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Abstract

Foundation models for weather science are pre-trained on vast amounts of struc-
tured numerical data and outperform traditional weather forecasting systems. How-
ever, these models lack language-based reasoning capabilities, limiting their util-
ity in interactive scientific workflows. Large language models (LLMs) excel at
understanding and generating text but cannot reason about high-dimensional me-
teorological datasets. We bridge this gap by building a novel agentic framework
for weather science. Our framework includes a Python code-based environment
for agents (ZEPHYRUSWORLD) to interact with weather data, featuring tools
like an interface to WeatherBench 2 dataset, geoquerying for geographical masks
from natural language, weather forecasting, and climate simulation capabilities.
We design ZEPHYRUS, a multi-turn LLM-based weather agent that iteratively
analyzes weather datasets, observes results, and refines its approach through con-
versational feedback loops. We accompany the agent with a new benchmark,
ZEPHYRUSBENCH, with a scalable data generation pipeline that constructs diverse
question-answer pairs across weather-related tasks, from basic lookups to advanced
forecasting, extreme event detection, and counterfactual reasoning. Experiments
on this benchmark demonstrate strong promise for LLM agents to help weather
scientists reason about meteorological data more effectively.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across diverse scientific
domains [6], revolutionizing fields from drug discovery [66, 59] and materials science [29, 23] to
network biology [53]. These models excel at processing textual content such as scientific literature,
source code [24], and structured data tables [64]. However, their application to domains requiring
reasoning over high-dimensional numerical data remains limited [55].

Meteorology offers a compelling yet challenging case study, as combining natural language reasoning
with complex atmospheric data has the potential to greatly advance weather research. Weather
prediction is a critical scientific challenge, with profound implications spanning agriculture, disaster
preparedness, transportation, and energy management [2]. The field has witnessed remarkable
progress through machine learning approaches, with foundation models [45, 27, 28, 5, 46] now
achieving state-of-the-art performance in medium-range forecasting, often surpassing traditional
physics-based numerical simulations [42, 4]. However, current weather models operate exclusively
on structured numerical datasets such as reanalysis data, cannot incorporate valuable alternative
modalities like textual weather bulletins or field station reports, and crucially, lack interactive natural
language interfaces for querying or reasoning.
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Weather science workflows require substantial technical expertise to orchestrate complex ecosystems
of tools, datasets, and models. Researchers must navigate disparate data sources, integrate outputs
from multiple forecasting systems, combine observational datasets with model predictions, and
coordinate between different computational environments and APIs. This dependency on extensive
technical knowledge creates barriers for domain experts, limiting broader participation in weather
science. Traditional meteorological workflows therefore require expert interpretation to translate
computational outputs into actionable insights, increasing costs and limiting their utility in human-in-
the-loop decision-support systems.

Multimodal LLMs can handle data from diverse modalities and offer a potential pathway to address
these challenges. Models capable of jointly processing text with images [56, 1, 32, 37, 31, 35, 36],
video [65, 40, 63, 12, 34, 62], and audio [14, 13, 15, 57, 58, 17, 20] have shown impressive cross-
modal reasoning abilities. Yet atmospheric data poses unique challenges: its spatiotemporal, multi-
channel structure is fundamentally different from conventional modalities, requiring specialized
approaches for effective integration with language models. Initial attempts to bridge this gap have
shown promise but remain limited in scope. Early vision-language approaches to meteorology
[10, 30, 39] have focused on narrow applications like extreme weather prediction using restricted
variable subsets, falling short of general-purpose meteorological reasoning. More recent multimodal
weather-language models [54] demonstrate the potential of this direction but still fail to match
established baselines across many important meteorological tasks. This persistent gap highlights a
fundamental challenge: despite significant progress in both weather foundation models and LLMs, no
existing system successfully unifies meteorological data with natural language reasoning for broad,
interactive scientific applications.

We address this challenge by first introducing an agentic environment that enables LLMs to interact
programmatically with meteorological data and models. We setup ZEPHYRUSWORLD, a comprehen-
sive execution environment that exposes weather-focused capabilities through easy-to-use Python
APIs. The system includes interfaces to the WeatherBench 2 dataset [49], geoquery functionality
for translating between coordinates and named locations, state-of-the-art forecasting models [46],
and physics-based simulators. A FastAPI backend parallelizes code execution from LLM-generated
queries.

We then develop two code-generating systems of increasing sophistication within this agentic frame-
work. ZEPHYRUS-DIRECT generates Python code in a single step to solve weather problems directly
[19]. ZEPHYRUS-REFLECTIVE employs an iterative execution–refinement workflow: it executes
code to examine weather data, analyzes the results, and refines both code and output before providing
a final answer. Both approaches can automatically detect and correct errors produced during code
execution. Figure 1 gives an overview of our entire agentic pipeline.

To systematically evaluate these approaches, we construct ZEPHYRUSBENCH, a comprehensive
benchmark built on ERA5 reanalysis data [21] from WeatherBench 2 [49]. The benchmark combines
human-authored and semi-synthetic tasks spanning 2062 question–answer pairs across 46 distinct
tasks. Tasks range from basic data lookups and forecasting to challenging research problems involving
extreme event detection, forecast report generation, and prediction and counterfactual analysis. We
also implement robust evaluation schemes to assess the scientific accuracy of all generated answers
across diverse meteorological reasoning tasks. We summarize our key contributions below.

