [2, 30] Learning Rate [1e−5, 0.1]
Min Child Weight [1, 20] Max Depth [2, 30]
Tree Method hist Min Child Weight [1, 20]

Tree Method hist
Scale Pos Weight [0.5, 10.0] (log scale)

that the vast majority of SMILES strings are not synthesizable peptides. Therefore, we devised an algorithm that determines
whether a SMILES string is a valid peptide, characterized by peptide bonds and central carbon atoms. The filter first checks
if the SMILES sequence is a valid molecule using RDKit (RDKit, online).

Then, we use regular expressions to detect bond patterns for peptide bonds, N-methylated peptide bonds, reversed peptide
bonds, and ester bonds, along the sequence to split the sequence into several segments with a bond before and after each
segment. The filter checks each segment for chemical modifications based on their bond type, including N-methylation
(N-Me) and O-linked glycosylation. The remaining segment is matched to the corresponding natural or non-natural amino
acid side chains (Algorithm 8). Our filter is capable of detecting a library of over 200 nAAs from SwissSidechain (Gfeller
et al., 2012) and can classify a peptide SMILES as cyclic or non-cyclic. The tool is freely available on HuggingFace:
https://huggingface.co/spaces/ChatterjeeLab/SMILES2PEPTIDE.

F.2. Metrics

To evaluate the generation quality of our unconditional MDLM, PepMDLM, and our MCTS-guided MDLM, PepTune, we
leverage the Moses metrics, including validity, uniqueness, diversity, similarity to nearest neighbor (SNN), and novelty
(Polykovskiy et al., 2020).

Validity is defined as the fraction of peptide SMILES that pass our SMILES2PEPTIDE filter (Algorithm 8), indicating
that it translates to a synthesizable peptide.

Uniqueness is defined as the fraction of mutually distinct peptide SMILES.

Diversity is defined as one minus the average Tanimoto similarity between the Morgan fingerprints of every pair of
generated sequences, which measures the similarity in structure across generated peptides.

Diversity = 1− 1(
Ngenerated

2

) ∑
i,j

f(xi) · f(xj)

|f(xi)|+ |f(xj)| − f(xi) · f(xj)
(40)

where f(xi) and f(xj) are the 2048-dimensional Morgan fingerprint with radius 3 for a pair of generated sequences xi and
xj .
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Similarity to Nearest Neighbor (SNN) is defined as the maximum Tanimoto similarity between a generated sequence xi

with a sequence in the dataset x̃j .

SNN = max
j∈|D|

(
f(xi) · f(x̃j)

|f(xi)|+ |f(x̃j)| − f(xi) · f(x̃j)

)
(41)

Randomness is defined as the Shannon Entropy (Lin, 1991) on tokenized sequences given as:

E = −
L∑
i

pi log2(pi) (42)

where pi is the probability of i-th unique token divided by the total number of tokens L in the sequence.

KL-Divergence is defined as the divergence between the token distribution in the generated peptide SMILES pi and the
token distribution in the training data.

KL(P
∣∣∣∣Q) =

∑
i∈V

{
pi log2(

pi

qi
) if qi > 0

pi log2(
pi

10−9
) if qi = 0

(43)

where pi is the probability of token i in the training data, and qi is the probability of token i in the generated data.

Due to the limit of memory and CPU time required to load all the training dataset of 11 million peptide SMILES, we chose
to sample a subset of 1000 batches randomly (∼100k sequences) for novelty and SNN calculation. To assess the novelty
of generated sequences, we employed Shannon entropy (Lin, 1991) to quantify the SMILES token randomness between
100 PepTune-generated and 100 PepMDLM-generated sequences and the same randomly sampled 1000 subsets from the
training set. Then, Kullback-Leibler (KL) divergence was used to evaluate divergence across token distributions from the
generated peptides compared to the training data.

F.3. Docking

For valid generated peptide SMILES with non-dominated scores across objectives, we used Autodock Vina (Eberhardt
et al., 2021) (v 1.1.2) for in silico docking of the peptide binders to their target proteins (Appendix 11) to confirm binding
affinity. Targets were preprocessed with MGITools (Morris et al., 2009) (v 1.5.7) and the conformations of the SMILES
were optimized by ETKDG from RDKit (Eberhardt et al., 2021; Wang et al., 2020). The final results were visualized in
PyMol (Schrödinger, LLC, 2015) (v 3.1), where the residues in the protein targets with polar contacts to the peptide binder
with distances closer than 3.5 Å are annotated.

Table 11. PDB structures of target proteins used for docking.

Protein PDB

GFAP 6A9P
TfR 3KAS
GLP-1R 3C5T
AMHR2 7L0J
GLAST 5LM4
NCAM1 2HAZ
RBX1 1LDJ

G. Theoretical Details
G.1. Bond-Dependent Masking Schedule

From Equation (22), we define the continuous-time forward masking probability 1− αt at time t with αt = exp(−σ̄(t)) ,
where σ̄ : [0, 1]→ R+ is the cumulative discrete-time masking schedule. Following Lou et al. (Lou et al., 2024), we apply
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Figure 15. Plots of bond-dependent masking schedules. (A) The probability of remaining unmasked during the continuous-time forward
diffusion process over time t given different values of w as the exponent of the masking schedule αt = 1 − tw. We use w = 1 for
non-peptide bond tokens and w = 3 for peptide bond tokens, resulting in slower masking of peptide-bond tokens. (B) The weight of
the negative log-loss for different exponents w in the log-polynomial masking schedule. The weight of the loss is higher for larger w in
earlier time steps, which results in a higher penalty for inaccurate predictions of peptide bond tokens compared to other tokens.

a log-linear masking schedule σ̄(t) = − log(1− t) for the forward diffusion process, which has been shown to result in the
lowest variance in the NELBO loss (Sahoo et al., 2024). Therefore, the continuous-time probability of remaining unmasked
at time t is equal to αt = exp

(
− (− log(1− t))

)
= 1− t and the weight that scales the negative log loss (NLL) is given by

1
t by our derivation in Appendix G.3.

For peptide-bond tokens, we alter the masking schedule such that peptide-bonds are masked at a slower rate at earlier time
steps by defining a log-polynomial masking schedule σ̄(t) = − log(1 − tw), for some constant exponent w > 1. Note
that when w = 1, the log-polynomial schedule reduces to the log-linear schedule. Therefore, the probability of remaining
unmasked becomes αt =

(
− (− log(1− tw))

)
= 1− tw and the weight that scales the negative log loss (NLL) is given by

w
t by our derivation in Appendix G.3.

