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Abstract—A wide breadth of research has devised data aug-
mentation approaches that can improve both accuracy and
generalization performance for neural networks. However, aug-
mented data can end up being far from the clean training data
and what is the appropriate label is less clear. Despite this,
most existing work simply uses one-hot labels for augmented
data. In this paper, we show re-using one-hot labels for highly
distorted data might run the risk of adding noise and degrading
accuracy and calibration. To mitigate this, we propose a generic
method AutoLabel to automatically learn the confidence in
the labels for augmented data, based on the transformation
distance between the clean distribution and augmented distri-
bution. AutoLabel is built on label smoothing and is guided
by the calibration-performance over a hold-out validation set.
We successfully apply AutoLabel to three different data aug-
mentation techniques: the state-of-the-art RandAug, AugMix,
and adversarial training. Experiments on CIFAR-10, CIFAR-
100 and ImageNet show that AutoLabel significantly improves
existing data augmentation techniques over models’ calibration
and accuracy, especially under distributional shift. Additionally,
AutoLabel improves adversarial training by bridging the gap
between clean accuracy and adversarial robustness.

Index Terms—data augmentation, calibration, distributional
shift, adversarial robustness

I. INTRODUCTION

Deep neural networks are increasingly being used in high-
stakes applications such as healthcare and autonomous driving.
For safe deployment, we not only want models to be accurate
on independent and identically distributed (i.i.d.) test cases,
but we also want models to be robust to distribution shift
[1] and to not be vulnerable to adversarial attacks [2]–[5].
Recent work has shown that the accuracy of state-of-the-
art models drops significantly when tested on corrupted data
[6]. Furthermore, these models do not just perform worse
on these unexpected examples, but are also over-confident –
[7] showed that calibration of models degrades under shift.
Calibration measures the gap between a model’s own estimate
of correctness (i.e., confidence) versus the empirical accuracy,
which measures the actual probability of correctness. When
a model is not well calibrated, particularly on unexpected
examples, it undermines our ability to trust its predictions.
Building models that are accurate and robust, i.e. can be

trusted under unexpected inputs from both distributional shift
and adversarial attacks, is a challenging but important research
problem.

While numerous approaches have been explored for improv-
ing both calibration under distribution shift and adversarial
robustness, one of the fundamental building blocks is data
augmentation: generating synthetic examples, typically by
modifying existing training examples, that provide additional
training data outside the empirical training distribution. A
wide breadth of literature has explored what are effective
ways to modify training examples, such as making use of
domain knowledge through label-preserving transformations
[8] or adding adversarially generated, imperceptible noise [4],
[9]. Approaches like these have been shown to improve the ro-
bustness and calibration of overparametrized neural networks
as they alleviate the issue of neural networks overfitting to
spurious features that do not generalize beyond the i.i.d. test
set.

In the broad amount of research on data augmentation, most
of it attempts to apply transformations that do not change the
true label such that the label of the original example can also
be assumed to be the label of the transformed example, without
expensive manual review. While there has been a significant
amount of work in how to construct such pseudo-examples in
input space, there has been relatively little attention on whether
this assumption of label-preservation holds in practice and
what label should be assigned to such augmented inputs. For
instance, many popular methods assign one-hot targets to both
training data as well as augmented inputs that can be quite far
away from the training data where even human raters may not
be 100% sure of the label. This runs the risk of adding noise
to the training process and degrading accuracy and calibration,
as the model may learn to assign high confidence predictions
to inputs far away from training data.

With this observation, in this paper we investigate the
confidence assigned to target labels for augmented inputs and
propose AutoLabel , a method that automatically adapts
the confidence assigned to augmented labels, assigning high
confidence to inputs close to the training data and lowering the
confidence as we move farther away from the training data.
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Fig. 1: (a): An example showing AutoLabel assigning different labels to augmented images (e.g., by AugMix [8]) based on
their transformation distances to the clean image. The label for the true class is automatically learned based on the calibration
performance on validation set. (b): Examples of images augmented by AugMix with different distances to the original image.

Figure 1 (left) gives a high-level overview of our proposed
AutoLabel along with examples of augmented images of
varying distances generating by AugMix [8] on the right.

In summary, our key contributions are:

• We propose AutoLabel , a generic approach that can
automatically learn the confidence in labels for aug-
mented data based on their transformation distance.

• We show that AutoLabel is complementary to meth-
ods which focus on generating augmented inputs by
combining it with RandAug [10] (which includes 10
different augmentation types), the state-of-the-art method
AugMix [8], as well as adversarial training [4].

• We perform experiments on CIFAR-10, CIFAR-100 and
ImageNet demonstrating that AutoLabel significantly
improves the calibration of models on both clean and
corrupted data. In addition, AutoLabel improves ad-
versarial training via bridging the gap between accuracy
and adversarial robustness.

II. MOTIVATION: WHY DO WE NEED AUTOLABEL?

Before we present our method, we investigate a key ques-
tion:

How does the confidence assigned to labels of highly
distorted augmented data affect model performance?

Using highly distorted augmented data is typically beneficial
for improving robustness of the model and improves accuracy
under covariate shift. However, using one-hot labels for highly
distorted augmented data might decrease the clean accuracy
as we assign 100% confidence to both clean training data
and highly distorted training data. We hypothesize that tuning
the confidence assigned to distorted augmented data using

AutoLabel avoids this trade-off and increases both clean
accuracy and accuracy under distribution shift.

To test this hypothesis, we first train a Wide ResNet-28-
10 [11] on CIFAR-100 [12] and then report the accuracy
on the test set with each transformation of different magni-
tudes applied. We use five different transformations: rotation,
posterize, solarize, shear X and shear Y, whose distortion
degree increases monotonically with the magnitude of the
transformation, as used in [13]. We use the test accuracy of a
transformation at a specific magnitude as an approximation
of the distortion degree of the transformed images: lower
test accuracy usually indicates higher degree of distortion on
the transformed images. Figure 2 shows that test accuracy
monotonically drops with increasing distortion magnitude;
when such highly distorted data are used during training with
one-hot labels, we may add a lot of noisy inputs which may
lead to overfitting and potentially hurt clean accuracy.

