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ABSTRACT

We consider a deep matrix factorization model of covariance matrices trained with
the Bures-Wasserstein distance. While recent works have made important ad-
vances in the study of the optimization problem for overparametrized low-rank
matrix approximation, much emphasis has been placed on discriminative settings
and the square loss. In contrast, our model considers another interesting type of
loss and connects with the generative setting. We characterize the critical points
and minimizers of the Bures-Wasserstein distance over the space of rank-bounded
matrices. For low-rank matrices the Hessian of this loss can blow up, which cre-
ates challenges to analyze convergence of optimizaton methods. We establish
convergence results for gradient flow using a smooth perturbative version of the
loss and convergence results for finite step size gradient descent under certain as-
sumptions on the initial weights.

1 INTRODUCTION

We investigate generative deep linear networks and their optimization using the Bures-Wasserstein
distance. More precisely, we consider the problem of approximating a target Gaussian distribution
with a deep linear neural network generator of Gaussian distributions by minimizing the Bures-
Wasserstein distance. This problem is of interest in two important ways. First, it pertains to the opti-
mization of deep linear networks for a type of loss that is qualitatively different from the well-studied
and very particular square loss. Second, it can be regarded as a simplified but instructive instance
of the parameter optimization problem in generative networks, specifically Wasserstein generative
adversarial networks, which are currently not as well understood as discriminative networks.

The optimization landscapes and the properties of parameter optimization procedures for neural
networks are among the most puzzling and actively studied topics in theoretical deep learning (see,
e.g. Mei et al., 2018; Liu et al., 2022). Deep linear networks, i.e., neural networks having the
identity as activation function, serve as a simplified model for such investigations (Baldi & Hornik,
1989; Kawaguchi, 2016; Trager et al., 2020; Kohn et al., 2022; Bah et al., 2021). The study of
linear networks has guided the development of several useful notions and intuitions in the theoretical
analysis of neural networks, from the absence of bad local minima to the role of parametrization
and overparametrization in gradient optimization (Arora et al., 2018; 2019a;b). Many previous
works have focused on discriminative or autoregressive settings and have emphasized the square
loss. Although the square loss is indeed a popular choice in regression tasks, it interacts in a very
special way with the particular geometry of linear networks (Trager et al., 2020). The behavior of
linear networks optimized with different losses has also been considered in several works (Laurent
& Brecht, 2018; Lu & Kawaguchi, 2017; Trager et al., 2020) but is less well understood.

The Bures-Wasserstein distance was introduced by Bures (1969) to study Hermitian operators in
quantum information, particularly density matrices. It induces a metric on the space of positive
semi-definite matrices. The Bures-Wasserstein distance corresponds to the 2-Wasserstein distance
between two centered Gaussian distributions (Bhatia et al., 2019). Wasserstein distances enjoy sev-
eral properties, e.g. they remain well defined between disjointly supported measures and have duality
formulations that allow for practical implementations (Villani, 2003), that make them good candi-
dates and indeed popular choices of a loss for learning generative models, with a well-known case
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being the Wasserstein Generative Adversarial Networks (GANs) (Arjovsky et al., 2017). While
the 1-Wasserstein distance has been most commonly used in this context, the Bures-Wasserstein
distance has also attracted much interest, e.g. in the works of Muzellec & Cuturi (2018); Chewi
et al. (2020); Mallasto et al. (2022), and has also appeared in the context of linear quadratic Wasser-
stein generative adversarial networks (Feizi et al., 2020). A 2-Wasserstein GAN is a minimum
2-Wasserstein distance estimator expressed in Kantorovich duality (see details in Appendix B). This
model can serve as an attractive platform to develop the theory particularly when the inner prob-
lem can be solved in closed-form. Such a formula is available when comparing pairs of Gaussian
distributions. In the case of centered Gaussians this corresponds precisely to the Bures-Wasserstein
distance. Strikingly, even in this simple case, the optimization properties of the corresponding prob-
lem are not well understood; which we aim to address in the present work.

1.1 CONTRIBUTIONS

We establish a series of results on the optimization of deep linear networks trained with the Bures-
Wasserstein loss, which we can summarize as follows.

• We obtain an analogue of the Eckart-Young-Mirsky theorem characterizing the critical points and
minimizers of the Bures-Wasserstein distance over matrices of a given rank (Theorem 4.2).

• To circumvent the non-smooth behaviour of the Bures-Wasserstein loss when the matrices drop
rank, we introduce a smooth perturbative version (Definition 5 and Lemma 3.3), and characterize
its critical points and minimizers over rank-constrained matrices (Theorem 4.4) and link them to
the critical points on the parameter space (Proposition 4.5).

• For the smooth Bures-Wasserstein loss, in Theorem 5.6 we show exponential convergence of the
gradient flow assuming balanced initial weights (Definition 2.1) and a uniform margin deficiency
condition (Definition 5.2).

• For the Bures-Wasserstein loss and its smooth version, in Theorem 5.7 we show convergence of
gradient descent provided the step size is small enough and assuming balanced initial weights.

1.2 RELATED WORKS

Low rank matrix approximation The function space of a linear network corresponds to n ×m
matrices of rank at most d, the lowest width of the network. Hence optimization in function space
is closely related to the problem of approximating a given data matrix by a low-rank matrix. When
the approximation error is measured in Frobenius norm, Eckart & Young (1936) characterized the
optimal bounded-rank approximation of a given matrix in terms of its singular value decomposition.
Mirsky (1960) obtained the same characterization for the more general case of unitary invariant
matrix norms, which include the Euclidean operator norm and the Schatten-p norms. There are
generalizations to certain weighted norms (Ruben & Zamir, 1979; Dutta & Li, 2017). However, for
general norms the problem is known to be difficult (Song et al., 2017; Gillis & Vavasis, 2018; Gillis
& Shitov, 2019).

Loss landscape of deep linear networks For the square loss, the optimization landscape of lin-
ear networks has been studied in numerous works. The pioneering work of Baldi & Hornik (1989)
showed, focusing on the two-layer case, that there is a single minimum (up to a trivial parametriza-
tion symmetry) and all other critical points are saddle points. Kawaguchi (2016) obtained corre-
sponding results for deep linear nets and showed the existence of bad saddles (with no negative
Hessian eigenvalues) for networks with more than three layers. Chulhee et al. (2018) found sets of
parameters such that any critical point in this set is a global minimum and any critical point outside
is a saddle. Variations include the study of critical points for different types of architectures, such
as deep linear residual networks (Hardt & Ma, 2017) and deep linear convolutional networks (Kohn
et al., 2022).

For losses different from the square loss there are also several results. Laurent & Brecht (2018)
showed that deep linear nets with no bottlenecks have no local minima that are not global for ar-
bitrary convex differentiable loss. Lu & Kawaguchi (2017) showed that if the loss is such that any
local minimizer in parameter space can be perturbed to an equally good minimizer with full-rank
factor matrices, then all local minima in parameter space are local minima in function space. Trager
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et al. (2020) found that for linear networks with arbitrarily rank-constrained function space, only
for the square loss does one have the nonexistence of non-global local minima. However, for ar-
bitrary convex losses, non-global local minima when they exist are always pure, meaning that they
correspond to local minima in function space.

Optimization dynamics of deep linear networks Saxe et al. (2014) studied the learning dynam-
ics of deep linear networks under different classes of initial conditions. Arora et al. (2019b) obtained
a closed-form expression for the parametrization along time in a deep linear network for the square
loss. Notably, the authors found that solutions with a lower rank are preferred as the depth of the
network increases. Arora et al. (2018) derive several invariances of the flow and compare the dy-
namics in parameter and function space. For the square loss Arora et al. (2019a) proved linear
convergence for linear networks with no bottlenecks, approximately balanced initial weights, and
initial loss smaller than for any rank-deficient solution. A detailed analysis of the dynamics in the
shallow case with square loss was conducted by Tarmoun et al. (2021); Min et al. (2021) including
symmetric factorization. The role on inbalance was remarked in those works. For the deep case,
also focusing on the square loss, Bah et al. (2021) showed the gradient flow converges to a critical
point and a global minimizer on the manifold of fixed rank matrices of some rank. More recently,
Nguegnang et al. (2021) extended this analysis to obtain corresponding results for gradient descent.

Bures-Wasserstein distance Chewi et al. (2020) studied the convergence of gradient descent al-
gorithms for the Bures-Wasserstein barycenter, proving linear rates of convergence for the gradient
descent. In contrast to our work, they consider a Polyak-Łojasiewicz inequality derived from the
optimal transport theory to circumvent the non geodesical convexity of the barycenter. In the same
vein, Muzellec & Cuturi (2018) exploit properties of optimal transport theory to optimize the dis-
tance between two elliptical distributions. To avoid rank deficiency, they perturbed the diagonal
elements of the covariance matrix by a small parameter. Feizi et al. (2020) characterized the optimal
solution of a 2-Wasserstein GAN with rank-k linear generator as the k-PCA solution. We will obtain
an analogue result in our settings, along with a description of critical points.

1.3 NOTATIONS

We adopt the following notations throughout the paper. For any n ∈ N, denote [n] = {1, 2, . . . , n}.
Let S(n) be the spaces of real symmetric matrices of size n. We denote by S+(n) (resp. S++(n))
the space of real symmetric positive semi-definite (resp. definite) matrices of size n. Given k ⩽ n,
the set of rank k positive semi-definite matrices is denoted by S+(k, n). We use Mk (resp. M⩽k)
to denote the set of matrices of rank exactly k (resp. of rank at most k), with the format of the matrix
understood from context. The scalar product between two matrices A,B ∈ Rn×m is ⟨A,B⟩ =
trA⊤B, and its associated (Frobenius) norm is noted ∥·∥F . The identity matrix of size n will be
denoted In, or I when n is clear. For a (Fréchet) differentiable function f : X → Y , we denote its
differential at x ∈ X in the direction v by df(x)[v]. Finally, Crit(f) gives the set of critical points
of f , i.e. the set of points at which the differential of f is 0.

2 LINEAR NETWORKS AND THEIR GRADIENT DYNAMICS

We consider a linear network with d0 inputs and N layers of widths d1, . . . , dN , which is a model
of linear functions of the form

x 7→ WN · · ·W1x,

parametrized by the weight matrices Wj ∈ Rdj×dj−1 , j ∈ [N ]. We will denote the tuple of weight
matrices by

−→
W = (W1, . . . ,WN ) and the space of all such tuples by Θ. This is the parameter space

of our model. To slightly simplify the notation we will also denote the input and output dimensions
by m = d0 and n = dN , respectively, and write W = WN · · ·W1 for the end-to-end matrix. For
any 1 ⩽ i ⩽ j ⩽ N , we will also write Wj:i = Wj · · ·Wi for the matrix product of layer i up to j.
We note that the represented function is linear in the network input x, but the parametrization is not
linear in the parameters

−→
W . We denote the parametrization map by

µ : Θ → RdN×d0 ;
−→
W = (W1, . . . ,WN ) 7→ WN :1 = WN · · ·W1.
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The function space of the network is the set of linear functions it can represent, corresponds to
the set of possible end-to-end matrices, which are the n × m matrices of rank at most d :=
min{d0, . . . , dN}. When d = min{d0, dN}, the function space is a vector space, but otherwise,
when there is a bottleneck so that d < d0, dN , it is a non-convex subset of Rm×n determined by
polynomial constraints, namely the vanishing of the (d+ 1)× (d+ 1) minors.

Next we collect a few results on the gradient dynamics of linear networks for general differentiable
losses, which have been established in previous works even when in some cases the focus was on
the on the square loss (Kawaguchi, 2016; Bah et al., 2021; Chitour et al., 2022; Arora et al., 2018).
In the interest of conciseness, here we only provide the main takeaways and defer a more detailed
discussion to Appendix C. For the remainder of this section let L1 : Rn×m → R be any differentiable
loss and let LN be defined through the parametrization µ as LN (

−→
W ) = L1 ◦ µ(

−→
W ). For any such

loss, the gradient flow t 7→
−→
W (t) is defined by

d
−→
W (t)

dt
= −∇LN (

−→
W (t)) ⇐⇒ ∀j ∈ [N ],

dWj(t)

dt
= −∇Wj

LN (W1(t), . . . ,WN (t)). (GF)

This governs the evolution of the parameters during gradient minimization of the loss. Further, we
observe that the gradient of LN is given by

∇Wj
LN (W1, . . . ,WN ) = W⊤

j+1 · · ·W⊤
N∇L1(W )W⊤

1 · · ·W⊤
j−1 for all j ∈ {1, . . . , N}. (1)

As it turns our, the gradient flow dynamics preserves the difference of the Gramians of subsequent
layer weight matrices, which are thus invariants of the gradient flow,

d

dt
(Wj+1(t)

⊤Wj+1(t)) =
d

dt
(Wj(t)Wj(t)

⊤).

The important notion of balancedness for the weights of linear networks was first introduced
by Fukumizu (1998) in the shallow case and generalized to the deep case by Du et al. (2018). This is
useful in particular as a way of removing the redundancy of the parametrization when investigating
the dynamics in function space and has been considered in numerous works.
Definition 2.1 (Balanced weights). The weights W1, . . . ,WN are said to be balanced if, for all j ∈
[N − 1], WjW

⊤
j = W⊤

j+1Wj+1.

Assuming balanced initial weights, if the flow of each Wj is defined and bounded, then the rank of
the end-to-end matrix W remains constant during training (Bah et al., 2021, Proposition 4.4). More-
over, the products WN :1W

⊤
N :1 and W⊤

N :1WN :1 can be written in a concise manner; namely, we have
WN :1W

⊤
N :1 = (WNW⊤

N )
N and W⊤

N :1WN :1 = (W⊤
1 W1)

N , which simplifies many computations.
Remark 2.2. In order to relax the balanced initial weights assumption, some works also consider
approximate balancedness (Arora et al., 2019a), which requires only that there exists δ > 0 such that
∥WjW

⊤
j −W⊤

j+1Wj+1∥F ≤ δ for j ∈ [N − 1]. We will use exactly balanced initialization in our
proofs, but they would also go through by invoking approximate balancedness. Another alternative
initialization has been proposed by Yun et al. (2021). We defer such extensions to future work
favoring here the discussion of the Bures-Wasserstein loss.