• We develop ZEPHYRUSWORLD, an agentic environment providing unified Python APIs for meteo-
rological data, forecasting models, and climate simulation tools.

• We introduce two code-generating systems that leverage ZEPHYRUSWORLD: ZEPHYRUS-DIRECT
for single-step code generation and ZEPHYRUS-REFLECTIVE for iterative execution-refinement
workflows to solve open-ended meteorological problems.

• We curate ZEPHYRUSBENCH, a challenging weather reasoning benchmark with 2062 question-
answer pairs across 46 meteorological task types.

• Our evaluation on ZEPHYRUSBENCH shows that LLM agents achieve encouraging results on the
benchmark, suggesting that they can be effective assistants to weather scientists.

2 Related Work
Weather Foundation Models. Neural network-based weather forecasting systems [28, 48, 5, 47, 45,
7, 46] have revolutionized meteorological prediction by demonstrating superior performance com-
pared to conventional physics-based approaches [42] while being significantly more computationally
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Figure 1: Overview: We develop ZEPHYRUS, an agentic framework for weather science. Given a
query, the LLM-based agent ZEPHYRUS writes a code block which is sent to the code execution
server. The server orchestrates several tools to execute the code block and returns the execution
results to the agent. The agent either decides to execute more code to refine its output or respond
back to the user.

efficient. Nevertheless, these architectures are predominantly trained for forecasting. In particular,
they do not support conversational interfaces or cross-domain reasoning capabilities.

Agentic frameworks for scientific discovery Agentic frameworks implement the per-
ceive–reason–plan–act loop by pairing LLMs with tools, memory, and feedback to pursue
long-horizon goals. Core patterns include interleaving reasoning with tool calls (ReAct [61]),
self-critique with episodic memory (Reflexion [51]), and self-supervised learning of API use (Tool-
former [50]). General-purpose libraries such as AutoGen provide a standard interface for multi-agent
conversation and tool invocation, making these patterns reusable across tasks [60].

In many scientific applications, these frameworks appear as domain agents and self-driving labs. In
chemistry, ChemCrow couples an LLM controller with a curated set of expert tools for synthesis and
analysis [9], while Coscientist integrates retrieval, code execution, and laboratory APIs to plan and
run experiments end-to-end [8]. Biomedical agents extend the approach across literature, databases,
and analysis workflows (e.g., Biomni [22]). Despite these advances across multiple scientific domains,
weather science remains largely unexplored territory for agentic approaches.

General-Purpose Vision-Language Models. Multi-modal vision language models [33, 1, 32, 31,
37, 38, 35, 36] demonstrate strong visual reasoning capabilities on general-purpose evaluation bench-
marks. However, adapting these models for applications in weather science presents considerable
difficulties. Standard VLM architectures assume RGB visual inputs and exhibit weaknesses in
quantitative analytical tasks. Meteorological data presents fundamentally different challenges through
high-dimensional, structured atmospheric measurements requiring specialized integration approaches
for language model compatibility. While weather-language hybrid models [54] seem promising, they
underperform relative to domain-specific baselines across critical meteorological applications.

Multimodal Weather Datasets. Recent research has developed several multimodal frameworks
that combine weather observations with textual information. These include the Terra collection
[11], which integrates geographical imagery with descriptive text for general earth observation, and
ClimateIQA [10], which focuses on extreme weather detection through wind measurement analysis.
Similarly, WeatherQA [39] specializes in severe weather interpretation using remote sensing data and
expert commentary, while CLLMate [30] connects media reports with ERA5 observations for weather
event classification. Despite these valuable contributions, existing frameworks are narrow in scope.
They concentrate on narrow applications or utilize only small subsets of atmospheric variables. This
approach overlooks a fundamental characteristic of atmospheric dynamics: weather systems involve
complex multi-scale interactions across numerous meteorological parameters. To address these
limitations, our benchmark incorporates diverse weather reasoning tasks, both human-implemented
and semi-synthetically generated, that span across most WeatherBench2 data channels.
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3 ZEPHYRUS: An Agentic Framework for Weather Science

3.1 ZEPHYRUSWORLD: An Agentic Environment for Weather Science

The fragmented nature of weather science tools makes it challenging for LLMs to effectively leverage
them for scientific tasks. To address this, we introduce ZEPHYRUSWORLD, a comprehensive agentic
environment that unifies weather science capabilities from diverse tools through a clean Pythonic
interface. Given a question, we leverage LLMs’ ability [19, 25] to generate Python code and execute
it in a sandboxed environment. The output is then fed back to the model, along with any execution
errors. We design high-level APIs for the tools for ease of use, and include documentation extracted
from the docstrings in the models context at inference time.

The environment encompasses several essential weather science tools:

1. WeatherBench 2 Data Indexer. The environment provides the model access to the data through
the xarray dataset interface.

2. Geolocator. This tool provides comprehensive geospatial functionality for weather data analysis.
It handles forward geocoding (place names to coordinates) and reverse geocoding (coordinates to
location names) using the Natural Earth dataset [44]. Key operations include finding geographic
features at specific coordinates, retrieving boolean masks and area-weighted maps for regions, listing
sublocations, and calculating geodistances. Built using geopandas and shapely, it maintains
precomputed spatial caches for fast lookups.

