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Abstract001

Large Language Models (LLMs) are widely002
used for temporal prediction, but their reliance003
on pretraining data raises contamination con-004
cerns, as accurate predictions on pre-cutoff005
test data may reflect memorization rather than006
reasoning, leading to an overestimation of007
their generalization capability. With the recent008
emergence of prompting-based unlearning tech-009
niques, a natural question arises: Can LLMs010
be prompted to simulate an earlier knowledge011
cutoff? In this work, we investigate the capabil-012
ity of prompting to simulate earlier knowledge013
cutoff in LLMs. We construct three evaluation014
datasets to assess the extent to which LLMs can015
forget (1) direct factual knowledge, (2) seman-016
tic shifts, and (3) causally related knowledge.017
Results demonstrate that while prompt-based018
simulated knowledge cutoffs show effective-019
ness when directly queried with the information020
after that date, they struggle to induce forget-021
ting when the forgotten content is not directly022
asked but causally related to the query. These023
findings highlight the need for more rigorous024
evaluation settings when applying LLMs for025
temporal prediction tasks. Our dataset is in-026
cluded in the supplementary data file provided027
with this submission.028

1 Introduction029

Large Language Models (LLMs) have shown030

strong capabilities in knowledge extraction and in-031

formation processing, leading to their adoption in032

temporal prediction tasks such as stock forecasting033

and event prediction (Wang et al., 2024; Yu et al.,034

2023). However, evaluating their performance on035

these tasks is challenging, as LLMs are pretrained036

on large-scale web corpora and may have seen in-037

formation from the test data (Dong et al., 2024).038

This can lead to overestimated performance and039

poor generalization on prediction tasks occurring040

after the model’s actual knowledge cutoff (Roberts041

et al., 2024).042

[Thinking: Aha, actually,
I know Trump wins...]
Donald Trump.

Assume you are an AI
with a knowledge cutoff
in mid-2024...

[Thinking: Harris is 
slightly leading in polls ...]  
Kamala Harris.

Predict the winner 
of the 2024 election.

Predict the winner 
of the 2024 election.

User 
Input

LLM 
Response

System 
Prompt

User 
Input

LLM 
Response

Figure 1: Top: The LLM answers the user’s question
using memorized knowledge. Bottom: The LLM does
not use memorized knowledge to respond given the
prompted knowledge cutoff.

Recent work on in-context unlearning has ex- 043

plored how LLMs can be guided to forget spe- 044

cific data instances or concepts through prompt- 045

ing alone (Pawelczyk et al., 2024). Motivated by 046

this, we ask: Can prompting be used to adjust an 047

LLM’s knowledge cutoff, inducing it to unlearn all 048

information beyond the cutoff date? If so, this ap- 049

proach could mitigate the data contamination issue 050

discussed earlier and enable more trustworthy eval- 051

uation, as intuitively illustrated in two examples in 052

Figure 1. 053

To investigate this question, we curate a dataset 054

comprising three subsets designed to assess the ef- 055

fectiveness of knowledge cutoff prompting across 056

different dimensions. Specifically, we construct: 057

(1) a Factual subset to test whether LLMs forget 058

factual information beyond the cutoff; (2) a Se- 059

mantic subset to evaluate whether LLMs forget 060

novel words or shifted meanings; and (3) a Coun- 061

terfactual subset to assess whether LLMs forget 062

causally related events when making predictions. 063
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Figure 2: Distribution of data instances by year across the Factual, Semantic, and Counterfactual subsets.