Next, we train two networks using the above five trans-
formations to augment the training data. The first net-
work is trained with one-hot labels, another is trained with
AutoLabel (which we will introduce in Section IV), which
automatically adjusts the labels for each magnitude of each
transformation. All the other training details are kept the same
for these two networks. During training, we randomly sample
a transformation with a magnitude ranging from 1 to the max
magnitude and then apply this transformation to the training
image for data augmentation. We report test accuracy and
expected calibration error (ECE) [14], which measures how
well aligned the average accuracy and the average predicted
confidence, on CIFAR-100 as well as CIFAR-100-C [6],
which includes 17 different corruption types. Note that there
is no overlap between the 5 transformations used for data
augmentation and the 17 corruption types in CIFAR-100-C.



Fig. 2: Test accuracy on CIFAR-100 test dataset to which each transformation of a specific magnitude is applied. Lower
accuracy indicates higher distortion on the transformed images.

Fig. 3: Large distortions limit or hurt accuracy and calibration: Test accuracy (higher is better) and expected calibration error
(ECE, lower is better) on CIFAR-100 test dataset and CIFAR-100-C corruption dataset. We randomly sample a transformation
from rotation, posterzie, solarize, shear X and shear Y with a magnitude ranging from 1 to the max magnitude and apply
this transformation to the training image for data augmentation. As the x axis increases, we include transformed images with
higher distortion during training. The results are based on 5 independent runs.

In Figure 3, we report the accuracy (higher is better) and
calibration (lower ECE is better) as the max magnitude of
transformation increases (more highly distorted augmented
data are incorporated into training). For networks trained
without AutoLabel i.e., using one-hot labels (shown in
blue), as we can see from the first graph in Figure 3, the
clean accuracy drops significantly when transformed images
with higher distortion are added. On the other hand, the
networks trained with AutoLabel (shown in red) can lever-
age highly distorted augmented data without incurring such
a drop in clean accuracy. In addition, the model trained with
AutoLabel consistently has a higher accuracy and a smaller
calibration error on both CIFAR-100 and CIFAR-100-C (more
significantly), and the gap widens as the max magnitude
increases. This motivates the need for AutoLabel when
using highly distorted augmented training data to improve
model accuracy and calibration, especially under distributional
shift.

III. RELATED WORK

A. Data Augmentation

Recent work has shown that introducing additional training
examples can further improve a model’s accuracy and gen-
eralization [13], [15]–[19]. For example, AugMix [8] utilizes
stochasticity and diverse augmentations, together with a con-
sistency loss over the augmentations, to achieve state-of-the-art
corruption robustness. Mixup [20], on the other hand, trains a

neural network over convex combinations of pairs of examples
and shows improved generalization of neural networks. Fur-
thermore, adversarial training [2], [4], [9] can also be thought
as a special data augmentation technique aiming for improving
model’s adversarial robustness. In this paper, we investigate
the choice of the target labels for augmented inputs and show
how to apply AutoLabel to these existing data augmentation
techniques to further improve model’s robustness.

B. Calibration and Uncertainty Estimates

A variety of methods have been developed for improving a
model’s calibration, e.g., post-hoc calibration by temperature
scaling [14] and multiclasss Dirichlet calibration [21]. Model’s
predictive uncertainty can also be quantified using Bayesian
neural networks and approximate Bayesian approaches, e.g.,
variational inference [22], [23], MCMC sampling based on
stochastic gradients [24], and dropout-based variational infer-
ence [25], [26]. In addition to calibration over in-distribution
data, more recently, [7] show that model calibration can further
degrade under unseen data shifts, where ensemble of deep neu-
ral networks [27] is shown to be most robust to dataset shift.
On the other hand, several data augmentation methods have
also been shown to improve model’s calibration under data
shifts. For example, AugMix is shown to improve uncertainty
measures on corrupted image classification benchmarks [8].
[28] demonstrate that neural networks trained with mixup are
significantly better calibrated under dataset shift, and are less
prone to over-confident predictions on out-of-distribution data.



C. Label Smoothing

Label smoothing, initially proposed in [29], is used to pre-
vent a model from being too over-confident in its predictions,
thus improving its generalization ability. It has been shown by
[28], [30] that label smoothing can also effectively improve
the quality of a model’s uncertainty estimates. Our work is
most closely related to the adaptive label smoothing algorithm
in [31]. [31] observe the connection between adversarial
robustness and uncertainty, and propose an algorithm for
adaptively updating the amount of label smoothing based on
the adversarial vulnerability of clean data to improve model’s
calibration. In contrast, we propose to adaptively smooth the
labels for augmented data based on the distance to the clean
training data, and show it can further improve a model’s
accuracy, calibration and adversarial robustness.

IV. AUTOLABEL: A GENERIC FRAMEWORK FOR SETTING
LABELS ON AUGMENTED DATA

A. Notation

Given a clean dataset D = {(xi, yi)}i=1,··· ,m, where y ∈
{1, ...,K}, the one-hot encoding of the label is denoted as
ŷ ∈ {0, 1}K , where the label for the true class ŷk=y = 1 and
ŷk 6=y = 0 for others. In addition to the training data D, we
also have a clean validation set DV drawn i.i.d. from the same
distribution.

B. The AutoLabel Algorithm

Our key insight is that the confidence in the labels as-
sociated with the augmented data likely depends on how
distorted the transformation is. To make use of this insight,
we would like to assign different confidence values in labels
for the augmented training data based on their transformation
distances. Many data augmentation approaches have hyperpa-
rameters that reflect how large the transformation should be.
As examples, which we will discuss in-depth below, this can
take the form of the number of transformations in AugMix [8]
or the norm of the adversarial perturbation in [4] as shown in
Table I. With aware of the transformation distance, then the
problem becomes:

How should we set the confidence value in the labels for
augmented data?

To address this problem, we build AutoLabel upon the
hypothesis that effective labels for augmented training data can
lead to well-calibrated predictions on the samely augmented
validation set. Thus, the training labels for augmented data
can be automatically updated according to the calibration
performance on the samely augmented validation data. A
schematic diagram for updating confidence of training labels
in AutoLabel is shown in Figure 4. Specifically, if a model
is over-confident on the augmented validation set, then the
confidence in the training labels should be decreased accord-
ingly; otherwise the confidence should be increased. Note that
computing calibration on the augmented validation set does
not use the confidence in the labels of validation data.