3. Forecaster. We incorporate the Stormer model [46], a transformer-based neural weather prediction
system trained on WeatherBench 2. We chose it for its strong performance at short to medium range
forecasts while being orders of magnitude more efficient than traditional numerical models. Our
implementation abstracts checkpoint loading and preprocessing, providing a simple interface to run
forecasts from arbitrary atmospheric initial conditions and return outputs as xarray datasets.

4. Simulator. Our JAX-GCM simulator is an intermediate complexity atmospheric model built on
NeuralGCM’s dynamical core [26]. It incorporates physical parameterizations from the SPEEDY
Fortran model [42], including radiation, moist physics (clouds and convection), and vertical and
horizontal diffusion. We use the default T32 configuration (approximately 3.5◦ resolution) with 8
vertical layers. Built on JAX, we can run 5-day simulations in only ≈ 25s on an A100 GPU.

Code Execution Server. ZEPHYRUSWORLD requires a system capable of handling multiple weather
analysis tasks simultaneously without resource conflicts. We implement a FastAPI-based server-client
architecture where clients send code execution requests to a dedicated execution server that processes
them in parallel. The system maintains resource pools for each tool component to prevent contention
and enable true parallelism. Each pool contains one or more instances of the above tools. A resource
manager implements acquire/release semantics to ensure each execution thread has exclusive access
to a complete set of tools while preventing deadlocks.

Each execution follows a strict protocol: acquire resources from pools, load requested datasets,
inject tool instances into the execution environment, and execute user code with timeout protection.
The system captures all outputs and error information, which are sent back to the client for further
processing by the agent. Figure 3 provides an overview of the server.

3.2 The ZEPHYRUS Family of Weather Agents

We design agentic systems that leverage ZEPHYRUSWORLD to solve complex meteorological tasks.
Our approach constructs prompts containing comprehensive documentation of ZEPHYRUSWORLD
tools, variable descriptions, units, and coordinate systems. The models generate Python functions
using these tools to solve the given questions, which execute on ZEPHYRUSWORLD’s code execution
server. Any execution errors or timeouts are returned to the models, which regenerate code until
the error is resolved. We implement two distinct systems that differ in their execution strategy and
refinement approach. Both systems intentionally maintain simple designs to isolate and measure the
agentic capabilities of LLMs for solving weather science problems.

ZEPHYRUS-DIRECT generates a complete Python solution in one attempt and reports the execution
output as the final answer. This model runs the error-correction loop for a maximum of 5 times.

ZEPHYRUS-REFLECTIVE implements a multi-turn workflow that alternates between code generation
and execution phases. The agent executes individual code blocks and receives the output as observa-
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Model LLM SAE (Q25) (↓) SAE (Q50) (↓) SAE (Q75) (↓) SAE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 2.68e-08 0.029 0.513 17.753
ZEPHYRUS-DIRECT gpt-5-mini 0.0 0.018 0.288 55.859

Text Only LLM gpt-5-mini 0.290 0.935 2.172 27.285

ZEPHYRUS-REFLECTIVE gpt-5-nano 0.0001 0.053 0.955 12.002
ZEPHYRUS-DIRECT gpt-5-nano 0.0 0.049 0.751 443.282

Text Only LLM gpt-5-nano 0.265 1.074 2.799 3116.1

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0.0 0.028 0.212 297.8
ZEPHYRUS-DIRECT gemini-2.5-flash 0.0 0.012 0.142 58.29

Text Only LLM gemini-2.5-flash 0.530 1.309 3.798 25228.7

ZEPHYRUS-REFLECTIVE Qwen3-Coder-30B 0.015 0.245 1.187 21528.3
ZEPHYRUS-DIRECT Qwen3-Coder-30B 0.004 0.175 1.256 387.21

Text Only LLM Qwen3-Coder-30B 0.354 1.345 6.521 13381.4

Table 1: Output validity and error metric quantiles for numerical tasks. SAE stands for standardized
absolute error, the absolute error divided by the standard deviation of the relevant variable in the data.

Model LLM AE (Q25) (↓) AE (Q50) (↓) AE (Q75) (↓) AE (Q99) (↓)

ZEPHYRUS-REFLECTIVE gpt-5-mini 0.0 0.0 12.0 146.1
ZEPHYRUS-DIRECT gpt-5-mini 0.0 0.0 12.0 156.0

Text Only LLM gpt-5-mini 12 30 72 26841.6

ZEPHYRUS-REFLECTIVE gpt-5-nano 0 0 6 39521.3
ZEPHYRUS-DIRECT gpt-5-nano 0 0 18 5.57e18

Text Only LLM gpt-5-nano 12 36 93 190.68
ZEPHYRUS-REFLECTIVE gemini-2.5-flash 0 0 6 122.04

ZEPHYRUS-DIRECT gemini-2.5-flash 0 0 48 8.85e18
Text Only LLM gemini-2.5-flash 12 36 72 157.92

ZEPHYRUS-REFLECTIVE Qwen3-Coder-30B 0 18 37.5 504377
ZEPHYRUS-DIRECT Qwen3-Coder-30B 0 6 24 8.67e18

Text Only LLM Qwen3-Coder-30B 6 24 54 144

Table 2: Absolute error quantiles for time tasks, in units of hours.

tions. The execution results are fed back to the LLM, which analyzes the observations and decides on
the next step. This iterative process enables the model to assess the scientific plausibility of outputs,
identify anomalies or mistakes in results, and refine subsequent code blocks to address logical errors.
We run the interaction loop for a maximum of 20 times per question.