Since t ∈ (0, 1], the probability that a peptide-bond token remains unmasked at time t is equal to αt = 1 − tw, which
is larger than the log-linear schedule for w > 1. Conversely, the probability that a peptide-bond token is masked before
t is 1 − αt = tw, which is smaller than the log-linear schedule for w > 1. As t → 1, αt → 0 for both the log-linear
and log-polynomial time schedules, which means that both peptide-bond and non-peptide bond tokens will have a high
probability of being masked in later times in the forward pass diffusion process.

The NLL of the peptide-bond tokens is weighted more heavily than non-peptide bond tokens for t close to 1. As t→ 0, the
NLL weight approaches∞ for all tokens. This biases the reverse diffusion process to unmask peptide bond tokens earlier
since it was trained to minimize the loss associated with each unmasking step. As t→ 0, the large NLL weight ensures that
the final unmasking steps during the reverse diffusion process result in an unmasked sequence that lies within the space of
valid peptide SMILES.

G.2. Derivation of Bond-Dependent Reverse Posterior

Proposition 2.1 The reverse posterior defining the probability distribution of the token zs at time s = t−∆t given the
token zt at time t with our bond-dependent forward masking schedule is defined as

q(zs|zt,x0) =

{〈(
s
t −

sw

tw

)
b+ t−s

t 1,x0

〉
x0 +

〈(
sw

tw −
s
t

)
b+ s

t1,x0

〉
m zt = m

zt zt ̸= m
(44)

When the clean token is a peptide bond token (i.e. x0 = b), the transition distribution for a masked token zs = m reduces
to q(zs|zt = m,x0 = b) =

(
1− sw

tw

)
x0 +

(
sw

tw

)
m. When the clean token is not a peptide bond token (i.e. x0 ̸= b), the

transition distribution for a masked token zs = m reduces to q(zs|zt = m,x0 ̸= b) =
(
1− s

t

)
x0 +

(
s
t

)
m. If the token is
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already unmasked, it remains unmasked at the same token with probability 1.

Proof. For a single token, the bond-dependent forward diffusion process is defined by the probability distribution q(zt|x0)
which transforms the clean inputs to sequences with varying degrees of masking based on a probability distribution αt(x0).
We define αt(x0) : R|V| → R as a function that takes the clean token encoding x0 and outputs the probability of remaining
unmasked at time t depending on whether x0 encodes a peptide bond token.

q(zt|x0) = Cat(zt; (αt(x0))x0 + (1− αt(x0))m) (45)

Then, the marginal forward transition from time s(n)→ t(n) is defined as

q(zt(n)|zs(n)) = Cat
(
zt(n);

(
αt(x0)

αs(x0)

)
x0 +

(
1− αt(x0)

αs(x0)

)
m

)
(46)

In this work, we classify each token into one of two states: peptide-bond tokens and non-peptide-bond tokens, which
represent amino acid side chains and modifications. We define a function that generates a mask with values of 1 indicating
tokens containing or contained within a peptide bond, and 0 otherwise (Algorithm 7). Let b ∈ R|V| denote a vector with
ones at indices of peptide-bond tokens. For derivation purposes, we let b⊤x

(ℓ)
0 = 1 and x

(ℓ)
0 = b when a token at position ℓ

is a peptide bond token. Note that b is defined differently depending on the context of the token in the full sequence, which
is handled by the BONDMASK function. Then, we have αt(x0) =

(
1− b⊤x0

)
(1− t) + b⊤x0(1− tw) or equivalently we

can write

αt(x0) =

{
1− tw x0 = b

1− t x0 ̸= b
(47)

By Bayes’ rule, the general state-independent form of the true reverse posterior is given by

q(zs|zt,x0) =
q(zt|zs)q(zs|x0)

q(zt|x0)

=

[(
αt

αs

)
z⊤s zt +

(
1− αt

αs

)
m⊤zt

] [
αsx

⊤
0 zt + (1− αs)m

⊤zt
][

αtx⊤
0 zt + (1− αt)m⊤zt

] (48)

With bond-dependent masking, the value of αt(x0) and αs(x0) depend on the state of x0, so the bond-dependent reverse
posterior becomes

q(zs|zt,x0) =

[(
αt(zs)
αs(zs)

)
z⊤s zt +

(
1− αt(zs)

αs(zs)

)
m⊤zt

] [
αs(x0)x

⊤
0 zt + (1− αs(x0))m

⊤zt
][

αt(x0)x⊤
0 zt + (1− αt(x0))m⊤zt

] (49)

When zt = x0, the true reverse posterior simplifies to

q(zs|zt = x0,x0) =

[(
αt(zs)
αs(zs)

)
z⊤s x0 +

(
1− αt(zs)

αs(zs)

)
m⊤x0

] [
αs(x0)x

⊤
0 x0 + (1− αs(x0))m

⊤x0

][
αt(x0)x⊤

0 x0 + (1− αt(x0))m⊤x0

]
=

[(
αt(zs)
αs(zs)

)
z⊤s x0

]
[αs(x0)]

αt(x0)
(50)

When zs ̸= x0, z⊤s x0 = 0 so q(zs ̸= x0|zt = x0,x0) = 0. When zs = x0, we have

q(zs = x0|zt = x0,x0) =

[(
αt(x0)
αs(x0)

)
x⊤
0 x0

]
[αs(x0)]

αt(x0)

=

(
αt(x0)

αs(x0)

)(
αs(x0)

αt(x0)

)
= 1
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which means that zt remains unchanged after unmasking. This supports the carry-over unmasking scheme, which explicitly
sets the probability of changing an unmasked token equal to −∞.

In the forward diffusion process, a token either remains unchanged or is masked, so the only other case we need to consider
is zt = m. Since the masking schedule differs only when the ground truth token is a peptide bond token, or x0 = b, we can
consider two cases: first, when x0 = b and second, when x0 ̸= b.