Using carefully tuned meta-prompts, we evaluate064

three popular LLMs and observe the effectiveness065

of prompted knowledge cutoff on the Factual and066

Semantic subsets, with average unlearning success067

rates of 66.3% and 70.0%, respectively. However,068

it achieves only 24.4% on the Counterfactual sub-069

set, showcasing its limitation on forgetting causally070

related events. These results highlight both the071

strengths and limitations of simulating knowledge072

cutoffs via prompting, underscoring the need for073

more robust methods to ensure fair evaluation of074

LLMs on real-world temporal prediction tasks.075

2 Related Works076

Unlearning Machine unlearning aims to let al-077

ready trained machine learning model forget cer-078

tain knowledge, usually due to privacy and safety079

concerns (Bourtoule et al., 2019). Some focus on080

erasing the impact of training on a subset of data081

points (Golatkar et al., 2020a,b; Izzo et al., 2021;082

Jang et al., 2023; Wang et al., 2024). Others aims083

to let models forget a subset of concepts (Belrose084

et al., 2023; Ravfogel et al., 2022a,b). With the085

recent emergence of LLMs and in-context learn-086

ing (Brown et al., 2020), in-context unlearning has087

also been proposed to unlearn LLMs with prompt-088

ing (Pawelczyk et al., 2024).089

LLM for Temporal Prediction Given the ex-090

tensive knowledge and capability of LLMs, they091

are increasingly used for temporal prediction, in-092

cluding weather forecasting, electricity prediction,093

traffic prediction, stock price and market forecast-094

ing and political events prediction (Cao et al., 2024;095

Jin et al., 2024; Shi et al., 2023; Wang et al., 2024;096

Yu et al., 2023). Various approaches have been097

proposed, including zero-shot learning (Gruver098

et al., 2023), finetuning (Zhou et al., 2023), and099

in-context learning (Lu et al., 2025). 100

3 Dataset 101

In this section, we introduce our three curated, high- 102

quality datasets and outline their construction pro- 103

cess. The Factual, Semantic, and Counterfactual 104

subsets contain 675, 303, and 689 examples, respec- 105

tively. As shown in Figure 2, each subset covers a 106

wide temporal range. Additional dataset statistics 107

are provided in Appendix A. 108

3.1 Factual subset 109

The Factual subset is designed to assess whether 110

LLMs can accurately reflect changes in world state 111

when prompted with a simulated knowledge cutoff. 112

For example, as illustrated in Figure 3(a), the model 113

is asked to identify the current U.S. president as 114

of a given cutoff date. A correct response would 115

align with the state of the world at that specified 116

time ("Joe Biden" in 2022), rather than defaulting 117

to the present-day answer ("Donald Trump"). To 118

construct this subset, we prompted GPT-4o (Hurst 119

et al., 2024) to generate major historical events 120

since 1960 that reflect meaningful shifts in world 121

state. For each selected event, GPT-4o also gener- 122

ated corresponding question-answer pairs, which 123

serve as the initial pool of data for this subset. The 124

whole generation process follows an iterative boot- 125

strapping scheme, detailed in Appendix C. 126

3.2 Semantic subset 127

The Semantic subset evaluates whether LLMs can 128

disregard newer meanings of words when prompted 129

with an earlier knowledge cutoff. As shown in 130

Figure 3(b), the model is asked to define the word 131

"tiktok" with the cutoff set around 2010. A correct 132

response would reflect its original meaning, such 133

as "an imitation of a clock’s ticking sound", rather 134
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Who is the current 
US president?

Assume you are an 
AI with a
knowledge cutoff 
in 2022...

Joe Biden.

Donald Trump.

Assume you are an 
AI with a
knowledge cutoff 
in 2010...

Assume you are an 
AI with a
knowledge cutoff 
in 2010...

What is the 
meaning of the 
word “tiktok”?

Give me the year in 
which Tokyo 
Olympics are held.

A popular video-
focused social 
media platform.

An imitation of a 
clock’s ticking 
sound.

2021.

2020.

Factual subset

User Input

System 
Prompt

LLM Response
(incorrect)

LLM Response
(correct)

Semantic subset Counterfactual
subset

(a) (b) (c)

Figure 3: Example of data in (a) Factual, (b) Semantic, and (c) Counterfactual subsets. Incorrect LLM responses use
the real knowledge cutoff, while correct responses consider the simulated knowledge cutoff in the system prompt.