4 ZEPHYRUSBENCH: A Comprehensive Weather Benchmark

Weather science problems require complex analysis of multi-scale atmospheric patterns, statistical
modeling of trends, and integration of diverse datasets from numerical models and expert reports. We
introduce ZEPHYRUSBENCH, a comprehensive benchmark that evaluates how effectively LLMs can

Model LLM Location Accuracy (%)(↑) EMD (km) (↓) Extreme Weather F1 (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 89.05 2084.39 0.432
ZEPHYRUS-DIRECT gpt-5-mini 77.11 2317.97 0.466

Text Only LLM gpt-5-mini 16.92 5916.13 0.421

ZEPHYRUS-REFLECTIVE gpt-5-nano 65.17 2354.28 0.212
ZEPHYRUS-DIRECT gpt-5-nano 72.14 2549.28 0.184

Text Only LLM gpt-5-nano 15.42 5132.35 0

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 66.67 2237.11 0.382
ZEPHYRUS-DIRECT gemini-2.5-flash 75.62 2400.46 0.425

Text Only LLM gemini-2.5-flash 9.45 3069.93 0.247

ZEPHYRUS-REFLECTIVE Qwen3-Coder-30B 27.86 3115.14 0.292
ZEPHYRUS-DIRECT Qwen3-Coder-30B 15.92 2224.72 0.260

Text Only LLM Qwen3-Coder-30B 14.43 6130.85 0.586

Table 3: Location metrics for location answer-based questions. EMD stands for Earth mover’s
Distance.
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Model LLM % Valid Outputs (↑) Discussion Score (↑) Boolean F1 (↑)

ZEPHYRUS-REFLECTIVE gpt-5-mini 95.00 0.264 0.538
ZEPHYRUS-DIRECT gpt-5-mini 94.52 0.255 0.585

Text Only LLM gpt-5-mini 95.49 0.238 0.369

ZEPHYRUS-REFLECTIVE gpt-5-nano 90.30 0.351 0.452
ZEPHYRUS-DIRECT gpt-5-nano 97.48 0.267 0.496

Text Only LLM gpt-5-nano 91.78 0.344 0.397

ZEPHYRUS-REFLECTIVE gemini-2.5-flash 89.23 0.275 0.658
ZEPHYRUS-DIRECT gemini-2.5-flash 96.75 0.235 0.594

Text Only LLM gemini-2.5-flash 73.96 0.383 0.222

ZEPHYRUS-REFLECTIVE Qwen3-Coder-30B 85.55 0.292 0.484
ZEPHYRUS-DIRECT Qwen3-Coder-30B 87.49 0.231 0.490

Text Only LLM Qwen3-Coder-30B 86.03 0.344 0.397

Table 4: Overall percentage of valid outputs, numerical score (0-1) for discussion questions, and F1
score for boolean questions.

assist in real-world meteorological workflows. The benchmark comprises 46 distinct meteorological
tasks with answers derived from curated weather reports and human-generated or verified code.

4.1 Dataset Curation

We base our tasks around the ERA5 reanalysis dataset [21], specifically from WeatherBench 2 [49].
The dataset provides global atmospheric data from 1979 to 2022. We use 1.5◦ spatial resolution with
6-hourly temporal resolution.

The capabilities measured by our curated tasks range from basic data lookups and computations to
more advanced problems involving forecasting, challenging research problems including extreme
event detection, forecast report generation, prediction analysis, and counterfactual reasoning. We
design tasks with increasing difficulty levels based on the complexity of tool usage required to answer
them, from simple single-step data queries to multi-step analytical workflows. Table 5 provide an
overview of the task types we implement as part of our benchmark.

For each task-type, we define natural language templates with placeholders such as location, variable,
and time window. To create task-specific examples, these placeholders are filled by randomly
sampling inputs, and the corresponding ground truth is computed deterministically using human-
written or human-verified synthetic code applied to the raw ERA5 data. To add more diversity to the
dataset, we use an LLM (specifically, GPT-4o) to reword questions generated by our data curation
pipeline. Figure 4 shows an example template, and a sample generated from it.

Using our framework, we construct a benchmark dataset comprising 2062 test samples spread across
46 tasks. For a detailed breakdown of dataset statistics, please refer to Appendix A.2. We provide
more details about how the tasks are implemented in the subsequent sections.

4.1.1 Human-generated tasks

The human-generated tasks span all difficulty levels and represent realistic meteorological queries
curated in conjunction with a domain expert. For each task, a graduate student created a question
template and wrote Python code to answer the query. Easy tasks focus on basic data retrieval
operations like finding extrema, querying specific values, and identifying locations with particular
weather conditions. Medium-difficulty tasks introduce forecasting elements, asking for future weather
predictions at specific locations and times. Hard tasks incorporate more complex analytical concepts
such as anomaly detection relative to baselines and counterfactual scenario analysis. The most
challenging tasks demand comprehensive meteorological expertise and mirror real-world operational
workflows. These include extreme weather event detection, comprehensive weather assessments, and
generation of detailed forecast discussions that span regional to global scales. For instance, ENSO
outlook reports require synthesizing complex interactions between multiple atmospheric and oceanic
variables to produce coherent, scientifically grounded forecasts. We source the expert-generated
weather discussion reports from several online sources, such as the NOAA website1 and IRI Seasonal

1https://www.wpc.ncep.noaa.gov/discussions/hpcdiscussions.php?disc=pmdepd
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Climate Forecasts/Outlooks. For extreme weather event tasks, we use records from the EM-DAT
international disaster database [16], matching event entries by date and location to the ERA5 data.