Case 1. Consider the case when x0 = b or the ground truth token x0 is a peptide-bond token. From our modified masking
schedule, we have αt(b) = 1− tw. Therefore, we can write the probability distribution for unmasking a peptide-bond token
as

q(zs|zt = m,x0 = b) =

[(
αt(zs)
αs(zs)

)
z⊤s m+

(
1− αt(zs)

αs(zs)

)
m⊤m

] [
αs(b)b

⊤zs + (1− αs(b))m
⊤zs

]
[αt(b)b⊤m+ (1− αt(b))m⊤m]

=

[(
αt(zs)
αs(zs)

)
z⊤s m+

(
1− αt(zs)

αs(zs)

)] [
αs(b)b

⊤zs + (1− αs(b))m
⊤zs

]
(1− αt(b))

(51)

The probability of transitioning from a masked state to a peptide-bond token is simplified to

q(zs = b|zt = m,x0 = b) =

[(
αt(b)
αs(b)

)
b⊤m+

(
1− αt(b)

αs(b)

)] [
αs(b)b

⊤b+ (1− αs(b))m
⊤b
]

(1− αt(b))

=

(
1− 1−tw

1−sw

)
(1− sw)

(1− (1− tw))

=

(
1−sw−1+tw

1−sw

)
(1− sw)

tw

=
tw − sw

tw

= 1− sw

tw
(52)

The probability of remaining in a masked state is

q(zs = m|zt = m,x0 = b) =

[(
αt(m)
αs(m)

)
m⊤m+

(
1− αt(m)

αs(m)

)] [
αs(b)b

⊤m+ (1− αs(b))m
⊤m

]
(1− αt(b))

=

[(
αt(m)
αs(m)

)
+
(
1− αt(m)

αs(m)

)]
(1− αs(b))

(1− αt(b))

=
1− αs(b)

1− αt(m)

=
1− (1− sw)

1− (1− tw)

=
sw

tw
(53)

which aligns with the constraint that zt ∈ {m,x0} in the forward diffusion process.

Case 2: Consider the case when x0 ̸= b or the ground truth token x0 is not a peptide-bond token. From the baseline
log-linear masking schedule, we have α⃗⊤

t x0 = 1− t. Therefore, we can write the probability distribution for unmasking a
peptide-bond token as

q(zs|zt = m,x0 ̸= b) =

[(
αt(zs)
αs(zs)

)
z⊤s m+

(
1− αt(zs)

αs(zs)

)
m⊤m

] [
αs(x0)x

⊤
0 m+ (1− αs(x0))m

⊤m
][

αt(x0)x⊤
0 m+ (1− αt(x0))m⊤m

]
=

[(
αt(zs)
αs(zs)

)
z⊤s m+

(
1− αt(zs)

αs(zs)

)] [
αs(x0)x

⊤
0 m+ (1− αs(x0))

][
αt(x0)x⊤

0 m+ (1− αt(x0))
] (54)
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With similar steps to Case 1, the probability of transitioning from a masked state to a non-peptide-bond token is given by

q(zs = x0|zt = m,x0 ̸= b) =

(
1− αt(x0)

αs(x0)

)
(1− αs(x0))

(1− αt(x0))

=

(
1− 1−t

1−s

)
(1− (1− s))

(1− (1− t))

=
t− s

t

= 1− s

t
(55)

It follows that the probability of remaining in a masked state in the reverse process is

q(zs = m|zt = m,x0 ̸= b) =
s

t
(56)

This demonstrates that the probability of remaining in a masked state when x0 = b is smaller than when x0 ̸= b, since
taking the exponent of a fraction results in a smaller value. So we have sw

tw < s
t for w > 1.

Combining Equations (53) and (56) we get the following distribution for the case when zt = m and zs = m

q(zs = m|zt = m,x0) =

(
sw

tw
− s

t

)
b⊤x0 +

s

t

=

(
sw

tw
b− s

t
b+

s

t
1

)⊤

x0

=

((
sw

tw
− s

t

)
b+

s

t
1

)⊤

x0 (57)

Similarly, combining (52) and (55) we get the following distribution for the case when zt = m and zs ̸= m or equivalently
zs = x0.

q(zs = x0|zt = m,x0) =

(
s

t
− sw

tw

)
b⊤x0 +

(
1− s

t

)
=

(
s

t
b− sw

tw
b+ 1− s

t
1

)⊤

x0

=

((
s

t
− sw

tw

)
b+

t− s

t
1

)⊤

x0 (58)

Now, we can write the true reverse posterior as

q(zs|zt,x0) =

{〈(
s
t −

sw

tw

)
b+ t−s

t 1,x0

〉
x0 +

〈(
sw

tw −
s
t

)
b+ s

t1,x0

〉
m zt = m

zt zt ̸= m
(59)

Therefore, we get the following expression for the parameterized reverse posterior

pθ(zs|zt) =

{〈(
s
t −

sw

tw

)
b+ t−s

t 1,xθ(zt, t)
〉
xθ(zt, t) +

〈(
sw

tw −
s
t

)
b+ s

t1,xθ(zt, t)
〉
m zt = m

zt zt ̸= m
(60)

G.3. Derivation of Bond-Dependent NELBO Loss

Proposition 2.2 The bond-dependent continuous-time NELBO decomposes into the sum of the negative log-losses (NLLs)
for all non-peptide bond tokens that follow a log-linear masking schedule and the sum of the NLLs for all peptide bond
tokens that follow a log-polynomial schedule.

L∞
NELBO = Et,q(zt|x0)

[
−

∑
ℓ:x

(ℓ)
0 =b

w

t
log⟨x(ℓ)

0 ,x
(ℓ)
θ (zt, t)⟩ −

∑
ℓ:x

(ℓ)
0 ̸=b

1

t
log⟨x(ℓ)

0 ,x
(ℓ)
θ (zt, t)⟩

]
(61)
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Proof. The diffusion objective in its general form is given by

LNELBO =

T−1∑
n=1

Eq(zt(n)|x0)

[
KL
(
q(zs(n)|zt(n),x0)||pθ(zs(n)|zt(n))

)]
= Et∈{ 1

T , 2
T ,...,1}Eq(zt|x0)

[
T · KL

(
q(zs|zt,x0)

∣∣∣∣pθ(zs|zt))] (62)

First, we will derive an expression for the bond-dependent KL-divergence, which measures the difference between the learned
reverse posterior q

(
zs|zt,xθ(zt, t)

)
and the true reverse posterior q(zs|zt,x0) conditioned on the training distribution x0.

