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ABSTRACT

There have been several efforts to improve Novelty Detection (ND) performance.
However, ND methods often suffer significant performance drops under minor
distribution shifts caused by changes in the environment, known as style shifts. This
challenge arises from the ND setup, where the absence of out-of-distribution (OOD)
samples during training causes the detector to be biased toward the dominant style
features in the in-distribution (ID) data. As a result, the model mistakenly learns to
correlate style with core features, using this shortcut for detection. Robust ND is
crucial for real-world applications like autonomous driving and medical imaging,
where test samples may have different styles than the training data. Motivated
by this, we propose a robust ND method that crafts an auxiliary OOD set with
style features similar to the ID set but with different core features. Then, a task-
based knowledge distillation strategy is utilized to distinguish core features from
style features and help our model rely on core features for discriminating crafted
OOD and ID sets. We verified the effectiveness of our method through extensive
experimental evaluations on several datasets, including synthetic and real-world
benchmarks, against nine different ND methods.

1 INTRODUCTION

Novelty detection (ND) has emerged as a critical component in developing reliable real-world machine
learning models. The primary task of ND is to distinguish Out-of-distribution (OOD) samples from
the in-distribution (ID) samples during inference, using only unlabeled ID samples for training
(5; 67; 74; 96). This task is essential across various computer vision applications, including industrial
defect detection, medical disease screening, and video surveillance (43; 72; 94; 74). However, these
methods often experience significant performance drops when confronted with test data exhibiting
minor distribution shifts in their style, such as changes in the test sets due to environmental variations
(See Figure 1) (13; 11; 85; 86; 20).

A robust detector should be invariant to changes in the style features, as variations in these features
do not change a sample’s label (ID or OOD). Instead, it should be expected to learn the core features
which determine the label (3; 58; 13). Robustness against style shifts is a crucial aspect of ND
methods since variations in style are common in real-world applications. For instance, an ND method
for autonomous driving tasks trained on images from Germany streets (21) should also perform
effectively on the streets of Los Angeles (71), despite variations in style features caused by different
lighting and atmospheric conditions. A similar challenge exists in medical imaging, where shifts can
occur due to different imaging equipment, patient positioning, and variations in tissue properties (95).

The vulnerability of existing ND methods stems from their implicit assumption that the training data
should strongly mirror the test data, even in stylistic features. This leads to the misprediction of an
ID test sample with a different style feature as OOD. Furthermore, training data in the ND setup is
limited to ID samples. By relying solely on ID samples, the detector learns a correlation between the
dominant style features present in ID samples and the label. Consequently, the detector mistakenly
uses these style features for discrimination instead of focusing on core features. As a result, the
detector incorrectly predicts an ID test sample with a different style as OOD and an OOD sample
with a similar style as ID (13).

Notably, current domain generalization and domain adaptation methods cannot be applied to develop
robust ND methods against distribution shifts, as they require access to labeled training data or extra
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data from different environments, which are not available in the ND setup (40; 68; 99; 103; 63; 109;
105). Furthermore, our study distinguishes itself from recent works such as RedPanda (20) and PCIR
(13), which leverage different environmental annotations as additional information to improve the
ND robustness. In many real-world scenarios, ID training samples are collected from unknown
environments, and hence such metadata is often missing (11; 77).

Motivated by these challenges, we propose crafting an auxiliary OOD set by identifying the core
features of the ID samples and distorting them. To identify the core features, we employ a feature
attribution method (Grad-CAM (80)) applied on the output of a pre-trained network when fed with the
ID samples. We apply light augmentations (e.g., color jitter (16; 35; 36)) to the input, and compute
saliency maps for both the original and augmented versions. By taking the element-wise product
of these saliency maps, we derive a final saliency map where higher values correspond to the core
features of the assumed ID sample. These light augmentations facilitate producing a final saliency
map agnostic to style shifts. Subsequently, hard transformations (52; 90; 90; 87; 65; 22) (e.g., elastic
transformation) are applied to regions of the assumed ID sample with higher saliency values, ensuring
robustness against style shifts. Given the crafted OOD set and ID set, we apply light augmentation to
each set while maintaining the labels to provide various style shifts to each set.

To effectively leverage information from the created sets and develop a robust ND pipeline, we
introduce a task-based knowledge distillation strategy (30). Specifically, we use a pre-trained encoder
concatenated with a trainable binary classification layer as the teacher and a model trained from
scratch as the student. We train the teacher to classify the created ID and OOD sets while only
updating the binary layer. Then, using a novel objective function, we force the student to align its
output with the teacher when the input is an ID sample and to diverge from the teacher when the input
is an OOD sample. The discrepancy between the student and teacher outputs will be utilized as the
OOD score at inference time. Our approach is inspired by knowledge distillation, which has proven
effective for ND tasks compared to other strategies (19; 78; 23; 32; 93; 11). Notably, our method
achieves superior performance compared to both previous knowledge distillation-based and other ND
methods, underscoring the effectiveness of our pipeline.

Contributions: In this study, we propose a novel data-centric approach along with a new pipeline
to achieve a robust and meta-data free ND method. Our strategy, by providing augmented samples
obtained through applying style shifts while retaining labels, achieves a more robust representation
of distribution shifts. Moreover, through intervening ID samples by identifying and distorting their
core regions, we reach synthesized OOD samples. Such samples are then leveraged to make our
model more sensitive to the core features. From a causal viewpoint (Refer to Section 4), by sample
intervention, as mentioned above, the unwanted correlation between style features and labels is
weakened. We note that the general strategy of some previous work (27; 59; 90; 97) that apply
hard augmentations on the entire image to generate OOD samples, do not necessarily weaken the
mentioned unwanted spurious correlation. In addition, our augmentation strategy facilitates the
generation of OOD samples whose distribution is potentially closer to that of the real OODs. As
well as providing theoretical support to our claims, We evaluate our method on real-world datasets
such as autonomous driving and large medical imaging datasets, as well as common datasets such
as Waterbird. For comparison, we considered representative and recent ND methods. Our pipeline
demonstrates superior results, improving robust and standard performance by up to 12.7% and 6.7%
in terms of AUROC, respectively. We further verify our method through a comprehensive ablation
study on its different components.

2 PROBLEM STATEMENT

Preliminaries. The task of ND involves developing a model f to distinguish between two disjoint
distributions: ID and OOD. During training, the model only has access to unlabeled ID samples. At
inference time, the detector f evaluates a test set, defined as Dtest = {Dtest

ID ∪ Dtest
OOD}, and assesses

each test input sample X to determine whether it belongs to ID or OOD by assigning an OOD score
S(X; f). Samples exceeding a predefined OOD threshold are classified as OOD. Traditionally, Dtrain

and Dtest are presumed to originate from identical environments without any style shifts—a prevalent
assumption in earlier studies (67; 77). Contrary to this, real-world scenarios often exhibit test samples
that diverge in style from the training set. These are represented by D′test

= {D′test
ID ∪ D′test

OOD}. Both
Dtest

ID and D′test
ID retain identical core features, denoted as XC , but vary in style elements, denoted as
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Figure 1: Evaluating Robust Novelty Detection Performance: A Comparative Study on the
Cityscapes and GTA5 datasets, which both have similar core features but exhibit different style
features. Each method has been trained on ID samples from the Cityscapes training dataset, and its
performance has been reported on the test sets of Cityscapes (Blue bar) and GTA5 (Orange bar). This
highlights the superior performance of our method in contrast to existing methods, which suffer from
considerable performance drops. Comprehensive results are provided in Table 1.

XE . Consequently, a robust ND model f should effectively learn and utilize XC for OOD scoring,
while disregarding the style featuresXE . These concepts are often categorized as informativeness and
invariantness, respectively. Using an ideal discriminator f , core features can be formally formulated
as S(X; f) = S(XC ; f), and the relationship between core features and input is expressed through
the formula I(XC ;X) = I(XC ; f(X)), where I(·; ·) denotes the mutual information between the
two variables (13; 11; 85; 86; 20).

Style Bias in Model Training. In our experiments the training set consisted solely of samples from
D to ensure a fair comparison, as previous methods have mostly developed their pipelines for such
scenarios (i.e., designed for a single-dataset setup). However, to avoid a consistent correlation of
specific styles with core features (82), we crafted a training set composed of ID samples from both
D and D′, with D being the dominant source (49; 75; 54; 83). Details of this experiment, including
various other ratios, are provided in Appendix A.

For any given ND method, we refer to its detection performance onDtest as the standard performance
and on D′test as the robust performance. It is important to note that we do not have access to
metadata that identifies which training samples belong toD′. Additionally, we conduct supplementary
experiments using other ratios, specifically 95:5, 90:10, and 80:20, which are detailed in Appendix A.
The ratio of 100:0, used in our main results, represents a scenario where no samples from D′

ID are
included in the training data.

3 RELATED WORK

Previous Works on Robust ND. Recent studies have proposed ND methods for improving robustness
under style shifts, including efforts by GNL (11), RedPanda (20), PCIR (13), Stylist (86), and Env-
AD (85). These methods, inspired by invariance-inducing approaches such as IRM (2), assume
that ID samples are drawn from multiple environments with known styles. Their effectiveness is
contingent upon accurately labeled styles in the training data, which can be a significant limitation in
datasets where such labels are mostly unavailable or hard to define. Recently, GLAD (98) has shown
impressive results on industrial datasets, but still faces severe performance drop on real-world ones.
Moreover, GNL proposes to craft different styles by applying minor shifts to ID samples. However,
GNL and other models still suffer from performance drops in real-world datasets, as shown in Table
1, which is extensively considered in this study. Importantly, all mentioned methods lack information
about potential OOD samples during training, leading to their models struggling with effectively
learning core features.

Transfer Learning for ND. Several studies (70), including MSAD (69) and UniAD (100), have
proposed using ImageNet pre-trained networks. These networks could be useful for ND across
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different datasets, such as medical imaging. Among the methods explored, the teacher-student
paradigm shows promising results. This approach involves using a pre-trained model as the ’teacher’
and a newly trained network from scratch as the ‘student’. The main objective is to train the student
model while the teacher remains frozen, aiming to mimic the teacher’s output on ID samples. The
rationale is that the student model, trained exclusively on ID samples, will produce discrepant outputs
on OOD samples during the inference phase. Methods such as RD4AD (23), Transformaly (19), and
ReContrast (32) are based on this paradigm. More details can be found in Appendix B.

Auxilary OOD for ND task. It has been demonstrated that using auxiliary OOD samples during
the training step can be beneficial for ND tasks by incorporating an extra dataset (37; 91). Recent
works have shown that the effectiveness of this technique largely depends on the diversity and the
distance of the distribution of the auxiliary OOD set used during training. In response to this, methods
including MIXUP (39), CutPaste (52), and VOS (26) have been proposed. More recently, GOE (48),
Dream-OOD (27), and FITYMI (59) address this issue by using large generative models (e.g., Stable
Diffusion (73)) for OOD crafting. Interestingly, our crafted auxiliary method does not rely on any
extra dataset or generative model. More details about these methods can be found in Appendix B.