3 WASSERSTEIN GENERATIVE LINEAR NETWORK

3.1 THE BURES-WASSERSTEIN LOSS

The Bures-Wasserstein (BW) distance is defined on the space of positive semi-definite matrices (or
covariance space) S+(n) . Here we collect some of the key properties and discuss the gradient, and
refer the reader to Bhatia et al. (2019) for further details on this interesting distance.
Definition 3.1 (Bures-Wasserstein distance). Given two symmetric positive semidefinite matri-
ces Σ0, Σ ∈ S+(n), the squared Bures-Wasserstein distance between Σ0 and Σ is defined as

B2(Σ,Σ0) = tr
(
Σ+ Σ0 − 2(Σ

1/2
0 ΣΣ

1/2
0 )1/2

)
. (2)

(Kroshnin et al., 2021, Lemma A.3) shows that the square root is differentiable on the set of positive
definite matrices and as a consequence we can differentiate the BW distance at Σ0,Σ ∈ S++(n).
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However, the mapping Σ 7→ B2(Σ,Σ0) is not differentiable over all of Rn×n. Indeed, letting ΓQΓ⊤

be a spectral decomposition of Σ1/2
0 ΣΣ

1/2
0 , (2) can be written as

B2(Σ,Σ0) = ∥Σ1/2∥2F + ∥Σ1/2
0 ∥2F − 2 trQ1/2. (3)

Due to the square root on Q, the map Σ 7→ B2(Σ,Σ0) is not differentiable when the rank of
Σ

1/2
0 ΣΣ

1/2
0 , i.e. the number of positive eigenvalues of Q, changes. More specifically, while one

can compute the gradient over the set of matrices of rank k for any given k, the norm of the gradient
blows up if the matrix changes rank. The gradient of B2 restricted to the set of full-rank matrices is
given inAppendix B.

3.2 LINEAR WASSERSTEIN GAN

The distance defined in (2) corresponds to the 2-Wasserstein distance between two zero-centered
Gaussians and can be used as a loss for training models of Gaussian distributions and in particular
generative linear networks. Recall that zero-centered Gaussian distributions are completely specified
by their covariances. Given a bias-free linear network and a latent Gaussian probability measure
N (0, Im), a linear network generator computes a push-forward of the latent distribution, which is
again a Gaussian distribution. If Z ∼ N (0, Im) and X = WZ, then

X ∼ N (0,WW⊤) =: ν,

Given a target distribution ν0 = N (0,Σ0) or simply the covariance matrix Σ0 (which may be a
sample covariance matrix), one can select W by minimizing B2(WW⊤,Σ0) = W2

2 (ν, ν0) so that
the network approximates the distribution N (0,Σ0). We will denote the map that takes the end-to-
end matrix W to the covariance matrix WW⊤ by π : Rn×m → Rn×n; W 7→ WW⊤.

Loss in covariance, function, and parameter spaces We consider the following losses, which
differ only on the choice of the search variable, taking a function space or a parameter space view.

• First, we denote the loss over covariance matrices Σ ∈ S+(n) as L̃ : Σ 7→ B2(Σ,Σ0) .
• Secondly, given π : W 7→ WW⊤ ∈ S+(n) , we define the loss in function space, i.e., over

end-to-end matrices W ∈ Rn×m as L1 : W 7→ L̃ ◦ π(W ). This is given by

∀W ∈ Rn×m, L1(W ) = tr
(
WW⊤ +Σ0 − 2(Σ

1/2
0 WW⊤Σ

1/2
0 )1/2

)
. (4)

This loss is not convex on Rn×m, as can be seen in the one-dimensional case.

• Lastly, for a tuple of weight matrices
−→
W = (W1, . . . ,WN ), we compose L1 with the parametriza-

tion map µ :
−→
W 7→ WN :1, to define the loss in parameter space as LN :

−→
W 7→ L̃ ◦ π ◦ µ(

−→
W ), for

−→
W ∈ Θ. Observe that this is, again, a non-convex loss.

Thus, for
−→
W ∈ Θ, LN (

−→
W ) = L1(µ(

−→
W )) = L̃(π ◦µ(

−→
W )) = B2(π ◦µ(

−→
W ),Σ0). While the gradient

flow (GF) is defined on the parameters
−→
W , the covariance space perspective is useful since it leads

to a convex objective function, even if this may be subject to non-convex constraints. One of our
goals will be to translate properties between L̃, L1, and LN .

Smooth perturbative loss As mentioned before, the Bures-Wasserstein loss is non-smooth at ma-
trices with vanishing singular values. In turn, the usual analysis tools to prove uniqueness and
convergence of the gradient flow do not apply for this loss. Therefore, we introduce a smooth per-
turbative version. Consider the perturbation map φτ : Σ 7→ Σ + τIn, where τ > 0 plays the role
of a regularization strength. Then the perturbative loss on the covariance space can be expressed as
L̃τ = L̃ ◦ φτ , and the perturbative loss on function space as L1

τ = L̃τ ◦ π. More explicitly, we let

L1
τ (W ) = tr

(
WW⊤ + τIn +Σ0 − 2(Σ

1/2
0 (WW⊤ + τIn)Σ

1/2
0 )1/2

)
. (5)

This function is smooth enough to apply usual convergence arguments for the gradient flow. Like-
wise, LN

τ := L̃τ ◦ π ◦ µ is well-defined and smooth on Θ.
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Remark 3.2. The perturbative loss (5) is differentiable. Many results from Bah et al. (2021) can be
carried over for the differentiable Bures-Wasserstein loss. For example, the uniform boundedness
of the end-to-end matrix holds, ∥W (t)∥ ⩽

√
2L1(W (0)) + trΣ0. Similar observations may apply

for the case of L1 in the case that the matrix WW⊤ remains positive definite throughout training,
in which case the gradient flow remains well defined and the loss is monotonically decreasing. We
expand on this in Appendix C.

The next lemma, proved in Appendix B.4, provides a quantitative bound for the difference between
the original and the perturbative loss. For this lemma, we use the fact that the rank is constant. To
compare the two losses, we fix the parameters to be the same. Recall that Στ = WW⊤ + τI .

Lemma 3.3. Let W ∈ Rn×m, τ > 0, and let Στ = WW⊤ + τIn. Assume that rank(WW⊤) = r,
rankΣ0 = n, L1(W ) is given by (4) , and L̃(Στ ) is given by (5). Then

|L̃(Στ )− L1(W )| ≤ τn+ rτ1/2. (6)

We observe that the upper bound (6) is tight, since it goes to zero as τ goes to zero.

4 CRITICAL POINTS

In this section, we characterize the critical points of the Bures-Wasserstein loss restricted to matrices
of a given rank. The proofs of results in this section are given in Appendix D.

For k ∈ N, denote by Mk the manifold of rank-k matrices, i.e.

Mk = {W ∈ Rn×m | rankW = k}.

Similarly, denote M⩽k the set of matrices of rank at most k. The format n × m of the matrices
is to be inferred from the context. The manifold Mk is viewd as an embedded submanifold of the
linear space (Rn×m, ⟨·, ·⟩F ), with codimension (n − k)(m − k) (Boumal 2022, §2.6; Uschmajew
& Vandereycken 2020, §9.2.2). Given a function f : Rn×m → R, its restriction on Mk is denoted
by f |Mk

: Mk ∋ W 7→ f(W ). Even if a function f is not differentiable over all of Rn×m, its
restriction on Mk may be differentiable.
Definition 4.1. Let M be a smooth manifold. Let f : Rn×m → R be any function such that its
restriction on M is differentiable. A point W ∈ M is said to be a critical point for f |M if the
differential of f |M at W is the zero function, df |M(W ) = 0.

4.1 CRITICAL POINTS OF L1 OVER Mk

Given a matrix A ∈ Rn×n and a set Jk ⊆ [n] of k indices, we denote by AJk
∈ Rn×k the sub-

matrix of A consisting of the columns with index in Jk. If the matrix A is diagonal, we denote by
ĀJk

∈ Rk×k the diagonal submatrix which extracts the rows and columns with index in Jk. The
following result characterizes the critical points of the loss in function space. It can be regarded as a
type of Eckart-Young-Mirsky result for the case of the Bures-Wasserstein loss.
Theorem 4.2 (Critical points of L1). Assume Σ0 has n distinct, positive eigenvalues. Let
Σ0 = ΩΛΩ⊤ be a spectral decomposition of Σ0 (so Ω ∈ U(n)). Let k ∈ [min {n,m}]. A
matrix W ∗ ∈ Mk is a critical point of L1|Mk

if and only if W ∗ = ΩJk
Λ̄
1/2
Jk

V ⊤ for some
Jk ⊆ [n] and V ∈ Rm×k with V ⊤V = Ik. In particular, the number of critical points is(
n
k

)
. The minimum is attained for Jk = [k]. In particular, infMk

L1(W ) = minMk
L1(W ) and

minMk
L1(W ) = minM⩽k

L1(W ).

The proof relies on an expression of the gradient ∇L1|Mk
(see Lemma D.3) and evaluating its zeros.

The value of the loss evaluated at these critical points allows to rank them and identify those that are
minimal.
Remark 4.3. Interestingly, the critical points and the minimizer of L1 characterized in the above
result agree with those of the square loss (Eckart & Young, 1936; Mirsky, 1960). Nonetheless,
we observe that (2) is only defined for positive semidefinite matrices. Hence the notion of unitary
invariance considered by Mirsky (1960) here only makes sense for left and right multiplication by
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the same matrix. Moreover, while we can establish unitary invariance for a variational extension of
the distance, this still is not a norm in the sense that there is no function B : Rn×n → R such that
B(Σ,Σ0) = B(Σ − Σ0), and hence it does not fall into the framework of Mirsky (1960). We offer
more details about this in Appendix B.

4.2 CRITICAL POINTS OF THE PERTURBATIVE LOSS

For the critical points of the perturbative loss L1
τ (W ) we obtain the following results.

Theorem 4.4 (Critical points of L1
τ ). Let Σ0 = ΩΛΩ⊤ be a spectral decomposition of Σ0. A point

W ∗ ∈ Mk is a critical point for L1
τ if and only if there exists a subset Jk ⊆ [n] and a semi-

orthogonal matrix V ∈ Rn×k (i.e., so that V ⊤V = I) such that W ∗ = ΩJk
(Λ̄Jk

− τIk)
1/2

V ⊤.
The (unique) minimum over M⩽k is attained for Jk = [k]

Note that the above characterization of the critical points imposes an upper bound on τ . In other
words, for a given W ∗ to be a critical point, one must have that τ < λj for all j ∈ Jk, because the
eigenvalues of Λ̄Jk

− τIk are positive.

In order to link the critical points in parameter space to the critical points in the function space, we
appeal to the correspondence drawn in Trager et al. (2020, Propositions 6 and 7). For the Bures-
Wasserstein loss, this allows to conclude the following.
Proposition 4.5. Assume a full-rank target Σ0, with distinct, decreasing eigenvalues, and spectral
decomposition Σ0 = ΩΛΩ⊤. Let τ ∈ (0, λn]. If

−→
W ∗ ∈ Crit(LN

τ ), then Σ∗ = π(µ(
−→
W ∗)) is

a critical point of the loss L̃τ |S+(k,n), where k = rankΣ∗. Moreover, if k = d, then
−→
W is a

local minimizer for the loss LN
τ if and only if Σ∗ = π(µ(

−→
W ∗)) is a local minimizer, and therefore

the global minimizer, of the loss L̃τ |S+(d,n). In this case, Σ∗
τ = Σ∗ + τIn is the τ -best d-rank

approximation of the target in the covariance space, in the sense that Σ∗
τ = Ω

(
Λ[d]

τ

)
Ω⊤.

Proposition 4.5 ensures that, under the assumption that the solution of the gradient flow is a (local)
minimizer and has the highest possible rank d given the network architecture, the solution in the
covariance space is the best d-rank approximation of the target in the sense of the τ -smoothed
Bures-Wasserstein distance.
Remark 4.6. Under the balancedness assumption, one can show that the rank of the end-to-end
matrix does not drop during training (Bah et al., 2021, Proposition 4.4), and that one escape almost
surely the strict saddle points (Bah et al., 2021, Theorem 6.3). If the initialization of the network has
rank d, the matrices W (t), t > 0, maintain rank d throughout training. There can be issues in the
limit, since Md is not closed. Proving that the limit point also belongs to Md is an interesting open
problem that we leave for future work.

5 CONVERGENCE ANALYSIS

The Bures-Wasserstein distance can be viewed through the lens of the Procrustes metric (Dryden
et al., 2009; Masarotto et al., 2019). In fact, it can be obtained by the following minimization
problem.
Lemma 5.1 (Bhatia et al. 2019, Theorem 1). For Σ, Σ0 ∈ S+(n),

B2(Σ,Σ0) = min
U∈U(n)

∥Σ1/2 − Σ
1/2
0 U∥2F , (7)

where U(n) denotes the n × n orthogonal matrix group. Moreover, the minimizer Ū occurs in the
polar decomposition of Σ1/2Σ

1/2
0 .

We emphasize that in the above description of the Bures-Wasserstein distance, the minimizer Ū de-
pends on W , so that B2 fundamentally differs from a squared Frobenius norm. Moreover, the square
root on Σθ can lead to singularities when differentiating the loss. Nonetheless, the expression (7)
can be used to avoid such singularities, by leveraging the following deficiency margin concept.
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Definition 5.2 (Modified deficiency margin). Given a target matrix Σ0 ∈ Rn×n and a positive
constant c > 0, we say that Σθ ∈ Rn×n has a modified deficiency margin c with respect to Σ0 if

min
U∈U(n)

∥Σ1/2
θ − Σ

1/2
0 U∥F ≤ σmin(Σ

1/2
0 )− c. (8)

With a slight abuse of denomination, we will say that W has a uniform deficiency margin if WW⊤

has one. This deficiency margin idea can be traced back to Arora et al. (2019a). Note that we can
write

√
WW⊤ = Σ

1/2
θ , and this square root can be realized by Cholesky decomposition. Notice

that if we initialize close to the target then the above bound (8) holds trivially. In fact, if the initial
condition W (0) satisfies the uniform deficient margin, then we have that the least singular value of
W (k) remains bounded below by c for all times k ≥ 0, for the gradient flow or gradient descent
with decreasing LN :

Lemma 5.3. Suppose W (0)W (0)⊤ has a modified deficiency margin c with respect to Σ0. Then

σmin

(√
W (k)W (k)⊤

)
≥ c, for k ≥ 0. (9)

The proof of this and all results in this section are provided in Appendix E. We note that, while
the modified margin deficiency assumption is sufficient for Lemma 5.3 to hold, it is by no means
necessary. We will assume that the modified margin deficiency assumption holds for the simplicity
of exposition, but the gradient flow analysis in the next paragraph only requires the less restrictive
Lemma 5.3 to hold.

Convergence of the gradient flow for the smooth loss Because we cannot exclude the possibility
that the rank of WW⊤ drops along the gradient flow of the BW loss, we consider the smooth
perturbation as a way to avoid singularities. We consider the gradient flow (GF) for the perturbative
loss (5). The gradient of (5) is given by

∇L1
τ (W ) = 2

(
W − Σ

1/2
0

(
Σ

1/2
0 (WW⊤ + τIn)Σ

1/2
0

)−1/2
Σ

1/2
0 W

)
.