KL(q(zs|zt,x0)||pθ(zs|zt))

=
∑

zs=ek

q(zs|zt = m,x0) log
q(zs|zt = m,x0)

pθ(zs|zt = m)

=
∑

zs∈{x0,m}

q(zs|zt = m,x0) log
q(zs|zt = m,x0)

pθ(zs|zt = m)

= q(zs = x0|zt = m,x0) log
q(zs = x0|zt = m,x0)

pθ(zs = x0|zt = m)

+ q(zs = m|zt = m,x0) log
q(zs = m|zt = m,x0)

pθ(zs = m|zt = m)

=

((
s

t
− sw

tw

)
b+

t− s

t
1

)⊤

x0 log

((
s
t −

sw

tw

)
b+ t−s

t 1
)⊤

x0((
s
t −

sw

tw

)
b+ t−s

t 1
)⊤

xθ(zt, t)

+

((
sw

tw
− s

t

)
b+

s

t
1

)⊤

x0 log

((
sw

tw −
s
t

)
b+ s

t1
)⊤

x0((
sw

tw −
s
t

)
b+ s

t1
)⊤

xθ(zt, t)
(63)

In the case where the true token x0 = b, we can simplify to

KL(q(zs|zt,x0)||pθ(zs|zt)) =
(
s

t
− sw

tw
+ 1− s

t

)
log

(
sw

tw −
s
t +

s
t

)
x⊤
0 x0(

sw

tw −
s
t +

s
t

)
x⊤
0 xθ(zt, t)

= −
(
1− sw

tw

)
log
(
x⊤
0 xθ(zt, t)

)
= −

(
tw − sw

tw

)
log⟨x0,xθ(zt, t)⟩ (64)

Substituting s = t− 1
T , we can simplify sw to

sw =

(
t− 1

T

)w

=

[
t

(
1− 1

tT

)]w
= tw

(
1− 1

tT

)w

]

= tw
(
1− w

tT
+ o

(
1

T 2

))
((1 + x)w = 1 + wx+ o(x2))

= tw − wtw−1

T
+ two

(
1

T 2

)
(65)

where o
(

1
T 2

)
denotes higher order terms that grow slower than 1

T 2 .
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Now, we can write

KL(q(zs|zt,x0)||pθ(zs|zt)) = −

 tw −
(
tw − wtw−1

T + two
(

1
T 2

))
tw

 log⟨x0,xθ(zt, t)⟩

= −

(
wtw−1

T − two
(

1
T 2

)
tw

)
log⟨x0,xθ(zt, t)⟩

= −
(

w

tT
− o

(
1

T 2

))
log⟨x0,xθ(zt, t)⟩

(66)

In the case where the true token x0 ̸= b, we can simplify to

KL(q(zs|zt,x0)||pθ(zs|zt)) =
(
1− s

t

)
log

(
1− s

t

)
x⊤
0 x0(

1− s
t

)
x⊤
0 xθ(zt, t)

= −
(
1− s

t

)
log
(
x⊤
0 xθ(zt, t)

)
= −

(
t− s

t

)
log⟨x0,xθ(zt, t)⟩ (67)

Similarly, substituting s = t− 1
T , we have

KL(q(zs|zt,x0)||pθ(zs|zt)) = −

(
t−

(
t− 1

T

)
t

)
log⟨x0,xθ(zt, t)⟩

= − 1

tT
log⟨x0,xθ(zt, t)⟩ (68)

Now, we can combine the two cases using the indicator functions 1[x0 = b] that evaluates to 1 when x0 = b and 0
otherwise and 1[x0 ̸= b] that evaluates to 1 when x0 ̸= b and 0 otherwise. Since this definition of KL divergence is only
applicable when zt = m, we have

KL(q(zs|zt,x0)||pθ(zs|zt))

=

[
− 1[x0 = b]

(
w

tT
− o

(
1

T 2

))
log⟨x0,xθ(zt, t)⟩ − 1[x0 ̸= b]

1

tT
log⟨x0,xθ(zt, t)⟩

]
(69)

Substituting this back into the equation for the discrete-time diffusion loss, we get

LNELBO = Et∈{ 1
T , 2

T ,...,1}Eq(zt|x0)

[
T · KL

(
q(zs|zt,x0)

∣∣∣∣pθ(zs|zt))]
= Et∈{ 1

T , 2
T ,...,1}Eq(zt|x0)T ·

[
− 1[x0 = b]

(
w

tT
− o

(
1

T 2

))
log⟨x0,xθ(zt, t)⟩

− 1[x0 ̸= b]
1

tT
log⟨x0,xθ(zt, t)⟩

]
= Et∈{ 1

T , 2
T ,...,1}Eq(zt|x0)

[
− 1[x0 = b]

(
wT

tT
− To

(
1

T 2

))
log⟨x0,xθ(zt, t)⟩

− 1[x0 ̸= b]
T

tT
log⟨x0,xθ(zt, t)⟩

]
= Et∈{ 1

T , 2
T ,...,1}Eq(zt|x0)

[
− 1[x0 = b]

(
w

t
− To

(
1

T 2

))
log⟨x0,xθ(zt, t)⟩

− 1[x0 ̸= b]
1

t
log⟨x0,xθ(zt, t)⟩

]
(70)
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Finally, taking the limit as T →∞, the higher-order term limT→∞ To
(

1
T 2

)
= 0 and we get

L∞
NELBO = lim

T→∞
LNELBO

= lim
T→∞

Et∈{ 1
T , 2

T ,...,1}Eq(xt|x0)

[
− 1[x0 = b]

(
w

t
− To

(
1

T 2

))
log⟨x0,xθ(zt, t)⟩

− 1[x0 ̸= b]
1

t
log⟨x0,xθ(zt, t)⟩

]
= Et∼U(0,1]Eq(xt|x0)

[
− 1[x0 = b]

w

t
log⟨x0,xθ(zt, t)⟩

− 1[x0 ̸= b]
1

t
log⟨x0,xθ(zt, t)⟩

]
(71)

which is the continuous-time NELBO loss for a single token. Therefore, the loss across a sequence of L tokens denoted as
x
(ℓ)
0 , we have

L∞
NELBO = Et∼U(0,1]Eq(xt|x0)

[
−

∑
ℓ:x

(ℓ)
0 =b

w

t
log⟨x0,xθ(zt, t)⟩ −

∑
ℓ:x

(ℓ)
0 ̸=b

1

t
log⟨x0,xθ(zt, t)⟩

]
(72)

which proves the loss defined in (5).