4 THEORY

Causal Viewpoint. From the perspective of causality, the data-generating process can be modeled as
the Structural Causal Model (SCM) (66) shown in Fig. 2. In this SCM, C and E denote unobservable
causal and non-causal (i.e., domain, environment, or style) variables, from which the observable
causal and non-causal components XC and XE for an image are obtained. The final image X is the
output of ψ(XC , XE), where ψ(., .) is a combining function. The label Y of the image is caused
by XC . In the case of spurious correlation, a hidden confounder U , would be present such that
E ← U → C. This creates the path XE ← E ← U → C → XC → Y , which introduces an
unwanted correlation between E and Y . While there are solutions for when the environment variable
E is observable, they are not feasible when domain annotation of samples is not provided. Our
approach is effective even in the absence of domain annotation of samples. More precisely, we
remove or at least weaken the edge E → XE by intervening on some components of XE in order
to break or loosen the path between E and Y , as shown in Fig. 2b. Another orthogonal way of
weakening this unwanted correlation is intervening XC by altering some core features of the ID
samples (and correspondingly changing their label to Y = “OOD”).

In other words, we want to learn representations that are invariant to changes in XE and also sensitive
to altering XC . By augmenting samples via natural distribution shifts without changing the label,
we reduce the correlation of XE and Y . On the other hand, to make our model more sensitive to the
causal variables, we synthesize A-OOD samples by altering the core regions of ID images (changing
XC variables and creating samples with Y = “OOD”).

U

EC

XC XE

XY

(a) Before applying intervention

U

EC

XC XE

XY

(b) After applying intervention

Figure 2: Comparison of causal graphs: Our method, by intervening on XE and XC , reduces the
unwanted spurious correlation between XE and Y . Note that the graph in (b) depicts an ideal
intervention where full independence between XE and Y is achieved, which might not fully capture
real-world complexities.
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Method Justification. Although we aim to make the label Y independent of E through the inter-
vention induced by the augmentations, we acknowledge that the achieved independence may be
"near-ideal" rather than "ideal". Now we focus on the sufficient conditions that make the intervened
xC “informative,” i.e. whether the generated OODs, referred to as A-OODs, are authentically
representing the true OODs in their core features.

Let p1(xC) and p−1(xC) represent the distribution of ID and OOD classes on XC , the core
features, and F be the hypothesis space, and for any f ∈ F , define the expected loss as
Lf := ExC∼p(ℓ(f(xC), y)), with p := 0.5p1 + 0.5p−1, where p1 and p−1 represent the distri-
bution of core sections in ID and OOD classes, respectively. Further, let the expected loss under
the A-OOD distribution as L′f := ExC∼p′(ℓ(f(xC), y), with p′ := 0.5p1 + 0.5p′−1, where p′−1
represents the distribution of A-OOD classes. Further, let L′

nf be the empirical version of L′f .

Theorem 1. Assume that the input x to the OOD detector lives in a compact space X . The general-
ization gap in the ID vs. A-OOD learning setup evaluated under real OODs, i.e. supf∈F |L′

nf −Lf |,
is upper bounded with high probability by the regular generalization bound of learning f in the ID
vs. A-OOD learning setup evaluated under A-OOD, added by some factor of the ℓ2 distance of real
OODs’ core distribution p−1, and A-OOD core distribution p′−1.

Proof. Using uniform convergence bounds, one seeks to probabilistically bound supf∈F |L′
nf −Lf |.

We have:

|L′
nf − Lf | = |L′

nf − L′f + L′f − Lf | ≤ |L′
nf − L′f |︸ ︷︷ ︸

E

+ |L′f − Lf |︸ ︷︷ ︸
E′

.

To bound the difference E, one can use the regular generalization bound based on the VC-dimension
(92):

Lf − L′
nf ≤

√
1

n

[(
D log

(
2n

D

)
+ 1

)
− log

(
δ

4

)]
with probability of at least 1− δ, where D is the VC-dimension of the F , and n is the training set
size. For supf∈F E

′, we have:

E′ =

∣∣∣∣∫ ℓ(f(xC), y)(p
′(xC)− p(xC))dxC

∣∣∣∣
≤

√∫
ℓ(f(xC), y)2dxC︸ ︷︷ ︸

E′
1

√∫
(p′(xC)− p(xC))2dx︸ ︷︷ ︸

E′
2

.

Note that given a compact input spaceX , bothE′
1 andE′

2 would be bounded. Specifically, considering
the fact that p1 is shared between p and p′, E′

2 corresponds to how much A-OOD and real OOD
distributions are close to each other. In addition, E′

2 is multiplied by E′
1, which is the uniformly

weighted average of loss throughout the feature space, which is bounded given a bounded loss
function and a compact space X .

Remarks: Theorem 1 suggests that once we have an ideal intervention, and the label only de-
pends on xC , it suffices for the intervention to satisfy p(xC |do(xC), do(xE), Y = “ID”) ≈
p(xC |Y = “OOD”), i.e. the generated OODs through intervention on the ID samples
(p(xC |do(xC), do(xE), Y = “ID”)) are close in distribution to the real OODs p(xC |Y = “OOD”).
We note that the hard augmentations are minimal alterations on xC that are needed to turn ID data
into OOD. Hence we would expect this specific intervention to make the two mentioned distributions
close provided that the real OODs are close to the ID samples. This condition is usually satisfied in
real-world OOD detection datasets, where the OOD constitutes minor alterations of the ID samples,
which is also known as near-OOD.

5 METHOD

Motivation. We propose a task-based knowledge distillation method with a novel contrastive-based
loss function (16; 35; 42), where the defined task is the classification of ID and crafted OOD samples.
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The teacher model aims to update its knowledge by completing the defined task while concurrently
encouraging the student model to mimic its behavior closely for ID samples and diverge for OOD
samples. To generate informative OOD samples, we propose a simple yet effective method that
relies on estimating core regions and distorting them with hard transformations. In the following
subsections, we will explain each component of our method, detailing its functionality and benefits.

Generating Style-Related OOD Samples. Style-related OOD samples, also referred to as near
OOD samples in this study, are those that share stylistic similarities with ID samples but do not
belong to the ID set due to differences in core features (90; 59). To generate these style-related OOD
samples, we propose a guided strategy that transforms ID samples into OOD by altering the core
regions of the ID samples, which contain the primary semantics, while leaving the other regions
unchanged.

At first, we define two families of transformations denoted as T + (light transformations) and T −

(hard transformations). T + are those that have been shown to preserve semantics in ongoing literature
on self-supervised learning (16; 35; 31; 12; 17), while T − has been shown to be harmful to preserving
semantics in previous studies (39; 1; 29; 90; 87; 65; 22; 45; 52; 84; 44; 61; 104; 14; 25; 101). For
crafting OOD samples, we leverage Grad-CAM (81), which provides a saliency map for an input
sample using a common pre-trained model (e.g., ResNet18 (34)). Formally, for an ID sample x, we
randomly choose a light transformation τ+1 ∼ T +. We then compute the saliency map for both x and
τ+1 (x) and take their element-wise product to ensure the exploited saliency map is style-agnostic. We
denote the normalized exploited saliency map as SMx, where higher values correspond to the core
features of the assumed ID sample.

For the distortion step, we randomly sample two transformation of harsh transformations τ−1 , τ
−
2 ∼

T −. The rationale behind choosing two transformations is to ensure that the distortion shifts the ID
sample to OOD. Specifically, for an image x with area Ax and exploited saliency map SMx, we
design a mask m that covers an area αAx. We set α randomly between [0.20, 0.50] for each sample
to increase the diversity of crafted OOD samples. The mask is then slid over the saliency map, and for
each region, the region’s weight is determined by summing the pixel values from SMx. Subsequently,
we choose xmasked

ID as the core region to distort based on these computed scores. The OOD sample
is then created as follows: xOOD = τ−1 (τ−2 (xmasked

ID ))) + (1 −m) ⊙ xID. We denote our proposed
OOD crafting strategy as G(·), where xOOD = G(xID). More details about our generation strategy,
including hard transformations and masking approach, can be found in Appendix C. Moreover,
samples of the crafted OOD data are presented in Figures 10 and 11. Notably, we conduct extensive
ablation studies on various hyperparameters, including α and the backbones, in Appendix D and E.
Moreover, the motivation behind using local distortions instead of global ones is more thoroughly
discussed in Appendix F. Examples on generated samples are included in Appendix G.

Task-based Teacher-Student Framework. Teacher-student (T-S) methods have demonstrated
promising results by training a student model to mimic the outputs of a teacher on ID images, using
the discrepancy between their outputs as the OOD score (19; 78; 23; 32; 93; 11; 7). However,
T-S-based methods experience significant performance drops under style shift scenarios. In our study,
we distinguish our approach by proposing a task-based T-S method that considers not only ID but also
OOD information to emphasize discriminative features (i.e., core features) during the training step.
Moreover, in contrast to previous T-S works that are limited to using frozen teachers, we propose
enhancing teacher knowledge by updating its binary-layer’s weights.

Formally, we denote the extractors for the student and teacher as Fs and Ft, respectively. We extend
both extractors by adding a binary layer denoted as Hs and Ht. We represent the features extracted by
the bottom l layer groups of the teacher model as F l

t (x) ∈ Rwl×hl×dl , where wl, hl, and dl denote
the width, height, and channel number of the feature map, respectively. We then define the output of
the teacher, ft(x) as follows:

f lt(x)k = 1
hl·wl

∑hl

i=1

∑wl

j=1 F
l
t (x)jik, f lt(x) =

f l
t(x)

∥f l
t(x)∥

, ft(x) = f1t (x)⊕· · ·⊕f lt(x)⊕Ht(x),

The output of the student, fs(x), is defined in a similar manner. To reduce computational costs, we
transform the 3D features to 1D features by average pooling across channels. This is followed by
concatenating the features to form a single vector ft(x) ∈ Rdl for each sample, which we will use to
train the student. We chose l = 3, following previous T-S works (32).
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Figure 3: Overview of our framework for robust novelty detection: (A) Generation of an auxiliary
OOD set by distorting core features of ID samples. (B) Architecture of the proposed pipeline featuring
a pre-trained encoder (teacher) and a from-scratch encoder (student), both concatenated to a linear
layer. (C) Training step aims to align the output of the student fs(·) closely with the teacher’s output
ft(·) for x1ID and x2ID, and to differentiate them for x1OOD and x2OOD. (D) Green circles indicate pairs
where the student’s output is intended to be close to the teacher’s output, red circles indicate pairs that
are meant to diverge, and gray squares represent pairs that have been omitted from the loss function.
Training Step. Previous T-S works aimed to define LTS, which was generally associated with
increasing sim(fs(x), ft(x)), where x belongs to the ID set. In contrast, we propose an OOD-aware
contrastive-based loss, denoted as LOCL. Specifically, considering a batch of ID training samples,
BID = {xi}ni=1, we define BA-OOD = {xi}2ni=n+1 and B = BID ∪ BA-OOD, where BA-OOD is created
using our proposed crafting strategy, i.e., BA-OOD = G(BID).