On the other hand, we may denote Στ := WW⊤ + τIn as a regularized covariance matrix, and
express the L1 loss in terms of the optimal transport plan between Στ and Σ0 (Kroshnin et al.,
2021). We have

L̃(Στ ) = tr
(
Στ +Σ0 − 2(Σ

1/2
0 ΣτΣ

1/2
0 )1/2

)
= ∥
(
TΣ0

Στ
− I
)
Στ∥2F

=tr
(
TΣ0

Στ
− I
)
Στ tr

(
TΣ0

Στ
− I
)
,

(10)

where TΣ0

Στ
= Σ

1/2
0

(
Σ

1/2
0 ΣτΣ

1/2
0

)−1/2
Σ

1/2
0 = Σ

−1/2
τ

(
Σ

1/2
τ Σ0Σ

1/2
τ

)1/2
Σ

−1/2
τ .

The perturbation τIn ensures strict convexity as shown in the following result.

Lemma 5.4. The function Στ 7→ L̃(Στ ) is strictly convex on S++(n).

Proof. First we observe that the function f(X) = trX1/2 is strictly concave on S++(n); for details
we refer the reader to Bhatia et al. (2019, Theorem 7). As a result, the function

Στ 7→ L̃(Στ ) = trΣ0 + trΣτ − 2 tr
(
Σ

1/2
0 ΣτΣ

1/2
0

)1/2
is convex on S++(n). Then Στ 7→ tr

(
Σ

1/2
0 ΣτΣ

1/2
0

)1/2
is an injective linear map since Στ is

positive definite matrix. This means that L̃ is strictly convex.

What’s more, the loss L̃ is strongly-convex on S++(n), as stated in the next lemma.

Lemma 5.5. The Hessian of the loss L̃ satisfies ∇2
Στ

L̃(Στ ) ≽ K · In for any Στ ∈ S++(n), with

K =

√
τλmin(Σ0)

2C2
0

, where C0 = 2(L̃τ (Σ(0)) + trΣ0).

8
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Let us denote the minimizer of the perturbative loss L̃(Στ ) by Σ∗
τ . Let ∆∗

0 = Στ (0) − Σ∗
τ be

the distance of the initialization from the optimal solution. Equipped with the strict convexity by
Lemma 5.4, we are ready to show that the gradient flow has convergence rate O(e−K̃c,NKt), where
K is the constant from the Hessian bound given by Lemma E.5, and K̃c,N is a constant which
depends on the modified margin deficiency and the depth of the linear neural network. Recall that
Στ = WN :1W

⊤
N :1 + τIn, so we prove convergence of gradient flow for the parametrization

−→
W .

Theorem 5.6 (Convergence of gradient flow). Assume both balancedness (Definition 2.1) and the
modified uniform deficiency margin conditions (Definition 5.2). Then the gradient flow (GF) con-
verges as

L̃(Στ (t))− L̃(Σ∗
τ ) ≤ e−8Nc

2(2N−1)
N Kt∆∗

0, (11)

where K =

√
τλmin(Σ0)

2C2
0

is the strong convexity parameter from Lemma 5.5, with C0 =

2(L̃(Στ (0)) + tr(Σ0)).

Convergence of gradient descent for the BW loss Assuming that the initial end-to-end matrix
W have a uniform deficiency margin, we can establish the following convergence result for gradient
descent with finite step sizes, which is valid for the perturbed loss and also for the non-perturbed
original loss. Given an initial value

−→
W (0), we consider the gradient descent iteration

−→
W (k + 1) =

−→
W (k)− η∇LN (

−→
W (k)), k = 0, 1, . . . , (GD)

where η > 0 is the learning rate or step size and the gradient is given by (1).
Theorem 5.7 (Convergence of gradient descent). Assume that the initial values Wi(0), 1 ≤ i ≤ N ,
are balanced and are so that W (0) = WN :1(0) has uniform deficiency margin c. If the learning
rate η > 0 satisfies

η ≤ min

 c2

8M
√
L1(W (0))

,
Nc

2(N−1)
N

2∆
,

1

4Nc
2(N−1)

N

 ,

where ∆ = 2N+1

c2N
N2M (4N−3)/Nλ

1/2
max(Σ0) + 8N(N − 1)M (3N−4)/N

(
M1/N + ∥Σ1/2

0 ∥F
)

, and

M =

√
2
(
L1(W (0)) + ∥Σ1/2

0 ∥2F
)

, then, for any ϵ > 0, one can achieve ϵ loss by the gradient

descent (GD) at iteration

k ≥ 1

2ηNc
2(N−1)

N

log

(
L1(W (0))

ϵ

)
.

Remark 5.8. Our Theorems 5.6 and 5.7 show that the depth of the network can accelerate the
convergence of the gradient algorithms.

6 CONCLUSION

In this work, we studied the training of generative linear neural networks using the Bures-
Wasserstein distance. We characterized the critical points and minimizers of this loss in function
space or over the set of matrices of fixed rank k. We introduced a smooth approximation of the
BW loss obtained by regularizing the covariance matrix and also characterized its critical points in
function space. Furthermore, under the assumption of balanced initial weights satisfying a uniform
deficiency margin condition, we established a convergence guarantee to the global minimizer for the
gradient flow of the perturbative loss with exponential rate of convergence. Finally, we also con-
sidered the finite-step size gradient descent optimization and established a linear convergence result
for both the original and the perturbed loss, provided the step size is small enough depending on the
uniform margin deficiency condition. We collect our results in Table 1. These results contribute to
the ongoing efforts to better characterize the optimization problems that arise in learning with deep
neural networks beyond the commonly considered discriminative settings with the square loss.

In future work, it would be interesting to refine our characterization of critical points of the Bures-
Wasserstein loss in parameter space. Moreover, the uniform margin deficiency condition that we
invoked in order to establish our convergence results constrains the parametrization to be of full
rank. Relaxing this assumption is an interesting endeavor to pursue.
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Loss Parametrization Critical points Initialization Convergence

L1 WN :1 ΩJk
Λ̄
1/2
Jk

V ⊤ — —
L1
τ WN :1 ΩJk

(Λ̄Jk
− τIk)

1/2
V ⊤ — —

L̃τ Στ Σ0 Balanced, MDM GF: Exponential
L1 WN :1 ΩΛV ⊤ Balanced, MDM GD: O(log(1/ϵ))

Table 1: Summary of the results. The target is assumed full rank, with distinct eigenvalues, and spec-
tral decomposition Σ0 = ΩΛΩ⊤. The end-to-end matrix is WN :1, and the regularized covariance
is Στ . V ∈ Rm×k is any semi-orthogonal matrix, and Jk ⊂ [n] is an index set. Balanced stands for
balanced weights (Definition 2.1), MDM stands for modified deficiency margin (Definition 5.2).

APPENDIX

The appendix is organized as follows.

• Appendix A presents a table summarizing the different geometrical and convergence results.
• Appendix B discusses the background on the Bures-Wasserstein Loss and related Optimal Trans-

port topics.
• Appendix C presents some general properties of a linear neural network and classical results on

convergence in the parameter space.
• Appendix D gathers the proofs that were omitted in Section 4.
• Finally, Appendix E presents the proofs from Section 5.

A SUMMARY OF THE RESULTS

Table 1 presents a summary of the different results obtained in this paper. Note that, even if the
different losses are expressed in the function or the covariance spaces, the gradient flow and gradient
descent algorithm are performed on the parameter space Θ.

B BACKGROUND ON THE BURES-WASSERSTEIN DISTANCE

B.1 DEFINITION OF W2
2

The Bures-Wasserstein distance has a natural connection with the 2-Wasserstein distance on a metric
space. In the case of zero-centered Gaussian measures, those distances are identical. We present here
a more general definition of the 2-Wasserstein distance, which enjoys desirable properties.

Given a metric space (X , ∥·∥), the 2-Wasserstein distance is a well-established metric on the space
of quadratically integrable probability measures P2(X ).
Definition B.1 (2-Wasserstein distance). Given two quadratically integrable measures (ν, ν0) ∈
(P2(X ))

2 the 2-Wasserstein distance is defined as the following minimization problem

W2
2 (ν, ν0) = inf

π∈Π(ν,ν0)

∫
∥x− y∥2 dπ(x, y), (12)

where Π(ν, ν0) is the set of fixed marginals distributions: Π(ν, ν0) = {π ∈ P2(X × X ) | π1 =
ν, π2 = ν0}, with πi the marginal of π along the ith variable.

It is known that this distance metrizes the weak convergence on the space P2, see e.g. (Villani, 2008,
Theorem 6.9), and can therefore be leveraged when designing a system that relies on comparing
probability distributions such as a GAN. On the other hand, the computational burden of such a loss
can quickly become prohibitive (Pele & Werman, 2009). In a very few cases, efficient computations
can be done for the loss (12). This constrasts with a usual WGAN, which was first introduced
by Arjovsky et al. (2017), where the loss is computed using a neural network, based on the dual
expression of the (1-)Wasserstein distance.

13



Under review as a conference paper at ICLR 2023

Indeed, between two Gaussian measures, the 2-Wasserstein distance has a closed-form expression
or a closed-form expression for the discriminator so that adversarial training is not needed. We
will consider two centered Gaussian distributions, which are described by their covariance matrices.
In the case of centered Gaussian distributions, the 2-Wasserstein distance reduces to the Bures-
Wasserstein distance between the covariance matrices Σ0 and Σ (Dowson & Landau, 1982):

Lemma B.2. If ν = N (m,Σ) and ν0 = N (m0,Σ0), then

W2
2 (ν, ν0) = ∥m−m0∥2 + B2(Σ,Σ0)

It is well known (see Kantorovitch (1958) or (Villani, 2003, Theorem 1.3) or (Villani, 2008, Theorem
5.10)) that the squared 2-Wasserstein distance has the following dual expression, also known as the
Kantorovich duality:

W2
2 (ν0, νθ) = sup

(f,g)∈L1(νθ)×L1(ν0)

{∫
f(x) dνθ(x) +

∫
g(x) dν0(x)

| ∀(x, y), f(x) + g(y) ⩽ ∥x− y∥2
}
,

(13)

where L1(ν) is the set of the integrable functions with respect to a measure ν. Therefore, the dual
variables f and g are required to be integrable with respect to the source and target measures, and to
fulfil the cost inequality.

Remark B.3. In the context of GANs it is common to consider the 1-Wasserstein distance with
cost given by the distance ∥x − y∥, which has a dual expression, referred to as the Kantorovich-
Rubinstein formula (Villani, 2008, §6.2) that allows for a more tractable computation in practice,
with for instance only one dual variable. Nonetheless, there is no closed-form solution known when
c(x, y) = ∥x− y∥.

B.2 FURTHER PROPERTIES OF THE BW LOSS

In this section, we provide further background on the Bures-Wasserstein distance. First, we show
that, except in some particular cases (Lemma B.4), the Bures-Wasserstein distance between two
covariance matrices is not translation invariant (Lemma B.5).

Lemma B.4. In the case that Σ0 and Σ commute, the Bures-Wasserstein distance reduces to the
Hellinger distance:

Σ0Σ = ΣΣ0 =⇒ B2(Σ,Σ0) = ∥Σ1/2 − Σ
1/2
0 ∥2F .

Proof. It simply follows from the fact that, if Σ and Σ0 commute, so do Σ1/2 and Σ
1/2
0 , so that

Σ
1/2
0 ΣΣ

1/2
0 = (Σ

1/2
0 Σ1/2)

2
and

tr ((Σ1/2)2 + (Σ
1/2
0 )2 − 2(Σ

1/2
0 Σ1/2)) = tr ((Σ1/2 − Σ

1/2
0 )(Σ1/2 − Σ

1/2
0 )⊤)

= ∥Σ1/2 − Σ
1/2
0 ∥2F

as claimed.

From this, one remarks that the problem of minimizing the BW distance between two covariance
matrices that commute does fall under the framework of the Eckart-Young-Mirsky theorem if the
optimization variable is Σ1/2 = (WW⊤)

1/2, as it reduces to a problem cast with the square loss.
Nonetheless, in the case where Σ and Σ0 do not commute, we do not have such a correspondence,
as in general, the BW distance is not translation invariant, neither when considered as a function of
(Σ,Σ0) nor when considered as a function of (Σ1/2,Σ

1/2
0 ).

Lemma B.5 (BW is not translation invariant). There exist positive semidefinite matrices (Σ,Σ0) ∈
S+(n)×S+(n) and a translation T ∈ S+(n), such that B2(Σ+T,Σ0+T ) ̸= B2(Σ,Σ0). The same
statement also holds for the loss L defined on the matrix square roots, L(Σ1/2,Σ

1/2
0 ) = B2(Σ,Σ0).

14
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Proof. For the first part of the statement, taking

Σ =

(
1 0
0 1

)
, Σ0 =

(
1 0
0 2

)
, T =

(
t 0
0 t

)
, t > 0,

then B2(Σ + T,Σ0 + T )− B2(Σ,Σ0) = (
√
2 + t−

√
1 + t)

2 − (
√
2− 1)

2
, which is non-zero.

For the second part of the statement, if

Σ
1/2
0 =

(
1 0
0 2

)
, Σ1/2 =

(
1 1
1 2

)
, T =

(
1 0
0 1

)
,

one computes

L(Σ1/2,Σ
1/2
0 ) =∥Σ1/2∥2F + ∥Σ1/2

0 ∥2F − 2 tr (Σ
1/2
0 ΣΣ

1/2
0 )

1/2

=12− 2 tr

(
2 6
6 20

)1/2

and

L(Σ1/2 + T,Σ
1/2
0 + T ) =∥Σ1/2 + T∥2F + ∥Σ1/2

0 + T∥2F

− 2 tr ((Σ
1/2
0 + T )(Σ1/2 + T )(Σ1/2 + T )(Σ

1/2
0 + T ))

1/2

=28− 2 tr

(
20 30
30 90

)1/2

,

which gives the difference L(Σ1/2 + T,Σ
1/2
0 + T )− L(Σ1/2,Σ

1/2
0 ) ≈ 0.121229 ̸= 0.

Lemma B.5 therefore implies that, in the general case, one cannot express the Bures-Wasserstein
distance (either on the covariance or on their square roots) as a norm of a difference (otherwise, the
loss would be translation invariant). This hinders a direct application of the Eckart-Young-Mirsky
theorem, where the problem is cast as minX∥A − X∥ with a fixed A for some unitary invariant
norm. Even if this is not possible in general, a similar expression exists, relying on the following
variational formulation.

Lemma B.6. The Bures-Wasserstein distance between two covariance matrices Σ0 and Σ on Sn
+

coincides with the variational formulation (7),

min
U∈U(n)

∥Σ1/2 − UΣ
1/2
0 ∥2F = tr

(
Σ0 +Σ− 2(Σ

1/2
0 ΣΣ

1/2
0 )

)
. (14)

Proof. We write

min
U∈U(n)

∥Σ1/2 − UΣ
1/2
0 ∥2F = tr

(
Σ

1/2
0 − UΣ

1/2
0

)⊤ (
Σ

1/2
0 − UΣ

1/2
0

)
.