G.4. Gradient Flow of Invalid Loss

Proposition 2.3 By differentiating the invalid loss with respect to the probability vector x(ℓ)
θ (zt, t) for position ℓ, the

gradient with respect to the predicted probability of the sampled token j = k and all other tokens in the vocabulary j ̸= k is
given by

∇Linvalid =

{
SM(x

(ℓ)
θ,k)

(
1− SM(x

(ℓ)
θ.k)
)

j = k

−SM(x
(ℓ)
θ,j)SM(x

(ℓ)
θ,k) j ̸= k

(73)

Proof. We aim to show that the penalty for invalid token samples through the argmax function on predicted logits can
be effectively backpropagated through the model parameters via our softmax scaling strategy. Here, we will denote the
predicted probability for the token k = argmaxj

(
x
(ℓ)
θ (zt, t)

)
with the highest probability as x(ℓ)

θ,k and all remaining token

probabilities as x(ℓ)
θ,j for j = [1 . . . |V|].

First, we define the softmax function as

SM
(
x
(ℓ)
θ,k

)
=

exp(x
(ℓ)
θ,k)∑|V|

j=1 exp(x
(ℓ)
θ,j)

(74)

The partial derivative of the softmax probability xj
θ for every token j is given by equation

∂

∂x
(ℓ)
θ,j

(
exp(x

(ℓ)
θ,k)∑|V|

j=1 exp(x
(ℓ)
θ,j)

)
=

(
∂

∂x
(ℓ)
θ,j

exp(x
(ℓ)
θ,k)

)(∑|V|
j=1 exp(x

(ℓ)
θ,j)
)
−
(

∂

∂x
(ℓ)
θ,j

∑|V|
j=1 exp(x

(ℓ)
θ,j)

)(
exp(x

(ℓ)
θ,k)
)

(∑|V|
j=1 exp(x

(ℓ)
θ,j)
)2 (75)

Therefore, we have two cases for the derivative: first, the derivative with respect to x
(ℓ)
θ,k which denotes the predicted

probability for the token that was sampled, and second, the derivative with respect to x
(ℓ)
θ,j for j ̸= k which denotes the

predicted probabilities for all remaining tokens.
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For the first case when j = k, the partial derivative simplifies to

∂

∂x
(ℓ)
θ,k

(
exp(x

(ℓ)
θ,k)∑|V|

j=1 exp(x
(ℓ)
θ,j)

)
=

exp(x
(ℓ)
θ,k)

∑|V|
j=1 exp(x

(ℓ)
θ,j)− exp(x

(ℓ)
θ,k) exp(x

(ℓ)
θ,k)(∑|V|

j=1 exp(x
(ℓ)
θ,j)
)2

=

(
exp(x

(ℓ)
θ,k)∑|V|

j=1 exp(x
(ℓ)
θ,j)

)(∑|V|
j=1 exp(x

(ℓ)
θ,j)− exp(x

(ℓ)
θ,k)∑|V|

j=1 exp(x
(ℓ)
θ,j)

)
= SM(x

(ℓ)
θ,k)

(
1− SM(x

(ℓ)
θ,k)
)

(76)

For all j ̸= k, the derivative simplifies to

∂

∂x
(ℓ)
θ,j

(
exp(x

(ℓ)
θ,k)∑K

j=1 exp(x
(ℓ)
θ,j)

)
=

0− exp(x
(ℓ)
θ,j) exp(x

(ℓ)
θ,k)(∑K

j=1 exp(x
(ℓ)
θ,j)
)2

= −

(
exp(x

(ℓ)
θ,j)∑|V|

j=1 exp(x
(ℓ)
θ,j)

)(
exp(x

(ℓ)
θ,k)∑|V|

j=1 exp(x
(ℓ)
θ,j)

)
= −SM(x

(ℓ)
θ,j)SM(x

(ℓ)
θ,k) (77)

The parameters θ are updated such that the predicted probability of sampling the token ℓ with argmax probability x
(ℓ)
θ,k

which resulted in an invalid peptide SMILES sample, is reduced. The gradient update is minimized for predicted probabilities
near 0 and 1, suggesting that the loss function pushes the model towards higher confidence predictions from uncertain
predictions to minimize invalid sampling.

x
′(ℓ)
θ,k ← x

(ℓ)
θ,k − η · SM(x

(ℓ)
θ,k)

(
1− SM(x

(ℓ)
θ,k)
)

(78)

where η is the learning rate.

In contrast, the parameters of the remaining tokens x(ℓ)
θ,j are updated so that the predicted probability of sampling the other

tokens increases proportionally to their original softmax probabilities. This prevents extreme changes in the predicted
probabilities of the remaining tokens and ensures that the token distribution remains relatively consistent with the previous
iteration.

x
′(ℓ)
θ,j ← x

(ℓ)
θ,j + η · SM(x

(ℓ)
θ,j)SM(x

(ℓ)
θ,k) (79)

Here, we show that our invalid loss effectively updates parameters to reduce the position-specific token probabilities that
result in invalid sequence samplings and push the model predictions toward other high-likelihood tokens.

H. Hyperparameter Selection
In this section, we discuss the choice of hyperparameters for PepTune. Specifically, we discuss the effects of changing the
number of expanded children nodes, the number of iterations, and the tokenization scheme.

Number of Children The number of children M is the hyperparameter that determines the batch size during the expansion
step of MCTS. A small number of expanded nodes would limit the degree of exploration and the number of generated
sequences for evaluation at each iteration. If the initial iterations resulted in sub-optimal unmasking steps for all children,
this could prevent the algorithm from discovering a local or global optimum across objectives. Suppose the number of
children is too large. In that case, this can result in a lack of diversity if several sequences from the same expansion step are
added to the Pareto-optimal set given their sequence similarity, leading to similar property scores. A large M also slows
down runtime significantly. To determine a value for M within the two extremes, we evaluated the performance of the
MCTS search for M = 10, 50, 70, 100. Overall, we found that M = 50 yields consistently increasing scores across all
properties, which we use for the remainder of the study.
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Number of Iterations The number of iterations Niter determines the number of selection, expansion, rollout, and
backpropagation loops executed in a single MCTS run. In addition, Niter is the maximum value of t or the number of
unmasking steps that can be executed before the rollout begins, which corresponds to the maximum tree depth. We found
that equating the number of diffusion steps T to the number of MCTS iterations Niter results in convergence on the property
prediction scores as the selection process becomes biased towards a single unmasking scheme. As shown in Figure 5, all
property scores converge for Niter = T = 128, which we use for the remainder of the study.

