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Abstract

This paper proposes collaborative symmetricity exploitation (CSE) framework to
train a solver for the decoupling capacitor placement problem (DPP), one of the
significant hardware design problems. Due to the sequentially coupled multi-level
property of the hardware design process, the design condition of DPP changes
depending on the design of higher-level problems. Also, the online evaluation of
real-world electrical performance through simulation is extremely costly. Thus,
we propose the CSE framework that allows data-efficient offline learning of a
DPP solver (i.e., contextualized policy) with high generalization capability over
changing task conditions. Leveraging the symmetricity for offline learning of
hardware design solver increases data-efficiency by reducing the solution space
and improves generalization capability by capturing the invariant nature present
regardless of changing conditions. Extensive experiments verified that CSE with
zero-shot inference outperforms the neural baselines and iterative conventional
design methods on the DPP benchmark. Furthermore, CSE greatly outperformed
the expert method used to generate the offline data for training.

1 Introduction

Figure 1: Conventional sequential decision-
making method’s heterogeneous trajecto-
ries from AP-Equvariant solution group.

Many studies have shown that deep reinforcement learn-
ing (DRL) is promising in various tasks in modern chip
design; chip placement [1, 2], routing [3, 4], circuit
design [5], logic synthesis [6, 7] and bi-level hardware
optimization [8]. However, most of them do not take
the following into consideration. (a) Online simulators
for hardware are usually time intensive and inaccurate;
thus, learning with existing offline data by experts is
more reliable. Since there exists a limited number of
offline hardware data, a data-efficient learning scheme
is necessary. (b) Hardware design is composed of
electrically coupled multi-level tasks where task condi-
tions are determined by the design of higher-level tasks;
thus, a solver (i.e., contextualized policy conditioned by
higher-level tasks) with high generalization capability
to adapt to varying task conditions is necessary.

We observed that leveraging the symmetricity in placement problems can effectively improve both
data-efficiency of training and generalization capability of trained solver over task condition variation.
As shown in Fig. 1, the conventional sequential decision-making schemes for placement problems
[9, 1, 8] search over a heterogeneous trajectory, referring to a group of K! action-permutation
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(AP)-symmetric solution trajectories, where K is the number of actions. If each group of AP-
symmetric solution trajectories can be identified as a single merged trajectory, the search space can be
dramatically reduced, giving two major advantages. First, inducing symmetricity allows data-efficient
training of solver with a limited number of offline expert data because the amount of training data is
proportional to the policy’s search space. Second, inducing symmetricity improves generalization
capability of the solver to varying task conditions because symmetricity is an invariant nature shared
among tasks regardless of conditions.

To this end, we devised collaborative symmetricity exploitation (CSE) framework, a simple but effec-
tive method to induce AP-symmetricity with two collaborative learning schemes: expert exploitation
and self-exploitation. To further improve the generalization capability of the trained solver, we also
devised a target problem-specific neural architecture by modifying the attention model (AM) [10]
with two problem-specific context neural networks.

Related Works. Several studies to leveraged the symmetricity in solution space. [11] suggested the
policy optimization for multiple optima (POMO) scheme to leverage the traveling salesman problem
(TSP)’s solution symmetricity, the cyclic property that identical solution can be expressed as N
heterogeneous trajectories by permuting initially visited node. [12] proposed the symmetric neural
combinatorial optimization (Sym-NCO) method, a general-purpose symmetric learning method.
[13] proposed a generative flow net (GFlowNet) to train policy distribution proportional to reward
distribution π ∝ R considering solution symmetricity. While POMO [11] and Sym-NCO [12]
leverage DRL, CSE focuses on offline imitation learning. Though GFlowNet [13] can be trained in
a fully offline manner, it is not yet designed for training a contextualized policy. CSE is an offline
symmetricity learning method to train contextualized policy.

2 Decap Placement Problem (DPP) Formulation

This paper seeks to solve the decap placement problem (DPP), one of the essential hardware design
problems. Decoupling capacitor (decap) is a hardware component that reduces power noise along
with the power distribution network (PDN) of hardware devices and improves the power integrity (PI).
The goal of DPP is to optimally place a pre-defined number (K) of decaps on a (Nrow ×Ncol)-sized
target PDN, given two conditions determined by higher-level tasks; keep-out regions and a probing
port location [14]. Keep-out regions are action-restricted areas where decaps cannot be placed as a
design constraint. Probing port is the target chip/logic block location where the objective, power
integrity (PI), is evaluated. Generally, the more decaps are placed, the more reliable the power
supply is. However, adding more decaps requires more space and is costly. Thus, finding an optimal
placement of decaps is essential in terms of hardware performance and cost/space-saving.