4.1.2 Semi-synthetic task generation

To increase task diversity, we implement a semi-synthetic pipeline that transforms unstructured
weather-related text into verifiable benchmark tasks. Figure 2 provides an overview of the procedure.
The process begins with a claim extraction agent that analyzes weather texts from various sources,
using an LLM to identify scientifically meaningful observational claims about weather phenomena.
The agent focuses on quantifiable changes, trends, extremes, and relationships between variables.

These claims undergo verification through an automated agent that generates executable Python
code to validate each claim against the ERA5 data. This verification step ensures that extracted
claims are not only linguistically coherent but also scientifically accurate when tested against actual
meteorological observations. The verified claims are then transformed into reusable templates that
support both quantitative measurements and qualitative comparisons, allowing generation of diverse
benchmark examples through parameter substitution.

We generate multiple candidate templates through this approach. Finally, we manually review them
for scientific interest and code correctness. In this way, we generate 32 distinct synthetic task types.

4.2 Evaluation Metrics

Since all our tasks are designed around weather tasks with objectively correct answers, we design an
evaluation pipeline that can assess the scientific correctness of the answers produced by the models.
The model answers fall into five primary categories: numeric, temporal, spatial (location-based)
and descriptive. Given that model outputs are in natural language, we evaluate them through a
multi-stage process:

1. Verification: Determine whether the models response contains a relevant and valid answer. At this
stage, we merely assess whether or not the response has an appropriate answer to the given question,
and not its correctness. We use gpt-4.1-mini for this purpose.

2. Extraction: Extract the specific answer from the model response using another LLM prompt.
3. Scoring: Apply scoring methods specific to the type of question, which are detailed below.

Numerical Answers. For numerical responses, we report the Standarized Median Absolute Error
between the predicted and reference values. In addition, we also report the 25%, 75% and 99%
quantiles of the standarized absolute error to provide a more complete picture of the error distribution.
To compare across variables with different scales and units, we divide the absolute error by the
standard deviation of the corresponding variable in the dataset.

Time-based Answers. We evaluate tasks with time values as responses using Median Absolute Error.
We omit the standarization step, since all the answers are in the same units (that is, hours). Like the
numerical answers case, we also report the 25%, 75% and 99% quantiles.

Location-based Answers. For questions whose answers are geographic locations, we first match the
extracted location name to one of the expected entries from the NaturalEarth dataset (e.g., mapping
“USA” to “United States of America”). For countries, we use the country_converter library [52].
For other geographic entities such as continents and water bodies, we apply fuzzy string matching
[3], accepting matches above a predefined similarity threshold.

To quantitatively assess the geographic deviation between predicted and reference locations, we
employ the Earth Mover’s Distance (EMD) [43] as a primary evaluation metric. We begin by
generating surface area-weighted masks over a latitude–longitude grid for both the predicted and
reference locations. These masks are normalized to form probability distributions. To account for the
curvature of the Earth, we compute pairwise distances between grid points using geodesic distance.
The EMD is then calculated using the POT library [18]. As a complementary metric, we also report
Location Accuracy, which simply measures whether the predicted and reference location strings are
an exact match.

Descriptive Answers. To evaluate descrptive answers, we employ a decomposition-and-aggregation
approach where the model’s response is first parsed into individual discussion points, each of which
is then probabilistically scored against the claims in the reference answer to determine whether it
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supports or refutes the ground truth. Using logit probabilities from language model inference, the
system calculates how strongly each extracted point aligns with the reference material by comparing
the likelihood of SUPPORTS versus REFUTES tokens, converting these into numerical scores that
capture the degree of alignment [41]. The final evaluation aggregates these individual point scores
into an overall discussion quality metric, enabling fine-grained assessment that accounts for both
the factual accuracy and argumentative coherence of complex, multi-faceted responses rather than
treating the entire discussion as a monolithic unit.

Extreme Weather Tasks. In order to evaluate the extreme-weather tasks, we report two metrics: (1)
F1 score, which only assesses whether the model correctly predicts the occurrence of an extreme
event anywhere in the world, without considering event type or exact location. (2) Earthmover’s
Distance, which measures the agreement between the reference and predicted list of countries.

5 Experimental Results
We evaluate model performance across all task types from Section 4. As a zero-shot baseline, we test
a pre-trained frontier language model on weather reasoning questions using only natural language
metadata, that is, no structured weather data or numerical inputs. We use OpenAI gpt-5-mini,
OpenAI gpt-5-nano, Google gemini-2.5-flash, and Qwen3-Coder-30B-A3B-Instruct as
backend models for our ZEPHYRUS agents. Tables 1 to 4 report results on ZEPHYRUSBENCH for all
models and the text-only baseline.

