
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DAWN-SI: DATA-AWARE AND NOISE-INFORMED
STOCHASTIC INTERPOLATION FOR SOLVING INVERSE
PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Inverse problems, which involve estimating parameters from incomplete or noisy
observations, arise in various fields such as medical imaging, geophysics, and
signal processing. These problems are often ill-posed, requiring regularization
techniques to stabilize the solution. In this work, we employ Stochastic Interpola-
tion (SI), a generative framework that integrates both deterministic and stochastic
processes to map a simple reference distribution, such as a Gaussian, to the target
distribution. Our method DAWN-SI: Data-AWare and Noise-informed Stochastic
Interpolation incorporates data and noise embedding, allowing the model to ac-
cess representations about the measured data explicitly and also account for noise
in the observations, making it particularly robust in scenarios where data is noisy
or incomplete. By learning a time-dependent velocity field, SI not only provides
accurate solutions but also enables uncertainty quantification by generating multi-
ple plausible outcomes. Unlike pre-trained diffusion models, which may struggle
in highly ill-posed settings, our approach is trained specifically for each inverse
problem and adapts to varying noise levels. We validate the effectiveness and ro-
bustness of our method through extensive numerical experiments on tasks such as
image deblurring and tomography.

1 INTRODUCTION

Figure 1: Example images from MNIST (left) and STL10 (right) datasets showing the recovery of
deblurred images from the blurred (noisy) data (top panel) at different levels of noise (0%, 1%, 5%,
10%, 20%). Our methods DAW-SI (middle panel) incorporates the embedding for the blurred data
within the network, while DAWN-SI (bottom panel) incorporates embedding for both data and noise
levels. DAWN-SI is superior to DAW-SI at deblurred image recovery, especially at higher levels of
noise.

Inverse problems are a class of problems in which the goal is to determine parameters (or parameter
function) of a system from observed data. These problems arise in various fields, including medical
imaging, geophysics, remote sensing, and signal processing. Inverse problems are often ill-posed,
meaning that a unique solution does not exist, or the solution may be highly sensitive to small per-
turbations in the data. Solving inverse problems typically requires regularization techniques, which

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

introduce additional constraints or prior information to stabilize the solution and mitigate the effects
of ill-posedness. Such regularization can be obtained using various mathematical and computational
methods, including optimization techniques (variational methods), statistical inference (Bayesian or
frequentist) and machine learning (Scherzer et al., 2009; Adler and Öktem, 2017; Calvetti and Som-
ersalo, 2024; López-Tapia et al., 2021). In this paper, we approach inverse problems using the latter
and investigate a new set of methods that are machine learning based for the solution of inverse
problems. In particular, we show how stochastic interpolation (SI) which was recently proposed in
the context of generative models can be effectively used to estimate the solution of inverse problems
and to further investigate its non-uniqueness.

Stochastic Interpolation is a relatively new generative process that provides a unifying framework,
elegantly integrating both deterministic flows and stochastic diffusion models (Albergo et al., 2023).
The core concept of SI is to learn a stochastic process that effectively transports a simple reference
distribution, such as Gaussian, to the desired target data distribution. This transportation process
can manifest as either deterministic or stochastic. In the former case, it is described by an ordinary
differential equation (ODE), while in the latter, it is governed by a stochastic differential equation
(SDE).

The stochastic interpolation framework defines a continuous-time reversibility between the reference
and target distributions, parameterized by time t ∈ [0, 1]. At the initial time t = 0, the distribution
aligns with the reference distribution. As time progresses to t = 1, the distribution evolves to match
the target data distribution. This evolution is achieved by learning the time-dependent velocity field
(for ODEs) or drift and diffusion coefficients (for SDEs) that characterize this interpolation process.
By understanding and modeling this time-dependent transformation, one can generate samples from
the target distribution through numerical integration of the learned ODE or SDE.

SI is a highly flexible methodology for designing new types of generative models. In this work,
we use this flexibility and show how to adopt SI to solve highly ill-posed inverse problems. We
find SI particularly useful since it allows ease of sampling from the target distribution. This implies
that we are able to generate a range of solutions to the inverse problems and thus investigate the
uncertainty that is associated with the estimated solution. Such a process is highly important in
physical applications when decisions are made based on the solution.

Related work: The methods proposed here are closely related to three different approaches for
the solution of inverse problems. First, there is an obvious link to the incorporation of diffusion
models as regularizers in inverse problems (Yang et al., 2022; Chung et al., 2022a;c;b; Song et al.,
2022). The key idea is to leverage a pre-trained diffusion model that captures the data distribution
as a prior, and then condition this model on the given measurements to infer the underlying clean
signal or image. For inverse problems, diffusion methods condition the diffusion model on the given
measurements (e.g. noisy, incomplete, or compressed data) by incorporating them into the denoising
process. Nonetheless, it has been shown in Eliasof et al. (2024) that pre-trained diffusion models
that are used for ill-posed inverse problems as regularizers tend to under-perform as compared to the
models that are trained specifically on a particular inverse problem. In particular, such models tend
to break when the noise level is not very low.

A second branch of techniques that are related to the work proposed here use encoder-decoder type
networks for the solution of inverse problems (see Chung et al. (2024); Thomas et al. (2022) and
reference within). Such approaches are sometimes referred to as likelihood-free estimators as they
yield a solution without the computation of the likelihood. This technique is particularly useful for
problems where the forward problem is difficult to compute.

A third branch of techniques that relates to our approach uses the forward problem within the neural
network (see Eliasof et al. (2024); Mukherjee et al. (2021); Eliasof et al. (2023); Jin et al. (2017)
and reference within). In this approach, one computes the data misfit (and its gradient) within the
network and use it to guide training. Our approach utilizes components from this methodology to
deal with the measured data.

Main Contribution: The core contributions of this paper lie in the design and application of the
DAWN-SI framework, specifically crafted for solving highly ill-posed inverse problems like image
deblurring or tomography. (i) Our method is designed to be problem-specific, which adjusts itself
to the unique structure of the inverse problem it is tasked with, learning the posterior distribution

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

directly, ensuring that the learned velocity fields and mappings are directly applicable to the target
task. (ii) We train a stochastic interpolant by embedding measured data and noise information di-
rectly into the interpolation process. This incorporation allows our model to adapt to a wide range of
noise conditions, something that pre-trained models struggle with. By making the training explicitly
aware of the noise level and data characteristics, our model can better navigate noisy or incom-
plete measured data, producing superior reconstructions. (iii) By learning the posterior distribution
directly and leveraging the stochastic nature of the interpolation process, DAWN-SI generates mul-
tiple plausible solutions for a given inverse problem, allowing us to explore the solution space more
thoroughly and in particular, to estimate the posterior mean and its standard deviation, estimating
the uncertainty in the recovered solution.