DPP Benchmark PDN and Decap Specifications. The PDN model for verification has (Nrow ×
Ncol) = (10× 10) grids over 201 frequency points linearly distributed between 200MHz and 20GHz,
which gives 100× 100× 201 ≈ 2M impedances to be evaluated. Out of the Nrow ×Ncol ports,
one is assigned as a probing port and 0 to 15 ports are assigned as keep-out ports (see Appendix A.4).
The RLGC electrical parameters of PDN and decap in the benchmark are shown in Appendix A.2.

Objective Function of DPP The objective of DPP is evaluated by power integrity (PI) simulation
that computes the level of impedance suppression over a specified frequency domain:

J :=
∑
f∈F

(Zinitial(f)− Zfinal(f)) ·
1GHz
f

(1)

where Zinitial and Zfinal are the initial and final impedance at the frequency f before and after
placing decaps, respectively. F is the set of specified frequency points. The more impedance
is suppressed, the better the power integrity and the higher the performance score. Remark that
DPP cannot be formulated as a conventional mixed-integer linear programming (MILP)-based
combinatorial optimization because PI performance can not be formulated as a closed analytical form
but can only be measured or simulated.

2.1 Markov Decision Process (MDP)
As shown in Fig. 2, the procedure for solving DPP is modeled as a Markov decision pro-
cess(MDP). The task-condtioned PDN is represented as a set of three-dimensional feature vectors
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Figure 2: Overall pipeline of DPP contextualized policy parameterization process.

x = {xi}Nrow×Ncol
i=1 , where each grid (i.e., port) on PDN is represented as xi = (xi, yi, ci), in which

xi, yi indicate 2D coordinates of location, ci indicates the condition of port whether it belongs to
a probing port Iprobe (ci = 2), keep-out regions Ikeepout (ci = 1), or the rest decap allowed ports
Iallowed (ci = 0). See Appendix A.3.

State st contains task-condition x and previous selected actions: st = {x,a1:t−1}.

Action at ∈ {1, ..., Nrow ×Ncol} \ st−1 is the allocation of a decap to one of the available ports on
PDN. The concatenation of sequentially selected actions a = a1:K becomes the final solution.

Policy πθ(a|x) is the probability of producing a specific solution a = a1:K , given task-condition x,
and is factorized as:

πθ(a|x) =
K∏
t=1

pθ(at|st), (2)

where pθ(at|st) is the segmented one-step action policy parameterized by the neural network.

The objective of DPP is to find the optimal parameter θ∗ of the policy πθ(·|x) as:

θ∗ = argmax
θ

Ex∼ρEa∼πθ(·|x)
[
J (a)

]
, (3)

where ρ is the probability distribution for varying task-condition x and J is objective function. Once
the task x is specified by ρ, the state-action space with complexity of

(
Nrow×Ncol−1−|Ikeepout|

K

)
is

determined. Thus, an efficient policy πθ(a|x) should capture the contextual features among varying
task conditions x.

3 Methodology

The symmetricity found in placement problems is the action-permutation (AP)-symmetricity, the
order of placement does not affect the design performance. Let ti a permutation of an action sequence
{1, ...,K}, where K is the length of the action sequence. We then define the AP-transformation
TAP = {ti}K!

i=1 as a set of all possible permutations. The AP-symmetricity of DPP is induced to the
learned solver through the AP-transformation TAP .

3.1 Collaborative Symmetricity Exploitation (CSE) Framework

The CSE framework was designed to induce the AP-symmetricity to the trained model to improve
the generalization capability and to allow data-efficient training. To train a contextualized policy with
a limited number of expert data, we designed the CSE loss term L consisting of expert exploitation
loss LExpert and self-exploitation loss LSelf as follows:
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Figure 3: Illustration of collaborative symmetricity exploitation (CSE) process.

L := LExpert + λLSelf (4)
LExpert = −Ea∗,x∼Daug

[logπθ(a
∗|x)] (5)

LSelf = Ex∼U(X )Ea′∼πθ̃(·|x)Et∼U(TAP )[||πθ̃(a
′|x)− πθ(t(a

′)|x)||1] (6)

Expert Exploitation. Expert exploitation trains a high-quality symmetric contextualized pol-
icy for various task-conditions x by leveraging the offline expert data a∗ with TAP that trans-
forms the existing offline expert data a∗ for P times to augment the offline expert dataset
Dexp = {(x(i), a(i)∗)}Ni=1. Specifically, we randomly choose {t1, ..., tP } ⊂ TAP to generate
Daug = {

(
x(i), a(i)∗

)
,
(
x(i), t1(a

(i)∗)
)
, ...,

(
x(i), tP (a

(i)∗)
)
}Ni=1. Then, LExpert is expressed as a

teacher-forcing imitation learning scheme with the augmented expert dataset Daug .