Effective confidence in 
labels for the augmented 

training data

Calibrated prediction on 
the samely augmented 

validation data

Feedback

Training Dataset Validation Dataset

Fig. 4: A schematic diagram for updating confidence of
training labels in AutoLabel algorithm.

Taking these together, our proposed AutoLabel is mainly
composed of two components:

1) a measure of the transformation distance for the aug-
mented data,

2) a subroutine for updating labels of the augmented data
during training.

Specifically, given a data augmentation technique Aug
that takes in an image x and outputs an augmented im-
age Aug(x, s) that transformed by a distance s ∈ R,
AutoLabel updates its label based on the calibration per-
formance on the samely augmented validation data. Since cal-
ibration can not be computed over a single data point, we must
obtain an augmented validation set that is transformed by the
same distance s. To this end, we discretize the transformation
distance s into N buckets {S1, · · · , SN} where each Sn is a
range, and we can generate augmented data for bucket Sn by
sampling a distance uniformly in that range s ∼ U(Sn) to gen-
erate Aug(x, s). In this way, we can generate the augmented
validation set Q(Sn) = {(Aug(xi, s), yi)|(xi, yi) ∈ DV , s ∼
U(Sn)}, which is used to learn the labels for any training data
transformed by a distance s ∈ Sn.

With the augmented validation set Q(Sn), AutoLabel up-
dates the confidence of the true class ỹk=y(Sn) after each
training epoch t according to:

ỹt+1
k=y(Sn) = ỹtk=y(Sn)− α · ECEt(Q(Sn))

· sign(Conft(Q(Sn))− Acct(Q(Sn))) (1)

where ECE(Q(Sn)), Acc(Q(Sn)) and Conf(Q(Sn)) are re-
spectively the expected calibration error, accuracy and confi-
dence on the augmented validation set. The sign of (Conf(Q)
- Acc(Q)) indicates if the model is overall over-confident
(> 0) or under-confident (< 0). Intuitively, if the model is
over-confident on the validation set, we should reduce the
confidence given to the true class ỹk=y , otherwise we should
increase ỹk=y . The expected calibration error on the aug-
mented validation set ECE(Q) ≥ 0 suggests to what extent we
should adjust the labels as the optimal result is ECE(Q) = 0
when the training converges. The hyperparameter α controls
the step size of updating the labels. Since ỹt+1

k=y stands for
the probability of the true class, we clip the value to be
within [Acct(Q), 1] after each update. Acct(Q) is used as the
minimum clipping value to prevent ỹt+1

k=y from being too small
as Acct(Q)→ 1

K when the classifier is a random guesser.



TABLE I: Transformation distance used by AutoLabel for each data augmentation method.

Augmentation Method Transformation distance determined by

RandAug transformation type, magnitude of transformation m

AugMix depth of augmentation chain d, mixing parameter λ

Adversarial Training max `∞ norm ε

Given the updated label for the true class ỹt+1
k=y(Sn),

AutoLabel takes a label smoothing approach to uniformly
distribute the remaining probability to other classes:

ỹt+1
k 6=y(Sn) = (1− ỹt+1

k=y(Sn)) · 1

K − 1
, (2)

where K is the number of classes in the dataset and∑K
k=1 ỹk = 1. Finally, AutoLabel trains the model using

ỹ(Sn) as the target for the cross-entropy loss across the
augmented data. A complete pseudocode for AutoLabel is
presented in Algorithm 1.

V. AUTOLABEL + DATA AUGMENTATIONS

To demonstrate AutoLabel can easily slot into exist-
ing data augmentation methods, we show how to apply
AutoLabel to automatically adjust the confidence in labels
over different data augmentation methods:
• RandAug [10]: including 10 different types of simple

transformations used by AutoAugment [13]. Note that
these transformations do not overlap with corruption
types in the test corrupted datasets.

• AugMix [8]: Mixing diverse simple augmentations in
convex combinations.

• Adversarial Training [4]: A special case of data augmen-
tation to improve adversarial robustness via training on
constructed adversarial examples.

These data augmentation methods originally use one-hot
labels for augmented data and we discuss in details how
to apply AutoLabel for each of them.1 Table I shows an
overview of how AutoLabel differentiates the augmented
data based on the transformation distance under each data
augmentation method.

Below we first give an overview of each data augmentation
method and introduce how to differentiate the augmented data
based on their distance to the clean distribution, then we show
how to apply AutoLabel to learn more appropriate labels.

A. AutoLabel for RandAug

RandAug includes 10 different types of transformations
from AutoAugment [13] and RandAugment [10]: color, rota-
tion, autocontrast, equalize, posterize, solarize, shear X, shear
Y, translate X and translate Y. During training, RandAug ran-
domly applies one transformation to generate the augmented

1We also apply AutoLabel to mixup [20], which is a data aug-
mentation technique that uses soft-labels, and observe an improvement of
AutoLabel over calibration. We refer interested readers to our supplemen-
tary material for more details and results.

data. Unlike RandAugment [10] that optimizes a single distor-
tion magnitude for all the transformations, RandAug randomly
samples a distortion magnitude m ∈ {1, · · · ,mmax}, where
mmax is the maximum distortion magnitude. Finally, the
model is trained on the augmented data with one-hot labels.

Instead of using one-hot labels, we propose AutoLabel to
automatically learn the confidence in labels for the augmented
data that are transformed by different transformation distances.
In RandAug, the transformation distance is determined by
two factors: (1) the type of sampled transformation, in total
we have 10 different transformations, and (2) the distortion
magnitude m.

To learn the labels for the augmented data transformed
by a specific operation with a distortion magnitude at m,
AutoLabel applies the same transformation distorted by the
same magnitude m to construct the augmented validation set.
Then AutoLabel updates the confidence of labels according
to Eqn (1) & (2) and trains the model with these updated
labels.

