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Abstract
We introduce Ibex, an immunoglobulin protein
structure prediction model that achieves state-of-
the-art accuracy in modeling the binding domains
of antibodies, nanobodies and T-cell receptors.
Ibex can model both bound and unbound con-
formations of the protein, having been trained on
labeled apo and holo pairs. Using a private dataset
of hundreds of antibody structures, we evaluate
the out-of-distribution performance of common
structure prediction tools, showing improved ro-
bustness of Ibex compared to existing specialized
structure prediction models.

1. Introduction
The accurate prediction of immunoglobulin protein struc-
tures, most notably among them antibodies and T-cell recep-
tors, is of critical importance to the design of better biologics
and the acceleration of drug discovery. A central task for
antibody design is understanding the interactions between
residues in the complementarity determining region (CDR)
and the antigen, particularly those involving the third CDR
loop on the heavy chain (CDR H3) (Narciso et al., 2011).
The CDR H3 loop is uniquely diverse due to it being con-
structed by the recombination of three different genes, and
can undergo substantial conformation change upon bind-
ing, making it challenging to model (Greenshields-Watson
et al., 2025). We aim to improve the prediction accuracy on
CDR loops of antibodies by training a pan-immunoglobulin
structure prediction model, through the curation of a wider
corpus of related structural data and the explicit incorpora-
tion of their binding state.

We introduce Ibex, a state-of-the-art antibody, TCR and
nanobody structure prediction model that achieves compa-
rable performance to Boltz-1 (Wohlwend et al., 2024) at
a fraction of the computational cost. We benchmark Ibex
against several recent models on an internal benchmark of
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Figure 1. Holo ground truth and predictions shown on the left, with
apo poses shown on the right. The top row shows an antibody
(PDB codes: 2fr4 and 1xf3), with holo Ibex predictions in
dark red and apo predictions in salmon, superimposed on their
respective ground truth structures shown in green and blue. The
view is centered on the H3 loop, with side chains shown for the
loop residues. The bottom row shows the β3 loop of a TCR (6eqb
and 4jfh).

several hundred unpublished antibody structures, showing
improved performance compared to previous specialized
and general protein models.

Ibex is trained on a combined dataset of antibodies, nanobod-
ies, TCRs and other immunoglobulin-like domains. Each
structure in the training dataset is labeled as apo or holo,
and both the bound or unbound conformation can be pre-
dicted at inference. Examples of apo and holo predictions
for the same sequences are shown in Figure 1, with the
corresponding ground truth overlayed in grey.

2. Model
Ibex follows a similar architecture to ABody-
Builder2 (Abanades et al., 2023) and uses several
structure module blocks from AlphaFold2 (Jumper
et al., 2021) to refine structures from an input sequence
embedding. An overview of the model is given in Figure 2.

We use as input a combination of ESM-C sequence em-
beddings (ESM Team, 2024), the one-hot encoding of the
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Figure 2. Overview of the Ibex model. The one-hot encoded
residue features are concatenated with a projection of language
model embeddings and used as input to 16 structure module blocks.
The final residue representation is then used to predict all atomic
coordinates and uncertainties.

sequence, and a residue-level encoding of the chain and
conformation feature. The conformation token is provided
as a label during training, and used as an additional input at
inference, to disambiguate between apo and holo structures.
The language model embeddings are passed to a two-layer
MLP and concatenated with the remaining node features
after applying a layer normalization. Pairwise edge features
are set to the one-hot encoding of relative positions in the
sequence, concatenated with an encoding of which chains
both residues belong to. For each invariant point attention
layer in the structure module, this pair representation is
concatenated with a distance feature map and provided as
input. The core of the model consists of 16 consecutive
and independent structure module blocks, which update
residue coordinates and node features through an invariant
point attention layer. A key change from ABodyBuilder3
is the introduction of a residual connection between the
initial residue representation embedding and each structure
module block, which improves training convergence and
ensures information from the conformation token is pre-
served throughout the network. The residue representation
from the last structure module block is used to predict back-
bone atom coordinates. The original input sequence is then
used to reconstruct side-chain atoms from idealized coordi-
nates using predicted chi-angles. Uncertainties are modeled
through a predicted local-distance difference test (pLDDT)
head, which predicts a projection of local confidence into
50 bins.