Let Σ1/2Σ
1/2
0 = V1R

1/2V2 be the singular value decomposition for V1, V2 unitary, and R =(
Σ1/2Σ0

)⊤ (
Σ1/2Σ

1/2
0

)
= Σ

1/2
0 ΣΣ

1/2
0 . Therefore tr

(
U⊤Σ1/2Σ

1/2
0

)
= tr

(
V1U

⊤R1/2
)

is max-

imized when V1U
⊤V2 is the identity. Thus, we get (14) and the proof is complete.

Lemma B.7. For any symmetric matrix C ∈ Sn, for any matrices (A,B) ∈
(
Rn×n

)2
, one has

tr (CAB⊤) = tr (CBA⊤) . (15)

Proof.
tr (CAB⊤) = tr (C⊤AB⊤) = tr (BA⊤C) = tr (CBA⊤) .

15
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B.3 GRADIENT OF THE BURES-WASSERSTEIN LOSS

We give here the gradient of the squared-Bures-Wasserstein distance between two full-rank covari-
ance matrices.
Lemma B.8 (Gradient of B2 for full-rank matrices). Suppose Σ,Σ0 ∈ S++(n). Then the gradient
of B2 is given by

∇ΣB2(Σ,Σ0) = I − Σ
1/2
0 (Σ

1/2
0 ΣΣ

1/2
0 )−1/2Σ

1/2
0 . (16)

The proof of this Lemma is given in Appendix B.4. The right hand side of (16) is the optimal
transport plan between two centered Gaussian distributions (Bhatia et al. 2019; Muzellec & Cuturi
2018, eq. 7), whose Fréchet differentiability has been explored by Kroshnin et al. (2021, Lemma
A.2). This is a formulation that we use in the computation of upper bounds for the Hessian in
Appendix E.1.

B.4 PROOFS OF SECTION 3

In this section, we provide the proofs of Section 3.

Proof of Lemma B.8. Recall the BW distance is given by B2 (Σ,Σ0) = trΣ + trΣ0 −
2 trΣ

1/2
0 ΣΣ

1/2
0 . The gradient of the BW is given by

∇ΣB2 (Σ,Σ0) = I − 2∇Σ tr
(
Σ

1/2
0 ΣΣ

1/2
0

)1/2
(17)

Since Σ,Σ0 are positive definite, we differentiate the f(Σ,Σ0) = tr
(
Σ

1/2
0 ΣΣ

1/2
0

)1/2
with respect

to Σ

∇Σf(Σ,Σ0) =
(
∂Σ
(
Σ

1/2
0 ΣΣ

1/2
0

)1/2)⊤
I

=

(((
Σ

1/2
0 ΣΣ

1/2
0

)1/2
⊗ I + I ⊗

(
Σ

1/2
0 ΣΣ

1/2
0

)1/2)−1

∂Σ

(
Σ

1/2
0 ΣΣ

1/2
0

))⊤

I

=

(
Σ

1/2
0 ⊗ Σ

1/2
0

)((
Σ

1/2
0 ΣΣ

1/2
0

)1/2
⊗ I + I ⊗

(
Σ

1/2
0 ΣΣ

1/2
0

)1/2)−1

I

=
1

2

(
Σ

1/2
0 ⊗ Σ

1/2
0

)(
Σ

1/2
0 ΣΣ

1/2
0

)−1/2

=
1

2
Σ

1/2
0

(
Σ

1/2
0 ΣΣ

1/2
0

)−1/2

Σ
1/2
0 .

(18)
Substituting the above expression to (17) we get

∇ΣB2(Σ,Σ0) = I − Σ
1/2
0

(
Σ

1/2
0 ΣΣ

1/2
0

)−1/2

Σ
1/2
0 . (19)

Proof of Lemma 3.3. First note that the difference between the original loss and the perturbative loss
is given by

|L̃(Στ )− L1(W )| =
∣∣∣∣τn− 2 tr

((
Σ

1/2
0 ΣτΣ

1/2
0

)1/2
−
(
Σ

1/2
0 WW⊤Σ

1/2
0

)1/2)∣∣∣∣
≤ τn+ 2 tr

((
Σ

1/2
0 ΣτΣ

1/2
0

)1/2
−
(
Σ

1/2
0 WW⊤Σ

1/2
0

)1/2) (20)

Let the singular value decomposition of (Σ1/2
0 ΣτΣ

1/2
0 )1/2 = QΛ

1/2
τ Q⊤, where

Λτ =

λ1 + τ
. . .

λr + τ

 ,

16
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λ1 > λ2 > . . . > λr, and r = rank(WW⊤). Similarly, we get the singular value decomposition of
(Σ

1/1
0 WW⊤Σ

1/2
0 )1/2 = UΛ1/2V ⊤, where

Λ =

λ1

. . .
λr

 .

We know that tr ((Σ1/2
0 ΣτΣ

1/2
0 )1/2) = tr (Λ

1/2
τ ) =

∑r
i=1(λi + τ)1/2 since the Frobenius norm

is unitary invariant. Likewise we get tr ((Σ1/2
0 WW⊤Σ

1/2
0 )1/2) = tr (Λ1/2) =

∑r
i=1 λ

1/2
i . Next

observe that the eigenvalues are distinct and in descending order. This means that we can upper
bound the eigenvalues as,

r∑
i=1

(λi + τ)1/2 ≤
r∑

i=1

λ
1/2
i + rτ1/2.

Therefore, we get back to Lemma 3.3 and get that

|L̃(Στ )− L1(W )| ≤ τn+ 2rτ1/2.

C GENERAL RESULTS FOR LINEAR NETWORKS

This section deals with general properties of linear networks and their convergence in parameter
space. We first recall well-known results that hold for any differentiable loss L1 and its parametriza-
tion LN = L1 ◦ µ.

Lemma C.1 (Gradient flow, Bah et al. 2021, Lemma 2.1). For any differentiable loss L1, and
parametrization LN = L1 ◦ µ, such that µ(W1, . . . ,WN ) = WN · · ·W1, one has

1. For all j ∈ [N ],

∇Wj
LN (W1, . . . ,WN ) = W⊤

j+1 · · ·W⊤
N∇L1(W )W⊤

1 · · ·W⊤
j−1. (21)

2. Assume each of the Wi(t) satisfies the flow (GF). Then, the product WN :1 = WN · · ·W1 satisfies

dW (t)

dt
= −

N∑
j=1

WN · · ·Wj+1W
⊤
j+1 · · ·W⊤

N∇L1(W )W⊤
1 · · ·W⊤

j−1Wj−1 · · ·W1. (22)

3. For all j ∈ [N ], and all t ⩾ 0, we have that

d

dt
(W⊤

j+1(t)Wj+1(t)) =
d

dt
(Wj(t)W

⊤
j (t)) (23)

4. If W1(0), . . . ,WN (0) are balanced, then for all t ≥ 0, W⊤
j+1(t)Wj+1(t) = Wj(t)W

⊤
j (t), and

R(t) :=
dW (t)

dt
+

N∑
j=1

(W (t)W⊤(t))
N−j
N ∇L1(W )(W⊤(t)W (t))

j−1
N = 0. (24)

The BW loss satisfies the Łojasiewicz inequality. Indeed, the following equality can be computed.

Lemma C.2. For any W ∈ RdN×d0 , and for the loss L1 defined in (4), we have

∥∇WL1(W )∥2F = 4L1(W ). (25)

Proof. This equality can be obtained directly by computation. Since

∇L1(W ) = 2W − 2Σ
1/2
0 (Σ

1/2
0 WW⊤Σ

1/2
0 )−1/2Σ

1/2
0 W, (26)
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we have

∥∇WL1(W )∥2F
= 4 tr

((
W − Σ

1/2
0 (Σ

1/2
0 WW⊤Σ

1/2
0 )−1/2Σ

1/2
0 W

)(
W⊤ −W⊤Σ

1/2
0 (Σ

1/2
0 WW⊤Σ

1/2
0 )−1/2Σ

1/2
0

))
= 4 tr(WW⊤)− 4 tr

(
WW⊤Σ

1/2
0 (Σ

1/2
0 WW⊤Σ

1/2
0 )−1/2Σ

1/2
0

)
− 4 tr

(
Σ

1/2
0 (Σ

1/2
0 WW⊤Σ

1/2
0 )−1/2Σ

1/2
0 WW⊤

)
+ 4 tr(Σ0).

(27)
Note that the middle two terms above are the same, and they can be further simplified as

tr
(
WW⊤Σ

1/2
0 (Σ

1/2
0 WW⊤Σ

1/2
0 )−1/2Σ

1/2
0

)
= tr

(
Σ

1/2
0 (Σ

1/2
0 WW⊤Σ

1/2
0 )−1/2Σ

1/2
0 WW⊤

)
= tr

(
(Σ

1/2
0 WW⊤Σ

1/2
0 )1/2

)
.

(28)
Combining all the terms together, we get the equality (25).

In the case of a general, twice differentiable loss L1 and the parametrization LN = L1 ◦ µ, one can
express the second-order differential structures of the loss.

Lemma C.3 (Second-order differential). Let (
−→
U ,

−→
V ) ∈ Θ × Θ be two parameters,

−→
U =

(U1, . . . , UN ),
−→
V = (V1, . . . , VN ). The second-order differential of the loss LN at

−→
W =

(W1, . . . ,WN ) ∈ Θ is

d2LN (
−→
W )[

−→
U ,

−→
V ] =

N∑
i=1

∑
j ̸=i

⟨Ui,W
⊤
i+1 · · ·V ⊤

j · · ·W⊤
N∇L1(W )W⊤

1 · · ·W⊤
i−1⟩

+

N∑
i=1

N∑
j=1

vec(Ui)
⊤
(
Wi−1:1 ⊗ (WN :i+1)

⊤ · ∇2L1(W ) · (Wj−1:1)
⊤ ⊗ (WN :j+1)

)
vec(Vj),

(29)
where ∇2L1(W ) ∈ Rn2×n2

is the matrix such that, ∀(U, V ) ∈ (Rn×n)
2
, d2L1(W )[U, V ] =

vec(U)
⊤∇2L1(W ) vec(V ).

Corollary C.4 (Hessian of the Loss). The Hessian of LN , ∇2LN (θ), can be represented as a d2θ×d2θ
matrix. It is a block matrix, the blocks corresponding to different layers. Each block ∇2

Wi,Wj
LN (

−→
W )

has dimension didi−1 × djdj−1, and corresponds to the differential d2LN (
−→
W )[

−→
U i,

−→
U j ], where

−→
U i = (0, . . . , 0, Ui, 0, . . . , 0). The block diagonals elements are

∇2
Wi

LN (
−→
W ) = (Wi−1:1 ⊗ (WN :i+1)

⊤
) · ∇2L1(W ) · (Wi−1:1)

⊤ ⊗ (WN :i+1), (30)

the off-diagonal terms are

∇2
Wi,Wj

LN (
−→
W ) = (Wi−1:1 ⊗ (WN :i+1)

⊤
) · ∇2L1(W ) · ((Wj−1:1)

⊤ ⊗WN :j+1)

+
[
(Wi−1 · · ·W1∇L1(W )

⊤
WN · · ·Wj+1)⊗ (W⊤

i+1 . . .W
⊤
j−1)

]
Kdjdj−1 ,

(31)

where Kpq is the pq-commutation matrix (for X ∈ Rp×q, Kpq vecX = vecX⊤).

The invariance property on the gradient flow (GF) (Lemma C.1.3) is key in numerous analyses.
Another useful property of the gradient flow (GF) is its convergence, under mild assumption on the
loss L1, to a critical point of LN . Namely, if the trajectory t 7→

−→
W (t) remains bounded for all

t ⩾ 0, and if L1 is an analytic function (i.e. locally given by a power series), then (GF) converges to
a critical point of LN , i.e., a point θ∗ so that ∇LN (θ∗) = 0. This is stated in the next theorem.
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Theorem C.5 (Gradient flow converges to a critical point of LN ). Let L1 be analytic, such that the
trajectory t 7→ µ(θ(t)) remains bounded under the gradient flow evolution θ̇ = −∇

[
L1 ◦ µ

]
(θ).

Then, the flows of Wi(t) given by (GF) and of W (t) given by (22) are defined and bounded for all
t ⩾ 0 and (W1, . . . ,WN ) converges to a critical point of LN = L1 ◦ µ as t → ∞.

This result relies on the Łojasiewicz’ argument for the convergence of gradient flows (Absil et al.,
2005). Bah et al. (2021) show how to bound each of the different {Wi}Ni=1 once the end-to-end
product WN :1 is bounded. The boundedness of ∥W∥ can be showed depending on the loss that is
considered. For example, it holds for the regularized loss L1

τ . In Appendix C we collect further
general results for linear networks.

In the case of the perturbative loss introduced in (5), on can bound the norm of W throughout
training. Since the loss L1

τ is analytic, one immediately gets the following result.

We give a simple test to show the boundedness of a trajectory under (GF). This is allowed by the
decrease of the loss along training.
Lemma C.6. Assume that, for a given loss L1, there exists there exists an increasing function f
such that, for any t ⩾ 0, ∥W (t)∥ ⩽ f(L1(W (t))). Then, the trajectory t 7→ W (t) under (GF) is
bounded.

Proof. Under gradient flow, for any t ⩾ 0, L1(W (t)) ⩽ L1(W (0)). Indeed, writing the chain rule
and the gradient flow (22),

d
dtL

1(W (t)) =
∑
j

DWj
LN (W1(t), . . . ,WN (t))

dWj(t)
dt

= −
∑
j

∥∇WjL
N (W1, . . . ,WN )∥2F ⩽ 0.

Therefore, for any t ⩾ 0, L1(W (t)) ⩽ L1(W (0)).

Now, let f : R → R be an increasing function, so that f(L1(W (t))) ⩽ f(L1(W (0))). Therefore,
if for any t ⩾ 0, ∥W (t)∥ ⩽ f(L1(W (t))), then ∥W (t)∥ ⩽ f(L1(W (t))) ⩽ f(L1(W (0))) is
bounded.

The assumption of Lemma C.6 is satisfied for a couple of losses, including the square loss (Bah
et al., 2021) and the L1

τ loss, as shown in Lemma C.8. It allows to consider losses that “grow with
the weights”, so that the end-to-end matrix is bounded when the loss converges to zero.

We now show the boundedness of the weights when considering the Bures-Wasserstein loss (4).
Lemma C.7 (Boundedness for the BW loss L̃). The loss L̃(Σ) can be lower-bounded by the quan-
tity 1

2 tr Σ− tr Σ0.

Proof. By definition of dual expression of the Wasserstein distance (13), L̃(Σ) = W2
2 (ν0, νθ) =

supf∈L1(νθ)

∫
f(x) dνθ +

∫
f∥·∥2

(y) dν0(y), with νθ = N (0,Σ), ν0 = N (0,Σ0) and f∥·∥2

the

∥·∥2-transform of f defined as ∀y ∈ Rd, f∥·∥2

(y) = infx∈Rd∥x− y∥2 − f(x).