For a sample x, using τ1, τ2 ∼ T +, we define x1 = τ1(x) and x2 = τ2(x), and define them as positive
pairs, i.e., P (x1) = x2 and P (x2) = x1. Then, for each ID sample in B we define LOCL(x) =
LOCL(x; fs, ft) + LOCL(x; ft, fs), which only updates the student’s weights, and LOCL(x; fs, ft) is
defined as:

−
2∑

i=1

log
exp(sim(fs(x

i), ft(x
i))/γ) + exp(sim(fs(x

i), ft(P (x
i)))/γ)∑

x′∈{τ1(B)∪τ2(B)}
exp(sim(fs(xi), ft(x′))/γ) + exp(sim(fs(G(xi)), ft(x′))/γ)

(1)

Here, γ is the temperature parameter, sim(·) denotes cosine, and G(·) maps each ID sample to its
OOD counterpart, with G(xi) = xn+i for 1 ≤ i ≤ n.
Meanwhile, the teacher is updated using the classification task with cross-entropy loss LCE(τ1(B) ∪
τ2(B)), which is defined on ID and augmented OOD samples. It trains its binary layer while keeping
the weights of the other layers frozen. The final loss function for training is LOCL + LCE. A
visualization of our method is provided in Fig 3. During test time, we utilize the discrepancy between
the teacher and student model as the OOD score, where their features exhibit low differences for ID
test samples and high differences for OOD samples due to the defined loss function. Notably, we
conduct an ablation study on different options of loss in Appendix H.

6 EXPERIMENTS

We validate the efficacy of our proposed robust ND method under style shifts. We conducted an
extensive evaluation using a diverse range of industrial and medical datasets, incorporating both
natural and synthetic shifts. As shown in Table 1, we compare our method with state-of-the-art ND
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methods under both standard and shifted conditions, demonstrating its superior performance across
different scenarios. Detailed results of our method, including std over multiple runs, are reported in
Appendix I.

Experimental Setup & Datasets. To model the distribution shift and conduct evaluation, we
followed the setup mentioned in Section 2 for each experiment. We used two datasets, D and D′,
where both include ID and OOD samples. The core features for D and D′ are the same but come
from different environments (different style features). For instance, in the waterbirds experiment,
we consider land birds as ID and water birds as OOD. Specifically, we used 3,420 land birds with a
land background and 180 land birds with a water background as training data. In the standard test,
both land birds and water birds with a land background are considered, while for the shifted test,
both land birds and water birds with a water background are used. For the MVTecAD (6) and Visa
(110) experiments, similar to GNL, D′ was created manually by us, ensuring that the core features
remained constant. For the other experiments,D andD′ were obtained from existing datasets. Details
on D and D′ for each experiment can be found in Table 2 and Appendix J.

The results in the Table 1 explain each dataset in detail, while the results with D and D′ swapped are
reported in Appendix K. For further details regarding the benchmarks, see Appendix J. Furthermore,
extra ablation studies can be found in Appendix A. The Pseudocode for our proposed method is
provided in Appendix L. Other evaluation metrics are reported in Appendix M.

Analyzing Results. Our approach enhances the average robust detection performance by 12.7%
compared to existing methods (presented in Table 1). Additionally, we achieve a significant im-
provement of 6.7% in standard performance. Our evaluation includes methods such as GNL, which
was specifically proposed to improve robustness under style shifts, and DRAEM, which uses ex-
tra OOD dataset. The results on various challenging datasets demonstrate the applicability of our
method in real-world scenarios, all without relying on any metadata or extra dataset. This significant
improvement underscores the real-world applicability and generalization of our method.

Implementation Details. We utilize a pre-trained ResNet-18 (34) as the foundational encoder
network for both the student and teacher networks. Our model undergoes 200 epochs of training
using the AdamW (56) optimizer, with a weight decay of 1e-5 and a learning rate of 1e-4. The batch
size (β) for training is set to 128. Further experimental details and time complexity can be found in
Appendix N, and limitations of this experimental setup are discussed in Appendix O.

Table 1: Performance of several AD methods, including our proposed method, on multiple pairs of
different styles. The results are presented in the format ‘Standard/Robust’, measured by AUROC (%).
‘Standard’ represents the scenario where the test set has a similar style to the dominant style in the ID
training data, while ‘Robust’ refers to the scenario where a shifted test set is used, having the same
core features but differing in style. Best method on each dataset in terms of Robust performance is
highlighted with a blue background.

Dataset Pair Method
CSI MSAD DRAEM RD4AD UniAD GLAD ReContrast Transformaly GNL RedPanda∗ Ours

R
ea

l-w
or

ld
D

at
as

et
s

Autonomous Driving 68.9 / 55.6 86.5 / 67.4 87.0 / 68.3 71.6 / 65.7 92.0 / 59.7 89.7 / / 70.1 90.4 / 68.2 87.4 / 70.5 81.6 / 67.1 72.8 / 67.3 92.9 / 84.2

Camelyon17 60.2 / 53.4 70.1 / 64.2 68.3 / 59.9 60.0 / 56.3 62.1 / 56.7 70.5 / 62.9 59.8 / 60.4 64.0 / 63.8 65.3 / 60.7 68.0 / 65.9 75.0 / 72.4

Brain Tumor 86.4 / 65.1 98.0 / 66.3 71.8 / 50.3 98.6 / 43.7 86.7 / 74.2 90.8 / 68.4 96.1 / 55.7 93.7 / 54.7 98.1 / 48.7 92.6 / 58.3 98.2 / 79.0

Chest CT-Scan 59.7 / 54.2 70.2 / 58.7 67.3 / 66.0 64.8 / 59.7 70.3 / 60.1 65.9 / 61.9 66.9 / 60.2 71.2 / 70.3 63.8 / 58.2 67.8 / 60.4 72.8 / 71.6

W. Blood Cells 62.3 / 45.7 76.8 / 60.6 67.1 / 60.4 61.2 / 53.2 55.7 / 60.8 64.9 / 59.5 59.6 / 50.7 79.1 / 57.2 60.7 / 56.7 74.9 / 56.2 88.8 / 72.1

Skin Disease 77.2 / 49.5 72.1 / 60.3 80.4 / 67.2 85.1 / 61.9 78.9 / 72.5 90.0 / 65.7 90.5 / 67.3 75.4 / 50.1 88.3 / 54.8 71.7 / 53.9 90.7 / 70.8

Blind Detection 83.9 / 55.3 92.2 / 59.4 90.7 / 60.5 92.4 / 58.7 92.4 / 59.6 91.8 / 58.7 97.6 / 62.8 89.2 / 63.0 92.5 / 55.1 82.5 / 58.5 96.1 / 73.2

Sy
nt

he
tic

D
at

as
et

s

MVTec AD 63.8 / 51.2 84.3 / 55.1 98.1 / 62.7 98.5 / 56.8 86.6 / 72.8 99.3 / 63.7 98.0 / 48.2 85.9 / 51.4 96.5 / 54.0 76.5 / 59.0 94.2 / 87.6

VisA 65.2 / 53.5 84.1 / 63.1 96.3 / 58.0 96.0 / 64.7 84.0 / 70.1 99.5 / 60.4 91.1 / 54.5 85.5 / 53.8 89.3 / 60.2 84.2 / 65.1 89.3 / 82.1

WaterBirds 66.8 / 62.3 69.2 / 60.4 53.1 / 52.5 55.9 / 53.6 77.1 / 75.0 71.8 / 63.7 59.4 / 55.3 81.0 / 79.3 57.1 / 53.9 76.8 / 72.4 76.5 / 74.0

DiagViB-MNIST 89.8 / 72.3 84.9 / 58.5 83.9 / 63.9 77.0 / 53.3 63.7 / 55.2 83.2 / 59.1 76.6 / 54.5 67.1 / 55.0 65.9 / 65.0 83.1 / 76.8 93.1 / 73.8

DiagViB-FMNIST 87.4 / 74.5 90.8 / 55.0 87.4 / 67.1 78.2 / 64.0 74.8 / 50.3 80.9 / 60.9 77.9 / 60.7 84.6 / 63.4 75.5 / 64.1 85.2 / 71.0 92.1 / 78.7

Average 72.6 / 57.7 81.6 / 60.8 79.3 / 61.4 78.3 / 57.6 77.1 / 63.9 83.2 / 62.9 80.3 / 58.2 80.3 / 61.1 77.9 / 58.2 78.0 / 63.7 88.3 / 76.6

∗Since RedPanda requires metadata for training, we specifically grant access to environment labels for evaluating this method.
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Table 2: Specifications of main (D) and shifted D′ pairs for real-world datasets

Description Autonomous Driving Camelyon17 Brain Tumor Chest CT-Scan WBC Skin Disease Blind Det.
D Cityscapes (21) Hospitals 1-3 (10) Br35H (33) RSNA (88) Low Res (107) ISIC 2018 (18) APTOS (46)
D′ GTA5 (71) Hospitals 4-5 (10) Brats 2020 (8) PD-Chest (47) High res (107) PAD-UFES (64) DDR (53)

Table 3: An ablation study on our method with the exclusion of different components while keeping
the others intact.

Setups
Components Datasets

A-OOD Core LCE LOCL LTS MVTecAD Autonomous Driving MNIST Waterbirds Brain TumorEstimation

Setup A - - - - ✓ 89.6 / 54.3 81.2 / 65.4 73.8 / 68.2 58.4 / 56.7 91.6 / 54.2
Setup B ✓ ✓ - ✓ - 90.3 / 76.9 83.1 / 75.3 88.0 / 69.7 68.3 / 66.1 94.1 / 75.7
Setup C ✓ ✓ ✓ - ✓ 91.4 / 72.5 84.5 / 78.0 85.6 / 69.4 75.6 / 67.6 91.5 / 63.5
Setup D ✓ - ✓ ✓ - 92.9 / 78.0 85.7 / 81.7 88.2 / 65.9 66.6 / 64.5 93.0 / 74.8

Setup E (Ours) ✓ ✓ ✓ ✓ - 94.2 / 87.6 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 98.2 / 79.0

7 ABLATION STUDY

Pipeline Components. To verify the impact of the proposed elements, we conduct comprehensive
ablation studies using various datasets. The results are reported in Table 3. In each scenario, we
replace certain components with alternative ones while keeping the remaining elements fixed. Setup
A refers to a scenario where we ignore using auxiliary OOD samples for training and drop the binary
classification layers. Instead, we augment ID samples with light transformations and use the common
teacher-student based loss function, LTS, for training. Notably, this scenario is similar to the GNL
method. Setup B highlights the effect of the defined classification task by modifying the training
process. Specifically, it excludes the classification task that updates the binary layer of the teacher
model. Both the teacher and student models are trained without binary layers. Instead, we train the
student model with LOCL using the created ID and OOD sets. In Setup C, we replaced our defined
LOCL with LTS. This tests the efficacy of our proposed loss function in our framework. Setup D
specifically targets our OOD crafting strategy. Rather than estimating core regions of an ID sample
for manipulation, this setup randomly distorts regions of ID samples. This OOD crafting approach is
similar to the CutPaste (52) method in terms of finding the region of modification. Results show that
Setup E, which refers to our proposed (default) framework, achieves superior performance compared
to other setups.

OOD crafting strategy. In this ablation study, we substituted our OOD crafting strategy with
alternative strategies, while keeping other components unchanged. The results, presented in Table
4, demonstrate that our efficient crafting strategy—which does not require an additional dataset
or generative model—outperforms other methods. This superiority is based on the fact that other
strategies, including MIXUP (39), FITYMI (59), Dream-OOD (27), and GOE (48), fail to preserve
the relationship between the style features of created OOD samples and ID samples. Moreover, these
methods tend to generate OOD samples biased towards the datasets their backbones are trained on
(e.g., Dream-OOD’s bias towards LAION (79)), resulting in the creation of distant and unrelated OOD
samples (see Figure 10). VOS (26), crafting OOD samples in the embedding space, is ineffective in
preserving image style features. CutPaste (52), despite being better than other alternatives, distorts
random regions and may alter background features instead of core regions. More details on these
methods are in Appendix Q with their implementation details in Appendix R. Experiments on global
distortions, rather than local ones, are available in Appendix F.