than its modern association with the popular video-135

sharing platform. To construct this subset, we first136

prompted GPT-4o to generate candidate words that137

have undergone significant semantic shifts. We also138

use online resources such as Merriam-Webster’s139

Time Traveler1 to identify recently introduced or140

redefined terms. We then sampled words evenly141

across categories and years from these two sources142

to create an initial pool of examples for the subset.143

3.3 Counterfactual subset144

The Counterfactual subset assesses whether LLMs145

can produce counterfactual predictions by disre-146

garding critical events that occurred after a sim-147

ulated knowledge cutoff. As illustrated in Fig-148

ure 3(c), the model is asked to predict the year149

the Tokyo Olympics were held, given a knowl-150

edge cutoff of 2018. The correct response should151

be 2020—the originally scheduled year—rather152

than 2021, when the event actually took place.153

Since the model is unaware of the COVID-19 out-154

break (which occurred post-2018), it should reason-155

ably infer the year based on the regular four-year156

Olympic cycle. To construct this subset, we first157

collect high-quality online documents on histori-158

cal events. We then prompted GPT-4o to extract159

and generate a list of "meta events" and the down-160

stream events significantly affected by it, detailed161

in Appendix D. In the example above, COVID-19162

serves as the meta-event, and the Tokyo Olympics163

represent a causally affected event.164

1www.merriam-webster.com/time-traveler

3.4 Post-processing 165

Following the initial construction of the three sub- 166

sets, we apply several post-processing steps to en- 167

sure data quality. First, we perform de-duplication 168

using ROUGE-L similarity (Lin, 2004), removing 169

any data points with a similarity score above 0.7. 170

Next, we use three LLMs (excluding GPT-4o) to 171

cross-validate each data point under a standard 172

(non-unlearning) setting. If none of the models 173

return the expected answer, the item is discarded. 174

Finally, the authors manually review all remain- 175

ing examples across the three subsets. We remove 176

ambiguous or marginal cases, such as words with 177

unclear or insignificant semantic shifts in the Se- 178

mantic subset, or event pairs in the Counterfactual 179

subset that lack a clear causal relationship. Addi- 180

tional details on the dataset construction process 181

are provided in Appendix C and D. 182

4 Evaluation 183

4.1 Experimental Settings 184

In our experiments, we benchmarked 3 cutting 185

edge LLMs, including DeepSeek-V3 (DeepSeek- 186

AI et al., 2024), LLaMA-3.1-405B (Dubey et al., 187

2024), and GPT-4o (Hurst et al., 2024). We care- 188

fully design 2 meta prompts, denoted as P1 and P2, 189

trying to effectively set new knowledge cutoffs for 190

LLMs, with details in Appendix B. 191

We use the unlearn success rate as the primary 192

evaluation metric across all three subsets. For the 193

Factual and Counterfactual subsets, we convert raw 194
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Figure 4: Unlearn success rate of three LLMs (DeepSeek-V3, LLaMA-3.1-405B, and GPT-4o) on three of our
subsets (Factual, Semantic and Counterfactual) using two different prompts (P1 and P2).

examples into multiple-choice questions with two195

answer options: one corresponding to the model’s196

original knowledge cutoff, and the other aligned197

with the simulated cutoff. Unlearning is consid-198

ered successful if the model changes its response199

following the cutoff prompt. For the Semantic200

subset, which involves free-form generation, we201

measure semantic alignment using sentence em-202

beddings obtained from the MPNet model (Song203

et al., 2020). Let yb and ya represent the embed-204

dings of the ground-truth word meanings before205

and after the cutoff date, and ob and oa denote the206

model outputs before and after unlearning. We207

define unlearning as successful if:208

cos(oa, ya)

cos(oa, ya) + cos(oa, yb)
>

cos(ob, ya)