With f̃ : x 7→ 1
2∥x∥

2, the ∥·∥2-transform of f̃ is f̃∥·∥2

: y 7→ −∥y∥2, and we get

L̃(Σ) = W2
2 (ν0, νθ) ⩾

1

2

∫
∥x∥2 dνθ(x)−

∫
∥y∥2 dν0(y) =

1

2
trΣ− tr Σ0. (32)

as claimed.

Lemma C.8 (Boundedness for the loss L1
τ ). The norm of the end-to-end matrix W is upper-bounded

when using the loss L1
τ defined in (5).

Proof. With φτ (Σ) = Σ + τIn =: Στ , the loss L1
τ satisfies

L1
τ (W ) = L̃(φτ (π(W )))

(32)
⩾

1

2
trΣτ − tr Σ0 =

1

2
trWW⊤ − tr Σ0 +

n

2
τ (33)

=⇒
√
2L1

τ (W ) + 2 trΣ0 − nτ ⩾ ∥W∥. (34)
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Therefore, there exists an increasing function f such that ∥W∥ ⩽ f(L1
τ (W )). Since the loss de-

creases under gradient flow, one has

∥W (t)∥ ⩽
√

2L1
τ (W (0)) + 2 trΣ0 − nτ, (35)

and the boundedness of t 7→ W (t) is shown.

Corollary C.9. For the Bures-Wasserstein loss, if WW⊤ is positive definite, and loss is differen-
tiable, and the norm of the weight throughout the training is uniformly bounded

∥W∥ ≤
√

2L1(W (0)) + 2 trΣ0, (36)

by using similar arguments as in Lemma C.8.
Lemma C.10. The gradient flow (GF) on the perturbative loss (5) converges to a critical point θ∗
of LN

τ in the limit.

This property of the gradient flow is necessary in order to prove the convergence of the training
to a minimizer of L1

τ . At first glance, the critical points of LN
τ do not correspond in general to

critical points of L1
τ since the parametrization µ also comes into play. This led Trager et al. (2020)

to distinguish between the pure and spurious critical points; i.e., the points that are shared between
LN and L1, and those that are exclusive to LN .

D PROOFS OF SECTION 4

In this section, we provide the proofs for the critical points of L1|Mk
and L1

τ |Mk
.

D.1 CRITICAL POINTS OF L1|Mk

First, the loss L1 is expressed on the manifolds Mk (Lemma D.2), where it is differentiable
(Lemma D.3). Then, necessary conditions (Lemma D.5) on the critical points can be expressed,
leading to the proof of Theorem 4.2. The second part of Theorem 4.2 is then proven by evaluating
the loss at the critical points found, and ranking them.

Recall Definition 4.1. Computing the differential of the restriction L1|Mk
will allow to characterize

the different critical points.
Definition D.1 (Gradient). Given an embedded manifold M and a function with a smooth restriction
f |M, the gradient of f |Mk

at x ∈ M is the (unique) element of the tangent space TxM such that,
for all v ∈ TxM, df |M(x)[v] = ⟨∇f |M(x), v⟩.

We begin by expressing the loss L1|Mk
with the Singular Value Decomposition (SVD) of Σ1/2

0 W .

Lemma D.2. Let USV ⊤ = Σ
1/2
0 W be a thin SVD of Σ

1/2
0 W , so that U ∈ Rn×k, V ∈

Rm×k, U⊤U = V ⊤V = Ik, S = diag(s1, . . . , sk) ∈ Rk×k, where k = rankΣ
1/2
0 W = rankW .

The loss L1 from (4) on Mk can be expressed as

L1|Mk
(W ) = ∥W∥2F + ∥Σ1/2

0 ∥2F − 2 trS. (37)

Proof. If USV ⊤ = Σ
1/2
0 W is a thin SVD of Σ1/2

0 W , then (Σ
1/2
0 W (Σ

1/2
0 W )

⊤
)
1/2

= USU⊤.
Therefore, the expression of the loss L1 given by (4) can be written as

L1|Mk
(W ) = tr(WW⊤) + trΣ0 − 2 tr (USU⊤) = ∥W∥2F + ∥Σ1/2

0 ∥2F − 2 trS

as claimed.

We then give the gradient of L1|Mk
.

Lemma D.3 (Gradient of L1|Mk
). Let (n,m) ∈ N2

∗, and let k ⩽ min {n,m}. The loss L1|Mk
(as

given in (37)) is twice continuously differentiable on Mk. With W ∈ Mk and USV ⊤ = Σ
1/2
0 W a

thin SVD of Σ1/2
0 W , its gradient is

∇L1|Mk
(W ) = 2W − 2Σ

1/2
0 UV ⊤. (38)
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In order to derive this expression, the differential of the singular values is required. But first, a note
on the differential notation used throughout the derivations.
Notation (Differential). The differential of a function f can be written using different formalisms.
Explicitly, df(X)[H] is the differential of f at X in the direction H . Sometimes, with Y = f(X),
the shorthand notation dY is preferred, where the same symbol is used for both the variable and
the function. In this case, it is assumed that the direction H is a small perturbation dX around
X . For instance, if Y = f(X) = XX⊤, then dY = dXX⊤ + X dX⊤, which would be written
df(X)[H] = HX⊤ +XH⊤ with the full notation.
Lemma D.4 (Differential of the SVD). Let k ⩽ min {n,m} and let X ∈ Mk be a matrix with
rankX = k. Let USV ⊤ = X be a thin SVD of X , with U ∈ Rn×k, S ∈ Rk×k, V ∈ Rm×k, S
diagonal and U⊤U = V ⊤V = Ik. Then, the differential dS is

dS = Ik ⊙ (U⊤ dXV ),

where A⊙B denotes the Hadamard product between A and B.

Proof. Let USV ⊤ = X be the decomposition as given in the lemma statement. The differential
rules ensure that

dX = dUSV ⊤ + U dSV ⊤ + US dV ⊤.

This implies that

U⊤ dXV = U⊤ dUSV ⊤V + U⊤U dSV ⊤V + U⊤US dV ⊤V

= U⊤ dUS + dS + S dV ⊤V

=⇒ dS = U⊤ dXV − U⊤ dUS − S dV ⊤V.

Since U⊤U = Ik, dU⊤U + U⊤ dU = 0, and A := U⊤ dU = −dU⊤U = −A⊤. Likewise,
B := V ⊤ dV is also antisymmetric. The matrices A and B being antisymmetric, their diagonals
are null; hence so are the diagonals of AS and SB, i.e. Ik ⊙ (AS) = Ik ⊙ (SB) = 0. Since S is
constrained to be diagonal, dS must also be diagonal, i.e. Ik ⊙ dS = dS. Therefore,

dS = Ik ⊙ (U⊤ dXV )

as was claimed.

Proof of lemma D.3. For W ∈ Mk, let USV ⊤ = Σ
1/2
0 W be a thin SVD of Σ

1/2
0 W =: X .

Lemma D.2 ensures that

L1|Mk
(W ) = ∥W∥2F + ∥Σ1/2

0 ∥2F − 2 trS. (39)

According to Lemma D.4, the matrix S is differentiable and has differential dS = Ik⊙ (U⊤ dXV ).
Therefore, the loss L1|Mk

is differentiable. With the fact that d trS = tr dS (see e.g. (Magnus &
Neudecker, 2019, Chap. 8, Eq. 18)), we can compute

d trS = tr dS = tr
(
Ik ⊙ (U⊤ dXV )

)
= tr

(
U⊤ dXV

)
= ⟨UV ⊤,dX⟩ = ⟨UV ⊤,Σ

1/2
0 dW ⟩ = ⟨Σ1/2

0 UV ⊤,dW ⟩.

Moreover, d∥W∥2F = 2⟨W, dW ⟩, and so

dL1|Mk
(W ) = d∥W∥2F − 2 dtrS = 2⟨W − Σ

1/2
0 UV ⊤,dW ⟩,

and

∇L1|Mk
(W ) = 2 (W − Σ

1/2
0 UV ⊤) .

Since matrices (U, V ) are continuously differentiable on Mk, ∇L1|Mk
(W ) = 2(W − Σ

1/2
0 UV ⊤)

is again continuously differentiable, and L1|Mk
is twice continuously differentiable.
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We are now ready to give the proof of Theorem 4.2. We divide the proof into necessary and sufficient
conditions for a point to be a critical point of L1|Mk

.
Lemma D.5 (Necessary condition on the critical points of L1

W |Mk
). Assume Σ0 has n distinct

eigenvalues. Let W ∗ ∈ Mk be a critical point of L1|Mk
. Then, with U∗S∗V ∗⊤ = Σ

1/2
0 W ∗ a thin

SVD of Σ1/2
0 W ∗, and ΩΛΩ⊤ = Σ0 an spectral decomposition of Σ0 (i.e. with Ω ∈ O(n)), there

exists Jk ⊆ {1, . . . , n}, such that S∗ = Λ̄Jk
and U∗ = ΩJk

.

Proof. Since W ∗ ∈ Mk, and U∗S∗V ∗⊤ = Σ
1/2
0 W ∗ is a thin SVD of Σ1/2

0 W ∗, this means that
S∗ ∈ Rk×k. Then,

∇L1(W ∗) = 0 =⇒ W ∗ = Σ
1/2
0 U∗V ∗⊤, by (38)

=⇒ Σ
1/2
0 W ∗ = Σ0U

∗V ∗⊤

=⇒ U∗S∗V ∗⊤ = Σ0U
∗V ∗⊤

=⇒ S∗ = U∗⊤Σ0U
∗, U∗⊤U∗ = Ik, V

∗⊤V ∗ = Ik.

Therefore, U∗⊤Σ0U
∗ must be diagonal; and since U∗ is semi-orthogonal, this is the case if and only

if the vectors in U∗ are eigenvectors for Σ0, by uniqueness of the spectral decomposition of Σ0.
Therefore, there exist j1, . . . , jk indices between 1 and n such that U∗ =

(
ωj1 · · · ωjk

)
= ΩJk

,
in which case

S∗ = ΩJk

⊤Σ0ΩJk
=

λj1

. . .
λjk

 = Λ̄Jk
.

Now we are ready to prove the first part of Theorem 4.2.

Proof of Theorem 4.2, first part. Consider the expression for the gradient of L1|Mk
given in (38).

The necessary condition follows from Lemma D.5, since

∇L1|Mk
(W ∗) = 0 =⇒ Σ

1/2
0 W ∗ = ΩJk

Λ̄Jk
V ⊤

=⇒ W ∗ = Σ
−1/2
0 ΩJk

Λ̄Jk
V ⊤

= ΩΛ−1/2Ω⊤ΩJk
Λ̄Jk

V ⊤

= ΩΛ−1/2ΛJk
V ⊤

= ΩΛ1/2PJk
V ⊤

= ΩPJk
Λ̄
1/2
Jk

V ⊤

= ΩJk
Λ̄
1/2
Jk

V ⊤,

which corresponds to the necessary condition in Theorem 4.2.

The sufficient condition can be verified as follows. With W ∗ = ΩJk
Λ̄
1/2
Jk

V ⊤, one has Σ1/2
0 W ∗ =

ΩΛ1/2Ω⊤ΩJk
Λ̄
1/2
Jk

V ⊤ = ΩJk
Λ̄Jk

V ⊤, and, as this is a correct thin SVD of Σ1/2
0 W ∗, Lemma D.3

gives

∇L1|Mk
(W ∗) = 2(W ∗ − Σ

1/2
0 ΩJk

V ⊤).

Further,

Σ
1/2
0 ΩJk

= ΩΛ1/2Ω⊤ΩJk

= ΩΛ1/2PJk

= ΩPJk
Λ̄
1/2
Jk

= ΩJk
Λ̄
1/2
Jk

.
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Hence

∇L1|Mk
(W ∗) = 2(W ∗ − Σ

1/2
0 ΩJk

V ⊤) = 2(ΩJk
Λ̄
1/2
Jk

V ⊤ − ΩJk
Λ̄
1/2
Jk

V ⊤) = 0,

and the sufficient condition is verified.

Now, the loss can be evaluated at the critical points in order to statute on its minimizers.
Corollary D.6 (Value of L1 at the critical points). The value of the loss L1 at a critical point
W ∗ = ΩJk

Λ̄
1/2
Jk

V ⊤ is L1(W ∗) = trΛ− tr Λ̄Jk
=
∑

i/∈Jk
λi.

Proof. For k ⩾ 0, let W ∗ be a critical point of L1|Mk
. From Theorem 4.2, with Σ0 = ΩΛΩ⊤ a

spectral decomposition of Σ0, there exists a set Jk and a semi-orthogonal matrix V ∈ Rn×k such
that W ∗ = ΩJk

Λ̄
1/2
Jk

V ⊤. One can then compute the value of the loss at W ∗:

L1(W ∗) = trW ∗W ∗⊤ + trΣ0 − 2 tr
(
(Σ

1/2
0 W ∗)(Σ

1/2
0 W ∗)

⊤)1/2
= trΩJk

Λ̄Jk
ΩJk

+ trΛ− 2 tr
(
ΩJk

Λ̄2
Jk

Ω⊤
Jk

)1/2
= tr Λ̄Jk

+ trΛ− 2 tr Λ̄Jk

= trΛ− tr Λ̄Jk
.

We now have all we need to prove the second part of Theorem 4.2.

Proof of Theorem 4.2, second part. The first part of the statement is readily implied by Corol-
lary D.6, as the eigenvalues are in decreasing order. The second part is implied by the fact that
the minimum L1|Mk

is indeed achieved for any k ⩽ n (by selecting the k largest eigenvalues
of Σ0) and the optimal value of the loss L∗

k is smaller when considering more eigenvalues, i.e.
minMk

L1 ⩽ minM<k
L1.

Moreover, it can be shown that only one point per set Mk is a minimizer of the loss L1|Mk
; all

other points are (strict) saddle points. We recall the definition of a strict saddle point: a point where
there exist a descent direction.
Definition D.7 (Strict saddle point). A critical point x of a function f is said to be a strict saddle
point if the Hessian of f at x has a strict negative eigenvalue. If all critical points of f are either a
strict saddle point or the global minimizer, the we say that f satisfies the strict saddle point property.

If the gradient flow can be expressed on a manifold, with a Riemannian gradient corresponding to
a given metric, there is an equivalent definition of those saddle points, which will be handy to use.
See (Bah et al., 2021, §6.1) for the details.
Proposition D.8. The loss L1|Mk

satisfies the strict saddle point property.

Proof. Let Σ0 = UΛU⊤ be the spectral decomposition of Σ0 with decreasing eigenvalues. For
k ∈ N, according to Theorem 4.2, W ∗ is a critical point of L1|Mk

if and only if there exists
Jk ⊂ {1, . . . , n}, such that W ∗ = UJk

Λ
1/2
Jk

V ⊤, with any V ∈ Rm×k so that V ⊤V = Ik. If Jk =

{1, . . . , k}, W ∗ is a global minimum of L1|Mk
, as shown in Corollary D.6, and the proposition

holds.