B. AutoLabel for AugMix

AugMix [8] is a data augmentation technique that achieves
state-of-the-art robustness and uncertainty estimates under data
shift. Specifically, AugMix augments the input data via feeding
the input x into an augmentation chain2 which consists of d ∈
{1, 2, 3} transformations randomly sampled from 10 different
operations used in RandAug with a fixed distortion magnitude.
Then a convex combination is performed to mix the augmented
image xaug with the original image x: Augaugmix(x) = λ ·
x + (1 − λ) · xaug, where the mixing parameter λ ∈ [0, 1] is
randomly sampled from a uniform distribution.

In AugMix, the transformation distance is mainly controlled
by two parameters3: (1) the depth of the augmentation chain d,
which decides how many augmentation operations are applied
to the original image; (2) the mixing parameter λ, which
controls the ratio of the augmented image xaug and the original
image x. In Figure 1(b) (ii) and (iv), a deeper augmentation
chain causes the image to quickly degrade and drift off the data
manifold. In addition, when comparing the augmented images
with different mixing parameter λ, shown in Figure 1(b) (iii)
and (iv), we can see that as λ → 0, the augmented image
is further away from the clean image. As a result, we can
define the distance bucket Sd,n for the augmented data as:

2The original AugMix [8] uses 3 augmentation chains. However, we
consistently observe an accuracy increase when we use one augmentation
chain.

3Transformation types could provide us more precise transformation dis-
tance but is not our main focus in AugMix.



Algorithm 1 Pseudocode of AutoLabel

1: Input: A training dataset D = {(xi, yi)}i=1,··· ,m, a validation dataset DV drawn i.i.d. from the same distribution, an
augmentation method Aug. Number of classes K, number of training epochs T , number of distance buckets N and the
hyperparameter α.

2: We perform Aug to obtain the augmented training data Aug(x, s), where the transformation distance s is determined by
the hyperparameters in the Aug. We discretize the transformation distance s into N buckets {S1, · · · , SN}, where each
Sn is a range.

3: For each distance bucket Sn, we initialize ỹ0(Sn) as the one-hot label.
4: for t = 0 to T − 1 do
5: Minimize cross-entropy loss over the augmented training data with smoothed labels ỹt(Sn).
6: for n = 1 to N do
7: Generate an augmented validation set: Q(Sn) = {(Aug(xi, s), yi)|(xi, yi) ∈ DV , s ∼ U(Sn)}.
8: Update the label for the true class ỹt+1

k=y(Sn):
ỹt+1
k=y(Sn) = ỹtk=y(Sn)− α · ECEt(Q(Sn)) · sign(Conft(Q(Sn))− Acct(Q(Sn))) . according to Eqn (1)

9: Clip ỹt+1
k=y(Sn) to be within [Acct(Q(Sn)), 1]

10: Update the label for other classes ỹt+1
k 6=y(Sn): ỹt+1

k 6=y(Sn) = (1− ỹt+1
k=y(Sn)) · 1

K−1 . according to Eqn (2)
11: end for
12: end for

Sd,n = Sd,dλNe,
4 where N is the total number of buckets at

a given depth d.
Next, to learn the labels for augmented training data within

a distance bucket Sd,n, AutoLabel constructs an augmented
validation set Q(Sd,n) by feeding the validation images into
an augmentation chain with the depth d and then randomly
sample a mixing parameter λ′ from a uniformly distribution:
λ′ ∼ U( nN ,

n+1
N ) to mix the original image and the augmented

image. Finally, AutoLabel updates the labels ỹ(Sd,n) ac-
cording to Eqn (1) & (2) and trains the model using these
updated labels.

C. AutoLabel for Adversarial Training

Adversarial training [2] can be formulated as solving the
min-max problem:

min
w

E
||δ||∞≤ε

[maxL(f(x+ δ;w), y)], (3)

where δ denotes the adversarial perturbation, ε denotes the
maximum `∞ norm of adversarial perturbation and a one-hot
encoding of the label y is used as the target for the cross-
entropy loss L. In [4], the inner maximization problem is
approximately solved by generating projected gradient descent
(PGD) attacks. Therefore, standard adversarial training can
be considered as a specific data augmentation that aims for
improving model’s adversarial robustness.

Instead of training a model with one-hot labels,
AutoLabel differentiates the adversarial examples according
to the distance between the adversarial examples and clean
data, which is approximately captured by the `∞ norm of
the adversarial perturbation ε. Unlike [4] using a fixed ε to
construct PGD adversarial attacks, we randomly sample ε
from a uniform distribution ε ∼ U(0, εmax) to construct PGD
adversarial attacks with different distances to the original data.

4In the special case where λ = 0, we merge it into bucket S1 to avoid
creating an additional bucket, similarly for ε in adversarial training.

If the `∞ norm of the adversarial perturbation is bounded
by ε, then the constructed adversarial example falls into the
distance bucket Sn = Sdε· N

εmax
e, where N is the total number

of distance buckets.
In order to learn the labels for adversarial examples within a

distance bucket Sn, AutoLabel constructs adversarial exam-
ples for the validation images with the `∞ norm of the adver-
sarial perturbation bounded by ε′, where ε′ is randomly sam-
pled from a uniform distribution: ε′ ∼ U(n·εmaxN , (n+1)·εmax

N ).
Finally the training labels for adversarial examples are updated
following Eqn (1) & (2).

VI. AUTOLABEL IMPROVES CALIBRATION

In this section, we mainly show how AutoLabel can help
improve standard data augmentation techniques in terms of the
calibration performance by assigning effective confidence in
labels.

A. Baselines

1) Baselines for RandAug and AugMix: In order to demon-
strate the effectiveness of AutoLabel while applying to
existing data augmentation techniques, we use the state-of-
the-art RandAug [10] and AugMix [8] trained with one-hot
labels as baselines.

Further, as AutoLabel is built upon label smoothing
(LS) [29], we also report the performance when label smooth-
ing is applied to each of these data augmentations.

2) Baselines for adversarial training: In order to show
AutoLabel can help adversarial training benefit calibration
under distributional shift, we compare it with other 5 different
models. They are
• A vanilla model trained with one-hot labels.
• Adversarial training (AT) [4], which is trained on pro-

jected gradient descent (PGD) attacks with one-hot labels.