The ZEPHYRUS agents significantly outperform the text-only baseline across all tasks, demonstrating
the agentic framework’s ability to effectively leverage the numerical data from WeatherBench. The
agents excel at numerical and temporal tasks, achieving very low absolute errors at the 25th and
50th percentiles. For location prediction, ZEPHYRUS-REFLECTIVE with gpt-5-mini achieves
a strong performance, with 89.05% accuracy and an EMD score of 2084.39. The agents show
promise in extreme weather detection (F1 scores > 0.4) and weather claim validation (best F1:
0.658). However, all models struggle with report generation, with the best achieving only 0.351
on discussion scores. The relatively strong performance of Text Only LLMs in report generation
shows the importance of LLM priors in this task and the room for improvement in effectively using
code as part of the natural language report generation process. We find that, relative to the other
LLMs tested, Qwen3-Coder-30B-A3B-Instruct shows comparatively weak performance across
most tasks, perhaps due to the model’s smaller size and the long-context code generation necessary
to solve the tasks.

While Direct variants typically perform better on numerical tasks, Reflective variants show greater
resilience against extreme errors (99th percentile). This suggests self-reflection helps detect anomalies
like wrong magnitudes or unit mismatches. Reflective variants also outperform Direct variants in
report generation, likely because Direct models produce rigid responses since they directly output the
program outputs to text. For a more detailed breakdown of the results grouped by difficulty level,
refer to Appendix A.4.

6 Conclusion

We tackled the challenging problem of enabling LLMs to reason over high-dimensional weather data
by developing, to our knowledge, the first agentic model for meteorology. Our contributions include:
(1) ZEPHYRUSWORLD, an agentic environment with comprehensive meteorological tools, (2) the
ZEPHYRUS family of agents that leverage these tools, and (3) a scalable data pipeline producing
a large, diverse benchmark dataset (ZEPHYRUSBENCH). Our empirical evaluation shows that the
agentic framework enables effective reasoning about meteorological data, significantly outperforming
text-only baselines. The agents excel at most tasks but struggle with complex challenges like forecast
report generation. Beyond advancing weather science, our work provides a sandbox for developing
more effective agentic workflows. Future work could explore using larger datasets to train agents that
produce more scientifically accurate responses.
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A Appendix

A.1 Additional Figures

Weather Text
Corpus

Extraction
Agent

Simple, Verifiable
Claims

LLM Reusable
Templates

Coding Agent Verifier code

WeatherBench 2
dataset

Synthesized together

Human Verified Synthetic
Task
Data

Human Verified

Figure 2: Semi-synthetic task generation pipeline: Semi-synthetic pipeline for generating weather
benchmark tasks. Weather-related texts are processed by a claim extraction agent to identify scientifi-
cally meaningful observational claims, which are then verified against ERA5 meteorological data
through automated code generation. Verified claims are transformed into reusable templates and
manually reviewed. We can combine the verifier code with the templates and Weatherbench data to
produce samples.

Figure 3: Code Execution Server. ZEPHYRUS sends parallel requests to the server, which distributes
them to available workers. Each worker acquires resources from tool pools, loads datasets, injects
tools into the execution environment, executes code, and returns results or errors to the agent.

A.2 Dataset Details

Table 5 details all the tasks in ZEPHYRUSBENCH, and table A.2 reports the number of samples
generated grouped by difficulty and type.
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ID Natural Language Description Answer Type Difficulty Type

1 Which location experienced the highest/lowest average variable Location Easy Human
2 What is the min/max/mean variable in location Numerical Easy Human
3 Which sublocation has the highest/lowest recorded variable Location Easy Human
4 How many hours from start did location experience extremum Temporal Easy Human
5 What is the variable value at location at specific time Numerical Easy Human

6 What will the variable be in location after time interval (forecast) Numerical Medium Human
7 When will location experience its extremum in future period (forecast) Temporal Medium Human
8 Difference between max and min within region (forecast) Numerical Medium Synthetic
9 Maximum difference between two regions (forecast) Numerical Medium Synthetic
10 Maximum value in region (forecast) Numerical Medium Synthetic
11 By how much minimum will fall below threshold in first N days (fore-

cast)
Numerical Medium Synthetic

12 By how much minimum will be below threshold across region (forecast) Numerical Medium Synthetic
13 Maximum day-to-day decrease between consecutive days (forecast) Numerical Medium Synthetic
14 Maximum value observed anywhere in region (forecast) Numerical Medium Synthetic
15 How much mean will differ between two regions (forecast) Numerical Medium Synthetic
16 Difference in mean between two regions (forecast) Numerical Medium Synthetic
17 Accumulated total in region (forecast) Numerical Medium Synthetic
18 Time-averaged value of variable in region (forecast) Numerical Medium Synthetic
19 How much area-averaged value will increase from current (forecast) Numerical Medium Synthetic
20 Maximum value expected in region (forecast) Numerical Medium Synthetic
21 Minimum value averaged over region (forecast) Numerical Medium Synthetic
22 Fraction p of grid points will exceed threshold (forecast) Yes/No Medium Synthetic
23 Temporal trend will exceed threshold (forecast) Yes/No Medium Synthetic
24 Spatial difference between regions will exceed threshold (forecast) Yes/No Medium Synthetic
25 Count of grid points will exceed threshold (forecast) Yes/No Medium Synthetic
26 Minimum will exceed threshold in > N% of grid points (forecast) Yes/No Medium Synthetic
27 Variable will exceed threshold at > N% of grid points (forecast) Yes/No Medium Synthetic