8 CONCLUSION

In this paper, we presented a robust novelty detection method that handles style shifts without
requiring metadata. By crafting an auxiliary OOD set and using a task-based knowledge distillation
strategy, our approach focuses on core features, reducing the impact of style variations. Evaluations
on real-world and benchmark datasets demonstrated significant performance improvements, achieving
up to 12.7% higher AUROC compared to existing methods. Our method proves effective in diverse
scenarios, offering a robust solution for ND tasks.
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Table 4: An ablation study on our method’s performance using different A-OOD generation methods.

OOD Crafting Dataset Average
Method MVTec AD Autonomous Driving MNIST Waterbirds Brain Tumor FMNIST VisA

MIXUP∗ 69.8 / 57.2 84.5 / 61.7 76.1 / 62.6 68.5 / 57.1 85.6 / 53.9 84.9 / 73.8 71.3 / 66.4 77.2 / 61.8
CutPaste 91.7 / 75.1 83.6 / 74.8 88.2 / 61.9 71.9 / 67.0 93.8 / 69.3 87.8 / 62.6 81.9 / 73.2 85.6 / 69.1

VOS 64.2 / 53.9 74.8 / 56.1 81.3 / 64.0 54.8 / 52.3 71.8 / 44.2 75.4 / 66.2 65.1 / 54.8 69.6 / 55.9
FITYMI∗ 74.0 / 64.5 81.6 / 58.4 86.9 / 65.8 64.5 / 60.9 92.7 / 67.4 85.1 / 64.7 74.6 / 68.2 79.9 / 64.3

Dream-OOD∗ 86.4 / 75.8 87.4 / 76.2 84.5 / 56.7 82.4 / 71.6 79.2 / 63.0 82.5 / 61.3 69.0 / 57.4 81.6 / 66.0
GOE∗ 86.8 / 72.7 90.5 / 78.3 86.1 / 59.2 78.3 / 65.2 84.1 / 69.7 82.1 / 70.6 72.8 / 65.7 83.0 / 68.8

Ours 94.2 / 87.6 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 98.2 / 79.0 92.1 / 78.7 89.3 / 82.1 90.9 / 79.9
∗In contrast to our strategy, these methods employ additional datasets or generative models for crafting OOD data.
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Figure 4: Examples of Datasets Used in the Study: This figure illustrates the concept of Style
Shift in data. We have selected the Brain Tumor Dataset, Waterbirds, MVTecAD, Camelyon17 and
Colored MNIST, which perfectly highlight our point. In each row, the left section illustrates 4 images
corresponding to the training set of the main dataset, i.e., Dtrain. The middle section corresponds
to the test set of the same dataset, i.e., Dtest. The right section corresponds to the samples from
the dataset containing style shift, i.e., D′. In the test datasets (middle and right sections), the OOD
samples contain a red frame, only for the sake of readability in the figure. Please note that these
frames are not available in the actual data. In the brain tumor datasets, images containing a tumor are
labeled as OOD and healthy brains are labeled ID, as shown in the figure. The brain images from the
main dataset, all include their skulls, which represents itself as a curve around the brain. On the other
hand, the images from the shifted dataset do not possess skulls (which could have been removed
as a preprocessing procedure). This can lead to the model mistakenly learning the skull as an ID
feature, thus labeling all images from the shifted dataset as OOD. In the second row, we consider the
waterbirds dataset, which is fully explained in Appendix J.1. In this row, land birds represent ID data
and water birds correspond to OOD. In the main dataset (the 2 leftmost columns), the background of
all images is a land scenery. In the shifted dataset, all images possess a water background (e.g., sea,
lake, etc.). The goal here is to train a model that is robust to the background shifts, and labels images
with respect to their foreground, i.e., the type of the bird. In the third row, we consider hazelnut
class of the MVTecAD dataset. In this class, non-broken hazelnuts are considered ID, and broken
ones are OOD. For the shifted dataset, following the procedure explained for generating synthetic
shifted pairs in Appendix J.3, we apply light augmentations on the background of the image, thus
simulating a shift in the style, where the style feature here is the background color. Finally, we have
the Camelyon17 dataset, which is a lymph node section dataset explained in Appendix J.2. In this
set, the ID class represents healthy patients, and the OOD class represents patients with cancerous
cells. The shifted dataset has the exact same settings, but the images are taken in a different center,
thus facing minor shifts due to difference in equipment, angle, etc. The shift can be seen in the figure
as slight changes in the color for both ID and OOD groups, i.e., the shifted images generally have a
darker color complex.Note that the Colored MNIST dataset is displayed for intuition only.
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APPENDIX

A EXTRA ABLATION STUDY

CORRELATION STRENGTH

In this section, we provide results in Table 5 for different amounts of exposure from the shifted
training set D′train

ID into the main training dataset, examining various correlation strengths. We denote
this measure by correlation strength. In our default setup, correlation strength is set to 0%,
indicating the trainset is solely comprised of Dtrain

ID .

Table 5: An ablation study on the amount of data from D′ which is visible to our model in training
time.

Method correlation strength = %5(95:5) correlation strength = %10 correlation strength = %20

MVTec AD VISA Autonomous Driving MVTec AD VISA Autonomous Driving MVTec AD VISA Autonomous Driving

MSAD 87.2 / 53.2 84.1 / 57.9 85.5 / 59.1 71.0 / 56.1 81.6 / 69.2 85.1 / 71.3 73.1 / 62.4 81.3 / 73.1 86.1 / 75.1
Transformaly 88.5 / 50.6 85.5 / 51.3 89.1 / 62.4 83.2 / 59.4 82.7 / 60.1 85.4 / 69.1 84.1 / 67.0 83.5 / 66.5 84.3 / 70.3
ReContrast 99.5 / 50.1 97.5 / 50.2 90.9 / 58.4 96.3 / 55.3 89.6 / 63.0 88.6 / 72.2 95.8 / 60.2 86.4 / 68.7 88.0 / 74.1
GNL 98.0 / 52.7 90.3 / 58.1 84.3 / 65.2 96.7 / 58.1 87.9 / 65.7 80.6 / 71.1 94.1 / 65.7 86.6 / 69.1 81.0 / 73.1
Ours 95.5 / 86.1 90.1 / 81.6 93.0 / 79.8 93.7 / 89.0 88.8 / 84.4 91.5 / 86.7 93.9 / 91.2 89.1 / 86.4 90.9 / 89.3

B ADDITIONAL RELATED WORK

Previous Works on Robust ND

Teacher-student based methods for ND. Efforts to adapt the teacher-student paradigm for ND tasks
have involved using a pre-trained model as the teacher and a from-scratch network as the student. The
main objective is to train the student model to mimic the teacher’s features on ID samples, with the
rationale that the student model, trained exclusively on OOD-free samples, will generate discrepant
features on OOD samples in inference phase (90). US ensembles several models trained on IDs at
different scales to capture a broader spectrum of ID behavior, enhancing the detection of OOD data.
Multiresolution Knowledge Distillation (MKD) (78) proposes using multi-level feature alignment to
fine-tune the sensitivity to discrepancies between ID and OOD samples. RD4AD (23) advances these
methods by using a teacher-student setup with the teacher as an encoder and the student as a decoder
focused on feature reconstruction, enhancing detection capabilities. ReContrast (32) introduces a
global paradigm for reconstructing teacher features by the student, rather than a regional approach. It
also incorporates a stop-gradient operation to stabilize the optimization process.

Auxiliary OOD Sample Crafting. CSI (90) and CutePaste (52) propose using fixed hard aug-
mentation to create auxiliary samples. Specifically, CSI relies on Rotation, while CPAD considers
CutPaste as a pseudo-OOD. The GOE (48) method employs a pretrained GAN on ImageNet-1K to
craft anomalies by targeting low-density areas. FITYM (59) employed an underdeveloped diffusion
as a generator. Dream-OOD (27) uses both image and text domains to learn visual representations
of normal instances in an embedding space of a pretrained stable diffusion (73) model trained on 5
billion data (e.g. LAION (79)). On the other hand, VOS (26) generates OOD embeddings instead of
image data. Notably, we adapt Dream-OOD for generation by using ID sample labels as prompts, as
this generative method requires text for generation.

Previous Robust ND methods. RED PANDA model propose a robust ND method by focusing on
the removal of nuisance attributes by leverageing a domain-supervised disentanglement strategy to
learn representations that are invariant to specified nuisance attributes the model shows promise in
controlled settings, the effectiveness of RED PANDA is contingent upon the accurate labeling of
nuisance attributes in the training data, which can be a significant limitation in datasets where such
labels are mostly unavailable or hard to define. calling a method to work without such anotaions.
PCIR explores robust Unsupervised ND by aiming to identify invariant causal features across various
environments. Specifically, the method assumes that the training data is drawn from multiple known
environments, while the test data may come from different, potentially unseen environments. The
known environments of each training sample facilitate the development of a regularization term

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

designed to enhance the model’s ability to generalize across diverse environments. Despite the
improved robustness demonstrated by their proposed method on specific datasets, a significant
limitation is its reliance on the strong presupposition that the environment of each training sample is
known. This assumption may not hold in real-world ND scenarios, where datasets often comprise a
vast number of samples with unlabelled or unknown environmental contexts.

C AUXILIARY OOD GENERATION DETAILS

MASKING APPROACH

Following our method explanation in Section 5, we wish to find the optimal region of the image to
distort. After getting the final normalized saliency map SMx, we use the fact that saliency maps
possess spatial coherence, as stated in (81), and look for regions with higher values. The mentioned
fact ensures that the selected region’s values are continuous, as well as having the core areas covered,
resulting in an area of the image that encloses most of the core parts, rather than just including
minor and edge areas in it. Noteworthy is that when multiplying the mask by the image, the hard
transformation might still get applied to regions with a zero pixel value, i.e., the unmasked area. To
tackle this, we crop the region and apply the transformation on the cropped part. Then, we paste the
new patch on the original image.

In our primary experiments, the parameter (α), which represents the relative area of the mask with
respect to the ID sample, is set between 0.2 and 0.5. This subsection presents an ablation study on
various values of (α), with results detailed in Table 6. The findings indicate that variations in (α) have
minimal impact on the outcomes, demonstrating that our model is relatively insensitive to changes in
this parameter.