2 STOCHASTIC INTERPOLATION AND INVERSE PROBLEMS

In this section we review stochastic interpolation as well as derive the main ideas behind using it for
the solution of inverse problems.

2.1 STOCHASTIC INTERPOLATION: A PARTIAL REVIEW

Stochastic interpolation (SI) is a framework that transforms points between two distributions. Given
two densities π0(x) and π1(x), the goal is to find a mapping that takes a point x0 ∼ π0(x) and
transports it to a point x1 ∼ π1(x). For simplicity and for the purpose of this work, we choose π0

to be a Gaussian distribution with 0 mean and I covariance.

Consider sampling points from both distributions and define the trajectories

xt = (1− t)x0 + tx1 (1)

These trajectories connect points from x0 at t = 0 to x1 at t = 1. More complex trajectories
have been proposed in Albergo et al. (2023), however, in our context, we found that simple linear
trajectories suffice and have advantages for being very smooth in time. The velocity along the
trajectory is the time derivative of the trajectory, that is,

dxt

dt
= v = x1 − x0 (2)

Under the SI framework, the velocity field for all (xt, t) is learned by averaging over all possible
paths. To this end, we parameterize the velocity by a function sθ(xt, t) and solve the stochastic
optimization problem for θ

θ̂ = argmin
θ

Ex0,x1

[
∥sθ(xt, t)− v∥2

]
= argmin

θ
Ex0,x1

[
∥sθ(xt, t) + x0 − x1∥2

]
(3)

After training, the velocity function sθ(xt, t) can be estimated for every point in time. In this work,
given x0, we recover x1 by numerically integrating the ODE

dxt

dt
= sθ(xt, t), x(0) = x0, t ∈ [0, 1], (4)

by Fourth-Order Runge Kutta method with fixed step size. An alternative version where the samples
are obtained by using a stochastic differential equation can also be used.

While it is possible to estimate the velocity v from (xt, t) and then compare it to the true velocity, it
is sometimes easier to work with the velocity as a denoiser network, that is, estimate x1 and use the
loss of comparing x1 to its denoised quantity. To this end, note that

x1 = xt + (1− t)v ≈ xt + (1− t)sθ(xt, t) (5)

Equation (5) is useful when a recovered x1 is desirable. In the context of using SI for inverse
problems, obtaining an approximation to x1 can be desirable, as we see next.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 APPLYING STOCHASTIC INTERPOLATION FOR THE SOLUTION OF INVERSE PROBLEMS

Consider the case where we have observations on x1 of the form

Ax1 + ε = b (6)

Here, A is a linear forward mapping (although the method can work for nonlinear mappings as well)
and ε ∼ N (0, σ2I) is a random vector. We assume that A is rank-deficient or numerically rank-
deficient (Hansen, 1997), so the effective dimension of b is smaller than x1 and one cannot obtain a
reasonable estimate for x1 given the noisy data b without the incorporation of a-priori information.

Using Bayes’ theorem, we have

π(x1|b) ∝ π(b|x1)π(x1) (7)

Bayes’ theorem suggests that it is possible to factor the posterior distribution π(x1|b) using the
known distribution of π(b|x1) and the prior distribution π(x1). This observation motivated a num-
ber of studies that used the estimated pre-trained distribution π(x1) in the process of solving an
inverse problem (Yang et al., 2022; Chung et al., 2022a;c;b; Song et al., 2022). Nonetheless, it has
been shown in Eliasof et al. (2024) that such estimators tend to produce unsatisfactory results when
solving highly ill-posed problems or when the data is very noisy. The reason for this behaviour
stems from the fact that pre-trained estimators push the solution towards the center of the prior dis-
tribution, irrespective of what the data represents. To see this, we use a careful dissection of the
solution. Consider the singular value decomposition

A =
∑
i

λiuiv
⊤
i

where ui and vi are the left and right singular vectors and λi are the singular values. Given the
orthogonality of u, we can decouple the data equations into

λi(v
⊤
i x1) = (u⊤

i b), i = 1, . . . , n

If λi is large, the projection of x1 onto the eigenvector vi is very informative and very minimal
regularization is required. However, if λi ≈ 0, the contribution of vi to the solution is difficult,
if not impossible, to obtain and this is where the regularization is highly needed. When using pre-
trained models, the prior π(x1) is estimated numerically and it is unaware of the inverse problem
at hand. Errors in the estimated π(x1) in the parts that correspond to the large singular vectors
may not be destructive. However, if π(x1) has errors that correspond to the very small singular
values, that is, to the effective null space of the data, this may lead to the artifacts that have been
observed early in Kaipio and Somersalo (2004); Tenorio et al. (2011). This suggests that although
it is appealing to use a generic pre-trained priors in the process, a better approach is to not use the
Bayesian factorization to prior and likelihood but rather train a stochastic interpolant that maps the
distribution π(x0) to the posterior π(x1|b) directly. Indeed, as we show next, the flexibility of the
SI framework allows us to learn a velocity function that achieves just that.

2.3 A DATA-AWARE AND NOISE-INFORMED VELOCITY ESTIMATOR

In the canonical form of stochastic interpolation, the velocity is estimated from the interpolated
vector xt. In the context of inverse problems, we also have a vector b (measured data) that contains
additional information on x1 and therefore can be used to estimate the velocity towards the posterior.
We now show that by doing a small change to the training process of SI, it is possible to solve inverse
problems using the same concept.