3. Data
Ibex is intended to be a pan-immunoglobulin structure pre-
diction model, and we therefore aim to collate a comprehen-
sive dataset of all available immunoglobulin protein struc-
tures, with explicit labeling of their binding state. The train-

ing data for Ibex is constructed from three different sources,
which are clustered and combined dynamically throughout
the training process. Each structure is also annotated with
a conformation token, which labels them as apo or holo
based on the presence of an antigen to which the variable
region is bound. The model implicitly learns the distinc-
tive structural motifs and folding patterns that differentiate
antibodies, TCRs, and nanobodies.

The first source is a dataset of structures of antibody
variable regions, nanobodies and TCR variable regions.
These are curated from the structural antibody database
(SAbDab) (Dunbar et al., 2014) and the structural TCR
database (STCRDab) (Leem et al., 2018). Sequences are
numbered using Anarci (Dunbar & Deane, 2016), and we
use the North definition (North et al., 2011) to delineate
the CDR residues. Structures are characterized as apo if
no antigen chain is indicated in the SAbDab or STCRDab
metadata, otherwise they are labeled as holo. We remove
structures with a resolution above 3.5Å, as well as structures
with a CDRH3 or β3 loop of more than 35 residues. We also
remove any antibody variable domains for which one of the
six Abangle (Dunbar et al., 2013) VH-VL orientation angle
or distance values are more than five standard deviations
from the mean computed over SAbDab. We are left with
14k structures, 760 of which are matched apo/holo pairs for
which both bound and unbound conformations are known.
All structures are clustered based on the sequence of their
concatenated CDR loops, using mmseqs2 (Steinegger &
Söding, 2017) with 95% sequence identity, resulting in 4.2k
unique clusters.

Our second dataset consists of immunoglobulin-like do-
mains found in the Protein Data Bank. We iden-
tify any immunoglobulin-like structures according to the
ECOD (Cheng et al., 2014) X-groups ”Immunoglobulin-
like beta-sandwich” and ”jelly-roll” with PDB codes absent
from both SAbDab and STCRDab. These are processed as
individual chains, and loop residues are defined with the
DSSP algorithm (Kabsch & Sander, 1983). We assign apo
labels to chains for which no heavy atoms are found within
10Å of a loop residue. We obtain a dataset of 22k single
domain structures with resolution below 3.5Å, which are
clustered at 80% sequence identity into 3k unique clusters.

Finally, we curate a dataset of predicted structures from
paired sequences from the Observed Antibody Space
(OAS) (Kovaltsuk et al., 2018; Olsen et al., 2022) using
ESMFold (Lin et al., 2023) and Boltz-1 (Wohlwend et al.,
2024). Starting from 1.7 million unique paired sequences
from OAS, we cluster them using concatenated CDR loops
with a 60% sequence identity threshold, as well as on the
H3 sequence with 50% minimum sequence identity. We
then consider all cluster representatives from the concate-
nated CDR clustering which are also in distinct H3 clusters,
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CDR H1 CDR H2 CDR H3 Fw H CDR L1 CDR L2 CDR L3 Fw L
A

nt
ib

od
ie

s Boltz-1 0.63 0.52 2.96 0.47 0.54 0.38 0.96 0.52
ABodyBuilder3 0.71 0.65 2.86 0.51 0.67 0.49 1.13 0.59

ESMFold 0.70 0.99 3.15 0.65 1.04 0.50 1.29 0.61
Ibex 0.61 0.57 2.72 0.45 0.57 0.43 0.98 0.52

N
an

ob
od

ie
s Boltz-1 1.59 0.97 2.83 0.61 - - - -

NanoBuilder2 1.74 1.22 3.31 0.76 - - - -
ESMFold 1.55 0.94 3.60 0.63 - - - -

Ibex 1.62 0.96 3.12 0.62 - - - -

CDR β1 CDR β2 CDR β3 Fw β CDR α1 CDR α2 CDR α3 Fw α

T
C

R
s

Boltz-1 0.59 0.53 2.40 0.66 0.95 0.87 2.05 0.58
TCRBuilder2+ 0.72 0.79 1.85 0.68 1.18 1.04 2.00 0.94

ESMFold 0.68 0.66 2.49 0.71 1.35 0.96 2.31 0.75
Ibex 0.57 0.57 1.84 0.60 1.02 0.85 1.93 0.71

Table 1. Mean test RMSD in angstrom, evaluated separately for each region on a test set of antibodies, nanobodies and TCRs.