• Adversarial training with label smoothing (AT + LS).
• Adversarial training with PGD attacks generated with

multiple `∞ norm bounds ( AT + multiple ε). Unlike
standard adversarial training in [4] using a fixed ε to
construct PGD attacks, this model randomly samples an
ε ∈ (0, εmax] during training. The one-hot labels are used
for the generated adversarial attacks.

• Confidence-calibrated adversarial training (CCAT) [32],
which smooths the labels for adversarial examples ac-
cording to ỹ = g(δ)ŷ+(1−g(δ) 1

K ), where the balancing
parameter g(δ) follows a “power transition”: g(δ) :=

(1 −min(1, ||δ||∞ε ))ρ, ρ is set to 10 as [32] to ensure a
uniform distribution is used as the labels for adversarial
examples when ||δ||∞ ≥ ε. Similarly, ε is randomly
sampled from (0, εmax] during training.

B. Datasets
For RandAug and AugMix related experiments, we report

the performance on CIFAR-100 [12] and ImageNet [33]. As
adversarial training is hard to scale on ImageNet, we mainly
perform experiments for adversarial training on CIFAR-10
and CIFAR-100 [12]. We randomly sample 5000 images from
50000 training data to serve as the hold-out validation set for
both CIFAR datasets. For ImageNet, we evenly split 50000
test images into a validation set with 25000 images and test
the models’ performance on the hold-out test set with 25000
images.

In addition, we test models’ robustness on the corrupted
datasets: CIFAR-10-C, CIFAR-100-C, ImageNet-C [6], which
include different corruptions types (17 types for CIFAR-
10/100 and 15 types for ImageNet) that are frequently en-
countered in natural images. Each type of corruption has five
corruption severities. Note that the corruption type in the
corrupted dataset do not overlap with transformations used
for data augmentations.

C. Evaluation Metrics
We report the classification accuracy and expected calibra-

tion error on the clean datasets as Accuracy (higher is better)
and ECE (lower is better) respectively. Specifically, given a
classifier f(·) for a K-class classification problem, let fk(x)
denote the predicted probability for the k-th class. We use
f(x) := argmaxkfk(x) to represent the predicted class and
c(x) := maxk fk(x) as model’s confidence of the predicted
class. The expected calibration error (ECE) [7], [14] is defined
as

ECE =

R∑
r

|Br|
m
|acc(Br)− conf(Br)|,

where the input data is divided into R buckets, Br indexes
the r-th confidence bucket and m denotes the data size, the
accuracy and the confidence of Br are defined as:

acc(Br) =
1

|Br|
∑
i∈Br

1(f(xi) = yi)

conf(Br) =
1

|Br|
∑
i∈Br

c(xi)

Expected calibration error measures how well aligned the
average accuracy and the average predicted confidence are.

In addition, we also report the accuracy and expected cali-
bration error on the corrupted datasets, denoted as cAccuracy
and cECE, which are computed as an average over all the
corruption types across 5 corruption severities.

D. Network Architectures and Hyperparameters

We use a Wide ResNet-28-10 [11] for both CIFAR-10 and
CIFAR-100 datasets, and a ResNet-50 [34] for ImageNet as
our basic model architectures. We use the open-sourced code
at https://github.com/google/uncertainty-baselines/tree/master/
baselines to train all the models with the same training
hyperparameters for fair comparison.

Below we display all other hyperparameters involved for
each method as well as AutoLabel .

1) Label smoothing: When applying label smoothing to
RandAug, AugMix and adversarial training, we sweep the
hyperparameter ρ which decides the smoothing degree in a
range [0, 0.1] with a step size 0.01 and find the best ρ = 0.02
for CIFAR10 and CIFAR100 and ρ = 0.01 for ImageNet.

2) Adversarial training: Similar to recent work [35],
we observe that training models with adversarial examples
bounded with a smaller `∞ norm, e.g., εmax = 0.01, can
benefit more to the corrupted accuracy with a small accuracy
drop on the clean data. Therefore, we train all models with
PGD attacks bounded by εmax = 0.01 updated with 10
iterations. The step size is set to be ε/4.

3) AutoLabel for RandAug: When AutoLabel is ap-
plied to RandAug, the hyperparameter α in Eqn (1) is swept
in [0, 0.1]. We choose the best α = 0.01 for CIFAR-100 and
α = 0.02 for ImageNet based on the holdout validation set.
The number of distance bucket is set to be N = 10.

4) AutoLabel for AugMix: Following original Aug-
Mix [8], the max depth of the augmentation chain is set to
be dmax = 3 and the number of distance bucket is set to be
dmax ·N = 3 · 5 = 15. We use the best α = 0.02 in Eqn (1)
for CIFAR-100 and ImageNet.

5) AutoLabel for adversarial training: The number of
distance buckets is set to be N = 10 and the hyperparameter
α in Eqn (1) is set to be α = 0.5 for CIFAR-10 and α = 0.005
for CIFAR-100.

E. Improvement over Calibration

1) AutoLabel improves calibration of RandAug and Aug-
Mix: In this section, we apply AutoLabel to RandAug and
AugMix to investigate if AutoLabel can make data aug-
mentation approaches more effective in improving calibration,
especially under distributional shifts. We see in Table II a clear
picture: AutoLabel consistently helps RandAug and Aug-
Mix improve both accuracy and calibration across CIFAR100
and ImageNet, and greatly outperforms label smoothing. In
addition, we can see that AutoLabel has a much more sig-
nificant improvement on models’ calibration on the corrupted
datasets. As shown in Figure 5 we analyze how calibration
performance changes with the severity of the corruption being

https://github.com/google/uncertainty-baselines/tree/master/baselines
https://github.com/google/uncertainty-baselines/tree/master/baselines


TABLE II: Improvements of AutoLabel over RandAug and AugMix. The accuracy and ECE are reported on both
in-distribution test datasets (CIFAR-100 and ImageNet) as well as the corresponding corrupted datasets (CIFAR-100-C and
ImageNet-C). All numbers reported in the table are in %, an average of 4 independent runs on CIFAR-100 and 2 independent
runs on ImageNet. The arrow indicates better direction. Best results are highlighted in Bold.