Tokenization Scheme To evaluate the effect of different tokenization methods on the generation quality, we experimented
with three different tokenization schemes: SMILES Pair Encoding (SPE) tokenization with the trained vocabulary used by
PeptideCLM and Atom Pair Encoding (APE) tokenization for SMILES and SELFIES (Krenn et al., 2020) representations.
Overall, we found that the SPE tokenization scheme decreased perplexity and maintained precision while capturing common
peptide motifs like bonds and recurring side chains.

Table 12. Effect of Tokenization on Sequence Length, Training, and Validation Loss after Convergence

Tokenization Scheme Vocab Size Avg Sequence Length in Data Train Loss (↓) Val Loss (↓) Val PPL (↓)
SMILES SPE Tokenizer 581 84 0.65 0.75 2.12
SMILES APE Tokenizer 605 19 1.33 2.32 10.18
SELFIES APE Tokenizer 605 21 1.56 2.50 12.12

I. Additional Experiments
I.1. Case Study for Time-Dependent Multi-Objective Guidance

Some properties of peptides require more intense guidance towards specific structural or sub-structural features, while others
may only require small changes in the side chain composition or non-natural modifications. To enable the prioritization of
properties during guidance, we introduce a time-dependent multi-objective guidance strategy that guides the generation
based on only a subset of properties, depending on the current iteration number of the MCTS search. To achieve this, we
define a K-dimensional vector i = [i1, i2, . . . , iK ] where each ik is the iteration number to begin guidance for the kth
objective. Properties where ik = 0 are used to guide all iterations, whereas properties where ik > 1 are used to guide only
the iterations from ik → Niter.

Our time-dependent guidance operates as follows. During the expansion and rollout steps on iteration i, the rolled-out child
sequences xs,i that are non-dominated across the sub-vector of property scores si = [sk | ik ≤ i ≤ Niter] dependent on the
iteration i are added to the Pareto-optimal set P∗. Therefore, xs does not need to be non-dominated in the properties k
where ik > i. Similarly, only the sequences x∗ ∈ P∗ that become dominated when adding xs in the subset of properties
represented in si(x

∗) are removed from P∗.

P ′∗ = P∗ ∪
{
(zs, s(xs)) | ∀x∗ ∈ P∗ si(xs) ⪰ si(x

∗)
}

(80)

P ′∗ = P∗ \
{
x∗ | ∃xs ∈ children(zt) s.t. si(xs) ≻ si(x

∗)
}

(81)

Then, during selection, we only consider the cumulative rewards Wi = [Wk | ik ≤ i ≤ Niter] for the properties where ik s.t.
ik ≤ i ≤ Niter when computing the selection score vector Ui to form the Pareto-optimal selection set.

P ′∗
select = P∗

select ∪
{
zs | ∀x∗ ∈ P∗

select Ui(zt, zs) ⪰ Ui(zt, z
∗)
}

(82)

P ′∗
select = P∗

select \
{
z∗ | ∃zs ∈ children(zt) s.t. Ui(zt, zs) ≻ Ui(zt, z

∗)
}

(83)

Finally, we select the next node zs ∼ P ′∗
select uniformly at random from the Pareto-optimal selection set.

To test this strategy, we generated 100 peptides conditioned only on membrane permeability for the first 50 iterations
since we found it as the most challenging property to optimize. Then we conditioned all properties, including membrane
permeability, binding affinity to GFAP, solubility, hemolysis, and non-fouling. We show that during the first 50 iterations, all
properties except membrane permeability show relatively constant average scores, whereas the permeability score increased
(Figure 16). Then, after the 50 iteration mark, GFAP binding affinity and solubility curves increased significantly while the
hemolysis and non-fouling curves increased slightly for the remainder of the iterations (Figure 16). Although all the results

41



De Novo Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion

Figure 16. Time-Dependent Multi-Objective Guidance. (A) Plot of average membrane permeability score for 50 sampled sequences
in the expansion and rollout step over iterations where the MCTS search is conditioned on permeability for all iterations. (B) Plot of
average predicted binding affinity score to GFAP over iterations when conditioned starting from epoch 50. (C, D, E) Plot of average
predicted solubility, hemolysis, and non-fouling scores over iterations when conditioned starting from epoch 50. Pink dotted lines denote
the iteration where the MCTS search began conditioning on the property

in this paper leverage peptides without time-dependent guidance, this serves as a proof of concept for future experiments
varying the start times across properties to refine certain properties at later time steps, where the generated sequences are
already constrained to specific predefined substructures.

I.2. Ablation Studies

We conduct an ablation study to evaluate the effect of our bond-dependent masking schedule and invalid loss on the fraction
of unconditionally generated SMILES sequences that are classified as valid peptides by our SMILES2PEPTIDE decoder.
We demonstrate that both components of the model are critical for the generation of sequences containing the necessary
components that define a valid peptide (Table 13). Furthermore, our bond-dependent masking schedule and invalid loss can
be applied for diverse sequence generation tasks, where preservation of fundamental structural components of the sequence
is necessary (e.g., sentence structure in natural language, protein motifs, etc.).

Table 13. Ablation study on the effect of bond-dependent masking and invalid loss. We unconditionally sampled 100 sequences from
each model and evaluated validity with our SMILES2PEPTIDE decoder.

Model Fraction of Valid Peptides

PepMDLM 0.40
PepMDLM + No Bond Dependent Masking 0.16
PepMDLM + No Invalidity Loss 0.21
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J. Algorithms
Algorithm 1 outlines the training algorithm for PepMDLM, our bond-dependent masked discrete diffusion model for
unconditional peptide SMILES generation. Algorithms 2, 3, 4, 5 and 6 describe PepTune, our MCTS-guided peptide
SMILES generator. Algorithms 7 and 8 describe the bond mask function and peptide sequence decoder which can also act
as a validity filter.