28 Which locations experienced unusual anomaly vs baseline List of locations Hard Human
29 Cumulative sum of positive anomalies above threshold (forecast) Numerical Hard Synthetic
30 Maximum spatial extent exceeding threshold simultaneously (forecast) Numerical Hard Synthetic
31 At least N consecutive days will exceed threshold (forecast) Yes/No Hard Synthetic
32 Maximum will exceed threshold on at least N distinct days (forecast) Yes/No Hard Synthetic
33 Maximum will exceed threshold on each of the final N days (forecast) Yes/No Hard Synthetic
34 Maximum will exceed threshold for N consecutive days from day X

(forecast)
Yes/No Hard Synthetic

35 Regional max and mean will simultaneously meet conditions (forecast) Yes/No Hard Synthetic
36 Simultaneous conditions will occur in two regions (forecast) Yes/No Hard Synthetic
37 Crossover between conditions will occur in timeframe (forecast) Yes/No Hard Synthetic
38 Regional fraction exceeding threshold will meet criteria (forecast) Yes/No Hard Synthetic
39 Variable will be within range for > N contiguous grid points (forecast) Yes/No Hard Synthetic
40 Zonal gradient will exceed threshold per degree longitude (forecast) Yes/No Hard Synthetic
41 How will variable change in lead time if variable is modified (counter-

factual)
Numerical Hard Human

42 Identify if extreme weather event will occur in next N hours (forecast) Descriptions Very Hard Human
43 Check if extreme weather event is happening now Descriptions Very Hard Human
44 Generate global 3-month climate forecast report (forecast) Descriptions Very Hard Human
45 Provide detailed US meteorological analysis and forecast (forecast) Descriptions Very Hard Human
46 Generate ENSO climate update and outlook (forecast) Descriptions Very Hard Human

Table 5: Complete set of Weather Tasks, grouped by difficulty.
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Difficulty Human Tasks Human Samples Synthetic Tasks Synthetic Samples Total Samples

Easy 5 800 0 0 800
Medium 2 156 20 256 412
Hard 2 329 12 153 482
Very Hard 5 393 0 0 393

Total 14 1,678 32 384 2,062

Table 6: Dataset Statistics: Number of samples grouped by difficulty and type

A.3 Example from the dataset

Based on the provided data, Africa experienced the highest
average Surface temperature over the specified time-period, with
an average Surface temperature of 303.5 K.

 {'type': 'wb2', 'variables': ['mean_sea_level_pressure',
'10m_u_component_of_wind', '10m_v_component_of_wind',
'2m_temperature', 'geopotential', 'specific_humidity',
'temperature', 'u_component_of_wind', 'v_component_of_wind'],
'time_indices': '54746:54747:1'}

 

The following data shows a snapshot of the global weather fields.

Based on the above data, answer the following question: Which
continent experienced the highest average Surface temperature?

Based on the above data, answer the following question:

The following data shows a snapshot of the global weather fields.

{data}

Which {geofeature} experienced the {extremum_direction} average
{variable}?","Based on the provided data, {answer} experienced the
{extremum_direction} average {variable} over the specified time-
period, with an average {variable} of {answer_numeric}."

Figure 4: (left) Example Template from which samples are generated (right) A sample generated
using the template.

A.4 Performance by Difficulty Level

Below, we include a detailed breakdown of performance metrics by question difficulty level, as
defined in Table 5, for models gpt-5-mini, gemini-2.5-flash, and Qwen3-Coder-30B. Model
performance decreases as question difficulty increases, demonstrating the utility of including multiple
difficulty levels in ZEPHYRUSBENCH.
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LLM Model Variant
SAE (Q25)

(↓)
SAE (Q50)

(↓)
SAE (Q75)

(↓)
SAE (Q99)

(↓)

gpt-5-mini ZEPHYRUS-REFLECTIVE 0.000 0.000 0.000 0.881
gpt-5-mini ZEPHYRUS-DIRECT 0.000 0.000 0.006 0.400
gpt-5-mini Text Only LLM 0.219 0.648 1.265 17.933

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 0.000 0.000 0.053 2.204
gemini-2.5-flash ZEPHYRUS-DIRECT 0.000 0.000 0.022 0.457
gemini-2.5-flash Text Only LLM 0.395 1.015 2.583 13176.500

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 0.000 0.049 0.294 35.237
Qwen3-Coder-30B ZEPHYRUS-DIRECT 0.000 0.014 0.211 19.039
Qwen3-Coder-30B Text Only LLM 0.304 0.902 14.039 17287.300

LLM Model Variant
AE (Q25)

(↓)
AE (Q50)

(↓)
AE (Q75)

(↓)
AE (Q99)

(↓)

gpt-5-mini ZEPHYRUS-REFLECTIVE 0.000 0.000 0.000 138.000
gpt-5-mini ZEPHYRUS-DIRECT 0.000 0.000 0.000 132.180
gpt-5-mini Text Only LLM 12.000 24.000 48.000 144.000

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 0.000 0.000 0.000 120.000
gemini-2.5-flash ZEPHYRUS-DIRECT 0.000 0.000 0.000 8.770e+18
gemini-2.5-flash Text Only LLM 12.000 24.000 54.000 150.600