Method Accuracy / cAccuracy (↑) ECE / cECE (↓)

CIFAR-100 ImageNet CIFAR-100-C ImageNet-C

RandAug [10] 82.0 / 63.0 76.9 / 43.4 4.1 / 13.0 2.0 / 6.4
+ Label Smoothing 82.2 / 63.6 76.9 / 43.5 2.4 / 8.2 1.2 / 5.5

+ AutoLabel 82.7 / 64.8 76.9 / 43.9 1.9 / 5.6 1.0 / 5.1

AugMix [8] 81.1 / 64.3 75.9 / 46.1 4.5 / 10.9 1.5 / 4.9
+ Label Smoothing 81.3 / 64.6 76.0 / 46.3 2.6 / 6.5 1.5 / 4.6

+ AutoLabel 81.9 / 65.5 76.4 / 46.5 1.8 / 4.2 1.4 / 4.2

Fig. 5: Expected calibration error (ECE) of AugMix trained
with one-hot labels and AutoLabel across corruption sever-
ities on CIFAR100 and ImageNet. Severity 0 denotes clean
data. As the corruption severity increases, the improvement of
AutoLabel increases.

tested against, comparing AugMix trained with one-hot labels
and with AutoLabel . We see that the baseline AugMix is
increasingly worse calibrated as the corruption increases, but
AutoLabel dampens that trend effectively. Similar patterns
are observed when AutoLabel is applied to RandAug.

Looking more closely, we find that the improvement
of AutoLabel over calibration on ImageNet is relatively
smaller compared to CIFAR-100. We conjecture that this is
mainly due to the much larger training data on ImageNet,
leading to a greater generalization performance and the head-
room for improvement is relatively limited. To validate this,
we train the same networks with a reduced size of training
images, e.g., we randomly sample 50% training images from
the whole training dataset (∼1.2M training images). Note that
we use the same hyperparameter α = 0.02 in Eqn (1) without
further tuning for each training data size. From Figure 6 we
can see that as the percentage of training data is reduced, the
calibration performance of both RandAug and AugMix trained
with one-hot labels becomes significantly worse. In contrast,
AutoLabel enables models to keep a low calibration error
on the clean test set and a much smaller calibration error on the
corrupted dataset. This indicates that AutoLabel could be
especially beneficial to models’ calibration performance when
we have limited training data.

Fig. 6: AutoLabel improves calibration on ImageNet with
a reduced size of training data. When training a model with
limited training data, the improvement of AutoLabel over
calibration is significantly increased. α = 0.02 is used for
AutoLabel for all experiments here without further tuning.

2) AutoLabel improves calibration of adversarial train-
ing: Similar to human-designed data augmentation, we also
believe adversarial training runs the risk of attacks not be-
ing truly label-preserving [36] and thus should benefit from
setting labels carefully. Therefore, we would like to see if
AutoLabel can improve adversarial training with adversarial
robustness.

To this end, we apply AutoLabel to adversarial training
and report the calibration error on the clean and corrupted
datasets in Table III. When comparing standard adversarial
training (AT) with a vanilla model, we can see that adversarial
training slightly improves the calibration on the corrupted
dataset but at the cost of a larger calibration error on the clean
data. All other adversarial training based models using one-hot
labels suffer from this trade-off between clean and corrupted
calibration. In contrast, AutoLabel nicely addresses this



TABLE III: AutoLabel improves calibration over adversarial training. Expected calibration error (ECE) on the clean
CIFAR-10 and CIFAR-100 and on the corrupted CIFAR-10-C and CIFAR-100-C (measured by cECE). Note adversarial
examples during training are bounded with a small `∞ norm (εmax = 0.01) for better in-distribution performance as [35]. All
the numbers reported are an average over 2 independents runs and in %. Best result is highlighted in bold.

Method Accuracy / cAccuracy (↑) ECE / cECE (↓)

CIFAR-10 CIFAR-100 CIFAR-10-C CIFAR-100-C

Vanilla 95.6 / 76.0 79.5 / 52.0 2.6 / 15.8 6.1 / 17.6

AT [4] 93.6 / 83.9 71.5 / 58.1 3.7 / 10.5 8.0 / 13.5
CCAT [32] 93.2 / 68.9 74.8 / 49.8 2.4 / 9.9 7.9 / 16.1
AT + LS 93.1 / 83.5 71.7 / 57.9 2.1 / 7.9 4.4 / 6.7

AT + multiple ε 94.3 / 84.5 74.6 / 59.6 3.4 / 10.0 7.0 / 12.9
AT + AutoLabel 94.6 / 83.6 75.8 / 59.9 2.0 / 6.5 3.7 / 6.2

Fig. 7: AutoLabel improves trade-off between clean and adversarial accuracy. Each model is tested on the clean data
(Left) and against white-box PGD attacks bounded by εmax = 0.03 (right).

problem: it improves calibration on both clean and corrupted
datasets compared to vanilla model and adversarial training.
Note that a pre-defined function to smooth the labels, e.g, the
power transition used in CCAT [32], does not significantly help
model’s calibration. Although adversarial training together
with AutoLabel still suffers from a small sacrifice on in-
distribution accuracy, the improvements over both accuracy
and calibration on the corrupted datasets are much more signif-
icant, e.g., the improvement of AutoLabel over calibration
error on the corrupted data is around 60% compared to vanilla
model on CIFAR-10/100-C.

Taking all together, we can naturally arrive at the con-
clusion: AutoLabel can again effectively help adversarial
training improve models’ calibration by adaptively setting
appropriate labels on the augmented (adversarial) examples.

VII. AUTOLABEL IMPROVES ADVERSARIAL ROBUSTNESS

In this section, we further investigate if AutoLabel can
also help bridge trade-off between clean accuracy & adver-
sarial robustness, especially when highly distorted adversarial
examples are incorporated into training.

A. Baselines

We use the same baselines introduced in Section VI-A2. The
“Vanilla” model is trained without any adversarial examples.
For other adversarial training based methods, we construct `∞
norm based PGD attacks with 10 iterations and the step size
is set to be ε/4. For each method, we train three models with

the `∞ norm of adversarial perturbation εmax chosen from
{0.03, 0.05, 0.1}, where the image scale is [0, 1].

B. Evaluation Metrics
We report both clean accuracy and adversarial accuracy of

each test model. The adversarial accuracy is computed over
white-box PGD attacks bounded by εmax = 0.03 with image
scale belongs to [0, 1]. These test PGD attacks are generated
by 50 iterations and 3 random restarts.