Algorithm 1 PepMDLM Training

1: Inputs: Batched training examples x0

2: Output: Trained unconditional MDLM for peptide SMILES generation pθ(zs|zt)
3: procedure TRAIN
4: Sample t ∼ Uniform(0, 1) ▷ sample continuous times
5: ▷ bond-dependent masking schedule ◁
6: αt(x0)←

(
1−BONDMASK(x0)

)
(1− t)+BONDMASK(x0)(1− tw)

7: ▷ mask each sequence in batch at varying degrees ◁
8: Sample zt ∼ Cat(zt;αt(x0)x0 + (1− αt(x0))m)
9: xθ(zt, t)← RoFormerθ(zt, t) ▷ predict token logits with RoFormer backbone

10: if zt ̸= m then
11: xθ(zt, t)← zt ▷ carry-over unmasking
12: else if zt = m then
13: xθ(zt, t)← xθ(zt, t)−∞m ▷ zero-masking probability
14: end if
15: L∞

NELBO ← 1
|B|
∑

x0∈B

(
−
∑

ℓ:x
(ℓ)
0 =b

w
t log⟨x(ℓ)

0 ,x
(ℓ)
θ (zt, t)⟩ −

∑
ℓ:x

(ℓ)
0 ̸=b

1
t log⟨x

(ℓ)
0 ,x

(ℓ)
θ (zt, t)⟩

)
16: x̃

(ℓ)
0 ← argmaxx

(ℓ)
θ (zt, t)

17: Linvalid ← 1
|B|
∑

zt∈B

(∑L
ℓ=1 x̃

(ℓ)⊤
0 SM

(
x
(ℓ)
θ (zt, t)

)
· 1[x̃0 is Invalid]

)
18: L ← L∞

NELBO + Linvalid ▷ total loss
19: θ′ ← θ − η∇θL ▷ update backbone parameters to minimize loss
20: end procedure

Algorithm 2 Reverse Diffusion Step

1: Inputs: Partially unmasked sequence at time t zt
2: Output: Token probability distribution pθ(zs|zt) for all positions in the sequence with the bond-dependent reverse

posterior and SUBS parametrization
3: procedure REVERSEDIFFUSIONSTEP
4: xθ(zt, t)← RoFormerθ(zt, t)
5: s← t− 1

T
6: if zt = m then
7: pθ(zs|zt)←

〈(
s
t −

sw

tw

)
b+ t−s

t 1,xθ(zt, t)
〉
zs +

〈(
sw

tw −
s
t

)
b+ s

t1,xθ(zt, t)
〉
m

8: pθ(zs = m|zt)← 0 ▷ zero-masking probability
9: else if zt ̸= m then

10: zs ← zt ▷ carry-over unmasking
11: end if
12: return pθ(zs|zt)
13: end procedure
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Algorithm 3 PepTune: Multi-Objective Guided Discrete Diffusion with Monte Carlo Tree Guidance (MCTG)

1: Inputs: Trained MDLM denoiser pθ(zs|zt), score function s(x) : VL → RK containing classifiers for K objectives
s1, s2, . . . , sK , number of time steps T , number of iterations Niter

2: Output: Set of Pareto-optimal sequences for the objectives and their K-dimensional classifier score vectors P∗ =
{(x∗

i , s
∗
i )}

3: procedure SAMPLEPEPTUNE
4: zT ← [MASK]L ▷ initialize fully masked sequence
5: P∗ ← {} ▷ initialize Pareto-front
6: for i = 1, . . . , Niter do
7: zt(n), t(n)← SELECT(zT ) ▷ select expandable leaf node unmasked to time t(n)
8: r← 0 ▷ initialize vector that will store the sum of all rewards from expanded children
9: children(zt(n))← BATCHEDREVERSESTEP(zt)

10: Nrollout ← T − t(n)
11: t⃗← [ nT ,

n−1
T , . . . 1

T ]
12: dt← 1

T
13: for i = 1, . . . ,M do
14: zt(n) ← zs,i
15: for n = 1 to Nrollout do ▷ rollout to fully unmasked sequence
16: pθ,i(zs(n)|zt(n))←REVERSEDIFFUSIONSTEP(zt(n))
17: zt(n) ← argmax pθ,i(zs(n)|zt(n))
18: end for
19: xs,i ← argmax pθ,i(xs,i|zt(1)) ▷ get clean sequence
20: s(xs,i)← s(xs,i) ▷ compute score vector
21: ▷ add sequence if non-dominated ◁
22: r(zs,i),P∗ ←UPDATEPARETOFRONT

(
P∗, (zs,i, s(zs,i))

)
23: children(zt).append

(
zs,i, s(zs,i)

)
▷ add child node

24: r← r+ r(zs,i) ▷ add child reward to total reward for node zt
25: end for
26: z← parent(zs,i)
27: while z not None do ▷ backpropagate scores
28: W(z)←W(z) + r
29: Nvisits(z)← Nvisits(z) + 1
30: z← parent(z) ▷ repeat for parent node until root node
31: end while
32: end for
33: return P∗ ▷ return Pareto-optimal sequences
34: end procedure
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Algorithm 4 Batched Reverse Step

1: Inputs: Partially unmasked sequence zt at time t (representing the selected node in MCTS search), value of k for top k
sampling (k = 0 for batched Gumbel-max sampling), total time steps T

2: Output: Set of M slightly unmasked sequences children(zt) = {zs,1, . . . zs,M} at time s that become the child nodes
of zt

3: procedure BATCHEDREVERSESTEP
4: children(zt)← {}
5: xθ(zt, t)← RoFormerθ(zt, t)
6: s← t− 1

T
7: if zt = m then
8: pθ(zs|zt)←

〈(
s
t −

sw

tw

)
b+ t−s

t 1,xθ(zt, t)
〉
zs +

〈(
sw

tw −
s
t

)
b+ s

t1,xθ(zt, t)
〉
m

9: pθ(zs = m|zt)← 0 ▷ zero-masking probability
10: else if zt ̸= m then
11: zs ← zt ▷ carry-over unmasking
12: end if
13: for i = 1 . . .M do ▷ define slightly different distribution for each sample in batch
14: ui,j ∼ Uniform(0, 1)
15: Gi,j ← − log (− log(ui,j + ϵ) + ϵ)
16: if k = 0 then
17: p̃θ,i

(
zs,i|zt)← log pθ

(
zs,i|zt

)
+Gi ▷ batched Gumbel-max distributions

18: zs,i ∼ p̃θ,i
(
zs,i|zt)