Self-Exploitation. While Daug only contains expert quality data, self-exploitation involves self-
generated data, whose quality is poor at the beginning but improves over the phase of training so that
induces the AP-symmetricity in a wider action space to achieve greater generalization capability. The
proposed LSelf has three probability distributions. First, the U(X ) indicates a uniform distribution
of task-condition set X which helps to learn a contextualized policy capable of adaptation to task
variations. Second, the πθ̃ is a fixed copy of the current policy during the training, which samples
a pseudo label data a′ for task-condition x. Lastly, the U(TAP ) is a uniform distribution that
samples permutation t from TAP . Then, LSelf is expressed as an expectation of L1 loss between
the probability to generate a′ and the probability to generate t(a′). By minimizing Lself , we can
enforce the probabilities of generating a′ and t(a′) to be identical, thus imposing AP-symmetricity
directly into the current policy.

3.2 Contextual Attention Model
To further improve the generalization capability of the DPP solver, we modified the attention model
(AM) [10] and termed contextual attention model. As shown in Fig. 2, the decision-making procedure
consists of two newly devised context neural networks; (1) encoder capturing initial design conditions
while contextualizing the probing port through the probing port context network (PCN) and (2)
decoder sequentially allocating decaps on PDN while contextualizing the previous partial solution
through the recurrent context network (RCN). See Appendix C.

4 Experimental Results

Offline Expert Data Collection. We synthetically generated offline expert data using genetic
algorithm (GA) for this study. The number of iterations done for collecting a single data is represented
as M . We used GA{M = 100} to collect the offline expert data. In addition, we denote N as the
number of offline expert data used for training the CSE.

Hyperparameters. For training, we set P (= 3), the number of AP-transformed data per offline data.
We set the distribution ρ, described in Section 2.1, as a uniform distribution for training. We used
N = 2000 offline expert data for training CSE and imitation learning-based baselines. We trained
our model with batch size 100 for N < 200 and batch size 1, 000 for N = 1, 000 and 2, 000. We
trained for a maximum of 200 epochs for each model and used the model with the best validation
score to evaluate performance. See Appendix D for details.
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Table 1: Performance evaluation with the average score of 100 PDN cases (the higher the better).
Method Method Type PI Simulation (M ) Avg. Score

Random Search Online Search 10,000 12.70
Genetic Algorithm (expert policy) Online Search 100 12.56
Genetic Algorithm Online Search 500 12.79
AM-RL [15] Pretrained 1 11.71
Arb-RL [14] Pretrained 1 9.60
AM [15]-IL Pretrained 1 12.06
Arb [14]-IL Pretrained 1 10.80
CSE (ours) Pretrained 1 12.88

Baselines for Comparison. For search heuristic baseline methods, we implemented random search
and genetic algorithm that require a large number of simulations (i.e., M >= 100) for each problem.
Also, we reported two RL baselines, AM-RL [15] and Arb-RL [14] and two IL baselines, AM-IL and
Arb-IL, which are modified AM-RL and Arb-RL with imitation learning. Implementation details of
the baselines are provided in Appendix D.2 and Appendix D.3.

4.1 Generalization Capability Evaluation
To verify the generalization capability of the trained solver, each method is given the same unseen
100 DPPs and the average performance score was measured, after allocating K = 20 decaps on each.
We made sure test data, validation data and training data did not overlap.

As shown in Table 1, our CSE significantly outperformed all baselines. While online search methods
generally achieved high performance as they require a large number of searching iterations M per
problem, the learning-based baselines, once trained, only required a single simulation M = 1 to
measure the performance. For training, when the number of costly simulations was limited, RL-
based methods showed poorer generalization capability than their imitation learning versions due to
inefficiency in exploring over extremely large combinatorial action space of DPP. We believe that
imitation learning approach has greater exploration capability with the help of expert policy thus able
to achieve higher performance with a limited simulation budget (see Appendix D.2). Note that if
we have an infinite budget for simulation, DRL could achieve greater performance with a sufficient
learning loop. Among the imitation learning approaches trained with the same number of offline
expert data (N = 2, 000), CSE showed the highest performance.

The CSE policy trained with offline expert data generated by GA{100} outperformed GA{500}
with zero-shot inference. The CSE policy trained with low-quality offline expert data produced
higher-quality designs. We believe this was possible as we trained a factorized form of policy that
does not predict labels in a single step but produced a solution through a serial iterative roll-out
process, during which a good strategy for placing decaps can be identified.