cos(ob, ya) + cos(ob, yb)
(1)209

which indicates the LLM output after unlearning is210

semantically closer to the pre-cutoff ground truth.211

4.2 Results and Analysis212

Performance of three LLMs on our dataset is pre-213

sented in Figure 4. On the Factual subset, all mod-214

els under both meta prompts (P1 and P2) achieve215

relatively strong performance, with an average un-216

learning success rate of 66.3%. Similarly, for the217

Semantic subset, the average success rate reaches218

approximately 70.0%. In contrast, performance219

on the Counterfactual subset is significantly lower,220

with an average success rate of only 24.4%. These221

results demonstrate that while prompt-based knowl- 222

edge cutoffs are effective when the forgotten infor- 223

mation is explicitly queried, they struggle to induce 224

forgetting of information that is not directly men- 225

tioned but is causally related to the query. We also 226

observe that all three LLMs exhibit some degree 227

of unlearning across all subsets, indicating that 228

prompted knowledge cutoffs consistently improve 229

fairness in temporal evaluation settings. 230

For the test examples that LLMs fail to unlearn, 231

one contributing factor may be the lack of times- 232

tamps in some of the LLM pretraining data. An- 233

other possible reason is that the prompts to simulate 234

knowledge cutoff have not appeared in the instruc- 235

tion finetuning datasets for these LLMs. 236

5 Conclusions 237

In this paper, we explore the effectiveness of 238

prompt-based simulated knowledge cutoffs for 239

LLMs. To this end, we construct three evaluation 240

subsets, including Factual, Semantic, and Counter- 241

factual, targeting different types of information that 242

should be forgotten after the cutoff. Experimental 243

results demonstrate both the potential and limita- 244

tions of prompted knowledge cutoff, highlighting 245

the importance of rigorous evaluation when apply- 246

ing LLMs for temporal prediction. 247
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Limitations248

One limitation of this study is that we did not ex-249

plore unlearning methods beyond prompting, pri-250

marily due to constraints in data and computational251

resources. An interesting direction for future work252

is to investigate whether LLMs can better adhere253

to prompted knowledge cutoffs when instruction254

fine-tuning on these prompts is applied beforehand.255
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A Data Statistic409