In addition, we also propose a new evaluation metric called
“Accuracy Difference ∆” to better measure the effectiveness
of any given method in terms of clean accuracy as well as
adversarial robustness. “Accuracy Difference ∆” is to compute
the clean and adversarial accuracy difference between any
given method as well as a baseline model. In our case, the
“Vanilla” model trained with one-hot labels is used as the
baseline. Denote any given method as Ω and the “Vanilla”
model as Γ, the “Accuracy Difference ∆” between Ω and Γ
can be computed as

∆(Ω,Γ) = {Accuracy(Ω) + Adversarial. Accuracy(Ω)}
− {Accuracy(Γ) + Adversarial. Accuracy(Γ)}

(4)

where the accuracy and adversarial accuracy are computed
on the clean test dataset as well as white-box PGD attacks
respectively. While computing ∆, clean accuracy and adver-
sarial accuracy are assigned with equal importance. If ∆(Ω,Γ)
is larger than 0, this indicating that this method Ω is overall
better than the vanilla model Γ in terms of clean accuracy as
well as adversarial robustness.



TABLE IV: AutoLabel helps balance the tradeoff between clean accuracy and adversarial accuracy. “Adversarial
Accuracy” denotes the model is tested on white-box PGD attacks bounded by εmax = 0.03 and generated by 50 iterations
and 3 random restarts. Larger Accuracy Difference ∆ is better (the arrow indicates higher is better). The best model with the
highest ∆ is highlighted in bold.

Method εmax in
Adversarial Training

CIFAR-10 CIFAR-100

Clean
Accuracy

Adversarial
Accuracy ∆ (↑) Clean

Accuracy
Adversarial
Accuracy ∆ (↑)

Vanilla - 95.6 0 - 79.5 0 -

AT
0.03 86.9 47.6 + 38.9 60.3 23.6 + 4.4
0.05 81.2 47.0 + 32.6 53.1 24.1 - 2.3
0.1 61.6 42.6 + 8.6 40.0 22.3 -17.2

CCAT
0.03 92.9 0 - 2.7 73.3 0 - 6.2
0.05 92.4 1.9 - 1.3 72.3 0.8 - 6.4
0.1 92.1 4 + 0.5 71.2 2.8 - 5.5

AT + LS
0.03 86.7 52.3 + 43.4 61.2 27.4 + 9.1
0.05 81.9 46.6 + 32.9 53.7 26.7 + 0.9
0.1 61.0 36.2 + 1.6 39.6 23.8 -16.1

AT +
multiple ε

0.03 89.5 46.9 + 40.8 65.1 23.0 + 8.6
0.05 84.9 49.5 + 38.8 58.4 25.5 + 4.4
0.1 81.4 43.0 + 28.8 52.9 25.0 - 1.6

AT +
AutoLabel

0.03 90.0 50.1 + 45.5 66.2 24.5 + 11.2
0.05 86.0 49.9 + 40.3 62.7 28.2 + 11.4
0.1 85.2 48.5 + 38.1 62.6 29.0 + 12.1

C. Network Architectures and Hyperparameters

We use the same Wide ResNet-28-10 [11] for both CIFAR-
10 and CIFAR-100 datasets introduced in Section VI-D.

For adversarial training together with label smoothing (AT+
LS), we sweep the smoothing parameter ρ from {0.1, 0.2, 0.3}
and choose the best parameter for each εmax on CIFAR-
10 and CIFAR-100. Similarly, for adversarial training with
AutoLabel , we set the number of distance buckets to be
N = 10 and sweep the hyperparameter α in Eqn. (1) within a
range [0.005, 1] and choose the best based on the performance
on the holdout validation set.

D. Improvements over Adversarial Robustness

To validate if AutoLabel can help balance clean accu-
racy and adversarial accuracy when highly distorted adver-
sarial examples are incorporated into training, we compare
AutoLabel with standard adversarial training (AT) [4] as
well as adversarial training with multiple ε (AT + multiple
ε), which are trained with one-hot labels. We see a clear
picture in Figure 7: as the εmax used in adversarial training
increases, that is we incorporate more corrupted adversarial
examples into training, there is a significant clean accuracy
drop for the models trained with one-hot labels. In contrast,
AutoLabel effectively helps the model maintain a relatively
high clean accuracy as well as adversarial accuracy even when
εmax = 0.1.

This picture is even more clear when we look at the
Accuracy Difference ∆ in Table IV: AT + AutoLabel keeps
∆ relatively stable and always larger than 0 when we increase
εmax used in adversarial training, e.g., εmax = 0.1, whereas
other models suffer from a significant performance drop.

This further validates that AutoLabel is especially useful
when highly corrupted adversarial examples are involved into
training. Note this is perfectly aligned with the observation
in standard data augmentation techniques shown in Figure 3:
assigning one-hot labels to highly-distorted augmented data
can hurt accuracy and AutoLabel can better balance the
accuracy trade-off by assigning more appropriate labels for
augmented data.

In addition, since confidence-calibrated adversarial training
(CCAT) [32] is originally proposed to detect adversarial exam-
ples with a confidence-thresholding, it hardly helps adversarial
accuracy compared to vanilla model, as shown in Table IV.
This is mainly because CCAT uses the uniform distribution
for adversarial examples during training, resulting in a loss of
class information.