To this end, notice that we train a velocity function sθ(xt, t) that takes in two arguments. In the
context of a specific inverse problem, we have additional information for training the network, the
measured data b and the noise level σ in b. Note that it is also possible to estimate the noise level
directly from the data as proposed in Tenorio et al. (2011). The data b can be used to point toward
x1 even at time t = 0, where xt contains no information on x1 and can therefore improve the
estimation of velocity. Moreover, the information about noise level σ in the measured data during
training also makes the estimator more robust to noise during inference. We thus propose to use the
data and noise when estimating sθ. To this end, we use a transformation f of data b (to be discussed
next), and let

sθ = sθ(xt, f(b), t, σ) = sθ(xt, f(Ax1 + σz), t, σ), (8)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where z ∼ N (0, I). To estimate θ, we simply repeat the minimization process as before and match
the flow where the data is a part of the estimated velocity, that is,

θ̂ = argmin
θ

L1(θ) = argmin
θ

Ex0,x1,σ,t

[
∥sθ(xt, f(Ax1 + σz), t, σ) + x0 − x1∥2

]
, (9)

where L1 represents the mean loss in the prediction of velocity. The trained network can then be
used to invert new data. Let us assume that we are given some fixed vector b and we want to estimate
x1. This can be done simply by solving the ODE

dxt

dt
= sθ(xt, f(b), t, σ), x(0) = x0, t ∈ [0, 1], (10)

where b and σ are now fixed.

As we show in our numerical experiments, having σ as an input to the network plays an important
role, generating an inversion methodology that is robust to different noise levels.

An important question is the design of a network that integrates the information about b into the
velocity estimation process. One important choice is the function f that operates on b. For many, if
not most, inverse problems, the data b belongs to a different space than x. Therefore, it is difficult
to use this vector directly. The goal of the function f is to transform the data, b from the data space
to the space of x. One obvious approach to achieve this is to choose

f(b) = A⊤b. (11)

This approach was used in Mardani et al. (2018); Adler and Öktem (2017), and as shown in Sec-
tion 2.5, can be successful for the transformation of the data into the image space. Other possible
approaches can include fast estimation techniques for x given b such as the conjugate gradient least
squares method (Hansen, 1997). For the experiments presented here, we found that using the adjoint
A⊤ of the forward problem was sufficient.

To demonstrate these points, we consider the following toy example.

Example 2.1 The Duathlon problem: We consider the duathlon problem where one records the
total time it takes to perform a duathlon (bike and run). Given the total time, the goal is to recover
the time it takes to perform each individual segment. The problem is clearly under-determined as
one has to recover two number given a single data point. Let x = [x1, x2] be the vector, where
x1 and x2 represent the time it takes to finish the bike and run segments, respectively. The data is
simply

b = x1 + x2 + ϵ

Assume that we have a prior knowledge that the distribution of x is composed of two Gaussians.
Using SI to generate data from these Gaussians is demonstrated in Figure 2.

The data is obtained by training a network, approximately solving the optimization problem in Equa-
tion (3) and using Equation (4) to integrate x0 that is randomly chosen from a Gaussian.

Now, in order to solve the inverse problem, we train a larger network that includes the data and
approximately solves the optimization problem in Equation (9). Given the data b, we now integrate
the ODE Equation (10) to obtain a solution. The result of this integration is presented in Figure 2
(right). We observe that not only did the process identify the correct lobe of the distribution, it
also sampled many solutions around it. This enables us in obtaining not just a single but rather an
ensemble of plausible solutions that can aid in exploring uncertainty in the result.

2.4 TRAINING THE SI MODEL FOR INVERSE PROBLEMS

When training an SI model, we solve the optimization problem given by Equation (3). In this
process, one draws samples from x0 and x1, then randomly chooses t ∈ [0, 1] to generate the vector
xt. In addition, we generate the data b by multiplying the matrix A with x1 and adding noise ϵ with
a random standard deviation σ.

Next, one feeds the network xt, t, b and σ to compute sθ(xt,b, t, σ) and then compare it to the
velocity v = x1 − x0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Generation without data Generation with data

Figure 2: Generation of the distribution of two Gaussians by SI without and with data.

Figure 3: Schematic of the training process for the SI model for solving inverse problem, where the
forward model is given by A. This figure specifically represents the deblurring inverse problem.
The network with parameters θ can either have noise embedding (DAWN-SI) or not (DAW-SI). The
two loss terms L1 and L2 represent the error in prediction of velocity and misfit, respectively. In
this figure, the transformation f for generating the data embedding was chosen as f = A⊤.

While it is possible to train the network by comparing the computed velocity to its theoretical value,
we have found that adding additional terms to the loss helps in getting a better estimate for the
velocity. In particular, when training the model for inverse problems, we add an additional term to
the loss that relates to the particular inverse problem in mind. To this end, note that after estimating
v, we can estimate x1 using Equation (5). Thus, we can estimate the data fit bθ for the estimated
velocity, given by,

bθ = Axt + (1− t)Asθ(xt, f(b), t, σ) (12)

If the velocity is estimated exactly, then bθ = b. Therefore, a natural loss for the recovery is the
comparison of the recovered data to the given data. This implies that the velocity function should
honor the data b, as well as the original distribution x1. We thus introduce the misfit loss term,

L2(θ) = Ex0,x1,σ,t

[
∥bθ − b∥2

]
, (13)

that pushes the recovered v to generate an x1 that fits the measured data.

To summarize, we modify the training by solving the following optimization problem,

θ̂ = argmin
θ

{
Ex0,x1,σ,t∥sθ(xt, f(b), t, σ)− v∥2 + αEx0,x1,σ,t∥bθ − b∥2

}
, (14)

where α is a hyperparameter, which we set to 1. A schematic for training of SI model is given in
Figure 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.5 ARCHITECTURES FOR DATA-AWARE AND NOISE-INFORMED VELOCITY ESTIMATORS

Our goal is to train a velocity estimator sθ(xt,b, t, σ) and then compare it to the velocity v. Our
estimator is based on a UNet (Ronneberger et al., 2015) with particular embeddings for b, t, and σ.

The embedding of time and noise is straight-forward. Note that both t and σ are scalars. For their
embedding, we use the method presented in Croitoru et al. (2023), which involves creating learnable
embedding and adding them to the feature maps at each level of the network.

A key component in making SI perform well for inverse problems is the careful design of a network
that incorporates the data within the training process. The resulting network can be thought of as a
likelihood-free estimator (Thomas et al., 2022), that estimates the velocity vector v, given the input
vector xt, the time t and the noise level σ. As previously explained, we do not integrate b directly,
but rather use f(b) = A⊤b and embed this vector in the network.

The embedding of A⊤b is performed using a data encoder network. To this end, let
Eη(A

⊤b) (15)
be an encoder network that is parameterized by η. The encoder can be pre-trained or trained as part
of the network, providing flexibility in how it is integrated into the UNet. The encoded data provides
additional context that is critical for accurate predictions. Formally, the UNet estimates the velocity
as follows:

v̂ = sθ(xt, Eη(A
⊤b), t, σ) (16)

By embedding both time, data and noise vectors at each layer, the network can leverage additional
information, leading to more accurate and robust predictions, especially for large noise levels.