In this section, we present more details on our410

dataset. We show the data distribution by cate-411

gory for the three subsets in Figure 5. From 1960412

to 2024, the Factual subset is heavily concentrated413

in categories like Technology, Science, and Health,414

reflecting the historical accumulation of concrete415

developments and achievements in these areas. The416

Semantic subset, which covers newly emerged con-417

cepts from 2000 to 2024, shows a more balanced418

distribution across categories such as Technology,419

Health, Culture, Politics, and newer domains like420

Gaming, Finance, and Language, indicating the di-421

versification of public discourse in recent decades.422

The Counterfactual subset, also focused on the post-423

2000 period, places greater emphasis on Arts, Inter-424

national affairs, Governance, and Media, suggest-425

ing that speculative and alternative reasoning tends426

to center around sociopolitical and cultural themes.427

B Unlearning Prompt428

In this section, we present the two prompts we429

used in our experiments to simulate the knowledge430

cutoff for LLMs in Figure 6.431

For the unlearning prompt in the left figure (P1),432

we aim to simulate a controlled temporal knowl-433

edge constraint, enabling the generation of model434

outputs that reflect a fixed point in historical knowl-435

edge. By explicitly instructing the model to disre-436

gard any information introduced after a designated437

cutoff year and restricting the response format to438

a fixed structure, the prompt enforces a clean sep-439

aration between pre- and post-cutoff knowledge.440

This design allows for the construction of tempo-441

rally aligned datasets in which the model’s outputs442

can be interpreted as representative of its knowl-443

edge state prior to a specified historical moment.444

The resulting dataset enables systematic evaluation445

of knowledge removal or unlearning procedures446

by comparing model behavior before and after ex-447

posure to targeted information, and supports fine-448

grained analysis of knowledge persistence, forget-449

ting dynamics, and the boundaries of model gener-450

alization.451

On the other side, the unlearning prompt in the452

right figure (P2) is expected to simulate a tempo-453

rally constrained reasoning process by directing454

the model to internally reason while maintaining a455

strict memory cutoff. Unlike prompts that empha-456

size knowledge filtering during output generation457

alone, this prompt enforces the constraint at the458

level of internal cognition, instructing the model 459

to ignore any facts, events, or intuitions formed 460

after a designated historical boundary. It prohibits 461

the usage of seemingly obvious or culturally in- 462

grained knowledge that may have emerged post- 463

cutoff, thereby ensuring that responses are derived 464

solely from the model’s pre-existing knowledge 465

base. By suppressing both external references and 466

internal generalizations linked to post-cutoff infor- 467

mation, this prompt enhances the fidelity of tem- 468

poral isolation and provides a robust framework 469

for evaluating unlearning effectiveness under more 470

realistic reasoning conditions. 471

C Factual Subset Construction 472

In this section, we present more details in the data 473

construction process for the Factual subset. We 474

show the prompt used for generating Factual sub- 475

set in Figure 7. To construct the Factual Dataset, 476

we focus on events that have undergone histori- 477

cal changes since 1960, organizing the collection 478

process around eight predefined categories. For 479

each category, we prompt a large language model 480

(LLM) to generate fact-based QA pairs through it- 481

erative bootstrapping. In each iteration, the LLM is 482

instructed to produce 10 unique QA pairs while be- 483

ing constrained by previously generated content to 484

avoid duplication. This process is repeated up to 15 485

times per category until the model is no longer able 486

to generate enough novel examples. We then iden- 487

tify QA pairs that cannot be answered with a simple 488

"Yes" or "No" and rephrase them to preserve their 489

original meaning while fitting the binary format. 490

These rewritten pairs are filtered using ROUGE- 491

L scores to remove redundant entries and further 492

screened using the LLM to assess knowledge cov- 493

erage. Finally, all remaining QA pairs undergo 494

manual review to correct vague or unreasonable 495

expressions, revise tense inconsistencies, and up- 496

date any altered years or question phrasings using 497

publicly available English-language sources. After 498

a series of steps, we obtain a set of 675 high-quality 499

factual QA pairs suitable for evaluating temporal 500

knowledge in language models. 501

D Counterfactual Subset Construction 502

In this section, we present more details on the 503

data construction process for the Counterfactual 504

subset. We show the prompt used in data gener- 505

ation for Counterfactual subset in Figure 8. To 506

construct the Counterfactual subset, we focus on 507
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Figure 5: Distribution of three subsets by data category.

major global events that occurred since the year508

2000. We systematically collected over 200 arti-509

cles from Wikipedia’s Timeline of the 21st cen-510

tury 2 and from year-specific event pages across511

various domains such as 2020 in sports 3. Based512

on these materials, we designed prompts to gener-513

ate counterfactual QA pairs. To ensure that each514

question remains answerable both before and after515

unlearning, we imposed strict constraints on tense516

usage and required that every question corresponds517

to a verifiable fact before unlearning and leads to518

a plausible, inference-based answer after unlearn-519

ing. Furthermore, during question construction, we520

deliberately avoided mentioning specific dates or521

events to ensure that, once all post-year knowledge522

is removed from the model, the question becomes523

unanswerable due to the absence of direct refer-524

ences. We then applied ROUGE-L score filtering525

to remove QA pairs with high lexical overlap and526

redundancy. Finally, we manually reviewed the527

remaining data to fix ambiguous phrasing, unrea-528

sonable answer settings, and inappropriate tense529

usage. This process yielded a total of 689 well-530

formed and high-quality counterfactual QA pairs531

suitable for evaluating unlearning behavior in lan-532

guage models.533

2https://en.wikipedia.org/wiki/Timeline_of_
the_21st_century

3https://en.wikipedia.org/wiki/2020_in_sports
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You must answer this question using only 
knowledge that was publicly available 
before the year {unlearn_year}. 
Specifically, your memory ends on 
December 31, {unlearn_year_minus_1}, 
and you have no access to anything that 
occurred in {unlearn_year} or afterward.

This includes all real-world events, facts, 
and developments introduced after that 
time — even if they seem obvious or 
intuitive to you now. 
You must assume you have never learned 
them before.

Think silently. Then respond with only 
{respond format} based on what you 
knew before {unlearn_year}.

Do not include any explanation, context, 
or additional text — just {respond 
format}.

Prompt 1 (P1)

You may think step by step internally, 
but your memory ends on December 31, 
{unlearn_year _minus_ 1}. 
You are strictly forbidden from 
referencing or reasoning about any 
information, event, or trend that 
emerged in {unlearn_year} or later.

Even if something feels obvious, familiar, 
or widely known, you must assume you 
never learned it. 

Do not explain your reasoning. 
Respond with only {respond format}— no 
additional text.

Prompt 2 (P2)

Figure 6: Two prompts used for simulating knowledge cutoff.

9



You're helping compile a dataset of factual questions 
where the correct answer changed due to a real-world 
event.