(a) CSE in Original AM (b) CSE in Contextual AM (c) Original vs. Contextual AM

Figure 4: Ablation study on CSE components

Ablation Study. We conducted ablation studies on CSE components and context neural networks
with sparse offline data (N = 100). We ablated the effectiveness of expert exploitation (EE) and self-
exploitation (SE) in two policy networks: original AM (AM-IL baseline) and contextual AM (ours).
Each component of CSE supported increasing generalization capability in both policy networks. The
contextual AM with newly devised context neural networks outperformed the original AM.
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4.2 Offline Data Efficiency Evaluation

Figure 5: Offline data-efficiency
evaluation

N is the number of offline expert data generated by the
expert method, GA {M = 100}. We ablated N ∈
{100, 500, 1000, 2000} with fixed P = 3 and compared to the
AM-IL baseline. As shown in Fig. 5, CSE outperformed AM-IL
baseline in all N variation and CSE with N = 100 achieved a
greater score than AM-IL with N = 2000. In addition, the perfor-
mance of AM-IL saturates at N > 500 while the performance of
CSE continuously increases with N .

5 Conclusion

This paper proposed the collaborative symmetricity exploitation (CSE) framework for training a
contextualized policy (i.e., solver) of placement tasks in an offline manner. The CSE was applied to
decap placement problem (DPP) and achieved the most promising performance among all baseline
methods. The CSE is a general purpose offline learning scheme for placement tasks that can be
further applied to other hardware placement tasks including chip placement, ball grid array (BGA)
placement, and via placement.
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A DPP Electrical Modeling and Problem Definition

This section provides electrical modeling details of PDN and decap models used for verification
of CDML in DPP. Note that these electrical models can be substituted by those of your interest.
There are three methods to extract PDN and decap models that are also used for objective evaluation;
3D EM simulation tool, ADS circuit simulation tool, and unit-cell segmentation method. For each
method, there exists a trade-off between time complexity and accuracy. See Table 2. Out of the three
methods, we used the unit-cell segmentation method for a benchmark. Simulation time was evaluated
using the same PDN model on Intel i7. Note that simulation time depends on the size and complexity
of the PDN model.

Table 2: Time Taken for an Objective Evaluation of a PDN model described in Appendix A.2

Simulation Method Time Taken

EM Simulation Tool ≈10 hours
ADS Circuit Simulation Tool 23.58 sec

A.1 Domain Perspective Decap Placement Problem

(a) An example of hierarchical power distribution net-
work (PDN).

(b) Electrical circuit model of the hierarchical PDN in
(a).

(c) Water supply chain from the source to household.

Figure 6: Illustration of Hierarchical Power Distribution Network (PDN) analogous to Water Supply
Chain.

The development of AI has led to an increased demand for high-performance computing systems.
High-performance computing systems not only require precise design of hardware chips such as
CPU, GPU and DRAM, but also require stable delivery of power to the operating integrated circuits.
Power delivery has become a huge technical bottleneck of hardware devices due to the continuously
decreasing supply voltage margin along with the technology shrink of CMOS transistors [16].

Fig. 6 (a) shows the power distribution network (PDN) consisting of all the power/ground planes from
the voltage source to operating chips. Power is generated in VRM and delivered through electrical
interconnections of PCB, package and chip. Finding ways to meet the desired voltage and current
from the power source to destinations along the PDN is detrimental because failure in achieving
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power integrity (PI) leads to various reliability problems such as incorrect switching of transistors,
crosstalk from neighboring signals, and timing margin errors [17]. Decoupling capacitors (decaps)
placed on the PDN allows the reliable power supply to the operating chips, thus improving the power
integrity of hardware. As shown in Fig. 6 (b)-(c), the role of decap is analogous to that of water
storage tanks, placed along the city, apartment, and household, that can provide water uninterruptedly
and reliably. As if placing more water tanks can make the water supply more stable, placing more
decaps can make power supply more reliable. However, because adding more decaps requires more
space and is costly, optimally placement of decaps is important in terms of PI and cost/space-saving.

A.2 PDN and Decap Models for Verification

Unit-Cell Segmentation Method. The segmentation method [18] is a simple and fast way to generate
approximated electrical models. Because the analysis of the full electrical model using EM simulation
is very time-consuming, we divided the full PDN model into smaller unit-cells and constructed the
full PDN model using the unit-cell segmentation method. For fast simulation, we used equation-based
python implemented segmentation method, illustrated in Fig. 7.

Segmentation method was used for generation of PDN model consisting of a chip layer and a package
layer for verification as illustrated in Fig. 7 (a). The segmentation method was also used for objective
evaluation of DPP. When a solution for DPP is made, decaps are placed on the corresponding ports
on PDN using the segmentation method as illustrated in Fig. 7 (b).

(a) Generation of Chip PDN.

(b) Decap Placement.

(c) Segmentation Method].

Figure 7: Segmentation Method Implemented for PDN Generation and Decap Placement on PDN.