2.6 INFERENCE AND UNCERTAINTY ESTIMATION

Figure 4: Computing uncertainty in the solutions obtained by SI for some example images from
MNIST (left), STL10 (middle) and CIFAR10 (right) for the deblurring task. The reconstruction
(posterior mean) is computed by averaging over runs from 32 randomly initialized x0. The uncer-
tainty in the posterior mean is computed by evaluating its standard deviation for the predictions from
32 runs.

Our method is specifically aimed at highly ill-posed inverse problems, where regularization is often
necessary to arrive at a stable solution. These problems often do not have a unique solution, and
slight changes in input data can lead to large variations in the solution. Due to its stochastic nature,
our method allows for the realization of multiple solutions since one can start with many random
initial points x0 and evolve to multiple versions x1 of the solutions. This property can be used to
generate even better estimates and for the estimation of uncertainty in the recovered images. To this
end, assume that the ODE is solved M times starting each time at a different initial condition x

(j)
0

and let
x
(j)
1 = xt(t = 1,x0 = x

(j)
0), j = 1, . . . ,M (17)

be the solution of the ODE in Equation (9) obtained at time t = 1 starting from point x(j)
0 at t = 0.

The points x
(j)
1 for j = 1, . . . ,M represent an ensemble of solutions, that are sampled from the

posterior π(x1|b). Given these points, it is simple to estimate the mean and standard deviation of
the posterior distribution. In particular, we define

x̄1 =
1

M

M∑
j=1

x
(j)
1 , σx̄1

=
1

M

M∑
j=1

∥x(j)
1 − x̄1∥2 (18)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

as the mean and standard deviation of the estimated solutions. In particular, x̄1 approximates the
posterior mean and σx̄1

estimates its standard deviation. It is well known that, for many problems the
posterior mean can have a lower risk compared to other estimators (e.g. the Maximum A-Posteriori
estimator). For an elaborate discussion on the properties of such estimators, see Tenorio et al. (2011);
Kaipio and Somersalo (2004); Calvetti and Somersalo (2005). While such estimators are typically
avoided due to computational complexity, the computational framework presented here allows us to
compute them relatively easily.

An example for this process is shown in Figure 4. Here, the solutions over multiple runs were
averaged to generate an effective reconstruction of the original image (the posterior mean). More-
over, to quantify uncertainty in the reconstruction process, we computed standard deviation over the
solutions at each pixel from multiple runs. In the uncertainty maps for MNIST, the uncertainty is
concentrated along the edges of the digits. This occurs because the SI model introduces slight varia-
tions in how it reconstructs the boundary between the digit and the background. Since this boundary
is sharp, any slight differences in how this edge is defined in different reconstructions lead to higher
uncertainty along the edges. On the other hand, for STL10 and CIFAR10 images, the boundary be-
tween objects and background is often less distinct. The background might contain detailed textures
or noise that blends into the object, making it harder for the model to distinguish clear boundaries.
Hence, the uncertainty maps for these datasets do not exhibit the same clear edge-focused uncer-
tainty as in MNIST. The lack of a clear boundary means that the reconstruction’s variability spreads
more evenly across the entire image.

3 NUMERICAL EXPERIMENTS

In this section, we experiment with our method on a few common datasets and two broadly applica-
ble inverse problems: image deblurring and tomography (see Appendix A for details). We provide
additional information on the experimental settings, hyperparameter choices, and network architec-
tures in Tables 3 to 5 for image deblurring task and Table 6 for tomography task in Appendix C.

Training methodology. For our experiments, we considered two types of data-aware velocity esti-
mator networks: (i) DAW-SI: the estimator with no noise-embedding, and (ii) DAWN-SI: the esti-
mator with trainable noise-embedding. We employed antithetic sampling during training. Starting
with an input batch of clean images x′

1, an x′
0 ∼ N (0, I) was sampled and antithetic pairs x1 and

x0,

x1 =

[
x′
1

x′
1

]
, x0 =

[
x′
0

−x′
0

]
(19)

were generated by concatenation along the batch dimension. For a large number of samples, the
sample mean of independent random variables converges to the true mean. However, the conver-
gence can be slow due to the variance of the estimator being large. Antithetic sampling helped reduce
this variance by generating pairs of negatively correlated samples, thereby improving convergence.
The data was generated by employing the forward model along with a Gaussian noise injection,
b = Ax1+σz, where z ∼ N (0, I). The value of σ was set to p% of the range of values in the data b,
where p was sampled uniformly in (0, 20). xt and v were computed from x1 and x0 following Equa-
tion (1) and Equation (2). Using the transformation Eη(f(b)) = Eη(A

⊤b), the predicted velocity
of the estimator was sθ(xt, Eη(A

⊤b), t) for the DAW-SI estimator and sθ(xt, Eη(A
⊤b), t, σ) for

the DAWN-SI estimator. Here, Eη was chosen to be a single-layer convolutional neural network.
The loss for an epoch was computed as given in Equation (14).

Inference. For inference on a noisy data, b = Ax1 + σz for some image x1, we start with a
randomly sampled x0 ∼ N (0, I) at t = 0 and perform Fourth-Order Runga Kutta numerical
integration to solve the ODE in Equation (10) with a step size h = 1/100, where the velocity
was computed using the trained estimator as sθ(xt, Eη(A

⊤b), t) for the DAW-SI estimator and
sθ(xt, Eη(A

⊤b), t, σ) for the DAWN-SI estimator at time t. For each image x1, the inference was
run 32 times starting from 32 different realizations of x0 and the resulting reconstructed images
(which are samples from the posterior π(x1|b)) were averaged to generate the final recovered im-
age. The uncertainty at the pixel-level could also be estimated from these samples by computing
their standard deviation, as shown in Figure 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Assessing the sensitivity of the metrics for the recovered deblurred image as a function of
the level of noise (p%) added to the data. The DAWN-SI is more robust to noise across all three
datasets, MNIST, STL10 and CIFAR10 than DAW-SI, with the crossing point happening at values
of p ≲ 5% for all metrics.