These events should be clear, verifiable, and historically 
significant, and must have occurred in 1960 or later. The 
questions should focus on facts that were true before a 
specific event and became different afterward.

## Your Task:

For each question, you write:

1. The fact must have changed because of a specific, 
identifiable event.
2. The earliest possible year for the change is 1960.
3. The change must be clearly documented — no 
speculation or opinion.
4. The question should be answerable both before and 
after the event, with "Yes" or "No".
5. Avoid slow, unclear transitions — pick events with a 
noticeable change, even if an approximate range is needed.
6. Be specific in how you phrase each question.

## Format:

Use this structure for each item:

```json
{

"Question": ...,
"Answer Before Change": "Yes/No",
"Answer After Change": "Yes/No",
"Year of Change": ...

}
```

If the exact year isn’t known, use a range. And list 
entries in chronological order. Also, you need to focus on 
major, well-known changes.

## Category:

Only include questions from this topic:

{insert_category}

## Writing Tips:

1. Keep questions clear and direct — they should match 
the answer exactly.
2. Avoid:

1)  Answered with explanations.
2) "When" questions answered with anything but a year.
3) Vague, subjective language.

Only include information needed to answer the question.

## Avoid Repeats:

Don’t repeat or rephrase any questions from this list:

{insert_question_list}

That includes:

1. Same wording
2. Rephrasings
3. Questions about the same fact or event

Duplicates lower the quality — avoid them.

## Output:

1. Submit up to 10 questions (fewer is fine).
2. Each should reflect a real, significant factual change.
3. Only write what you know to be true — don’t make 
guesses.
4. Return results as a single JSON array.
5. No explanations or notes — just the JSON.

System Prompt (Factual)

Figure 7: Prompt used to generate Factual subset.
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You are helping generate counterfactual multiple-choice 
question-answer (QA) pairs based on real-world events 
that caused major disruptions, such as a pandemic, policy 
change, disaster, or political shift.

## Goal

Your task is to write up to 10 high-quality counterfactual 
QA pairs. Each question should be in the present tense 
and have two different correct answers: one assuming the 
disruptive event occurred, and one assuming it did not.

If no valid QA pair can be created, return an empty list 
`[]`.

## What Makes a Valid QA

Each QA pair must follow these rules:

1. The question should be a factual, neutral query in the 
present tense (e.g., "What is...", "Who leads...", "Which 
country has...").
2. The "Answer before Unlearn" is the correct answer, 
assuming the disruption happened.
3. The "Answer after Unlearn" is the counterfactual 
answer assuming the disruption never happened.
4. The two answers must be different — this is required.
5. The question must make sense and remain 
grammatically correct in both versions of the world.

## Format

Return a JSON array where each QA object has the 
following format:

```json
{

"Question": "Your question goes here",
"Option": "(A) ..., (B) ..., (C) ..., (D) ...",
"Answer before Unlearn": "C",
"Answer after Unlearn": "B"

}
```

If no valid items can be made, return:

```json
[]
```

## Writing Guidelines

1. Only use the simple present tense in the question. Avoid 
past tense ("was", "had"), present perfect ("has become"), 
or future tense ("will be").

2. Do not use words or phrases that point to time or 
recency. Avoid things like "recently", "currently", "as of 
\[year]", or "in \[year]".

3. The question must not mention or allude to the 
disruptive event. Keep it neutral — the divergence should 
only be revealed in the answers.

4. Out of the four answer options, only two should be 
plausible depending on the event. The other two should be 
clearly wrong in both cases.

5. Avoid facts that change back and forth or have unclear 
transitions. Pick facts that shifted once and stayed 
changed.

6. Don’t write questions about common knowledge or 
things that are always true.

7. Make sure all four answer options are different, well-
phrased, and grammatically correct.

8. If you can’t write a question where the two correct 
answers differ, don’t include it. Just return an empty 
array instead.

## Reminder

Every question must be designed so that the same 
present-tense question leads to two different correct 
answers depending on whether the event is remembered 
or forgotten. If this condition isn’t met, don’t include the 
QA. Return `[]` instead.

System Prompt (Counterfactual)

Figure 8: Prompt used to generate Counterfactual subset.
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