Assume Jk ̸= {1, . . . , k}, then there exists j0 ∈ Jk such that λj0 < λk, and there exists j1 /∈ Jk

but j1 ∈ {1, 2, . . . , k} such that λj1 > λj0 . We will show that W ∗ is a strict saddle point of L1|Mk
.

The critical point W ∗ can equivalently be expressed as

W ∗ = Σ
−1/2
0

∑
i∈Jk

λiuiv
⊤
i , (40)

where ui, vi are corresponding orthogonal uni-vectors in U and V , and λi are eigenvalues in Λ.
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The key is, by the following perturbation, for t ∈ (−1, 1), we define

uj0(t) = tuj1 +
√

1− t2uj0

and the curve γ : (−1, 1) 7→ Mk. We look at the perturbative matrix

γ(t) = Σ
−1/2
0

(
λj0uj0(t)v

⊤
j0 +

∑
i∈J\{j0}

λiuiv
⊤
i

)
.

Note that γ(0) = W . Recall L1(W ) = tr

(
WW⊤ +Σ0 − 2

(
Σ

1/2
0 WW⊤Σ

1/2
0

)1/2)
. It is enough

to show that (Bah et al., 2021, §6.1)):

d2

dt2
L1(γ(t))

∣∣∣
t=0

< 0.

We check it term by term,

tr
(
γ(t)γ(t)⊤

)
= tr

(
Σ

−1/2
0

(
λj0uj0(t)v

⊤
j0 +

∑
i∈J\{j0}

λiuiv
⊤
i

)(
λj0uj0(t)v

⊤
j0 +

∑
i∈J\{j0}

λiuiv
⊤
i

)⊤
Σ

−1/2
0

)
= tr

(
Σ−1

0

(
λ2
j0uj0(t)uj0(t)

⊤ +
∑

i∈J\{j0}

λ2
iuiu

⊤
i

))
= tr

(( ∑
1≤i≤n

λ−1
i uiu

⊤
i

)(
λ2
j0uj0(t)uj0(t)

⊤ +
∑

i∈J\{j0}

λ2
iuiu

⊤
i

))
=

λ2
j0

λj1

t2 + λj0(1− t2) +
∑

i∈J\{j0}

λ2
i ,

and

tr
((

Σ
1/2
0 γ(t)γ(t)⊤Σ

1/2
0

)1/2)
= tr

(((
λj0uj0(t)v

⊤
j0 +

∑
i∈J\{j0}

λiuiv
⊤
i

)(
λj0uj0(t)v

⊤
j0 +

∑
i∈J\{j0}

λiuiv
⊤
i

)⊤)1/2)
= tr

((
λ2
j0uj0(t)uj0(t)

⊤ +
∑

i∈J\{j0}

λ2
iuiu

⊤
i

)1/2)
= tr

((
t2λ2

j0uj1u
⊤
j1 + (1− t2)λ2

j0uj0u
⊤
j0 +

∑
i∈J\{j0}

λ2
iuiu

⊤
i

)1/2)
= t|λj0 |+

√
1− t2|λj0 |+

∑
i∈J\{j0}

|λi|.

Thus, since λj1 > λj0 ,

d2

dt2
L1(γ(t))

∣∣∣
t=0

= 2(λ2
j0λ

−1
j1

− λj0)− |λj0 | < 0.

This completes the proof.

The loss L1
τ satisfies the strict-saddle point property in a similar fashion.

Lemma D.9. The loss L1
τ |Mk

satisfies the strict saddle point property.

Proof of Lemma D.9. The proof of Proposition D.8 can be adapted, with the expression of the
critical points as, if Σ0 = ΩΛΩ⊤, and with V ∈ Rn×k any semi-orthogonal matrix, W ∗ =

(Σ0 − τIn)
−1/2∑n

j=1(λi − τ)ωiv
⊤
i .
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D.2 CRITICAL POINTS OF THE PERTURBATIVE LOSS

In this section, we provide the different derivations for Section 4.2. The structure is similar to The-
orem 4.2; first the gradient of L1

τ is computed, then the critical points are characterized and ranked.

Lemma D.10 (Differential of L̃). The differential of L̃ on S++(n) is

∀ Σ ∈ S++(n), X ∈ S(n), dL̃(Σ)[X] = tr (X − Σ
1/2
0 [Σ

1/2
0 ΣΣ

1/2
0 ]

−1/2
Σ

1/2
0 X).

Corollary D.11 (Gradient of L̃). The gradient of L̃ on S++(n) is

∀ Σ ∈ S++(n), ∇L̃(Σ) = I − Σ
1/2
0 [Σ

1/2
0 ΣΣ

1/2
0 ]

−1/2
Σ

1/2
0 .

Lemma D.12 (Gradient of L1
τ ). The loss L1

τ has the following gradient

∀W ∈ Rn×m, ∇L1
τ (W ) = 2

(
W − Σ

1/2
0

[
Σ

1/2
0 (WW⊤ + τIn)Σ

1/2
0

]−1/2
Σ

1/2
0 W

)
. (41)

Proof. This results comes from the chain rule for the loss L1
τ (W ) = L̃ ◦ φτ ◦ π(W ). With Σ =

π(W ) = WW⊤ and Στ = φτ (Σ) = Σ + τIn, and since dπ(W )[Z] = WZ⊤ + ZW⊤ and
dφτ (Σ) = id, one has

dL1
τ (W )[Z] = d(L̃ ◦ φτ ◦ π)(W )[Z]

= dL̃(Στ )

[
dφτ (Σ)

[
dπ(W )[Z]

]]
= dL̃(Στ )[WZ⊤ + ZW⊤]

⟨∇L1
τ (W ), Z⟩ = ⟨∇L̃(Στ ),WZ⊤ + ZW⊤⟩

⇐⇒ ∇L1
τ (W ) = (∇L̃(Στ ) +∇L̃(Στ )

⊤
)W

= 2(W − Σ
1/2
0 [Σ

1/2
0 ΣτΣ

1/2
0 ]

−1/2
Σ

1/2
0 W ).

Proof of Theorem 4.4. The eigenvectors of WW⊤ + τ are the same as WW τ , and the eigenvalues
are shifted by τ . Therefore, the expression of the critical points in the original loss can be adapted, so
that the modified critical points have the same left singular vectors and shifted singular values. This

leads to having W ∗ = ΩJk
(Λ̄Jk

− τIk)
1/2

V ⊤ = Ω

(
(Λ̄Jk

− τIk)
1/2

0n−k×n−k

)(
V V̂

)⊤
,

with V ∈ Rm×k such that V ⊤V = Ik. One checks that ∇L1
τ (W

∗) = 0.

The value at such a critical point W ∗ = ΩJk
(Λ̄Jk

− τIk)
1/2

V ⊤ is L1
τ (W

∗) =
∑

j /∈Jr
λj−2

√
τλj ,

which is uniquely minimized for Jr = [k] when the eigenvalues of Σ0 are distinct and in descending
order.

D.3 PROOF OF PROPOSITION 4.5

We state here the proof on Proposition 4.5. We will transfer the results obtained on the space
of linear maps M⩽k to the space of covariance matrices S+(k, n). Borrowing the terminology
from Levin et al. (2022), we introduce the following notations and definitions. Let M be any smooth
manifold, E a linear space, φ : M → E a smooth (over)parametrization (or lift) of the search space
X = φ(M) ⊆ E . The following problems are considered

min
x∈X

f(x) (P)

min
y∈M

f ◦ φ(y), (Q)

where we assume that f : E → R is smooth, and hence so is g := f ◦ φ. The following property is
relevant for us.
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Definition D.13 (Levin et al. 2022, Definition 2.7). The lift φ : M → X satisfies the “1 ⇒ 1”
property at y if for all differentiable f : X → R, if y is a critical point for (Q), then x = φ(y) is a
critical point for (P).

Recall that

S+(k, n) = {Σ ∈ S(n) : Σ ≽ 0, rank(Σ) = k}, (42)

and let

S+(⩽ k, n) = {Σ ∈ S(n) : Σ ≽ 0, rank(Σ) ⩽ k}. (43)

We will make use of the following result from Levin et al. (2022).
Proposition D.14 (Levin et al. 2022, Proposition 3.4). Let k ⩽ n, and let φ : Rn×k → S+(⩽ k, n)
be the parametrization φ(R) = RR⊤. Then, φ satisfies the “1 ⇒ 1” property at R ∈ Rn×k if and
only rankR = k.

Said differently, the condition at which a critical point on the space Rn×k is such that its image
through φ is also a critical point on S+(k, n) are exactly the points of full rank Rn×k

∗ . The image of
the parametrization µ is Rn×m

⩽k . Therefore, we need to adapt Proposition D.14 in order to work on
Rn×k

⩽k — which is not smooth — instead of Rn×k. This is performed in the next proposition.

Proposition D.15. Let k ⩽ min(n,m), and let π : Rn×m
⩽k → S+(⩽ k, n) be the parametrization

π(W ) = WW⊤. Then, π satisfies the “1 ⇒ 1” property at W ∈ Rn×m
⩽k if rankW = k.

Proof. Let φ : Rn×k → S+(⩽ k, n), R 7→ RR⊤ and π : Rn×m
⩽k → S+(⩽ k, n), W 7→ WW⊤

be the covariance parametrizations. Since the manifold Rn×m
⩽k is not smooth, we will focus on the

smooth manifold Rn×m
k . Therefore, let φ∗ : Rn×k

∗ → S+(k, n) and π∗ : Rn×m
k → S+(k, n) be the

parametrization φ, π defined on matrices of rank exactly k. We know that φ∗ satisfies the “1 ⇒ 1”
property, and want to show that π∗ also satisfies it. The idea of the proof is the pass through given
quotient spaces on which the functions are equivalent.

Let Ok be the set of k × k orthogonal matrices, with the dimension omitted when inferred from
context. Consider the equivalent relation on Rn×m

k (or Rn×k
∗ ) such that X1 ∼ X2 ⇐⇒ X1X

⊤
1 =

X2X
⊤
2 . From (Massart & Absil, 2020, Proposition 2.1), we know that X1 ∼ X2 ⇐⇒ ∃Q ∈

O, X1 = X2Q. Denote the equivalent class [X] = {XQ : Q ∈ O} = XO.

Let p : Rn×m
k → Rn×m

k /Om, W 7→ [W ] be the quotient map on Rn×m
k , and let

Π : Rn×m
k /Om −→ S+(k, n)

WOm 7−→ WW⊤ (44)

be the map on the quotient space, so that π∗ = Π ◦ p.

Likewise, let q : Rn×k
∗ → Rn×k

∗ /Ok, R 7→ [R] be the quotient map on Rn×k
∗ , and let

Φ : Rn×k
∗ /Ok −→ S+(k, n)

ROk 7−→ RR⊤ (45)

be the map on the quotient space, so that φ∗ = Φ ◦ q.

The map Φ is an diffeomorphism (Massart & Absil, 2020, Proposition A.7), and therefore satisfies
the “1 ⇒ 1” property.

For W ∈ Rn×m
k , we can find R ∈ Rn×k

∗ such that WW⊤ = RR⊤. It is unique up to an orthogonal
matrix. Therefore, let

ι : Rn×m
k /Om −→ Rn×k

∗ /Ok

[W ] 7−→ [R]
, (46)

be the identification map between the quotient spaces.

With the next two lemma, we will be able to finish the proof of Proposition D.15.

Lemma D.16. The map ι : Rn×m
k /Om → Rn×k

∗ /Ok, [W ] 7→ [R] is a diffeomorphism.
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Lemma D.17. The map ι ◦ p is a submersion from Rn×m
k onto Rn×k

∗ /Ok.

So now, to conclude the proof of Proposition D.15, the map π∗ can be written π∗ = Π◦p = Φ◦ ι◦p.
Since we know that Φ, being a diffeomorphism, satisfies the “1 ⇒ 1” property, and since ι ◦ q is a
submersion (Lemma D.17), by (Levin et al., 2022, Proposition 2.42 (b)), the map Φ ◦ ι ◦ p = π∗
satisfies the “1 ⇒ 1” property.

It remains to show Lemmas D.16 and D.17.

Proof of Lemma D.16. From (Massart & Absil, 2020, Proposition A.7), the mapping Φ: Rn×k
∗ →

S+(k, n), R 7→ RR⊤ is a diffeomorphism. Likewise, the mapping Π: Rn×m
k → S+(k, n) is also

a diffeomorphism, since both π∗ and p are submersions. Then, since Φ([R]) = Π([W ]), we have
[R] = Φ−1 ◦Π([W ]) =: ι([W ]), and ι is a diffeomorphism.

Proof of Lemma D.17. The map p is a submersion (Massart & Absil, 2020, Proposition A.5) and
the map ι is a diffeomorphism (Lemma D.16), hence a submersion. Therefore, the composition ι ◦ p
is a submersion.

We are now ready to proof Proposition 4.5.

Proof of Proposition 4.5. From (Trager et al., 2020, Proposition 5), we know that a critical point
in the parameter space

−→
W with rank rank(

−→
W ) = k will be a critical point for L1

τ |M⩽k
. Now,

from Proposition D.15, a critical point W ∗ for L1
τ |M⩽k

with rankW ∗ = k is such that π(W ∗) is
a critical point for L̃|S+(k,n), and the first part of the proposition is proved. For the second part,

assume that k = d = mini{di}. Then, according to (Trager et al., 2020, Proposition 6),
−→
W is a

local minimizer for LN if and only if W = µ(
−→
W ) is a local minimizer for L1

τ |M⩽d
. Since W is a

local minimizer for L1
τ |M⩽d

, according to Theorem 4.4, there exists V ∈ Om orthogonal, such that
if Σ0 = ΩΛΩ⊤ is a spectral decomposition of Σ0, we have W ∗ = Ω[d](Λ − τId)

1/2V ⊤
[d], so that

Σ∗
τ = W ∗W ∗⊤ + τIn = Ω

(
Λ[d]

τ

)
Ω⊤ is also a minimizer of L̃τ |S+(d,n).

E PROOFS OF SECTION 5

E.1 BOUNDS ON THE HESSIAN

In this section, we provide bounds on the Hessian of the perturbative loss L1
τ . We first express the

loss as a function of the covariance matrix, in which case the Hessian is known (Kroshnin et al.,
2021). Then, a simple chain rule for the differential allows to express the Hessian in the case the
loss is a function of the end-to-end matrix W .