VIII. CONCLUSION

In this paper, we show that simply re-using one-hot la-
bels for augmented data, as commonly used in existing
data augmentation works, runs the risk of adding noise and
degrading accuracy and calibration. To mitigate this, we
propose AutoLabel to automatically learn the confidence
in labels for augmented data based on the transformation
distance between the augmented data and the clean data. We
demonstrate the effectiveness of AutoLabel by applying it
to RandAug, AugMix and adversarial training. We see that
AutoLabel greatly improves the models’ calibration, espe-
cially on corrupted data, and also helps adversarial training
with a better trade-off between clean accuracy and adversarial
robustness. More generally, we believe that more nuanced
approaches to setting labels for augmented data, beyond



assuming label-preserving transformations, will lead to more
effective data augmentation techniques.
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APPENDIX

A. AutoLabel for mixup

Other than data augmentation techniques that using one-
hot labels, we also apply AutoLabel to mixup [20], which
mixes the input data as well as their correspondingly labels.
Recently, mixup has also been shown to be able to help with
calibration in [28]. Specifically, the input data as well as their
labels are augmented by

Augmixup(xi, xj) = γxi + (1− γ)xj

Augmixup(yi, yj) = γŷi + (1− γ)ŷj
(5)

where xi and xj are two randomly sampled input data and ŷi
and ŷj are their associated one-hot labels. The model is trained
with the standard cross-entropy loss L(f(xmixup), ymixup)
and the mixing parameter γ ∈ [0, 1] that determines the
mixing ratio is randomly sampled from a Beta distribution
Beta(β, β) at each training iteration. Rather than using the
same mixing parameter γ to combine the labels, we show



how to apply AutoLabel to automatically learn its labels
Augmixup(yi, yj) based on the validation calibration.

a) Transformation Distance: The transformation dis-
tance in mixup is determined by the mixing parameter γ in
Eqn (5). When γ → 0.5, combining two images equally,
the augmented image Augmixup(xi, xj) is the most far away
from the clean distribution. On the other hand, when γ →
0, the augmented image is close to the original image.
Hence, the distance bucket Sn for each augmented example
Augmixup(xi, xj) can be defined as: Sn = Sd2N ·(min(γ,1−γ))e.

b) Update Labels: To learn the labels for the aug-
mented training image within the distance bucket Sn,
AutoLabel constructs an augmented validation set Q(Sn)
by randomly mixing two images from validation data with a
mixing parameter γ′ that is sampled from a uniform distribu-
tion: γ′ ∼ U

(
n
2N ,

n+1
2N

)
and γ′ ∈ [0, 0.5]. Unlike AugMix,

there are two classes yi and yj existing in the augmented
image Augmixup(xi, xj). Due to γ′ ∈ [0, 0.5], the class in
the image xj plays a dominant role in determining the main
class in Augmixup(xi, xj). Therefore, we follow Eqn (1) in
the main text to update the label ỹk=yj for the class k = yj .
Unlike Eqn (2) in the main text that uniformly distributes the
probability 1− ỹk=yj to all other classes, we update the label
for the class k = yi as ỹk=yi = min(1 − ỹk=yj ,

γ′

1−γ′ ỹk=yj )
and then distribute the probability 1−ỹk=yi−ỹk=yj to all other
K−2 classes. Finally, the model is trained by minimizing the
cross-entropy loss with the new labels ỹ as the target.

B. Experiments on mixup

1) Setup: When applying AutoLabel to mixup, we set
the number of distance buckets to be N = 5. The hyperpa-
rameter α in Eqn (1) is sweep in a set and we choose the best
α = 0.005 for CIFAR10 and α = 0.008 for CIFAR100.

2) Results analysis: To test how well AutoLabel im-
proves mixup [20] is more nuanced because mixup’s baseline
effectiveness is sensitive to its hyperparameters. In particular,
the mixing parameter γ in Eqn (5) is sampled from a beta
distribution Beta(β, β). When β → 0, most sampled γ are
close to 0 or 1; when β = 1, γ is randomly sampled from
a uniform distribution. We observe that mixup suffers from a
trade-off between accuracy and calibration on the clean data
on CIFAR10 and CIFAR100, shown in Table V. When the
hyperparameter β is large, e.g., β = 1, the model is trained
on more diverse augmented data compared to a smaller β,
e.g., β = 0.2. This results in a higher accuracy but leads the
model to be too under-confident and a much larger calibration
error on the clean data. This trade-off between clean accuracy
and calibration of mixup is also observed in other datasets and
networks in Figure 2(j) in [28]. After applying AutoLabel to
mixup to automatically adjust the labels for augmented images,
we find that the trade-off between accuracy and calibration
is well addressed: high accuracy and low calibration error
are achieved on the clean data, shown in Table V. However,
this trade-off between accuracy and calibration does not exist
in the large scale datasets, e.g., ImageNet, where β = 0.2
consistently has the best accuracy and calibration and we

TABLE V: Effects of AutoLabel for mixup on CIFAR10
and CIFAR100. All numbers reported are averaged over 4
independent runs and in %. Best highlighted in bold.

Method CIFAR10 CIFAR100

Accuracy ECE Accuracy ECE

Vanilla 95.6 2.6 79.5 6.1

mixup (β = 0.2) 96.2 0.8 80.8 1.8
mixup (β = 1) 96.5 5.3 80.9 5.5

+ AutoLabel
(β = 1) 96.7 0.6 81.1 1.2

TABLE VI: Effects of AutoLabel for mixup on the cor-
rupted datasets: CIFAR10-C and CIFAR100-C. All numbers
reported are averaged over 4 independent runs and in %. Best
highlighted in bold.

Method CIFAR10-C CIFAR100-C

Accuracy ECE Accuracy ECE

mixup 81.1 8.8 55.6 11.2

+ AutoLabel 81.3 8.5 56.9 10.0

did not observe a significant improvement when applying
AutoLabel to mixup on ImageNet.

In addition, we also find that AutoLabel can im-
prove accuracy and calibration of mixup when applying
AutoLabel to mixup with β = 1 on the corrupted datasets,
as shown Table VI. As we can see that the mean accuracy
on CIFAR100-C over mixup with from 55.6% to 56.9% and
reduce the mean calibration error from 11.2% to 10.0%.

C. Updates based on previous reviews

1) Previous Meta Reviews: The paper introduces a simple
and interesting method that adaptively smoothes the labels of
augmented data based on a distance to the “clean” training
data. The reviewers have raised concerns about limited novelty,
minor improvement over baselines, and insufficient experi-
ments. The author’s response was not sufficient to eliminate
these concerns. The AC agrees with the reviewers that the
paper does not pass the acceptance bar of ICLR.

2) Updates: There is a fundamental change of the new
submission compared to the previous version in terms of
methodology as well as empirical experiments. We apply
AutoLabel to more types of data augmentation to discover
its effectiveness for models’ calibration and adversarial ro-
bustness, especially when highly corrupted augmented data
are incorporated into training.
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