The PDN model we used for verification has a two-layer structure; a package layer at the bottom
and a chip layer on top of it as illustrated in Fig. 8. The PDN was modeled through the unit-cell
segmentation method. Package layer was composed of 40× 40 package unit-cells and chip layer was
composed of 10× 10 (i.e, Nrow ×Ncol) chip unit-cells. Because the DPP benchmark places MOS
type decaps, which are placed on chip, ports are only available on chip. Thus, we extracted 10× 10
ports information from the chip layer. See Fig. 11 (a), illustrating the chip PDN divided into 10× 10
units and each unit-cell numbered.

The electrical models of package and chip unit-cells that are used to build the PDN model for
verification are described in Fig. 9. The chip layer is composed of 10× 10 unit-cells, and the package
layer is composed of 40× 40 unit-cells using the segmentation method. The corresponding values of
electrical parameters are listed in Table 3.
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(a) Top-View of PDN model. (b) Side-View of PDN model.

Figure 8: Top-view and Side-view of PDN Model used for Verification

(a) Balanced Transmission Line Model of Chip Unit-Cell.

(b) Balanced Transmission Line Model of Package Unit-Cell.

Figure 9: Electrical Modeling of Chip and Package Unit-Cells for PDN Model generation.

Table 3: Width and Electrical Parameters for Chip and Package Unit-Cells used for Verification

Unit-Cell Model W R L G C

Chip 300µm 0.26 Ω 22pH 1.2mS 0.77pF
Package 0.5mm 0.093 Ω 0.25nH 5.4µS 0.045pF

We implemented MOS type decap for verification. Decap model and its electrical parameters are
shown in Fig. 10. As mentioned in Appendix A.1 Fig. 7 (b), the solution to DPP is evaluated using
the segmentation method.

Note that these electrical parameters and PDN structures were used as a benchmark. For practical use
of CDML, these PDN and decap models can be substituted by those of your interests.

A.3 Input Problem PDN and Output Decap Placement Data Structure

Each unit-cell (i.e, port) of the PDN model described in Appendix A.2 is represented as a 3D vector
composed of x-coordinate, y-coordinate and a number representing port state; 1 representing keep-out
region, 2 representing a probing port and 0 for the rest. Total 10× 10 (i.e, Nrow ×Ncol) 3D vectors
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Figure 10: Decap Unit-Cell with the Electrical Parameters used for Verification.

(a) Input Problem PDN. (b) Output Decap Placement Solution.

Figure 11: Illustration of How the DPP problem is given as an Input and Decap Placement Solution
is given as an Output.

represent the problem PDN. The solution to DPP is the placement of decaps. As illustrated in Fig. 11
(b), the solution is given as port numbers corresponding to each decap location.

A.4 Random Problem Generation of DPP

To randomly generate decap placement problems (DPPs), s0 = {p,ko}, for training, test and
validation, a probing index p is selected randomly from a uniform distribution of {1, ..., Nrow×Ncol}.
Then keep-out region indices ko are randomly selected through the following two stages: the number
of keep-out regions |ko| is randomly selected from a uniform distribution of 0 ∼ 15. Then, a
vector containing indices of keep-out ports ko is generated by random selection from the uniform
distribution of {1, ..., Nrow ×Ncol}. We generated 100 test problems and 100 validation problems
for 10× 10 PDN and 50 test problems and 50 validation problems for 15× 15 PDN. We made sure
the training, test, and validation problems do not overlap.
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B Expert Label Collection

We used a genetic algorithm (GA) as the expert policy to collect expert guiding labels for imitation
learning. GA is the most widely used search heuristic method for DPP [19, 20, 21, 22]. We devised
our own GA for DPP, the objective of which is to find the placement of given number (K) of decaps
on PDN with a probing port and 0-15 keep-out regions that best suppresses the impedance of the
probing port.

Notations. M is the number of samples to undergo an objective evaluation to give the best solution.
The value of M is defined by the size of population P0 times the number of generation G. K refers
to the number of decaps to be placed. Pelite is the number of elite population.

Guiding Dataset. To generate expert labels, guiding problems were generated in the same way test
dataset was generated. We made sure the guiding data problems do not overlap with the test dataset
problems. Also, we made sure each guiding problem does not overlap with each other. Each guiding
data problem goes through the following process described in Fig. 12 to collect the corresponding
expert label.

Figure 12: Process Flow of Genetic Algorithm for DPP.

Population and Generation. For GA {M = 100} (expert policy), we fixed the size of population
as P0 = 20 and the number of generation as G = 5, which makes up total number of samples to be
M = P0 ×G = 100. Each solution in the initial population is generated randomly. As described in
Fig. 11 (b), each solution consists of K numbers, each representing a decap location on PDN. Note
that each solution consists of random numbers from 0 to 99 except numbers corresponding to probing
port and keep-out region locations.

Once the initial population is generated randomly, a new population is generated through elitism,
crossover, and mutation. This whole process of generating a new population makes one generation;
the Generation process is iterated for G− 1 times.