Lemma E.1 (Second-order differential of L̃τ , Kroshnin et al. 2021, Lemma A.2). Let W ∈ Rn×m

and let τ > 0. Define Στ = WW⊤ + τIn to be the regularized covariance matrix. Given that
Στ ≻ 0, the loss 10 is twice continuously differentiable for any W . Let ΓQΓ⊤ = Σ

1/2
0 ΣτΣ

1/2
0

be a spectral decomposition of Σ1/2
0 ΣτΣ

1/2
0 , with Q = diag (q1, . . . , qn). For Y ∈ Rn×n, define

∆(Y ) ∈ Rn×n to be the matrix with element ∆(Y )ij =
(

(Γ⊤Y Γ)ij√
qi+

√
qj

)
. Let H̃ be the linear operator

defined as

H̃(Y ) = Σ
1/2
0 ΓQ−1/2∆(Y )Q−1/2Γ⊤Σ

1/2
0 . (47)

Then, the second order differential of L̃τ is given by

∀(X,Y ) ∈ (Rn×n)
2
, d2L̃τ (Στ )[X,Y ] = ⟨X, H̃(Y )⟩. (48)
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Proof. We begin by stating the first-order differential for the loss L̃ evaluated on the PD matrix Στ .
This is given in lemma D.10

dL̃(Στ )[X] = tr(X − Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 X)

= ⟨I − Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 , X⟩.

Let GL(n) =
{
A ∈ Rn×n | detA ̸= 0

}
, and let f : GL(n) ∋ F 7→ F−1; then f is differen-

tiable with differential df(F )[X] = −F−1XF−1 (Magnus & Neudecker, 2019, Theorem 8.3). Let
g : Sn

++ ∋ A 7→ A1/2 be the matrix square root. The function g is differentiable on Sn
++, and its

differential can be computed as follows (Kroshnin et al., 2021, Lemma A.1). Let A ∈ Sn
++, and let

ΓQΓ⊤ be its spectral decomposition, with Q = diag (qi)
n
i=1. For X ∈ Sn, define ∆(X) ∈ Rn×n

to be the matrix with elements ∆(X)ij =
(ΓXΓ⊤)ij√

qi+
√
qj

. Then, the differential of g at A in the direction

X is dg(A)[X] = Γ∆(X)Γ⊤.

Therefore, the chain rule on the differentials gives

d(f ◦g)(A)[X] = df(g(A))[dg(A)[X]] = −A−1/2 dg(A)[X]A−1/2 = −A−1/2Γ∆(X)Γ⊤A−1/2,

and, with A = Σ
1/2
0 ΣτΣ

1/2
0 ,

d2L̃(Στ )[X,Y ] = d(Στ 7→ dL̃(Στ )[X])[Y ]

= d(tr(X − (Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 X)))[Y ]

= − tr(Σ
1/2
0 (d(Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
[Y ])Σ

1/2
0 X)

= − tr(Σ
1/2
0 (−A−1/2Γ∆(Y )Γ⊤A−1/2)Σ

1/2
0 X)

= tr(Σ
1/2
0 ΓQ−1/2∆(Y )Q−1/2Γ⊤Σ

1/2
0 X)

= ⟨X, H̃(Y )⟩

with H̃(Y ) = Σ
1/2
0 ΓQ−1/2∆(Y )Q−1/2Γ⊤Σ

1/2
0 .

In order to express the Hessian of the loss as a function of the end-to-end matrix W , we need
the chain rule for the second-order differential. We first recall the chain rule for the second-order
differential.

Lemma E.2 (Chain rule for second-order differential, Magnus & Neudecker 2019, Theorem 6.9).
Let f : R → S and g : S → T be two differentiable functions on open sets, such that h = g◦f : R →
T is always well defined. Then, given two directions u, v, the second-order differential of h at c is

d2h(c)[u, v] = d2g(f(c))
[
df(c)[u],df(c)[v]

]
+ dg(f(c))[d2f(c)[u, v]]. (49)

With this computation rule, we are able to give the second-order differential of L1
τ = L̃τ ◦ π.

Lemma E.3 (Second-order differential of L1
τ ). Let W ∈ Rn×m. For any U, V ∈ Rn×m, the second

order differential of L1
τ at W in the directions U, V is

d2L1
τ (W )[U, V ] = ⟨U,H(V )⟩, (50)

where

H(V ) = 2(H̃(VW⊤ +WV ⊤)W + (I − Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 )V ), (51)

and H̃ is defined as in (47).
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Proof. Applying the formula (49) to L1
τ = L̃τ ◦ π gives, with Σ = π(W ) and d2π(W )[U, V ] =

UV ⊤ + V U⊤,
d2L1

τ (W )[U, V ] = d2L̃τ (Σ)[dπ(W )[U ],dπ(W )[V ]] + dL̃τ (Σ)[d
2π(W )[U, V ]]

= ⟨UW⊤ +WU⊤, H̃(VW⊤ +WV ⊤)⟩+ tr (UV ⊤ + V U⊤)

− tr Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1
Σ

1/2
0 (UV ⊤ + V U⊤)

= 2⟨U, H̃(VW⊤ +WV ⊤)W + V − Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1
Σ

1/2
0 V ⟩

= ⟨U,H(V )⟩.

where we used the symmetry of Σ1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ0 to simplify the expression.

The maximal eigenvalue of H will then be computed as λmax(H) = supU : ∥U∥F=1 ⟨U,H(U)⟩ in
Lemma E.6.

E.2 LIPSCHITZ-SMOOTHNESS OF L1
τ

One can use the bounds of Kroshnin et al. (2021, Lemma A.3) to bound the Hessian of the loss.
Lemma E.4 (Bounds on the second-order differential, Kroshnin et al. 2021, Lemma A.3). Let H̃(X)

be defined as in (47). The second-order differential of L̃τ respects the following bounds

⟨X, H̃(X)⟩ ⩽ λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ XΣ−1/2
τ ∥2F , (52a)

⟨X, H̃(X)⟩ ⩾ λ
1/2
min(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ XΣ−1/2
τ ∥2F . (52b)

Those in turn bound the extremal eigenvalues of the Hessian, defined as λmax(H̃) =

supX ̸=0
⟨X,H̃(X)⟩

∥X∥F
and λmin(H̃) = infX ̸=0

⟨X,H̃(X)⟩
∥X∥F

.

Lemma E.5 (Bounds on the Hessian H̃). Let H̃ be defined as in (47). Then, the extremal eigenvalues
of H̃ are bounded as

λmax(H̃) ⩽

√
C0λmax(Σ0)

2τ2
, λmin(H̃) ⩾

√
τλmin(Σ0)

2C2
0

, (53)

where C0 = 2(L̃(Στ (0)) + tr(Σ0)) is initialization-dependent.

In particular, the loss L̃τ is strongly convex, with parameter K =

√
τλmin(Σ0)

2C2
0

.

Proof. We first provide the proof for the maximal eigenvalue.

The maximal eigenvalue of the Hessian is defined as
λmax(H̃) = sup

X:∥X∥F=1

⟨X, H̃(X)⟩.

From the upper-bound of ⟨X, H̃(X)⟩ in (52a), one has

sup
X:∥X∥F=1

⟨X, H̃(X)⟩ ⩽ sup
X:∥X∥F=1

λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ XΣ−1/2
τ ∥2F

=
λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
sup

X:∥X∥F=1

∥Σ−1/2
τ XΣ−1/2

τ ∥2F

=
λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
sup

X:∥X∥F=1

∥Σ−1
τ X∥2F

=
λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
λ2
max(Σ

−1
τ )

⩽
λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2τ2
.
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The last inequality comes from the definition of Στ ; if λ1 ⩾ λ2 ⩾ · · · ⩾ λk > 0 are the pos-
itive eigenvalues of WW⊤, then Σ−1

τ = (WW⊤ + τIn)
−1 has eigenvalues τ−1 = · · · = τ−1︸ ︷︷ ︸

n−k times

>

(λk + τ)
−1 ⩾ · · · ⩾ (λ1 + τ)

−1.

For any positive definite matrices A,B ∈ S++(n) with increasing eigenvalues, and for any k ∈ [n],
we know that

λk(A)λ1(B) ⩽ λk(AB) = λk(A
1/2BA1/2) ⩽ λk(A)λn(B).

Therefore, we have the bound λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 ) ⩽ λ

1/2
max(Σ0)λ

1/2
max(Στ ). Moreover, λmax(Στ ) ⩽

tr Στ , and from Lemma C.7, we know that tr Στ ⩽ 2(L̃(Στ )−L̃(Σ0)) =: C0. Therefore, we obtain

λmax(H̃) ⩽

√
C0λmax(Σ0)

2τ2
.

The proof for the minimal eigenvalue is similar and follows from the bound (52b). In this case, the
term λ

1/2
min(Σ

1/2
0 ΣτΣ

1/2
0 ) can be lower bounded by

√
τλmin(Σ0).

We now turn to the Hessian of L1
τ .

Lemma E.6 (Spectral bound of H). Let H be defined as in (51). The maximal eigenvalue for the
Hessian of L1

τ respects the following bound

λmax(H) ⩽ λ1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2C2

τ2
+ 2(1− λmin(Σ

1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 )) (54)

Proof. From (52a), one has for any X ∈ Sn,

⟨X, H̃(X)⟩ ⩽ λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ XΣ−1/2
τ ∥2F .

Let U ∈ Rn×m.With X(U) = UW⊤ +WU⊤, the bound becomes

⟨UW⊤ +WU⊤, H̃(X(U))⟩ ⩽ λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ X(U)Σ−1/2
τ ∥2F

⇐⇒ 2⟨UW⊤, H̃(X(U))⟩ ⩽ λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ X(U)Σ−1/2
τ ∥2F

⇐⇒ 2⟨U, H̃(X(U))W ⟩ ⩽ λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ X(U)Σ−1/2
τ ∥2F .

Therefore,

⟨U,H(U)⟩ = 2⟨U, H̃(X(U))W + (I − Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 )U⟩

⩽
λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ X(U)Σ−1/2
τ ∥2F + 2⟨U, (I − Σ

1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 )U⟩.

(55)

We proceed by bounding each of the summands.

First consider the term ∥Σ−1/2
τ X(U)Σ

−1/2
τ ∥2F = ∥Σ−1

τ X(U)∥2F . If U is such that ∥U∥F = 1, then
∥X(U)∥2F = ∥UW⊤ + WU⊤∥2 ⩽ 4∥W∥2F . We know that ∥W∥F ⩽ C for some constant C,
c.f. (35). Therefore, ∥U∥F = 1 =⇒ ∥X(U)∥ ⩽ 2C and

sup
U : ∥U∥F=1

∥Σ−1
τ X(U)∥2F ⩽ sup

X : ∥X∥F⩽2C

∥Σ−1
τ X(U)∥2F

= sup
X : ∥X∥=1

4C2∥Σ−1
τ X∥2F

= 4C2λ2
max(Σ

−1
τ ) =

4C2

τ2
.
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Therefore,

sup
U : ∥U∥F=1

λ
1/2
max(Σ

1/2
0 ΣτΣ

1/2
0 )

2
∥Σ−1/2

τ X(U)Σ−1/2
τ ∥2F ⩽ λ1/2

max(Σ
1/2
0 ΣτΣ

1/2
0 )

2C2

τ2
.

The second summation in (55) can be bounded as

sup
U : ∥U∥F=1

2⟨U, (I−Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 )U⟩

= 2λmax(I − Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 )

= 2(1− λmin(Σ
1/2
0 (Σ

1/2
0 ΣτΣ

1/2
0 )

−1/2
Σ

1/2
0 )).

Lemma E.7 (Lipshitz-smoothness of L1
τ ). For τ > 0, the loss W 7→ L1

τ (W ) is Lipschitz smooth.

Proof. This directly follows from the boundedness of the Hessian showed previously and the con-
vexity of L1

τ using Taylor approximation.

Once the Lipschitz-smoothness of the loss has been proven, one can turn to showing that the rank is
preserved under balanced initial conditions.

Proposition E.8 (Bah et al. 2021, Proposition 4.4). Let L1 : Rn×m → R be a Lipschitz smooth
function (i.e., a differentiable function with Lipschitz gradient). Suppose that W1(t), . . . ,WN (t) are
solutions of the gradient flow (GF) of LN with balanced initial values Wj(0) and define the product
W (t) = ϕ(θ(t)) = WN (t) · · ·W1(t). If W (0) is contained in Mk for some k ∈ N, then W (t) is
contained in Mk for all t ⩾ 0.

Proof. Let P (t) = W1(t)
⊤
W1(t) =

(
W (t)

⊤
W (t)

)1/N
and Q(t) = WN (t)WN (t)

⊤
=(

W (t)W (t)
⊤
)1/N

. The proof follows if the gradient flow is locally Lipschitz continuous in
P,Q,W , so that the curves P,Q,W are uniquely determined by an initial datum P (0), Q(0),W (0).
From Equations (GF) and (21),

Ṗ = −W⊤∇L1(W )−∇L1(W )
⊤
W,

Q̇ = −∇L1(W )W⊤ −W∇L1(W )
⊤
,

Ẇ = −
N∑
j=1

QN−j∇L1(W )P j−1

Now, with the assumption of Lipschitz continuity of the flow, a given solution is uniquely determined
by the initial data P0, Q0,W0, and the proof tools of Bah et al. (2021, Proposition 4.4) can be used
here as well.

Remark E.9. The loss L1
τ satisfies the conditions of Proposition E.8; therefore, the flow on L1

τ
remains in the manifold Mk if W (t0) ∈ Mk for some t0.

E.3 PROOFS OF GRADIENT FLOW CONVERGENCE

Proof of Theorem 5.6. The idea of the proof is to transfer the strong convexity property from L̃τ to
the evolution of the parameters. Let us start by the inequality which holds due to strong convexity

L̃(Στ )− L̃(Σ∗
τ ) ≤

1

2K
∥∇L̃(Στ )∥2,
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where K is the constant from Lemma (E.5. Rearranging the terms in the above equation, we have

−∥∇L̃(Στ )∥2 ≤ −2K
(
L̃(Στ )− L̃(Σ∗

τ

)
. (56)

On the covariance space, for the perturbative loss, the gradient flow is written

dL̃τ (Σ)
dt = ⟨∇L̃τ (Σ),

d
dtΣ(t)⟩

= ⟨∇ΣL̃τ (Σ),W
dW
dt

⊤
+ dW

dt W⊤⟩
= 2⟨∇ΣL̃τ (Σ)W, dW

dt ⟩

The expression of dW
dt is given in Lemma C.1.2:

dW

dt
= −

N∑
ℓ=1

WN :j+1W
⊤
N :j+1∇L1(W )W⊤

ℓ−1:1Wℓ−1:1.