Table 1: Comparison between the performances of different methods (Diffusion, InverseUNetODE,
and our methods DAW-SI and DAWN-SI) for the deblurring task for MNIST, STL10 and CIFAR10
datasets using metrics MSE, MISFIT, SSIM and PSNR. All the evaluations have been presented on
the test set for a large blurring kernel (for details, see Appendix A.1) at a noise level p = 5% in the
blurred data. Here, we report mean ± standard deviation over all images in the test set. First and
second best performances are shown in bold and red, respectively.

Dataset Methods MSE (↓) MISFIT (↓) SSIM (↑) PSNR (↑)

MNIST

Diffusion 6.078 ± 8.508 0.045 ± 0.008 0.248 ± 0.178 6.538 ± 6.980
InverseUNetODE 0.167 ± 0.072 0.055 ± 0.012 0.714 ± 0.090 18.394 ± 1.946
DAW-SI (Ours) 0.156 ± 0.078 0.043 ± 0.012 0.825 ± 0.062 18.899 ± 2.472
DAWN-SI (Ours) 0.073 ± 0.041 0.032 ± 0.009 0.901 ± 0.042 22.277 ± 2.612

STL10

Diffusion 3.712 ± 3.900 0.050 ± 0.012 0.170 ± 0.057 8.581 ± 3.765
InverseUNetODE 0.299 ± 0.110 0.084 ± 0.063 0.360 ± 0.059 18.427 ± 1.342
DAW-SI (Ours) 0.344 ± 0.132 0.049 ± 0.012 0.382 ± 0.064 17.434 ± 1.465
DAWN-SI (Ours) 0.113 ± 0.056 0.043 ± 0.013 0.644 ± 0.082 22.423 ± 1.904

CIFAR10

Diffusion 1.049 ± 0.749 0.042 ± 0.012 0.272 ± 0.081 12.104 ± 2.888
InverseUNetODE 0.168 ± 0.080 0.067 ± 0.027 0.544 ± 0.075 19.388 ± 1.587
DAW-SI (Ours) 0.152 ± 0.071 0.057 ± 0.025 0.567 ± 0.077 19.765 ± 1.520
DAWN-SI (Ours) 0.156 ± 0.077 0.055 ± 0.023 0.554 ± 0.081 19.743 ± 1.712

Baselines. For the image deblurring task, we compare our methods DAW-SI and DAWN-SI to
diffusion-based image deblurring (Chung et al., 2022a) and InverseUNetODE (Eliasof et al., 2024).
The details for the training setup and hyperparameter choices for the baselines have been provided
in Appendix C. All baselines were trained with Gaussian noise injection in the data in the same way
as used for training of DAW-SI and DAWN-SI methods for fair comparison.

Metrics. For performance evaluation, we compute mean squared error (MSE), misfit, structural
similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) between the ground truth
and the reconstructed image. Additional details on these metrics are provided in Appendix B.

3.1 IMAGE DEBLURRING

We present the results of image deblurring task in Table 1 at noise level p = 5% in blurred data for
MNIST, STL10 and CIFAR10 datasets. For all metrics, DAWN-SI beats all other methods for all
datasets by large margins, except for the CIFAR10 dataset, where DAW-SI performed marginally
better than DAWN-SI. Moreover, on the CIFAR10 dataset, the Diffusion model fits the data the best
achieving the lowest value of the misfit metric. We also performed ablation studies for different
noise levels in data for both DAW-SI and DAWN-SI models, as shown in Figure 5. For all metrics,
DAWN-SI was more robust to noise in data, especially for higher noise levels over all datasets with
the crossing point happening at values of p ≲ 5% for all metrics. Some example images for the
deblurring task for different levels of noise in data are presented in Figures 7 to 9 in Appendix D.
Based on empirical evidence from training, we believe that the results for both DAW-SI and DAWN-
SI could be improved further with more training epochs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: An example from OrganAMNIST dataset showing the different samples (labeled x
(1)
1 to

x
(4)
1) drawn from the posterior starting from different initial x0 for both DAW-SI (top) and DAWN-

SI (bottom). The posterior mean x̄1 and standard deviation σx̄1
were computed from 32 such sam-

ples, given the sinogram data (at noise level p = 5%). The red box highlights a lobe, which exhibits
variability in its size and shape across different samples. This variability reflects the model’s uncer-
tainty in reconstructing (the boundary of) such anatomical features.

Table 2: Comparison between the performances of our methods (DAW-SI and DAWN-SI) for the
tomography task for OrganAMNIST and OrganCMNIST datasets using metrics MSE, MISFIT,
SSIM and PSNR. All the evaluations have been presented on the test set for Nangles = 360, and
Ndetectors = 2s + 1, where s × s is the image dimension (for details, see Appendix A.2) at a noise
level p = 5% in the sinogram data. Here, we report mean ± standard deviation over 5000 images in
the test set. Best performance is shown in bold.

Dataset Methods MSE (↓) MISFIT (↓) SSIM (↑) PSNR (↑)

OrganAMNIST DAW-SI (Ours) 0.008 ± 0.002 0.041 ± 0.051 0.575 ± 0.108 20.389 ± 1.767
DAWN-SI (Ours) 0.004 ± 0.001 0.036 ± 0.060 0.713 ± 0.090 23.244 ± 1.553

OrganCMNIST DAW-SI (Ours) 0.014 ± 0.008 0.156 ± 1.424 0.511 ± 0.140 17.881 ± 2.624
DAWN-SI (Ours) 0.007 ± 0.007 0.151 ± 1.287 0.675 ± 0.116 21.630 ± 3.199

3.2 TOMOGRAPHY

We present the results of our methods DAW-SI and DAWN-SI for the tomography task in Table 2
at noise level p = 5% in the sinogram data for OrganAMNIST and OrganCMNIST datasets (Yang
et al., 2023). For this task, DAWN-SI outperformed DAW-SI on all metrics for both datasets. Some
example images for the tomography task for different levels of noise are presented in Figures 10
and 11 in Appendix D. In medical image analysis, accurately estimating the size and boundaries
of a lobe (such as the one shown in red box in Figure 6) is crucial for diagnostics, especially in
cases where its size can influence medical decisions. We quantify uncertainty for both DAW-SI and
DAWN-SI by computing mean and standard deviation across 32 samples from the learned posterior.
While the mean represents the most probable reconstruction, the standard deviation map highlights
regions of higher variability, indicating areas of uncertainty. From Figure 6, DAWN-SI gives a robust
understanding of uncertainty by highlighting boundaries of objects as regions of highest uncertainty,
a feature similar to what was observed on the MNIST dataset (see Figure 4).