Elitism. Once initial population is formulated, the entire population undergoes objective evaluation
and gets sorted in order of objective value. The size of elite population is pre-defined as Pelite = 4
for GA {M = 100} (expert policy). That means the top 4 solutions in the population become the
elite population and are kept for the next generation.

Crossover. Crossover is a process by which new population candidates are generated. Each solution
of the current population including the elites is divided in half. Then, as described in Fig. 13 (c), half
the solutions on the left and the other half on the right go through random crossover for P0 times to
generate a new population. If the elite population is available, P0 − Pelite random crossover takes
place so that the total population size becomes P0, including the elite population.
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(a) Initial Population Generation. (b) Elitism.

(c) Crossover. (d) Mutation.

Figure 13: Illustration of each GA Operators used for DPP Guiding Data Generation.

Mutation. According to Fig. 13 (d), there may exist solutions with overlapping numbers after the
random crossover. We replace the overlapping number with a randomly generated number, and we
call this mutation.

Select Best. When G is reached, the final population is evaluated by the performance metric. Then, a
solution with the highest objective value becomes the final guiding solution for the given DPP.

The guiding problems and corresponding solutions generated as a result of GA are saved and used as
guiding expert labels for imitation learning.
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C Details of Neural Architecture Design

Our neural architecture has the AM [10] with context modification. The AM is a transformer[23]-
based encoder-decoder model designed to solve combinatorial optimization problems. We used
conventional notations from transformer [23] and AM [10], including multi-head attention (MHA),
feed forward (FF), query, key and value (Q,K, V ). Because their terminologies are well organized,
we tried to keep every notation as possible. In this paper, we focused on presenting the main
differences between AM and our architecture. See [10] for detailed mechanism of AM.

C.1 Change of Notations.

There are small revisions we made from [10]. In AM, TSP nodes are presented as xi, i ∈ {1, ..., N},
where N refers to the number of TSP nodes. This paper uses xp for node of the probing port, x1:|ko|
for nodes of the keep-out regions and x1:d for nodes of the decap available place.

[10] denotes action as π (for representing permutation action), but we denoted action as a.

In, [10], the notation, h(N), refers to N times MHA in encoder; we denoted this notation as h just
for readability.

There are two additional notations: c(p) is the probing context embedding from the probing port
context network (PCN in section 3.2) and cat−1

is the recurrent context embedding from the recurrent
context network (RCN in section 3.2) for step = t.

Figure 14: Overview of main difference between AM and modified version of AM.

C.2 Highlight of modifications: Context Embedding.

The main difference between the AM and ours is the context embedding and is illustrated in Fig. 14.

AM’s [10] context embedding is presented as follows:

h(c) = MHA([h(g),haτ−1 ,ha1 ]) (7)

Context embedding of AM. Since the AM was originally designed for TSP and its invariant problems,
AM’s context embedding is implemented for capturing the entire graph by taking the average of all
node embedding, h(g), state-transition with hat−1

and final destination with ha1
. Note that TSP is a

routing problem, where it must return to the first node (i.e, destination node is first visited node).

Context embedding of AM for DPP (AM-RL [15]). [15] also used the AM for decap placement
with modification of context embedding. [15] tried to add hp to capture the location of probing port
as follows:
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h(c) = MHA([h(g),hat−1 ,hp]) (8)

Context embedding of Ours. We observed that h(g) degrades the performance of the model for DPP.
DPP is different from TSP; we need a new DPP-specific context embedding strategy. Therefore, we
tried to focus on the probing port more than others by proposing the PCN. We excluded h(g) and ha1

from the context embedding and replaced them with our newly designed context embedding. Our
context embedding is described as follows:

h(c) = MHA(c(p) + cat
) (9)

c(p) = MLPPCN (hp) (10)

cat
= MLPRCN (hat

) (11)

Note that both MLPPCN and MLPRCN are two-layer perceptron models with ReLU activation,
where input and output dimensions are identical (d = 128 in all experiments).

C.3 Calculation of Probability.

Probability calculations using h(c), and hi, i ∈ {1, ..., N ×M} in (11-14) are exactly identical to
(5-8) in [10] except the masking mechanism in equation 13 and equation 14. Because [10] solves TSP,
so they mask the previously selected actions by forcing −∞ as compatibility u(c)j . For DPP, we mask
not only the previously selected actions a1:t−1 but also the probing port index p and the keep-out
region indices ko; it is forbidden to choose the indices in current state st−1 = {p,ko,a1:t−1}.

Query, key and value are computed by:

qc = WQh(c),ki = WKhi,vi = WV hi (12)

Note that WQ, WK and WV are 128-to-128 linear projections.