Table 6: Exploring the Influence of Random Mask Sizes in Our Method Across Diverse Datasets: A
Comprehensive Ablation Study

Mask Size
(% of image)

Dataset

Brain Tumor Autonomous Driving DiagViB-MNIST WaterBirds MVTec AD VISA

5% to 20% 96.2 / 76.1 90.0 / 82.1 93.0 / 74.2 77.0 / 72.3 92.1 / 86.7 87.8 / 83.0
10% to 30% 97.1 / 78.9 93.0 / 84.3 92.5 / 73.2 75.0 / 73.9 95.1 / 86.4 90.1 / 81.5
20% to 40% 98.3 / 79.4 91.3 / 83.8 93.4 / 72.1 75.4 / 73.1 94.3 / 85.1 89.7 / 81.2

20% to 50% (Ours) 98.2 / 79.0 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 94.2 / 87.6 89.3 / 82.1
30% to 50% 96.9 / 77.6 91.7 / 83.1 91.3 / 73.0 76.1 / 73.6 92.8 / 86.6 87.1/ 81.5
40% to 70% 90.4 / 71.3 84.5 / 77.0 85.7 / 64.9 69.9 / 65.8 86.3 / 78.7 81.2 / 74.7

AUGMENTATION DETAILS

We apply two types of augmentations to each input x ∈ Dtrain, two of which are positive augmentations
and two are negative augmentations. The intuition behind this is that with positive augmentations,
we seek to make the model understand that light augmentations, which simulate environmental
change in actual data, are not decisive in the final decision of the label. Meanwhile, with negative
augmentations, we seek to destroy the core of the image, resulting in a new image with different core
properties, representing OOD data. We also apply light augmentations to the newly crafted OOD
data, to make the model understand environmental changes to this data should not be decisive in the
final decision, the same as with ID data.

The exact details on transformations T + and T − are provided in the main text. For each data, we
sample a hard transformation τ+ ∈ T +. We then attempt to find the core of the image using the
procedure explained in our method in Section 5. All transformations are applied using official Python
libraries of Albumenations (9) and ImageCorruptions (57).
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D HYPER PARAMETER SELECTION

We avoided using validation sets and hyperparameter searches, believing our chosen hyperparameters
are minimal compared to previous works. Below, we outline our hyperparameters and provide the
rationale behind each selection.

Here is a list of all the hyperparameters used in our method and their values:

Table 7: Hyperparameters used in our method

Mask Ratio Backbone Optimizer Learning Rate Batch Size Weight Decay

0.75 ResNet18 AdamW 0.0001 128 0.00001

Mask: Please refer to Table 8 in Appendix E. Inspired by the inpainting task, we chose a range of
ratios for masking and distorting core regions of an image, following a rule of thumb.

Optimizer, learning rate, weight decay: Common values in literature.

Batch size: High values (typically >100) ensure loss effectiveness.

Backbone: We used ResNet18 as a simple backbone to showcase our model’s effectiveness even
without complicated architectures. Please refer to 8 for an ablation on different choices of backbones.

E BACKBONE

The initial results are reported by applying Resnet18(34) as the backbone of our model due to its
efficacy and applicability. However, we conducted extensive ablation studies on the backbones for
our T-S model as well as the GradCAM(81) backbone, while preserving the rest of the parameters.
As the results indicate, our method demonstrates consistent performance using different pretrained
architectures as the backbone. Notably, by using larger architectures as the T/S model, our results
further improve.

Table 8: Ablation study on different backbones in our Teacher-Student Model. Each backbone is
evaluated under 2 widely used pretrain datasets, Imagenet(24) and Places365(108).

Backbone Pretrain Dataset Avg
Auto Driving Camelyon Brain Tumor Waterbirds MVTec VisA MNIST

MobileNetV2 imagenet 91.7/83.4 73.7/71.4 97.1/78.8 76.2/74.6 95.0/88.6 88.7/81.2 93.1/72.5 87.9/78.6
places365 90.9/82.8 73.6/70.2 96.4/77.4 75.8/73.1 93.7/86.4 87.4/81.7 92.6/71.9 87.2/77.6

Resnet50 imagenet 93.1/84.9 76.0/73.7 99.1/81.9 78.1/73.9 95.7/90.1 89.6/83.5 94.7/75.2 89.5/80.4
places365 92.8/85.1 75.6/71.6 97.9/79.5 76.0/74.8 94.2/89.1 89.1/82.8 93.9/73.6 88.5/79.6

Wide-resnet50-2 imagenet 93.9/86.8 76.1/73.6 98.8/81.1 77.6/75.9 95.1/87.4 89.8/83.4 94.0/74.8 89.3/80.4
places365 93.7/86.0 75.5/73.9 98.7/80.6 77.1/75.8 94.6/88.1 90.2/83.1 93.4/74.1 89.0/80.2

Wide-resnet101-2 imagenet 94.1/84.2 77.8/75.9 98.7/80.4 77.4/75.3 94.8/87.0 90.3/83.7 92.9/73.5 89.4/80.0
places365 94.5/84.9 77.3/76.1 96.8/78.2 78.0/74.7 94.2/86.6 89.5/83.4 92.0/72.6 88.9/79.4

Vit-b-32 imagenet 94.2/84.1 76.4/72.9 98.6/80.8 79.3/77.8 94.8/87.1 89.9/82.3 93.6/73.4 89.5/79.8
places365 94.0/84.2 76.1/72.3 98.3/80.6 79.4/77.9 94.7/86.7 89.5/82.2 93.5/73.0 89.4/79.5

Resnet18 (Ours) imagenet 92.9/84.2 75.0/72.4 98.2/79.0 76.5/74.0 94.2/87.6 89.3/82.1 93.1/73.8 88.4/79.0

Further, to analyze the effect of Grad-CAM on the backbone, which in our case we again used
Resnet18 for similar reasons, we fixed all other components of our model, and ablated on the
Grad-CAM-based backbone to see how much it affects the core estimation.

As the results suggest, this component’s backbone has minimal effect on the core estimation process
and the results, thus highlighting our model’s robustness to this component.

F IMPACT OF GLOBAL VS. CORE REGION AUGMENTATIONS

To examine the impact of global versus local augmentations on mitigating spurious correlations, we
conducted an experiment where the core-region estimation and local distortion strategy were replaced
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Table 9: Ablation study on different backbones in our Teacher-Student Model. Each backbone is
evaluated under 2 widely used pretrain datasets, Imagenet(24) and Places365(108).

Backbone Pretrain Dataset Avg
Auto Driving Camelyon Brain Tumor Waterbirds MVTec VisA MNIST

Squeezenet1-1 imagenet 91.7/82.2 73.5/71.4 97.5/77.6 76.0/72.6 93.7/86.7 88.7/81.3 93.0/72.4 87.7/77.7
places365 91.5/81.9 73.9/70.9 97.9/77.4 75.9/72.9 93.8/85.9 88.6/80.6 92.8/71.9 87.7/77.4

MobileNetV2 imagenet 92.0/82.6 74.3/71.3 97.8/78.0 75.8/73.0 94.3/87.3 88.6/82.0 93.9/72.3 88.1/78.1
places365 91.9/83.2 74.2/71.5 98.2/78.3 76.1/73.4 94.0/86.5 88.7/81.7 92.8/72.7 88.0/78.2

Efficientnet-b0 imagenet 93.4/83.5 75.8/73.5 97.2/79.6 75.7/74.1 94.7/87.1 89.0/83.4 93.7/73.6 88.5/79.3
places365 93.7/82.1 74.8/72.1 97.8/78.5 75.2/73.8 93.9/86.9 88.7/82.6 93.6/73.2 88.2/78.4

Resnet50 imagenet 93.0/84.2 76.2/73.1 98.6/80.0 77.1/75.6 95.4/86.7 89.5/82.3 94.5/74.7 89.2/79.5
places365 93.1/83.8 77.1/73.2 98.7/80.3 76.8/75.0 95.6/88.4 89.4/81.2 93.4/72.8 89.2/79.2

Wide-resnet101-2 imagenet 92.8/84.0 75.3/71.6 98.5/79.4 75.6/75.1 95.0/88.1 90.2/83.8 93.8/74.1 88.7/79.4
places365 92.6/83.9 74.8/73.0 97.1/78.9 76.8/74.7 94.8/86.3 89.5/83.0 94.7/72.9 88.6/79.0

Vit-b-32 imagenet 93.2/84.6 75.8/71.9 97.5/80.7 76.5/74.6 95.1/89.5 91.5/84.8 91.6/71.7 88.7/79.7
places365 93.1/84.1 76.6/72.6 96.7/80.2 77.9/75.1 93.9/88.6 90.1/84.5 91.4/71.0 88.5/79.4

Resnet18 (Ours) imagenet 92.9/84.2 75.0/72.4 98.2/79.0 76.5/74.0 94.2/87.6 89.3/82.1 93.1/73.8 88.5/79.0

with a global hard transformation. This approach evaluates the effectiveness of global augmentations,
which apply distortions uniformly across the entire image, compared to localized augmentations that
focus on core regions. The results, presented in the table below, indicate that global transformations
lead to a decrease in OOD detection performance. This supports our hypothesis that selectively
distorting core regions, while preserving style features, is more advantageous for the model’s ability
to detect distribution shifts and differentiate between ID and OOD samples.

Table 10: Comparison of Global Augmentation and Core Region Augmentation (Ours) on Various
Datasets

Method

Datasets

AvgDriving Camelyon Brain Waterbirds MVTec VisA Chest Blood Skin MNIST

Global Aug 91.9/81.0 74.5/72.1 93.3/70.3 72.5/74.2 89.8/81.5 84.0/77.3 71.9/64.8 80.4/66.5 87.1/71.4 90.7/70.9 83.6/65.9

Core Region Aug (Ours) 92.9/84.2 75.0/72.4 98.2/79.0 76.5/74.0 94.2/87.6 89.3/82.1 72.8/71.6 88.8/72.1 90.7/70.8 93.1/73.8 87.2/76.8

G EXAMPLE OF DATASETS USED IN THE STUDY

In this section, we present examples of both real-world and synthetic datasets, along with their
corresponding shifted datasets that demonstrate variations in style features used in this study. For
the brain tumor detection task, the Br35H dataset is employed, with the shifted dataset being the
Brats 2020 dataset. As for the Camelyon17 dataset (10), data from hospitals 1-3 constitute the main
dataset, while data from hospitals 4-5 serve as the shifted dataset. As for the Waterbirds dataset, the
main dataset consists of land birds with land backgrounds as the ID set and water birds with land
backgrounds as the OOD set. The shifted dataset includes land birds with water backgrounds and
water birds with water backgrounds. Examples for these datasets are provided in Figure 4.

For the MVTecAD and VisA datasets, we apply Meta’s Segment Anything Model (SAM) (50) to alter
the background of the objects. Additionally, for texture modifications, we center-paste the image
onto a random ImageNet dataset sample. Examples for the MVTecAD dataset are illustrated in Figure
7, and for the VisA dataset, examples can be seen in Figure 8.

H LOSS FUNCTION ANALYSIS

DEVELOPMENT PROCESS

The core concept behind using A-OOD in the T-S architecture is to encourage the student model to
produce outputs that are closer to the teacher model’s outputs when the input is an ID sample, and to
diverge further when the input is an OOD sample.
Setup A: At first glance, it seems that adding a simple term to the common cosine similarity of the
T-S models can help, specifically:

= sim(fs(xID), ft(xID))− sim(fs(xA-OOD), ft(xA-OOD)) (2)
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where fs and ft are the student and teacher models, respectively, and xID and xA-OOD represent
in-distribution and auxilary out-of-distribution samples. However, the results in Table 11 show that
this method is not a suitable option for robust novelty detection. Based on this observation and
recognizing the effectiveness of contrastive learning in distinguishing between similar and dissimilar
samples, we decided to introduce a novel T-S architecture where the student mimics the teacher using
a contrastive learning loss instead of cosine similarity.
Setup B: The first solution that comes to mind to enhance contrastive learning with A-OOD is the
following loss function:

=−
2∑

i=1

log
exp(sim(fs(x

i), ft(x
i))/γ) + exp(sim(fs(x

i), ft(P (x
i)))/γ)∑

x′∈{τ1(B)∪τ2(B)}
exp(sim(fs(xi), ft(x′))/γ)

+

2∑
i=1

log
exp(sim(fs(G(x

i)), ft(G(x
i)))/γ) + exp(sim(fs(G(x

i)), ft(P (G(x
i))))/γ)∑

x′∈{τ1(B)∪τ2(B)}
exp(sim(fs(G(xi)), ft(x′))/γ)

, (3)

where fs, ft, P,G are the same as defined in Section 5. In this loss, inspired by contrastive loss (90),
we try to make the student mimic the outputs of the teacher to ID samples. Simultaneously, the
second term tries to make the outputs of the student to the OOD samples close to those of the teacher.
Then, the second term is subtracted from the first, indicating that we want their similarity minimized,
resulting in their divergance. However, in this scenario, the loss function operates unstably, and the
results in Table 11 show that it is not a robust OOD detection model.