19: else if k > 0 then
20: p̃θ,i

(
zs,i|zt)← SM

(
topk

{
log pθ

(
zs,i|zt

)
+Gi

})
▷ batched top k sampling

21: end if
22: zs,i ∼ p̃θ,i

(
zs,i|zt)

23: children(zt).append(zs,i)
24: end for
25: return children(zt)
26: end procedure
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Algorithm 5 Selection

1: Inputs: Masked root node zt(T )

2: Output: Expandable leaf node zt
3: procedure SELECT
4: while True do
5: if zt is non-leaf node and t ̸= 0 then
6: P∗

select ← {} ▷ initialize Pareto front of select scores
7: for zs,i in children(zt) do
8: if zs,i is non-leaf or expandable leaf node then

9: U(zt, zs,i)← W(zs,i)
Nvisit(zs,i)

+ c · pθ(zs,i|zt)
√

Nvisit(zt)

1+Nvisit(zs,i)

10: P∗
select ←UPDATEPARETOFRONT

(
P∗

select, (zs,i,U(zt, zs,i))

)
11: end if
12: end for
13: ▷ set parent node for next iteration as a child node selected uniformly at random from Pareto-optimal set ◁
14: zt ∼ P∗

select
15: SELECT(zt) ▷ recursively call select until leaf node is reached
16: else if t = 0 then ▷ node is already fully unmasked
17: SELECT(zT ) ▷ restart selection process from root node
18: else ▷ return leaf node for expansion
19: return zt
20: end if
21: end while
22: end procedure
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Algorithm 6 Update Pareto Front

1: Inputs: Current Pareto-front sequences and score vectors P∗ = {(x∗
i , s

∗
i )}, newly sampled sequence and score vector

(zs, s(xs))
2: Output: Reward vector r(zs) and updated Pareto-optimal set P∗

3: procedure UPDATEPARETOFRONT
4: if P∗ is empty then
5: P∗.append((zs, s(xs)))
6: r(zs)← 1K ▷ set reward vector to ones
7: else
8: ▷ vector of boolean flags indicating which sequences are nondominant to x ◁
9: nondominateFlag← new bool[|P∗|]

10: toDelete← {}
11: r(zs)← 0K ▷ set reward vector to zeroes
12: for (x∗

i , s
∗
i ) in P∗ do

13: ▷ define vector with 1 where xs is non-dominated in the property ◁
14: n← [nk = 1 if sk(xs) ⪰ s∗k,i]
15: ▷ define vector with 1 where xs,i is dominant in the property ◁
16: d← [dk = 1 if sk(xs) ⪰ s∗k]
17: r(zs,i)← r(zs) + n ▷ update reward vector
18: if (∀nk ∈ n s.t. nk = 1) ∧ (∃dk ∈ d s.t. dk = 1) then ▷ x dominates x∗

19: toDelete.append(x∗)
20: nondominateFlag[i]← True
21: else if ∀nk ∈ n s.t. nk = 1 then ▷ x is not dominated by x∗

22: nondominateFlag[i]← True
23: else ▷ x∗ dominates x
24: nondominateFlag[i]← False
25: end if
26: end for
27: ▷ if xs is either dominant or non-dominated by all x∗ in Pareto-optimal set P∗, then add to P∗ ◁
28: if ∀i nondominateFlag[i] = True then
29: P∗.append(zs, s(xs))
30: end if
31: for x in toDelete do
32: P∗.delete(x∗, s∗)
33: end for
34: end if ▷ return reward vector and updated Pareto-optimal set
35: return r(zs),P∗

36: end procedure
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Algorithm 7 Bond Mask

1: Inputs: List of peptide SMILES strings smiles_list
2: Output: Position-wise bond mask for each sequence with 1 in positions of peptide bonds and 0 otherwise mask
3: procedure BONDMASK
4: bond_patterns← [(r‘OC(=O)’, ‘ester’),

(r‘N(C)C(=O)’, ‘n_methyl’),
(r‘C(=O)N(C)’, ‘n_methyl’),
(r‘N[12]C(=O)’, ‘peptide’),
(r‘C(=O)N[12]?’, ‘peptide’) ]

5: for batch_idx,smiles in enumerate(smiles_list) do
6: positions← empty_list() ▷ list to store bond positions
7: used← empty_set() ▷ set to track used positions
8: for pattern,bond_type in bond_patterns do ▷ identify bonds using patterns
9: for match in re.finditer(pattern,smiles) do

10: if not any(p ∈ range(match.start(), match.end()) for p in used) then
11: positions.append

(
{start: match.start(), end: match.end(),

type: bond_type, pattern: match.group()}
)

12: used.update
(
range(match.start(), match.end())

)
13: end if

14: end for
15: end for
16: for pos in positions do ▷ update the mask for the current SMILES
17: mask[batch_idx, pos[start]:pos[end]]← 1
18: end for
19: end for
20: return mask
21: end procedure
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Algorithm 8 SMILES2PEPTIDE

1: Inputs: SMILES String s
2: Output: Batch of M sequences at time s.
3: procedure ANALYZER
4: if s is correct SMILES format then,
5: if s contains peptide bond [NC(=O)] or N-methylated peptide bond [N(C)C(=O)] then,
6: IS_PEPTIDE← TRUE
7: positions← empty_list()
8: for pattern,bond_type in bond_patterns do
9: for match in re.finditer(pattern,smiles) do

10: positions← BONDMASK
11: segments← empty_list()
12: positions.sort()
13: if positions[0][’start’] > 0 then, ▷ first segment
14: segments.append

(
content: smiles[0:positions[0][’start’]],

bond_after: positions[0][’pattern’] )
15: end if
16: for i in len(positions)-1 do ▷ other segments
17: current = positions[i]
18: next_pos = positions[i+1]
19: segments.append

(
content: smiles[current[’end’]:next_pos[’start’]],

bond_before: current[’pattern’],
bond_after: next_pos[’pattern’] )

20: end for
21: if positions[-1][’end’] < len(smiles) then, ▷ last segment
22: segments.append

(
content: smiles[positions[-1][’end’]:],

bond_after: positions[-1][’pattern’] )
23: end if
24: end for
25: end for
26: for residue in segments do
27: residue← Regex pattern ▷ Empirical Amino Acid Regex Pattern
28: end for
29: end if
30: end if
31: end procedure
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