resulting in a highly diversified set of 91k paired sequences.
Using ESMFold, we predict the corresponding structures,
and filter out any for which one of the Abangle value is
more than three standard deviations from the SAbDab mean,
leaving us with 51k ESMFold structures. We randomly
sample 10k of the 40k sequences for which ESMfold struc-
tures failed our Abangle filter, and predict their structure
with Boltz-1, which are again filtered through the same
procedure, resulting in 9k accepted Boltz-1 structures. We
perform a short relaxation with OpenMM of all predicted
structures. All predicted structures are labeled as unbound.
This provides us with a dataset of 60k data points with very
high CDR diversity which we use for distillation and to
improve generalization.

4. Training
We train Ibex in three stages, using a curriculum learning
strategy (Bengio et al., 2009), where training is slowly spe-
cialized towards experimental antibody and TCR structures
after pre-training on a larger corpus of predicted structures
and related experimental protein data.

The first two stages use a Frame Aligned Point Error (FAPE)
loss along with a backbone torsion angle and plDDT losses.
The FAPE loss is clamped at 10Å, and 30Å when it is
computed between CDR and framework residues, or be-
tween loop and non-loop annotated residues in the case of
immunoglobulin-like single domains. Following a similar
approach to AlphaFold2 (Jumper et al., 2021), the total loss
term is the sum of the average backbone FAPE loss across
each layer, the full atom FAPE loss from the final structure,
as well as side-chain and backbone torsion angle losses and
a pLDDT loss. The pLDDT loss consists of a cross-entropy
loss on the discretised per-residue lDDT-Cα.

The third stage introduces structural violation losses. These
follow AlphaFold2-Multimer (Evans et al., 2021) and penal-
ize bond length violations, bond angle violations and steric
clashes of non bonded atoms.

Across each stage, we use an AdamW optimizer (Loshchilov
& Hutter, 2017). The first stage is trained with a constant
learning rate of 2 · 10−4 for 3000 epochs. The second stage
lasts 2000 epochs, and starts with a learning rate of 2 · 10−4

and slowly anneals to 2 · 10−5 from 200 epochs onwards
using a lambda scheduler. The third stage is trained with a
constant learning rate of 5 · 10−5 for 1000 epochs.

An epoch consists of randomly sampling N structures ac-
cording to weighted probabilities assigned to each data
point, where N is set to the total size of the SAbDab and
STCRDab structures used. We assign a probability inversely
proportional to the cluster size to each data point to im-
prove o.o.d. generalization (Loukas et al., 2024). Matched
pairs of apo/holo structures are identified and sampled sepa-
rately from the unpaired SAbDAb and STCRDab structures
to ensure they appear together in a batch. We upsample
nanobodies and TCR by a factor 1.5, while paired apo/holo
are upsampled by a factor 2. In the first stage, the weight-
ing of different data sources is split as 30% SAbdab and
STCRDab, 40% predicted structures, and 30% from the
broader immunoglobulin protein dataset. This is changed to
70% SAbDAb and STCRDab, 20% predicted structures and
10% immunoglobulin proteins in the second stage. Finally,
in the third stage, we use 95% of SAbDab and STCRDab
structures and 5% of predicted structures, this time restrict-
ing only to Boltz-1 samples and discarding the ESMFold
and broader immunoglobulin data.

The final Ibex model consists of an ensemble of eight inde-
pendently trained models. Predictions of all eight models
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Figure 3. Distribution of RMSD between matching apo and holo
pairs, comparing ground truth structures to Ibex predictions.

are aligned, and the model returns the prediction closest to
the mean. Each model in the ensemble is trained using a
different validation set of 150 antibody structures randomly
selected from the SAbDab clusters.

5. Results
Our immunoglobulin structure prediction model outper-
forms existing antibody-specific models in the prediction
of the CDRH3 loop. A summary table of average RMSD
values over a test set of antibodies, nanobodies and TCRs
is shown in Table 1, showing Ibex achieving the best re-
sults across most modalities. For consistent benchmark-
ing, we train Ibex using the combined test set of anti-
bodies, nanobodies and TCRs from the ImmuneBuilder
suite (Abanades et al., 2023), removing 6 nanobodies from
the test set for which a matching sequence was observed
in the NanoBody2 train or validation split. All structures
from the dataset that are in a cluster that contains a test set
structure are removed from training. Further comparisons
are given in Appendix A

We are also able to recapitulate the conformation shift be-
tween bound and unbound structures of existing antibodies
for which both apo and holo conformations are known. This
is shown in Figure 3, where we present the CDRH3 RMSD
between matched apo and holo pairs, both for predicted
structures obtained from Ibex and for the ground truth PDB
structures. Most of these pairs are part of the training data.