Setup C: Next, we propose our novel loss function in equation (1), which ensures stable training and
enables the student model to produce outputs that are closer to the teacher model’s outputs for ID
samples, while diverging further for OOD samples.

LOCL(x) = LOCL(x; fs, ft) + LOCL(x; ft, fs) (4)

Setup D: For further exploration and ablation study of our method, we removed LOCL(x; ft, fs) and
observed its effect.

LOCL(x) = LOCL(x; fs, ft) (5)

Note: In all setups (A, B, C, D), we also include the LCE term in the loss.

Table 11: Performance comparison of different proposed losses. The table shows the evaluation
results of different losses, including our proposed loss, highlighting their effectiveness and stability.

Loss setup Dataset

Brain Tumor Autonomous Driving DiagViB-MNIST WaterBirds MVTec AD VISA

Setup A 88.7 / 62.1 83.2 / 68.9 82.8 / 58.3 63.7 / 60.1 79.3 / 65.8 81.0 / 67.3
Setup B 85.4 / 64.0 73.6 / 65.1 79.8 / 61.7 60.3 / 56.4 81.7 / 66.0 78.6 / 65.3

Setup C (Ours) 98.2 / 79.0 92.9 / 84.2 93.1 / 73.8 76.5 / 74.0 94.2 / 87.6 89.3 / 82.1
Setup D 96.2 / 75.2 88.5 / 79.1 90.0 / 71.1 73.4 / 72.1 90.3 / 83.6 84.4 / 75.9

STABILITY OF LOSS

In the analysis of various configurations applied to the Cityscapes dataset, the distinctions in perfor-
mance and loss metrics are clearly illustrated (Figures 5a and 5b). Figure 5a displays the AUROC
curves for four different setups, where it is evident that our setup, Setup C, not only achieves faster
convergence but also delivers comparatively higher AUROC values. Similarly, Figure 5b shows the
normalized loss across these setups, with Setup C exhibiting a considerably more consistent loss
trajectory than its counterparts. Notably, Setups A and B demonstrate significant fluctuations in their
loss metrics, indicating a lack of stability. While Setup D has similar performance to Setup C, the
consistency and rapid convergence of Setup C affirms its superiority.
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(a) (b)

Figure 5: Performance and Loss Comparison Across Different Setups on the Cityscapes Dataset:
Figure (a) showcases the AUROC curves for four setups, highlighting that Setup C (Ours) not only
converges more rapidly but also achieves superior performance relative to the others. Figure (b)
presents the normalized loss, where Setup C demonstrates a notably stable loss profile. In contrast,
Setups A and B display less stability, with fluctuations in their loss metrics. These comparisons
underscore the efficiency and robustness of our approach in both performance and stability.

I DETAILED RESULTS

In this section, in Tables 12 and 13, we provide the mean and standard deviation of our method’s
results on the provided datasets in Table 1 using 5 different seeds. These were not reported in the
main table due to space constraints.

Table 12: Detailed results of our method’s performance on the first 6 datasets, over 5 runs.

Method Dataset

Autonomous Driving Camelyon Brain Tumor Chest CT-Scan White Blood Cells Skin Disease

Ours (D) 92.9 ± 0.51 75.0 ± 0.64 98.2 ± 0.12 72.8 ± 0.68 88.8 ± 0.61 90.7 ± 0.43
Ours (D′) 84.9 ± 0.62 72.4 ± 0.84 79.0 ± 0.20 71.6 ± 0.83 72.1 ± 0.75 70.8 ± 0.52

Table 13: Detailed results of our method’s performance on the second 6 datasets, over 5 runs.

Method Dataset

Blind Detection MVTecAD VisA Watebirds Diag-MNIST Diag-FMNIST

Ours (D) 96.1 ± 0.91 94.2 ± 1.01 89.3 ± 0.76 76.5 ± 0.67 93.1 ± 0.21 92.1 ± 0.32
Ours (D′) 73.2 ± 0.98 87.6 ± 1.21 82.1 ± 0.89 74.0 ± 0.75 73.8 ± 0.34 78.7 ± 0.28

J DATASETS

In the following paragraphs, we explain how we obtain Dtrain, Dtest, and D′test. One detail shared
among all datasets is that after obtaining the datasets, we add k samples from the shifted dataset,
D′

ID to the training data, where k is equal to 5% of the size of Dtrain. Worth noting is that our model
significantly outperforms other models, even in the absence of this added data, as explained in Section
6. This detail is not mentioned in the following paragraphs to avoid redundancy.

J.1 DETAILS ON BENCHMARK DATASETS WITH SYNTHETIC SHIFTS

• DiagViB-MNIST and DiagViB-FMNIST (28) we use the DiaViB-6 benchmark dataset for our
experiments, DiaViB-6 provide a unique capability to manipulate five key generative factors in
colored images: texture overlays, object dimensions, placement, brightness, and saturation, in
addition to semantic features corresponding to the label. Adjusting these factors enabled the
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creation of diverse environments varying in these six aspects. All images in both datasets were
resized to dimensions of 3 × 256 × 256. The main dataset contained data from two environments,
while the shifted dataset consisted of data from five distinct, previously unseen environments. In
both DiagViB-MNIST and DiagViB-FMNIST datasets, the DiagViB-6 benchmark employed class
4 as the ID set, with class 9 assigned as the OOD set. These datasets are publicly available under
the AGPL-3.0 license.

• WaterBirds (76) We evaluated our method using the Waterbird dataset, which contains natural
images with distribution shifts caused by changes in the background habitat, alternating between
aquatic and land settings. In our experiments, the main dataset includes land birds with land
backgrounds as the ID set and water birds with land backgrounds as the OOD set (5% of the
training data comes from the ID set of the shifted dataset). The shifted dataset includes land birds
with water backgrounds and water birds with water backgrounds. The main dataset’s training data
consists of 3,420 images with land backgrounds and 180 images with water backgrounds. The test
set of the main dataset contains 3,551 images with land backgrounds. The shifted dataset, used for
evaluation, includes 4,637 images with water backgrounds. All images are resized to 224×224.
This dataset is publicly released under the MIT license.

J.2 DETAILS ON NATURAL SHIFT DATASETS

• Autonomous Driving The main dataset used for Autonomous Driving is Cityscapes (21). This
dataset provides stereo videos from 50 cities, with detailed annotations for 30 classes, including
roads and buildings. Intuitively, to reflect real-world scenarios, we want the streets with few
obstacles (e.g. pedestrians) to be considered “safe”, thus being labeled as ID, while the crowded
streets be labeled unsafe, i.e. OOD. We utilize Cityscapes by extracting 256×256 patches from
the center of the images to construct an OOD detection dataset. In our methodology, we classify
roads, sidewalks, buildings, walls, fences, poles, vegetation, terrain, sky, cars, trucks, and buses as
ID classes, while all other classes are treated as OODs. Each patch is labeled as OOD if it contains
any object from an OOD class; otherwise, it is labeled as ID. The license clearly states that the
dataset is made freely available for both academic and non-academic purposes, and permission to
use is given.
The robust pair of Cityscapes is the GTA5 dataset (71). The GTA5 dataset consists of 24,966
synthetic images with pixel-level semantic annotations, generated using the open-world video game
Grand Theft Auto 5. Similarly, we extract 256×256 patches from the center of these images to
form another OOD detection dataset. The ID classes remain the same as in the Cityscapes dataset,
whereas the OOD classes include trains, motorcycles, persons, riders, traffic signs, traffic lights,
and bicycles. Their code is released under the MIT license.

• Camelyon17 We use the Camelyon17 dataset (10; 51) which is a lymph node section dataset
gathered from patients with potential breast cancer. The images are taken from tissue patches
obtained from five different hospitals, each potentially having a tumorous tissue within other parts
of the tissue. The ID data is defined as healthy tissues and tumorous tissues are labeled as OOD.
We use the train data from the first 3 hospitals (218,510 images) as the training data. We then use
the test data from the first 3 hospitals (99,121 images) as the main test data, and the test data from
hospitals 4 and 5 (77,862 images) as the shifted test data. All images are resized to 224×224. This
dataset is publicly released under the CC0 1.0 license.

• Brain Tumor The main dataset is Br35h (33), which consists of 3,000 magnetic resonance images
(MRIs) of human brains, with 1,500 images of tumorous brains and 1,500 of non-tumorous brains.
We split the non-tumorous set 70/30, training on 70% of the non-tumorous data and evaluating
on the remaining non-tumorous and tumorous images during test time. The shifted pair is the
Brain Tumor (8) dataset, which contains 3,764 MRIs of human brains. These images are also
categorized into two classes: tumorous and non-tumorous. Similar to the Br35h dataset, we split the
non-tumorous set 70/30, training on 70% of the non-tumorous data and evaluating on the remaining
non-tumorous and tumorous images during test time. All images are resized to 224× 224. Both
datasets are free to public use under the CC BY 4.0 license.

• Blindness Detection Blindness Detection is a pair of datasets dedicated to images of color fundus,
with the main dataset being APTOS, which is the official training dataset released for the 2019
APTOS blindness detection challenge (46). This dataset contains 3,662 images with grades 0-4
indicating the severity of Diabetic Retinopathy (DR). We used the images with grade 0 (1,805
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images) as ID, and the rest as OOD. As for the shifted dataset, we used the DDR dataset (53),
which contains 13,673 fundus images from 147 hospitals in China. Similar to APTOS, these
images are also classified into 5 groups according to DR severity: none, mild, moderate, severe,
and proliferative DR. We label the images with no DR severity (6,266 images) as ID, and the rest
as OOD. All images are resized to 224× 224. Both datasets are publicly available under the MIT
license.

• Skin Disease Skin Disease is a pair of image datasets dedicated to different skin diseases. The
main dataset is ISIC2018, which is the publicly available dataset of the ISIC2018 Lesion Diagnosis
challenge (18). It contains seven classes corresponding to seven different categories of skin disease.
We take the NV (Nevus) class as ID, and the rest as OOD, following the setup used in (106) and
(32). The training set comprises 6,702 ID images. The shifted dataset is PAD-UFES-20 (64), a
skin lesion dataset composed of clinical images collected from smartphones. It contains 2,298 total
images, with 224 of them labeled NEV (Nevus), which we take as ID, and the rest are taken as
OODs. All images are resized to 224×224. The ISIC dataset is available under CC-BY-NC license,
and the DDR dataset is under CC-BY-4.0 license.