Since ∇L1(W ) = 2∇L̃(Σ)W , and from the balancedness assumption we have WN :j+1W
⊤
N :j+1 =

(WW⊤)
N−ℓ
N and W⊤

ℓ−1:1Wℓ−1:1 = (W⊤W )
ℓ−1
N , we get

dL̃(Σ(t))
dt = −4

N∑
ℓ=1

⟨∇L̃(Σ)W, (WW⊤)
N−ℓ
N ∇L̃(Σ)W (W⊤W )

ℓ−1
N⟩

Now, let USV ⊤ = W be a (thin) SVD of W , so that WW⊤ = US2U⊤ and W⊤W = V S2V ⊤.
For one layer ℓ ∈ [N ], we then have

⟨∇L̃(Σ)W, (WW⊤)
N−ℓ
N ∇L̃(Σ)W (W⊤W )

ℓ−1
N ⟩ = tr (∇L̃(Σ)W (W⊤W )

ℓ−1
N W⊤∇L̃(Σ)(WW⊤)

N−ℓ
N )

= tr (∇L̃(Σ)USV ⊤V S
2(ℓ−1)

N V ⊤V SU⊤∇L̃(Σ)US
2(N−ℓ)

N U⊤)

= tr (U⊤∇L̃(Σ)US
2(N+ℓ−1)

N U⊤∇L̃(Σ)US
2(N−ℓ)

N )

= ⟨U⊤∇L̃(Σ)US
2(N+ℓ−1)

N , S
2(N−ℓ)

N U⊤∇L̃(Σ)U⟩

Let X = U⊤∇L̃(Σ)U, R = S
2(N+ℓ−1)

N , and L = S
2(N−ℓ)

N . We evaluate ⟨XR,LX⟩ for diagonals
R,L as

⟨XR,LX⟩ =
∑
i,j

Xi,jRjXi,jLi =
∑
i,j

LiRjX
2
i,ℓ

Since Li = s
2(N−ℓ)

N
i and Rj = s

2(N+ℓ−1)
N

j , and due to the uniform margin deficiency assumption, for

all (i, j) ∈ [k]
2, we have Li ⩾ c

2(N−ℓ)
N and Rj ⩾ c

2(N+ℓ−1)
N , so that

⟨XR,LX⟩ ⩾ c
2(2N−1)

N

∑
i,j

X2
i,j = c

2(2N−1)
N ∥X∥2F .

Since X = U⊤∇L̃(Σ)U⊤, we have that ∥X∥2F = ∥L̃(Σ)∥2F , so that in total

dL̃(Σ(t))

dt
⩽ −4

N∑
ℓ=1

c
2(2N−1)

N ∥∇L̃(Σ)∥2F = −4Nc
2(2N−1)

N ∥∇L̃(Σ)∥2F . (57)

From the strong convexity of L̃ (56), we get the bound

dL̃(Σ(t))
dt ⩽ −8Nc

2(2N−1)
N K(L̃(Σ)− L̃(Σ∗))

=⇒ 1

L̃(Σ(t)− L̃(Σ∗))

d(L̃(Σ(t))−L̃(Σ∗))
dt ⩽ −8Nc

2(2N−1)
N K
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Now, by integrating both sides from 0 to t,

ln

(
L̃(Στ (t))− L̃(Σ∗

τ )

L̃(Στ (0))− L̃(Σ∗
τ )

)
≤ −8Nc

2(2N−1)
N Kt. (58)

Let ∆∗
0 = Στ (0)−Σ∗

τ which is the distance to optimality from the initialization. Finally we get the
desired exponential rate

L̃(Στ (t))− L̃(Σ∗
τ ) ≤ e−8Nc

2(2N−1)
N Kt∆∗

0,

which concludes the proof.

E.4 PROOF OF GRADIENT DESCENT CONVERGENCE

We start by proving Lemma 5.3 so that with the uniform margin deficiency assumption on the initial
weights, WW⊤ does not degenerate along the gradient descent training algorithms.

Proof of Lemma 5.3. Let Ū(k) := argminU∈U(n)∥
√

W (k)W (k)⊤−Σ
1/2
0 U∥2F for each k, then as

L1(W (k)) ≤ L1(W (0)) for all k ≥ 0, we have

σmin

(√
W (k)W (k)⊤

)
= σmin

(√
W (k)W (k)⊤ − Σ

1/2
0 Ū(k) + Σ

1/2
0 Ū(k)

)
≥ σmin

(
Σ

1/2
0 Ū(k)

)
− σmax

(√
W (k)W (k)⊤ − Σ

1/2
0 Ū(k)

)
≥ σmin

(
Σ

1/2
0 Ū(k)

)
− ∥
√

W (k)W (k)⊤ − Σ
1/2
0 Ū(k)∥F

= σmin

(
Σ

1/2
0 Ū(k)

)
−
√
L1(W (k))

≥ σmin

(
Σ

1/2
0 Ū(k)

)
−
√
L1(W (0))

= σmin

(
Σ

1/2
0 Ū(k)

)
− ∥
√
W (0)W (0)⊤ − Σ

1/2
0 Ū(0)∥F

≥ σmin

(
Σ

1/2
0 Ū(k)

)
− σmin

(
Σ

1/2
0

)
+ c = c.

(59)

The cancellation in the last equality works due to the fact that the multiplication with an arbitrary
unitary matrix does not change singular values.

Now we are ready to prove the finite step size gradient descent convergence of the BW loss. We
consider the perfect balancedness of initial values Wi(0), 1 ≤ i ≤ N in the remaining proof. The
approximation balancedness case can also be carried out but require more complicated auxiliary
estimates. We leave the approximate balancedness assumption as a future direction.

Proof of Theorem 5.7. Let us start from the gradient descent of the loss with respect to each layer

Wj(k + 1) = Wj(k)− η∇Wj
LN (W1(k), · · ·Wn(k))

= Wj(k)− ηWj+1:N (k)⊤∇WL1(W (k))W1:j−1(k)
⊤, 1 ≤ j ≤ N,

(60)

with the boundary conditions W1:0(k) = Id0 and WN+1:N (k) = IdN
for all k ≥ 0.

With the notations
−→
W = (W1,W2, · · · ,WN ) and

∇LN (
−→
W ) =


∇W1

LN (
−→
W )

...
∇WN

LN (
−→
W )

 ,
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we consider to write the Taylor expansion in the form

LN (
−→
W (k + 1)) = LN (

−→
W (k)) +

〈
∇LN (

−→
W (k)),

−→
W (k + 1)−

−→
W (k)

〉
+

1

2

〈
(
−→
W (k + 1)−

−→
W (k))⊤∇2LN (

−→
Aξ(k)),

−→
W (k + 1)−

−→
W (k)

〉
,

(61)

with −→
Aξ(k) =

−→
W (k) + ξ(

−→
W (k + 1)−

−→
W (k)), for some ξ ∈ [0, 1].

Recall the relation (21), for 1 ≤ j ≤ N ,

∇Wj
LN (W1, . . . ,WN ) = W⊤

j+1 · · ·W⊤
N∇WL1(W )W⊤

1 · · ·W⊤
j−1,

then the first order term in (61), under (60), can be written as〈
∇LN (

−→
W (k)),

−→
W (k + 1)−

−→
W (k)

〉
=

N∑
j=1

∇WjL
N (

−→
W (k))⊤(Wj(k + 1)−Wj(k))

= −η

N∑
j=1

Wj−1 · · ·W1∇WL1(W (k))⊤WN · · ·Wj+1W
⊤
j+1 · · ·W⊤

N∇WL1(W (k))W⊤
1 · · ·W⊤

j−1

= −η

N∑
j=1

Wj−1 · · ·W1∇WL1(W (k))⊤(WNW⊤
N )N−j∇WL1(W (k))W⊤

1 · · ·W⊤
j−1

≤ −η

N∑
j=1

σmin

(
(WNW⊤

N )N−j
)
σmin

(
(W⊤

1 W1)
j−1
)
∥∇WL1(W (k))∥2F

(62)
Throughout the computation above, Wi = Wi(k) for all 1 ≤ i ≤ N . Moreover, we use the
balancedness WjW

⊤
j = W⊤

j+1Wj+1 for all 1 ≤ i ≤ N − 1 so that, in the symmetric structure
above,

WN · · ·Wj+1W
⊤
j+1 · · ·W⊤

N = (WNW⊤
N )N−j

W⊤
1 · · ·W⊤

j−1Wj−1 · · ·W1 = (W⊤
1 W1)

j−1.

Therefore, thanks to Lemma 5.3,

σmin

(
(WN (k)WN (k)⊤)N

)
= σmin

(
(W1(k)

⊤W1(k))
N
)
= σmin

(
W (k)W (k)⊤

)
≥ c2,

from which we get〈
∇LN (

−→
W (k)),

−→
W (k + 1)−

−→
W (k)

〉
≤ −ηNc

2(N−1)
N ∥∇WL1(W (k))∥2F . (63)

Let us mention that Arora et al. (2018, Theorem 1 and Claim 1) provide rigorous derivations about
the equalities above. The second order term in (61) is more complicated to handle, as we have

∇2LN (
−→
W )[

−→
X,

−→
X ] =

N∑
j=1

〈
Xj ,

∂2LN (
−→
W )

∂W 2
j

Xj

〉
+

N∑
j=1

N∑
i=1,i̸=j

〈
Xj ,

∂2LN (
−→
W )

∂Wi∂Wj
Xi

〉
. (64)

Thanks to Corollary C.4, we have expressions of ∂2LN (
−→
W )

∂W 2
j

and ∂2LN (
−→
W )

∂Wi∂Wj
ready.

Note that we have the boundedness (C.9)

∥W∥F ≤
√
2
(
L1(W ) + ∥Σ1/2

0 ∥2F
)
≤
√
2
(
L1(W (0)) + ∥Σ1/2

0 ∥2F
)
=: M, (65)

and it is straightforward to see that

∥Wi∥2F ≤ ∥W∥2/NF , for all 1 ≤ i ≤ N. (66)

Moreover, for all 1 ≤ i ≤ N , since ξ ∈ [0, 1],

Aξ,i(k) = Wi(k) + ξ(Wi(k + 1)−Wi(k)) = (1− ξ)Wi(k) + ξWi(k + 1),
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we then have the uniform upper bound for all k ≥ 0,

∥Aξ,i(k)∥F ≤ (1− ξ)∥Wi(k)∥F + ξ∥Wi(k + 1)∥F ≤ M1/N . (67)

Using Aξ,i(k) = Wi(k)−ξηWj+1:N (k)⊤∇WL1(W (k))W1:j−1(k)
⊤, we can obtain a lower bound

in terms of the minimum singular value,

σmin

(
Aξ,i(k)Aξ,i(k)

⊤
)

≥ σmin

(
Wi(k)Wi(k)

⊤
)
− 2ξη∥Wi(k)∥F ∥Wj+1:N (k)∥F ∥W1:j−1(k)∥F ∥∇WL1(W (k))∥F

≥ c2 − 4ηM
√

L1(W (k)) ≥ c2 − 4ηM
√
L1(W (0)),

(68)
where we utilize (25), (66) and (65), as well as non-increment of L1(W ) throughout the training.
We denote Xj = −ηWj+1:N (k)⊤∇WL1(W (k))W1:j−1(k)

⊤. We may choose

η ≤ c2

8M
√

L1(W (0))
,

so that for all k ≥ 0,

σmin

(
Aξ,i(k)Aξ,i(k)

⊤
)
≥ c2

2
, and σmin

(
Aξ(k)Aξ(k)

⊤
)
≥ c2N

2N
. (69)

Then combining all estimates above, we have∣∣∣〈(−→W (k + 1)−
−→
W (k))⊤∇2LN (

−→
Aξ(k)),

−→
W (k + 1)−

−→
W (k)

〉∣∣∣
≤

N∑
j=1

∣∣∣〈Xj ,
∂2LN (

−→
Aξ(k))

∂W 2
j

Xj

〉∣∣∣+ N∑
j=1

N∑
i=1,i̸=j

∣∣∣〈Xj ,
∂2LN (

−→
Aξ(k))

∂Wi∂Wj
Xi

〉∣∣∣
≤

N∑
j=1

λ
1/2
max(Σ

1/2
0 Aξ(k)Aξ(k)

⊤Σ
1/2
0 )

2
∥Xj

(
Aξ(k)Aξ(k)

⊤)−1∥2FM2(N−1)/N

+

N∑
j=1

N∑
i=1,i̸=j

M (N−2)/N∥Xi∥F ∥Xj∥F ∥∇WL1(Aξ(k))∥F

+

N∑
j=1

N∑
i=1,i̸=j

(λ1/2
max(Σ

1/2
0 Aξ(k)Aξ(k)

⊤Σ
1/2
0 )

2
∥Xj

(
Aξ(k)Aξ(k)

⊤)−1∥F

× ∥Xi

(
Aξ(k)Aξ(k)

⊤)−1∥FM2(N−1)/N
)
,

by using (67), (E.4) and applying the Cauchy-Schwarz inequality for the last term. Notice that
∥Xi∥F ≤ 2ηM (N−1)/N∥∇WL1(W (k))∥F . Now combining all the bounds we obtained previously,
in addition to (69), we get that∣∣∣〈(−→W (k + 1)−

−→
W (k))⊤∇2LN (

−→
Aξ(k)),

−→
W (k + 1)−

−→
W (k)

〉∣∣∣
≤ 2η2N2∥Aξ(k)∥Fλ1/2

max(Σ0)
M4(N−1)/N

σmin

(
Aξ(k)Aξ(k)⊤

)∥∇WL1(W (k))∥2F

+ 4η2N(N − 1)M (3N−4)/N∥∇WL1(Aξ(k))∥F ∥∇WL1(W (k))∥2F .

(70)

Moreover, we can use (7), (25) again to get

∥∇WL1(Aξ(k))∥F = 2
√
L1(Aξ(k)) ≤ 2∥

(
Aξ(k)Aξ(k)

⊤)1/2 − Σ
1/2
0 U∥F

≤ 2∥
(
Aξ(k)Aξ(k)

⊤)1/2∥F + 2∥Σ1/2
0 ∥F ≤ 2M1/N + 2∥Σ1/2

0 ∥F .
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Thus, we conclude the estimate for the second order term by∣∣∣〈(−→W (k + 1)−
−→
W (k))⊤∇2LN (

−→
Aξ(k)),

−→
W (k + 1)−

−→
W (k)

〉∣∣∣
≤ η2∥∇WL1(W (k))∥2F

(
2N+1

c2N
N2M (4N−3)/Nλ1/2

max(Σ0)

+ 8N(N − 1)M (3N−4)/N
(
M1/N + ∥Σ1/2

0 ∥F
))

.

Let us denote the constant

∆ :=
2N+1

c2N
N2M (4N−3)/Nλ1/2

max(Σ0) + 8N(N − 1)M (3N−4)/N
(
M1/N + ∥Σ1/2

0 ∥F
)
,

then, with we can write the iteration as

LN (
−→
W (k + 1)) =

(
1− 4Nc

2(N−1)
N η + 4∆η2

)
LN (

−→
W (k)).

If we choose

η ≤ Nc
2(N−1)

N

2∆
,

then we have
LN (

−→
W (k)) ≤

(
1− 2ηNc

2(N−1)
N

)k
LN (

−→
W (0)).

For η being sufficiently small, we have 1− 2ηNc
2(N−1)

N ≤ exp
(
−2ηNc

2(N−1)
N

)
. Thus, to achieve

ϵ-error for the loss,

k ≥ 1

2ηNc
2(N−1)

N

log

(
L1(W (0))

ϵ

)
.
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