4 CONCLUSIONS

In this paper, we presented DAWN-SI, a framework for addressing highly ill-posed inverse prob-
lems by efficiently incorporating data and noise into the SI process. Our experiments showed that
our proposed method consistently outperformed existing methods in tasks like image deblurring,
with significant improvements in key performance metrics. The ability to sample from the learned
posterior enables the exploration of the solution space and facilitates in uncertainty quantification,
which is critical for real-world applications. Future work will focus on refining the model to en-
hance efficiency and applicability to more ill-posed problems, including integration of advanced
noise modeling techniques for extreme noise conditions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics Statement. In this work, we do not release any datasets or models that could be misused,
and we believe our research carries no direct or indirect negative societal implications. We do not
work with sensitive or privacy-related data, nor do we develop methods that could be applied to
harmful purposes. To the best of our knowledge, this study raises no ethical concerns or risks of
negative impact. Additionally, our research does not involve human subjects or crowdsourcing. We
also confirm that there are no conflicts of interest or external sponsorships influencing the objectivity
or results of this study.

Reproducibility Statement. In Section 3, we outline the training methodology employed in our ex-
periments, while in Appendix C, we provide comprehensive supplementary information, including
references to the baselines, detailed dataset descriptions, the experimental settings for each task, and
the hyperparameter used in our study. All experiments presented in Section 3 were conducted on
publicly available benchmarks, while the experiment in Example 2.1 was conducted on simulated
data. To further facilitate the reproducibility of our work, we will release all the data and code to
reproduce our empirical evaluation upon acceptance.

REFERENCES

Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural net-
works. Inverse Problems, 33(12):124007, 2017.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

D Calvetti and E Somersalo. Priorconditioners for linear systems. Inverse Problems,
2005. URL http://iopscience.iop.org/article/10.1088/0266-5611/21/
4/014/meta.

Daniela Calvetti and Erkki Somersalo. Distributed tikhonov regularization for ill-posed inverse
problems from a bayesian perspective. arXiv preprint arXiv:2404.05956, 2024.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models
for inverse problems using manifold constraints. Advances in Neural Information Processing
Systems, 35:25683–25696, 2022b.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating con-
ditional diffusion models for inverse problems through stochastic contraction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12413–12422,
2022c.

Matthias Chung, Emma Hart, Julianne Chung, Bas Peters, and Eldad Haber. Paired autoencoders
for inverse problems, 2024. URL https://arxiv.org/abs/2405.13220.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Moshe Eliasof, Eldad Haber, and Eran Treister. Drip: Deep regularizers for inverse problems. arXiv
preprint arXiv:2304.00015, 2023.

Moshe Eliasof, Eldad Haber, and Eran Treister. An over complete deep learning method for inverse
problems, 2024. URL https://arxiv.org/abs/2402.04653.

P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia, 1997.

Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional
neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9):
4509–4522, 2017.

11

http://iopscience.iop.org/article/10.1088/0266-5611/21/4/014/meta
http://iopscience.iop.org/article/10.1088/0266-5611/21/4/014/meta
https://arxiv.org/abs/2405.13220
https://arxiv.org/abs/2402.04653

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems. Springer Verlag, 2004.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Santiago López-Tapia, Rafael Molina, and Aggelos K. Katsaggelos. Deep learning approaches to
inverse problems in imaging: Past, present and future. Digital Signal Processing, 119:103285,
2021. ISSN 1051-2004. doi: https://doi.org/10.1016/j.dsp.2021.103285. URL https://www.
sciencedirect.com/science/article/pii/S1051200421003249.

Morteza Mardani, Qingyun Sun, David Donoho, Vardan Papyan, Hatef Monajemi, Shreyas
Vasanawala, and John Pauly. Neural proximal gradient descent for compressive imaging. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Subhadip Mukherjee, Carola-Bibiane Schönlieb, and Martin Burger. Learning convex regularizers
satisfying the variational source condition for inverse problems, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Advances in Neural Information Processing Systems, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/
1505.04597.

Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, and Frank Lenzen. Varia-
tional Regularization Methods for the Solution of Inverse Problems, pages 53–113. Springer New
York, New York, NY, 2009. ISBN 978-0-387-69277-7. doi: 10.1007/978-0-387-69277-7_3.
URL https://doi.org/10.1007/978-0-387-69277-7_3.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
with score-based generative models, 2022.

L. Tenorio, F. Andersson, M. de Hoop, and P. Ma. Data analysis tools for uncertainty quantification
of inverse problems. Inverse Problems, page 045001, 2011.

Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, and Michael U Gutmann.
Likelihood-free inference by ratio estimation. Bayesian Analysis, 17(1):1–31, 2022.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and
Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image
classification. Scientific Data, 10(1):41, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 2022.

12

https://www.sciencedirect.com/science/article/pii/S1051200421003249
https://www.sciencedirect.com/science/article/pii/S1051200421003249
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
https://doi.org/10.1007/978-0-387-69277-7_3

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DETAILS ABOUT THE INVERSE PROBLEMS

A.1 IMAGE DEBLURRING

In this section, we provide technical details about the image deblurring inverse problem used in this
work. For this inverse problem, the forward operator A (a blurring operator) can be represented as a
convolution of the input image I(x, y) with a Gaussian Point Spread Function (PSF) kernel, where
the kernel is characterized by a standard deviation. The blurring process can be mathematically
described as a convolution between a sharp image I and a (Gaussian) blurring kernel K, where Iblur
is the resultant blurred image,

Iblur(x, y) = AI(x, y) + ϵ(x, y) = I(x, y) ∗K(x, y) + ϵ(x, y), (20)

where Iblur(x, y) is the blurred image at pixel location (x, y), I(x, y) is the original sharp image,
K(x, y) is the PSF, and ϵ(x, y) is the additive noise, which is also assumed to be Gaussian with zero
mean and a standard deviation equal to p% of the range of I(x, y) ∗ K(x, y), where p was chosen
uniformly between 0% and 20% during training. The Gaussian PSF kernel is given by,

K(x, y) =
1

2πσxσy
exp

(
− x2

σ2
x

− y2

σ2
y

)
(21)

All our experiments were run with σx = σy = 3. The goal of image deblurring is to recover the
original sharp image I(x, y) from the blurred image Iblur(x, y). This is typically ill-posed due to the
possible presence of noise η(x, y) and the loss of high-frequency information caused by the blur.