• Chest CT-Scan Chest CT-Scan is a pair of datasets dedicated to images of frontal view chest
X-RAY images. The main dataset, RSNA, which is available from the 2018 RSNA Pneumonia
Detection Challenge (88), consists of images of 30,227 patients, with 9,555 of them diagnosed with
Pneumonia. The shifted dataset is another pneumonia dataset used for image classification, which
is used by Kermany et. al (47). It contains 5,856 images in total, with 1,341 of them being ID and
the rest being defected. To create the training dataset, we use 70% of the ID data, and use the rest
of them for testing the model. All images are resized to 224×224. RSNA license is available for
non-commercial purposes, and the shifted dataset is licensed under CC-BY-4.0.

• White Blood Cells The White Blood Cells (WBC) dataset (107), comprises two sets of datasets,
each containing microscopic images of 5 different cell types. In our setup, from each dataset, cells
with the label “Lymphocite” are taken as ID and the rest are taken as OOD. The main dataset
contains three hundred 120×120 images of WBCs and their color depth is 24 bits. The shifted
dataset contains one hundred 300×300 color images with significantly higher resolution. To obtain
training data, we sample 70% of the ID images from the main dataset, resulting in 123 images. The
rest of dataset 1 are used as the main test data, and dataset 2 is used as the robust test data. All
images are resized to 224×224. WBC is under the GPL-3.0 license.

J.3 DETAILS ON OUR APPROACH TO GENERATING SYNTHETIC SHIFTED PAIRS

The MVTec Anomaly Detection (MVTecAD) dataset (6) is specifically designed for evaluating
anomaly detection methods in industrial settings. It features high-resolution images from 15 different
categories, including both objects like screws and textures like leather, each with examples of ID and
defective conditions. We utilized the MVTecAD dataset as the main dataset in our experiments. For
the robust version, we added a 10% width padding to all ID and OOD images in the MVTecAD test
set for texture categories. Additionally, for object categories, we modified the background color of
the MVTecAD test set using Facebook’s SAM (Segment Anything Model)(50) model. MVTecAD is
under the CC-BY-NC-SA 4.0 license.

The VisA dataset (111) introduces a novel and substantial dataset, comprising a total of 10,821
images, with 9,621 labeled as ID and 1,200 as OOD, doubling the size of MVTec. This dataset is
organized into 12 subsets, which are divided into three standard categories based on object properties.
The first category includes four printed circuit boards (PCBs) with intricate structures. The second
category consists of datasets showcasing multiple instances in a single view, such as Capsules,
Candles, Macaroni1, and Macaroni2. The third category comprises single instances with roughly
aligned objects, like Cashew, Chewing gum, Fryum, and Pipe fryum. In our experiments, the main
dataset utilized is VisA, and for the robust version, we altered the background color of the VisA test
set using Facebook’s SAM (Segment Anything Model)(50) model. VisA is under the CC-BY 4.0
license.

K INTERCHANGED DATASET PAIRS RESULTS

In this section, we provide results for the case where the “Main” and “Shifted” datasets are inter-
changed, i.e. D is used as the Shifted dataset and D′ is the Main dataset. The splitting policies for
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train and test datasets, and exposure percents are the same as the original setup. Results are presented
in Table 14, and descriptions of the datasets are provided in Table 15.

Table 14: Performance of some AD methods, including our proposed method, on the interchanged
pairs of datasets given in Table 15. The results are presented in the format “Standard/Robust”,
measured by AUROC (%). “Standard” represents the scenario where the test set has a similar style to
the dominant style in the ID training data, while “Robust” refers to the scenario where a shifted test
set is used, having the same core features but differing in style.

Dataset Pair Method

UniAD ReContrast Transformaly Ours

R
ea

l-w
or

ld
D

at
as

et
s

Autonomous Driving 78.6 / 70.5 83.7 / 71.9 89.1 / 72.3 88.3 / 79.3

Camelyon 69.7 / 58.4 68.7 / 62.1 70.9 / 63.7 78.9 / 72.1

Brain Tumor 90.4 / 63.1 88.1 / 67.5 81.0 / 68.4 90.4 / 80.0

Chest CT-Scan 73.6 / 61.7 76.2 / 60.7 78.4 / 62.3 80.0 / 73.8

W. Blood Cells 69.8 / 60.7 75.1 / 54.7 72.1 / 66.7 80.1 / 69.3

Skin Disease 82.1 / 60.7 85.1 / 61.2 79.1 / 64.1 88.1 / 72.3

Average 77.3 / 62.5 79.4 / 63.0 78.4 / 66.3 84.3 / 74.5

Table 15: Specific D and D′ sets for each Real-world dataset

Description Autonomous Driving Camelyon17 Brain Tumor Chest CT-Scan WBC Skin Disease Blind Det.
D GTA5 (71) Hospitals 4-5 (10) Brats 2020 (8) PD-Chest (47) High res (107) PAD-UFES (64) DDR (53)
D′ Cityscapes (21) Hospitals 1-3 (10) Br35H (33) RSNA (88) Low Res (107) ISIC 2018 (18) APTOS (46)

L ALGORITHM

In this section, we present the Robust Novelty Detection Algorithm that outlines our method, detailed
further in Section 5. The A-OOD-Generator function is designed to generate an OOD sample
from a given ID sample. Meanwhile, the ViewGenerator function constructs two positive views
for each ID and OOD sample, utilizing a series of random positive augmentations.

During training, the A-OOD-Generator function produces XOOD from XID, and subsequently, the
ViewGenerator function generates positive views of both XID and XOOD. These views are then
fed into the network. The loss is computed according to equation (1), following which the model is
updated.
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Algorithm 1 Robust Novelty Detection

function A-OOD-GENERATOR(XID)
τ+ = sample({Color Jitter, Horizontal Flip, Grayscale, ...})
SXID = Grad(XID)⊙Grad(τ+(XID)) ▷ Get saliency map for XID using Grad-CAM
mask = get_mask(XID, SXID)
τ− = sample({Rotation, Elastic, Distortion, ...}) ▷ T is a sample of hard augmentations
XOOD = mask ⊙ τ−(XID) + (1−mask)⊙XID
return XOOD

end function

function VIEWGENERATOR(XID, XOOD)
T1, T2, T3, T4 = Sample({Color jitter,Blur,Random H-flip, . . . })

▷ Tis are samples of light augmentations
return T1(XID), T2(XID), T3(XOOD), T4(XOOD)

end function

function TRAIN
for XID ∈ Dataloader do

XOOD = A-OOD-generator(XID)
X = [XID, XOOD]
Xview1

ID , Xview2
ID , Xview1

OOD , Xview2
OOD = ViewGenerator(XID, XOOD)

Y = [0]× |XID|+ [1]× |XOOD|
▷ Y is a label vector where 0 denotes samples from XID and 1 denotes samples from XOOD.
loss = LOCL(X

view1
ID , Xview2

ID , Xview1
OOD , Xview2

OOD ) + LCE(X,Y ) ▷ As defined in equation
(1)

Update(loss)
end for

end function

function MAIN
for epoch in range(200) do

Train()
end for

end function

Main()
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M EXTRA EVALUATION METRICS

The AUROC (Area Under the Receiver Operating Characteristic curve) metric is a widely recognized
metric for evaluating the performance of outlier detection methods. To provide a more comprehensive
assessment, we have included results using two additional metrics—AUPR and FPR95%—previously
employed in related studies (38). The table below contrasts our method with TRANSFORMALY, a
recent outlier detection technique. Specifically, FPR95% measures the false positive rate at which
95% of outlier samples are accurately identified; a lower FPR95% indicates enhanced detection
capabilities. Both AUROC and AUPR encapsulate a method’s effectiveness across various thresholds,
where a higher AUROC suggests a greater probability that an outlier is correctly prioritized higher
than an in-distribution sample based on anomaly scores. Therefore, higher values of AUROC and
AUPR are indicative of superior performance, with a baseline uninformative detector achieving an
AUROC of 50%.

N IMPLEMENTATION DETAILS

MODEL DETAILS

We employ a pre-trained ResNet-18 as the foundational encoder network for both the student and
teacher ResNet-18 models, excluding the binary layers from each. To classify ID and auxiliary OOD
data, we append a new linear layer at the end of the network. Additionally, we extract features
from layers 1, 2, and 3 of both the student and teacher models to calculate the OCL loss. These
intermediate features, which provide information at various levels of abstraction, are crucial for the
student model to effectively mimic the teacher model.

TRAINING AND EVALUATION DETAILS

During optimization, our model is trained for 200 epochs using the AdamW optimizer, with a
weight decay of 1e-4 and a learning rate of 5e-5. The batch size for training is set to 128. We
evaluated all methods using the Area Under the Receiver Operating Characteristic curve (AUROC).
Our experiments were conducted on NVIDIA GeForce RTX 3090 GPUs (24GB) using Python v3.8.

TIME COMPLEXITY

An additional component in our work that adds to the time complexity, in comparison with previous
ND works, is the saliency map extraction from GradCAM. Using the resources explained in the
previous subsection, we generate saliency maps for one hundred 224×224 images in ∼ 2.7± 0.04
seconds over all datasets in our setup. Notably, we compute these maps for each sample before
starting the training phase. This adds an initial overhead but reduces overall time complexity as we
avoid redundant computations of the maps.

Moreover, we observe that our method usually converges after ∼ 150 epochs on average, which
should be taken into consideration when estimating total time. For the batch size and backbone
specified in Appendix N, each epoch should take less than one minute. Further, evaluation time
is proportional to dataset size, but for an average-sized dataset, e.g. One-class MVTecAD, should
be less than a minute. Formally speaking, calculating the LOCL loss takes O(β2) time, giving
O(GradCAM) + (total iters) · (O(β2) +O(LCE)). On eval time, we have (|D′test|) ·O(f), where
f is the output of the model.

O LIMITATIONS

In this study, we utilize an interpretable method to identify and distort the core features of ID
samples. Despite demonstrating the effectiveness of our approach, there are some limitations to
consider. Firstly, in certain image domains, such as texture images (e.g., grid images), the distortions
introduced may resemble random alterations rather than systematic ones, potentially impacting the
performance of the method because the core regions of texture images are not well defined. Secondly,
although our method has been validated on 12 diverse datasets spanning various tasks, including white
blood cell analysis in medical imaging, the hard augmentations applied may not always accurately
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represent real-world OOD samples. This discrepancy could affect the performance of our approach
in specific scenarios where the real-world OOD samples significantly differ from the crafted OOD
samples.

Furthermore, our proposed method can be viewed as a general pipeline that consistently performs well,
rather than achieving large margins in standard novelty detection on a specific dataset. Although this
low-variance performance may indicate a level of reliability, in certain scenarios, a highly specialized
method with higher performance might be more desirable, as discussed in Appendix T.

P EMBEDDING-LEVEL ANALYSIS
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(a) Embeddings of main and shifted dataset
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(b) Main test set embeddings against A-OODs

Figure 6

To provide more insight into our model’s intrinsic discriminative abilities, we plot the visualizations
of the embeddings generated by our model on the BRaTS dataset. Below we give explanations and
insights on these plots.