After that, compatibility u(c)j is computed by the dot product of query and key, with masking
mechanism (setting −∞ not to select actions in st−1).

u(c)j =

{
qT
(c)kj√
128

if j /∈ st−1

−∞ otherwise
(13)

The tanh clipping is done following [24] and [10].

u(c)j =

10 · tanh
(

qT
(c)kj√
128

)
if j /∈ st−1

−∞ otherwise.
(14)

Finally, probability can be computed using softmax function as follows:

pθ (at = i | st−1) =
eu(c)i∑
j e

u(c)j
(15)
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D Detailed Experimental Settings

This section provides detailed experimental settings for main experiments and ablation studies.

D.1 Training Hyperparameters.

There are several hyperparameters for training; we tried to fix the hyperparameters as [10] did
for showing their frameworks’ practicality. We then provided several ablation studies on each
hyperparameter to analyze how each component contributes to performance improvement.

Training hyperparameters are set to be identical to those presented in AM for TSP [10] except learning
rate, unsupervised regularization rate λ, the number of expert data N , number of action permutation
transformed data per expert data P and batch size B.

Table 4: Hyperparameter setting for training model.

Hyperparameter Value
learning rate 0.00001
λ 8×1032

N 1000
P 3
B 1000

D.2 Implementation of ML Baselines.

There are two main ML baselines, Arb-RL [14] and AM-RL [15].

Arb-RL. Arb-RL is a PointerNet-based DPP solver proposed by [14]. However, reproducible source
code was not available. Therefore, we implemented the Arb-RL following the implementation of
[24] 1 and paper of [14]. We set the training step 1, 600 with batchsize B = 100 that makes total
160, 000 PI simulation.

Arb-IL. Arb-IL is an imitation learning version of Arb-RL trained by our training data. We set
N = 2000, B = 1000 for training Arb-IL.

AM-RL. AM-RL is a AM-based DPP solver proposed by [15]. We reproduced AM-RL by following
implementation of [10]2 and paper of [15]. We set the training step 1, 600 with batchsize B = 100
that makes total 160, 000 PI simulation.

AM-IL. AM-IL is an imitation learning version of AM-RL trained by our training data. For
experiments in Table 1, we set N = 2000 and B = 1000 for training. For ablation study, we mainly
ablate N , when N = 100 we set B = 100. Here is the training sample complexity (the number of PI
simulations during training) of each ML baselines and CDML:

Table 5: Training sample complexity of ML baselines and CDML.

Methods The Number of PI simulations for Training
Arb-RL 160,000
AM-RL 160,000
Arb-IL {N = 2000} 200,000 (N = 2000, M = 100 from GA expert)
AM-IL {N = 2000} 200,000 (N = 2000, M = 100 from GA expert)
CDML {N = 100} (ours) 10,000 (N = 100, M = 100 from GA expert)
CDML {N = 1000} (ours) 100,000 (N = 1000, M = 100 from GA expert)

During the inference phase, each learned model produces a greedy solution from their policy (i.e.,
M = 1) following [10].

1https://github.com/pemami4911/neural-combinatorial-rl-pytorch
2https://github.com/wouterkool/attention-learn-to-route
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D.3 Implementation of Meta-Heuristic Baselines.

Genetic Algorithm (GA). GA {M = 100} and GA {M = 500} are implemented as baselines.
For detailed procedures and operators used for GA, see Appendix.B. GA {M = 100} is the expert
policy used to generate expert data for imitation learning in CDML. For GA {M = 100}, the size
of population, P0, is 20, number of generation, G, is 5 and elite population, Pelite, is 4. For GA
{M = 500}, P0 is 50, G is 10 and Pelite is 10.

Random Search (RS). The random search method generates M random samples for a given problem
and selects the best sample with the highest objective value.

Figure 15: Performance of GA and RS with varying number of iterations (M ) in comparison to
CDML at M = 1.

Fig. 15 shows the performance of GA and RS depending on the number of iterations (M ). The
performance was measured by taking the average of 100 test data solved by each method at each
M . GA outperformed RS at every M , and the performance increased with increasing M for both
methods. However, the gradient of performance increment decreased with increasing M . On the
other hand, our CDML showed higher performance than GA{M = 100} and RS {M = 10, 000}
with a single inference M = 1.
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E Experimental Results in terms of Power Integrity

The objective of DPP is to suppress impedance of the probing port as much as possible over a
specified frequency range and is measured by the objective metric, Obj :=

∑
f∈F (Zinitial(f) −

Zfinal(f)) · 1GHz
f . Performance of CDML was evaluated in comparison to GA {M = 100} (expert

policy), GA {M = 500}, RS {M = 10, 000}, AM-RL and AM-IL on unseen 100 PDN cases. Each
method was asked to place 20 decaps (K = 20) on each test.

E.1 Impedance Suppression Plots

(a) Test Case 1. (b) Test Case 2.

(c) Test Case 3. (d) Test Case 4.

(e) Test Case 5. (f) Test Case 6.