The convolution operation can be described as a multiplication in the Fourier domain:

B(u, v) = I(u, v) ·K(u, v) (22)

where I(u, v) = F{I(x, y)}, K(u, v) = F{K(x, y)} are the Fourier transforms of the sharp image,
and the PSF, respectively and F represents the Fourier transform. The blurred image can then be
obtained using the inverse Fourier transform,

Iblur(x, y) = F−1{B(u, v)} (23)

Moreover, A⊤, the adjoint of operator A, which is used to compute the data-embedding A⊤b for
the network, for some data b is easy to obtain. Since the image blurring operator is symmetric and
self-adjoint, we have A = A⊤.

A.2 APPENDIX - TOMOGRAPHY

In tomography, the goal is to reconstruct the internal image of an object from a series of projections
(sinograms) taken at various angles. This process can be described as solving an inverse problem,
where the projections are obtained from the original image via the Radon transform A and inverse
Radon transform A⊤ is used to reconstruct the original image from the sinogram data.

The forward problem of tomography can be formulated as projecting a 2D image onto a set of
1D sinograms for different angles of view. The mathematical model of the forward projection is
expressed as:

S = AIpad + ϵ (24)

where, S ∈ RNangles×Ndetectors is the sinogram (the set of projections), Ipad ∈ RNpixels is the padded and
flattened image of dimension Npixels, A ∈ RNangles×Ndetectors×Npixels is the tomography projection matrix
which describes the interaction of each ray with every pixel, and ϵ is the additive noise term to the
data, which was chosen as p% of the range of values in AIpad, with p lying between 0% and 20%
during training. For our experiments, we set Nangles = 360, and Ndetectors = 2s + 1, where s × s is
the dimension of the original unpadded images.

The image is first padded to account for the fact that projections are taken beyond the boundaries of
the object in the image. Using a zero padding of size s/2 on all four sides of the image, the padded

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

version is an image of dimension 2s× 2s. The matrix A is multiplied with the flattened version of
the padded image generating the sinogram data.

Similarly, the adjoint A⊤ of the forward operator A, can be used to recover the image, which can
be expressed as,

Ipad = A⊤S (25)

where, Ipad ∈ RNpixels is the (padded and flattened) reconstructed image, S ∈ RNangles×Ndetectors is the
observed sinogram, A⊤ ∈ RNpixels×Nangles×Ndetectors is the adjoint of the projection matrix. The Ipad can
be reshaped and unpadded to obtain an image of dimension s× s.

B EVALUATION METRICS

In this section, we provide detailed explanation of the evaluation metrics used in our experiments for
2D images, including the Mean Squared Error (MSE), Misfit, Structural Similarity Index Measure
(SSIM), and Peak Signal-to-Noise Ratio (PSNR).

B.1 MEAN SQUARED ERROR (MSE)

The Mean Squared Error (MSE) measures the average squared difference between the pixel inten-
sities of the original image and the reconstructed image. Given two images Itrue(x, y) (the ground
truth image) and Irec(x, y) (the reconstructed image), MSE is calculated as:

MSE =
1

H ·W

H∑
x=1

W∑
y=1

(Itrue(x, y)− Irec(x, y))
2 (26)

where:

• H and W are the height and width of the image,

• Itrue(x, y) is the pixel value at location (x, y) in the ground truth image,

• Irec(x, y) is the corresponding pixel value in the reconstructed image.

A lower MSE indicates better reconstruction performance.

B.2 MISFIT

The Misfit metric measures how well the forward model of the reconstructed image fits the actual
observed data. For 2D images, given a forward operator A and observed data b, the Misfit is calcu-
lated as:

Misfit =
1

2

H∑
x=1

W∑
y=1

(AIrec(x, y)− b(x, y))
2 (27)

where:

• A is the forward operator (e.g., a blurring or projection operator),

• Irec(x, y) is the reconstructed image,

• b(x, y) is the observed (blurred or noisy) image.

A lower Misfit indicates that the data obtained from the reconstructed image is consistent with the
observed data.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

The Structural Similarity Index Measure (SSIM) assesses the perceptual similarity between two
images by considering luminance, contrast, and structure. For 2D images, SSIM is defined as:

SSIM(Itrue, Irec) =
(2µtrueµrec + C1)(2σtrue,rec + C2)

(µ2
true + µ2

rec + C1)(σ2
true + σ2

rec + C2)
(28)

where:

• µtrue and µrec are the local means of the ground truth and reconstructed images, respectively,
• σ2

true and σ2
rec are the local variances of the ground truth and reconstructed images,

• σtrue,rec is the local covariance between the two images,
• C1 and C2 are constants to avoid division by zero.

SSIM values range from −1 to 1, where 1 indicates perfect structural similarity.

B.4 PEAK SIGNAL-TO-NOISE RATIO (PSNR)

The Peak Signal-to-Noise Ratio (PSNR) measures the quality of the reconstructed image compared
to the ground truth image. Since our images are normalized between 0 and 1, PSNR is defined as:

PSNR = −10 · log10(MSE) (29)

wherel, MSE is the Mean Squared Error between the ground truth and reconstructed images. Higher
PSNR values indicate better reconstruction quality.

C EXPERIMENTAL SETTINGS

For the image deblurring task, the experiments were conducted on MNIST, STL10 and CIFAR10
datasets. The networks used were Diffusion model, InverseUNetODE as baselines and our proposed
methods DAW-SI and DAWN-SI. The key details of the experimental setup for each of these meth-
ods are summarized in Tables 3 to 5. For the tomography task, the experiments were conducted using
DAW-SI and DAWN-SI methods on OrganAMNIST and OrganCMNIST datasets derived from the
MedMNIST data library (Yang et al., 2023). The key details of the experimental setup are summa-
rized in Table 6. All our experiments were conducted on an NVIDIA A6000 GPU with 48GB of
memory. Upon acceptance, we will release our source code, implemented in PyTorch (Paszke et al.,
2017).

D VISUALIZATION

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: Experimental details for the image deblurring task for our methods DAW-SI and DAWN-SI.