Figure 6a provides a t-SNE visualization demonstrating the model’s ability to differentiate between
normal and anomalous samples in both “Standard (main test set)” and “Robust (shifted test set)”
settings, as achieved by our Student model. In the plot, blue and green dots represent ID and OOD
samples in standard settings, and red and yellow dots represent ID and OOD samples in robust
settings, respectively. In our pipeline (outlined in Section 5), features from the three layers, f1s (x),
f2s (x), and f3s (x), are concatenated along with the binary head. For this visualization, we focus
solely on the concatenated features from the three layers, excluding the binary head, to analyze the
embedding structure. The plot illustrates that, even prior to the application of the binary classification
layer, our model successfully distinguishes between normal and anomalous samples under both
standard and robust setups, demonstrating strong performance. This shows the effectiveness of the
embedding features in capturing distinctions between the different sample categories. Specifically, in
standard settings, the discrimination is handled with near-perfect precision, and in robust settings, we
observe a minor performance decline.

Figure 6b illustrates the embeddings generated by our model for the actual test set compared to those
for our crafted Auxiliary Out-of-Distribution samples (A-OODs). The purpose of this visualization is
to provide a direct comparison between the distribution of the A-OODs and that of the actual OODs.
As highlighted in Theory 1 in Section 4, the ideal A-OODs should closely approximate the distribution
of the actual OODs, facilitating the model’s capacity to generalize effectively. Additionally, as
mentioned in the Remarks, our A-OODs are carefully designed by making minimal modifications
to in-distribution (ID) samples, ensuring they exhibit out-of-distribution characteristics without
diverging excessively. This plot reinforces that assertion by demonstrating that the A-OODs align
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closely with the optimal distribution. Consequently, this proximity helps the model train a more
robust discriminator, which is better equipped to distinguish between ID and OOD samples.

Q OOD GENERATION METHODS COMPARISON

In this section, we present examples of OOD generation methods, including our own A-OOD
generation method, detailed in Section 5. The comparative samples can be viewed in Figure 10 for
the MVTecAD dataset, in Figure 11 for the VisA dataset, and in Figure 9 for the remaining datasets.
Techniques such as Fake It, Mixup, and Dream OOD influence both the core and style features of
the samples. In contrast, the CutPaste method, which selects pasting areas randomly, may variably
affect either core or style features, thus not consistently impacting the sample label. However, our
method, as demonstrated in Section 5, specifically targets and distorts the core features of the samples,
demonstrating its efficacy in generating OOD samples from given ID samples.

Specifically, for the Dream OOD technique, we provided the desired label in the form of text.

R DETAILS ON EVALUATING OTHER METHODS

To obtain the results of other models in our experiment, we use the official code released with their
work. We train and evaluate their code with minimal changes, i.e. only changing the dataloaders
and code related to that. Moreover, for works with multiple setups (e.g. backbone, loss function,
etc.) we use the default method reported in their paper. As for epoch number, batch size, and other
hyperparameters, we set them to their default values reported in their papers.

S CONSISTENT SUPERIOR PERFORMANCE WHEN ENCOUNTERING FAR OOD
SAMPLES

While our method, alongside the localized augmentation strategy, has primarily focused on approxi-
mating the behavior of near-OOD samples, it is crucial to evaluate robustness against diverse types
of OOD data. To this end, we conducted an experiment simulating far OOD samples, as detailed in
Table 16.

Table 16: Performance on ID and OOD Datasets

ID Dataset

OOD Dataset
Main testset Shifted testset Gaussian Noise SVHN

MVTec AD 94.2 87.6 97.9 100.0
Driving 92.9 84.2 100.0 98.7
Camelyon 75.0 72.4 97.4 100.0
Brain 98.2 79.0 100.0 95.7
VisA 89.3 82.1 99.3 100.0
WaterBirds 76.5 74.0 95.6 100.0
Chest 72.8 71.6 96.3 100.0
Blood 88.8 72.1 98.1 100.0
Skin 90.7 70.8 97.2 100.0

T COMPARISON WITH SOTA METHODS ON MVTECAD AND VISA.

Recent anomaly detection methods have primarily focused on two datasets: MVTecAD and VisA,
achieving impressive results on these datasets. However, these methods often struggle to generalize
to other datasets. In this section, we compare our method with additional state-of-the-art (SOTA)
methods, which incorporate a heavy inductive bias, on the MVTecAD and VisA datasets. The
primary objective of our study was to propose a robust model for the novelty detection domain,
particularly under distributional shifts. Our method addresses the critical challenge where models
tend to rely on non-causal (style) features of the data rather than causal ones. To overcome this, we
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Table 17: Performance of our method vs. best previous work on multiple datasets, using the AUPR
and FPR95% metrics.

Method Dataset

Metric Brain Tumor Autonomous Driving MNIST FMNIST WaterBirds MVTecAD VISA

Ours AUROC 98.2 / 79.0 92.9 / 84.2 93.1 / 73.8 92.1 / 78.7 76.5 / 74.0 94.2 / 87.6 89.3 / 82.1
Ours AUPR 95.7 / 81.9 91.0 / 86.6 85.1 / 76.1 96.0 / 80.9 72.1 / 69.1 96.4 / 89.7 92.6 / 84.7
Ours FPR95% 5.7 / 27.4 13.4 / 19.9 6.3 / 35.8 16.0 / 32.3 19.1 / 28.5 15.3 / 22.4 17.6 / 25.0

Transformaly AUROC 93.7 / 54.7 87.4 / 70.5 67.1 / 55.0 84.6 / 63.4 81.0 / 79.3 85.9 / 51.4 85.5 / 53.8
Transformaly AUPR 95.1 / 61.9 89.1 / 72.9 71.0 / 58.5 87.1 / 66.7 84.1 / 79.9 88.1 / 53.8 82.6 / 59.8
Transformaly FPR95% 10.6 / 48.7 17.3 / 33.1 31.8 / 45.9 25.6 / 36.1 15.4 / 26.5 16.9 / 37.9 16.2 / 43.0

Method Driving Camelyon Brain Chest Blood Skin Blind MVTec VisA Waterbirds DiagViB-FMNIST Avg Clean.Std.
SimpleNet (55) 82.6 / 63.7 64.7 / 54.5 89.1 / 60.2 62.4 / 50.7 61.4 / 54.1 82.2 / 64.7 86.7 / 58.4 99.6 / 65.1 96.8 / 71.0 68.1 / 59.8 78.8 / 58.3 79.3 / 60.0 13.5
DDAD (62) 86.4 / 65.2 65.3 / 59.7 90.9 / 61.4 60.2 / 45.8 60.9 / 52.7 84.2 / 65.1 91.8 / 57.1 99.8 / 62.6 98.9 / 60.4 64.8 / 58.7 76.5 / 61.6 80.0 / 59.1 15.1
EfficientAD (4) 86.1 / 70.1 68.4 / 59.6 91.5 / 65.7 61.9 / 52.2 63.7 / 54.3 86.7 / 63.4 88.6 / 60.3 99.1 / 59.7 98.1 / 57.5 65.7 / 59.1 78.3 / 59.4 80.7 / 60.1 13.8
DiffusionAD (102) 84.8 / 61.9 67.6 / 63.4 88.7 / 63.3 63.0 / 54.8 60.2 / 56.1 85.7 / 64.0 87.3 / 61.7 99.7 / 67.1 98.8 / 63.8 66.8 / 63.1 75.8 / 60.7 79.9 / 61.8 14.0
ReconPatch (41) 83.9 / 69.3 68.0 / 56.9 87.6 / 59.6 62.8 / 55.1 55.9 / 53.7 64.0 / 63.1 89.7 / 57.6 99.6 / 60.2 95.4 / 61.2 65.0 / 60.5 76.8 / 59.3 77.2 / 59.7 14.9
GLASS (15) 85.3 / 66.7 68.1 / 57.4 90.4 / 63.7 63.7 / 57.7 63.5 / 54.1 87.2 / 62.7 90.3 / 60.7 99.9 / 65.3 98.8 / 62.7 68.4 / 61.7 79.7 / 63.7 81.4 / 61.5 13.6
GeneralAD (89) 89.5 / 73.9 69.1 / 64.2 91.4 / 71.0 64.5 / 62.7 65.7 / 63.1 89.7 / 66.4 88.3 / 57.1 99.2 / 67.2 95.9 / 64.9 70.3 / 65.7 78.3 / 64.7 82.0 / 65.5 12.7
GLAD (98) 89.7 / 70.1 70.5 / 62.9 90.8 / 68.4 65.9 / 61.9 64.9 / 59.5 90.0 / 65.7 91.8 / 58.7 99.3 / 63.7 99.5 / 60.4 71.8 / 63.7 80.9 / 60.9 83.2 / 63.3 12.9
Ours 92.9 / 84.2 75.0 / 72.4 98.2 / 79.0 72.8 / 71.6 88.8 / 72.1 90.7 / 70.8 96.1 / 73.2 94.2 / 87.6 89.3 / 82.1 76.5 / 74.0 92.1 / 78.7 87.9 / 76.9 8.9

Table 18: Comparison of our method with state-of-the-art methods on MVTecAD and VisA, showing
superior average performance and lower clean performance variability across both clean and robust
conditions (The implementation of these methods is based on their official repositories, utilizing their
default hyperparameters.)

introduced a novel pipeline, backed by theoretical analysis. While certain SOTA methods may achieve
better performance on specific datasets in clean settings, our method demonstrates superior average
performance across both clean and robust (shifted) scenarios. Furthermore, our method exhibits a
lower standard deviation in clean performance, highlighting its reliability and consistency. Based on
our results, we believe our method strikes the best balance between clean and robust performance
compared to previous approaches (Table 18).

Recently the MVTecAD and VISA datasets have attracted attention as they have high relevance for
industrial novelty detection benchmarks. Notably though, although they have achieved nearly perfect
performance on these challenging datasets, they suffer from over-specialization (60), meaning the
algorithms that achieve high performance lack generalization abilities. Thus, we acknowledge that
our method’s clean performance on the MVTec/VISA dataset could be perceived as a drawback.
However, we believe it is not entirely fair to compare our method against standard novelty detection
methods on specific datasets like MVTec/VISA, and our clean performance should be considered as
a non-critical limitation.

The SOTA methods for these datasets have often been developed with a strong inductive bias,
specifically tailored to the characteristics of these datasets. For example, these methods, such as
PatchCore with a 99.6% AUROC performance on MVTecAD, heavily rely on patch-based feature
extraction. This approach works well because these datasets primarily consist of texture-based novelty
samples rather than semantic ones. This reliance can lead to performance degradation when these
methods are applied to other novelty detection datasets that emphasize semantic novelty detection.
This issue is also reflected in the computed standard deviation, which was lower for our method
than for the SOTA methods on MVTecAD/VISA. (An example of texture-based novelty detection: a
broken screw versus an intact screw. An example of semantic-based novelty detection: a dog versus a
cat, with the cat assumed as an inlier concept.)

When comparing our method to the existing novelty detection approaches, we believe our method
demonstrates superior robustness in detection performance, while maintaining clean detection perfor-
mance that is consistently higher than or competitive with other methods (see Table 1). Additionally,
we would like to highlight that our average clean performance across datasets surpasses that of other
methods, indicating that our solution offers the best overall trade-off among existing methods.
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Figure 7: Main and Shifted datasets comparison on the MVTec AD dataset.
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Figure 8: Main and Shifted datasets comparison on the VisA dataset.
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Figure 9: OOD Generator methods comparison on datasets.
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Figure 10: OOD Generator methods comparison on the MVTec AD dataset.
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Figure 11: OOD Generator methods comparison on the VisA dataset.
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