Figure 16: Impedance suppressed by each method, GA {M = 100} (expert policy), GA {M = 500},
RS {M = 10, 000}, AM-RL , AM-IL and CDML (Ours) for 6 example PDN cases out of 100 test
dataset. (The lower the better.)
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E.2 Decap Placement Tendency Analysis

(a) GA {M = 100}.

(b) GA {M = 500}.

(c) RS {M = 10, 000}.

(d) AM-RL {M = 1}.

(e) AM-IL {M = 1}.

(f) CDML(ours){M = 1}.

Figure 17: Corresponding decap placement solutions to Fig. 16 by each method. Red represents
probing port, black represents keep-out ports and blue represents decap locations.

Fig. 17 shows the decap placement solutions of 6 PDN cases plotted in Fig. 16. The solutions by
the search-heuristic methods, GA and RS, tend to be scattered while the solutions by learning-based
methods, AM-RL, AM-IL and CDML, are clustered. Since search-heuristic methods are based on
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random generations, they do not show clear tendency. On the other hand, learning based methods are
based on a policy so that they have distinct tendency in placing decaps.

The role of placing decaps in hardware design is to decouple loop inductance of PDN. In terms of PI,
analysis of loop inductance is critical, but at the same time, is complex [25]. The loop inductance
distribution of PDN highly depends on various design parameters such as the location of probing port,
spacing between power/ground, size of PDN, and hierarchical layout of PDN [26]. When human
experts place decaps on PDN, there are too many domain rules to consider. On the other hand, CDML
understands the PDN structure and its electrical properties by data-driven learning. According to
Fig. 17, CDML tends to place decaps near the probing port, which is a well-known expert rule in the
PI domain.
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F Further Ablation Study

This section reports ablation studies on action permutation invariance and hyperparameters N
(number of guiding samples), λ (weight of self-distillation loss term), and P (number of permutation
transformed labels).

F.1 Ablation Study on N

N is the number of expert labels generated by the expert policy, GA {M = 100}. We ablate
N ∈ {100, 500, 1000, 2000} with fixed P = 3 and λ = 8 and compare to AM-IL baseline for all N .
As shown in Table 6, CDML with N = 2000 gives the best performance and CDML outperforms
AM-IL for all N variations. Performance of AM-IL is saturated at N > 500 while the performance
of CDML continuously increases with the increase of N .

Table 6: Ablation study on N for CDML (P = 3, λ = 8) and AM-IL.

Validation Score

AM-IL {N = 100} 11.60
CDML (ours) {N = 100} 12.98
AM-IL {N = 500} 12.37
CDML (ours) {N = 500} 12.99
AM-IL {N = 1000} 12.23
CDML (ours) {N = 1000} 13.09
AM-IL {N = 2000} 12.32
CDML (ours) {N = 2000} 13.13
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F.2 Ablation Study on λ

λ refers to the weight of self-distillation loss term LSelf , in the collaborative learning loss L :=
LExpert + λLSelf . To set λ× LU be 0.1 ∼ 1, we first multiplied 1032 to λ because the probability
of a specific solution is extremely small. Then, we ablated for λ ∈ {1, 2, 4, 6, 7, 8, 9, 10} (1032
is omitted) with fixed N = 100 and P = 3. For every λ, it prevents overfitting of the model in
comparison to the baselines trained only with LExpert (see Fig. 18). According to the Table 8, λ = 8
gives the best validation scores.

Table 7: Ablation study of λ on fixed P = 3 and N = 100.

λ (×1032) Validation Score
1 12.96
2 12.96
4 12.94
6 12.96
7 12.98
8 12.98
9 12.97
10 12.96
Only IL, λ = 0 12.97

Figure 18: Validation graph of λ ∈ {1, 2, 4, 6, 7, 8, 9, 10} on fixed P = 3 and N = 100.
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F.3 Ablation Study on P

P is the number of permutation transformed labels per each expert label used for expert distillation
imitation learning. We ablate P ∈ {3, 5, 7} with fixed N = 100 and λ = 8 and compared
collaborative distillation (i.e., both expert and self-distillation) to only expert distillation training case.
As shown in Table 8, P = 3 with {Expert distillation + Self-distillation} give best performances.
For every P , {Expert distillation + Self-distillation } gives the better performances, indicating
self-distillation scheme well prevents overfitting of training process for sparse dataset.

Table 8: Ablation study on P with and without unsupervised loss term.

Validation Score

Expert distillation {P = 3} 12.97
+ Self- distillation {λ = 8} 12.98
Expert distillation {P = 5} 12.95
+ Self- distillation {λ = 8} 12.95
Expert distillation {P = 7} 12.93
+ Self- distillation {λ = 8} 12.95

Figure 19: Validation score of P ablation with and without Unsupervised Loss term.
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