We further evaluate our model on a diverse private dataset
of over a thousand antibody structures. This dataset con-
sists of 1103 structures resolved for internal studies, often
antibodies with no known public structure, spanning H3

Figure 4. CDR H3 RMSD as a function of edit distance to the
closest matching H3 loop in SAbDAb. The box shows the lower
and upper quartile, with the median represented as a horizontal
line and the mean as a filled circle. Outliers are shown as empty
circles, with ESMFold having outliers outside of the plotted range.

loop lengths from 5 to 22 residues. The resolution of these
structures ranges from 1.1Å to 3.6Å with an average reso-
lution of 2.3Å. In Figure 4, we show the CDRH3 RMSD
on these internal structures as a function of the edit dis-
tance to the closest matching H3 loop in SAbDab, for the
300 structures that have unique H3 loops not represented
in SAbDab. Here we observe that while ABodyBuilder3
achieves high performance on the test set, it is not as robust
out of distribution compared to state-of-the-art general pro-
tein structure prediction models. In contrast, Ibex shows
comparable performance to Boltz-1, which we attribute to
distillation from predicted structures and the use of a broader
corpus of training data.

6. Discussion
We introduce Ibex, an immunoglobulin protein structure
prediction tool that can model antibodies, nanobodies and
T-cell receptors, achieving state-of-the-art accuracy in anti-
body structure prediction while introducing the capability
to model both bound and unbound conformations of the
binding domain. This explicit modeling of the binding state
allows us to extend the data landscape and improve predic-
tion accuracy in cases where several ground truth structures
exist for the same sequence, previously leading to ambigu-
ous minimization objectives.

We evaluate our model on an internal dataset of hundreds of
antibody structures, showing improved performance com-
pared to existing antibody and protein structure prediction
models, at a fraction of the compute cost of the latter. Ibex
provides an important stepping stone towards the design of
better biologics, by allowing for fast and accurate predic-
tions of the structure of their binding domains.
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A. Detailed comparison
We provide here a detailed view of the summary table 1. In figure 5, we show the RMSD on the ImmuneBuilder antibody
test set separated by region, and comparing Ibex predictions to ABodyBuilder3. Figure 6 gives a comparison of Ibex to
NanoBuilder2 on the test set of nanobodies. Here the 6 structures for which an identical match was identified in the train
or validation split of NanoBuilder2, which are PDB codes 7n4n, 7omt, 7q6c, 7rg7, 7zmv, and 7zxu, are shown in
grey. These points were excluded from the average presented in table 1. In Figure 7, we provide a comparison of Ibex to
TCRBuilder2+ on the test set of 21 TCR structures.

Figure 5. CDR and framework RMSD in angstrom, comparing Ibex against ABodyBuilder3 on the ImmuneBuilder test set of 34
antibodies.

Figure 6. CDR and framework RMSD in angstrom, comparing Ibex against NanoBuilder2 on the ImmuneBuilder test set of 32 nanobodies.
The 6 datapoints for which identical CDR H3 sequences were identified in the train or validation split are shown in grey and are excluded
from the displayed histogram.
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Figure 7. CDR and framework RMSD in angstrom, comparing Ibex against ABodyBuilder3 on the ImmuneBuilder test set of 21 TCRs.
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B. Ablation studies
In this section we consider the impact on out-of-distribution robustness of several architecture and data choices. To this end,
we retrain a single model checkpoint (i.e. without ensemble) for 400 epochs in each three stage. This is shown as ”base” in
Figure 8. Ablation studies of similar checkpoints trained without the immunoglobulin-like data, without the predicted data,
as well as trained only on SAbDab and STCRDab, are also shown. We can observe that both the predicted structures and the
immunoglobulin-like data lead to improved robustness at large edit distance from known public CDR H3 loops, with the
model trained on combined data performing best.

Figure 8. CDR H3 RMSD as a function of edit distance to the closest matching H3 loop in SAbDAb. We show ablation studies of the data
used, removing the predicted data, the immunoglobulin-like data, and both, from the training of a single Ibex checkpoint.
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