Component Details

Datasets MNIST, STL10 and CIFAR10. The dimension of images in these
datasets were 28× 28, 64× 64, 32× 32, respectively

Network architectures

MNIST and CIFAR10:
DAW-SI: UNet with 3 levels with [c, 16, 32] filters with residual
blocks and time and data embedding at each level.
Time embed dimension = 256;
DAWN-SI: UNet with 3 level levels with [c, 16, 32] filters with
residual blocks and time, data and noise embedding at each level.
Time and noise embed dimension = 256.
Here c = 1 and 3 for MNIST and CIFAR10, respectively.

STL10:
DAW-SI: UNet with 5 levels with [3, 16, 32. 64, 128] filters
with residual blocks and time and data embedding at each level.
Time embed dimension = 256;
DAWN-SI: UNet with 5 levels with [3, 16, 32, 64, 128] filters
with residual blocks and time, data and noise embedding at each
level. Time and noise embed dimension = 256

Number of trainable parameters

MNIST and CIFAR10:
DAW-SI: 1,038,398;
DAWN-SI: 1,066,497

STL10:
DAW-SI: 8,009,824;
DAWN-SI: 8,177,955

Loss function MSE loss for the velocity and misfit terms, Equation (14)

Optimizer Adam (Kingma and Ba, 2014)

Learning rate (lr) schedule CosineAnnealingLR with lrinit = 10−4, lrmin = 10−6

and Tmax = max_epochs

Stopping criterion DAW-SI: max_epochs = 3000;
DAWN-SI: max_epochs = 3000

Integrator for ODE Fourth-Order Runga-Kutta with step size h = 1/100

Table 4: Experimental details for the image deblurring task for Diffusion model (Chung et al.,
2022a).

Component Details

Datasets MNIST, STL10, and CIFAR10. The dimension of images in
these datasets were 28x28, 64x64, 32x32, respectively

Network architectures

MNIST: UNet with 4 levels with [1, 16, 32, 64] filters and
sinusoidal time embedding (1000 time steps) embedded at
each level
STL10: UNet with 6 levels with [3, 16, 32, 64, 128, 128]
filters and sinusoidal time embedding (1000 time steps)
embedded at each level
CIFAR10: UNet with 4 levels with [3, 16, 32, 64] filters
and sinusoidal time embedding (1000 time steps)
embedded at each level

Number of training parameters
MNIST: 1,360,712
STL10: 8,565,086
CIFAR10: 1,365,598

Loss function
MSE loss between SNR · xrec and SNR · x1,
where SNR is the signal-to-noise ratio at each time step, xrec
is the reconstructed image and x1 is the original image

Optimizer Adam (Kingma and Ba, 2014)

Learning rate (lr) 10−4 (constant)

Stopping criterion max_epochs = 2000

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Experimental details for the image deblurring task for InverseUNetODE (Eliasof et al.,
2024).

Component Details

Datasets MNIST, STL10, and CIFAR10. The dimension of images in these
datasets were 28x28, 64x64, 32x32, respectively

Network description

UNet with each level utilizing a combination of convolutional layer
embedding for feature extraction and hyperUNet layer for hierarchical
feature refinement. The network incorporates the forward problem by
applying the adjoint A⊤ of forward problem to the residual at each
layer to iteratively correct the estimate of the reconstructed image.

Network architectures

MNIST: 3 levels with 3 hidden units per level and 3 nested layers
within each hyperUNet layer
STL10: 5 levels with 8 hidden units per level and 3 nested layers
within each hyperUNet layer
CIFAR10: 5 levels with 8 hidden units per level and 3 nested layers
within each hyperUNet layer

Number of training parameters
MNIST: 2,089,887
STL10: 6,503,920
CIFAR10: 6,503,920

Loss function MSE loss between xrecon (predicted image) and x1 (clean image)

Optimizer Adam (Kingma and Ba, 2014)

Learning rate (lr) 10−4 (constant)

Stopping criterion max_epochs = 1000

Table 6: Experimental details for the tomography task for our methods DAW-SI and DAWN-SI.

Component Details

Datasets
OrganAMNIST and OrganCMNIST from the MedMNIST dataset
(Yang et al., 2023). The dimension of images in both these datasets
were 64× 64.

Network architectures

DAW-SI: UNet with 5 levels with [3, 16, 32. 64, 128] filters
with residual blocks and time and data embedding at each level.
Time embed dimension = 256;
DAWN-SI: UNet with 5 levels with [3, 16, 32, 64, 128] filters
with residual blocks and time, data and noise embedding at each
level. Time and noise embed dimension = 256

Number of trainable parameters
DAW-SI: 8,009,824;
DAWN-SI: 8,177,955

Loss function MSE loss for the velocity and misfit terms, Equation (14)

Optimizer Adam (Kingma and Ba, 2014)

Learning rate (lr) schedule CosineAnnealingLR with lrinit = 10−4, lrmin = 10−6

and Tmax = max_epochs

Stopping criteria DAW-SI: max_epochs = 3000;
DAWN-SI: max_epochs = 3000

Integrator for ODE Fourth-Order Runga-Kutta with step size h = 1/100

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Comparison between different methods for the image deblurring task on the MNIST
dataset for noise levels p = 5% and 7% added to the blurred data.

Figure 8: Comparison between different methods for the image deblurring task on the STL10 dataset
for noise levels p = 5% and 7% added to the blurred data.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: Comparison between different methods for the image deblurring task on the CIFAR10
dataset for noise levels p = 5% and 7% added to the blurred data.

Figure 10: Comparison between DAW-SI and DAWN-SI methods for the tomography task on the
OrganAMNIST dataset for noise levels p = 5% and 7% added to the sinogram data.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 11: Comparison between DAW-SI and DAWN-SI methods for the tomography task on the
OrganCMNIST dataset for noise levels p = 5% and 7% added to the sinogram data.

20

	Introduction
	Stochastic Interpolation and Inverse Problems
	Stochastic Interpolation: A Partial Review
	Applying Stochastic Interpolation for the solution of inverse problems
	A data-aware and noise-informed velocity estimator
	Training the SI model for inverse problems
	Architectures for data-aware and noise-informed velocity estimators
	Inference and Uncertainty Estimation

	Numerical Experiments
	Image Deblurring
	Tomography

	Conclusions
	Details about the Inverse problems
	Image deblurring
	Appendix - Tomography

	Evaluation metrics
	Mean Squared Error (MSE)
	Misfit
	Structural Similarity Index Measure (SSIM)
	Peak Signal-to-Noise Ratio (PSNR)

	Experimental Settings
	Visualization