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 0.000 12.000 42.000 514405.000
Qwen3-Coder-30B ZEPHYRUS-DIRECT 0.000 0.000 18.000 8.867e+18
Qwen3-Coder-30B Text Only LLM 12.000 30.000 60.000 144.180

LLM Model Variant
Location

Acc. (%) (↑)
EMD

(km) (↓)
% Valid

Outputs (↑)

gpt-5-mini ZEPHYRUS-REFLECTIVE 89.050 431.215 98.880
gpt-5-mini ZEPHYRUS-DIRECT 77.110 882.658 97.380
gpt-5-mini Text Only LLM 16.920 5474.230 96.620

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 66.670 1336.040 94.750
gemini-2.5-flash ZEPHYRUS-DIRECT 75.620 1310.790 98.880
gemini-2.5-flash Text Only LLM 9.450 2336.640 52.250

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 27.860 2421.150 81.750
Qwen3-Coder-30B ZEPHYRUS-DIRECT 15.920 1389.560 81.620
Qwen3-Coder-30B Text Only LLM 14.430 4909.190 76.880

Table 7: Performance metrics for Easy difficulty questions across all models. The data is split into
three tables for readability. Lower is better for metrics with (↓), higher is better for (↑). Best results
for each LLM family are in bold.
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LLM Model Variant
SAE (Q25)

(↓)
SAE (Q50)

(↓)
SAE (Q75)

(↓)
SAE (Q99)

(↓)

gpt-5-mini ZEPHYRUS-REFLECTIVE 0.004 0.077 0.259 13.851
gpt-5-mini ZEPHYRUS-DIRECT 0.002 0.042 0.175 10.980
gpt-5-mini Text Only LLM 0.135 0.544 1.388 59.262

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 0.010 0.064 0.228 9.635
gemini-2.5-flash ZEPHYRUS-DIRECT 0.010 0.054 0.212 9.603
gemini-2.5-flash Text Only LLM 0.090 0.703 2.783 99417.800

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 0.018 0.158 0.692 2281.640
Qwen3-Coder-30B ZEPHYRUS-DIRECT 0.026 0.154 1.024 82.795
Qwen3-Coder-30B Text Only LLM 0.037 0.394 1.750 31195.900

LLM Model Variant
AE (Q25)

(↓)
AE (Q50)

(↓)
AE (Q75)

(↓)
AE (Q99)

(↓)

gpt-5-mini ZEPHYRUS-REFLECTIVE 0.000 18.000 42.000 670.680
gpt-5-mini ZEPHYRUS-DIRECT 4.500 18.000 79.500 167.940
gpt-5-mini Text Only LLM 54.000 87.000 132.000 143831.000

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 0.000 6.000 30.000 131.040
gemini-2.5-flash ZEPHYRUS-DIRECT 18.000 54.000 120.000 8.271e+18
gemini-2.5-flash Text Only LLM 30.000 72.000 126.000 176.760

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 6.000 18.000 36.000 100.560
Qwen3-Coder-30B ZEPHYRUS-DIRECT 12.000 24.000 36.000 146383.000
Qwen3-Coder-30B Text Only LLM 6.000 12.000 30.000 87.840

LLM Model Variant
% Valid

Outputs (↑)
Boolean
F1 (↑)

gpt-5-mini ZEPHYRUS-REFLECTIVE 84.750 0.632
gpt-5-mini ZEPHYRUS-DIRECT 87.340 0.545
gpt-5-mini Text Only LLM 99.220 0.296

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 96.380 0.714
gemini-2.5-flash ZEPHYRUS-DIRECT 97.930 0.711
gemini-2.5-flash Text Only LLM 81.140 0.087

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 87.600 0.514
Qwen3-Coder-30B ZEPHYRUS-DIRECT 89.150 0.600
Qwen3-Coder-30B Text Only LLM 84.240 0.240

Table 8: Performance metrics for Medium difficulty questions across all models. The data is split
into three tables for readability. Lower is better for metrics with (↓), higher is better for (↑). Best
results for each LLM family are in bold.
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LLM Model Variant
SAE (Q25)

(↓)
SAE (Q50)

(↓)
SAE (Q75)

(↓)
SAE (Q99)

(↓)

gpt-5-mini ZEPHYRUS-REFLECTIVE 0.471 1.056 1.538 247.345
gpt-5-mini ZEPHYRUS-DIRECT 0.230 0.833 1.365 214.499
gpt-5-mini Text Only LLM 1.214 2.493 5.837 11.871
gemini-2.5-flash ZEPHYRUS-REFLECTIVE 0.042 0.464 1.149 9912.290
gemini-2.5-flash ZEPHYRUS-DIRECT 0.000 0.086 0.815 429.637
gemini-2.5-flash Text Only LLM 1.152 1.552 5.003 65.061
Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 0.980 1.350 4.267 196339.000
Qwen3-Coder-30B ZEPHYRUS-DIRECT 0.954 1.349 3.465 133072.000
Qwen3-Coder-30B Text Only LLM 1.311 3.440 6.986 247.793

LLM Model Variant
EMD

(km) (↓)
% Valid

Outputs (↑)
Boolean
F1 (↑)

gpt-5-mini ZEPHYRUS-REFLECTIVE 3856.950 93.780 0.505
gpt-5-mini ZEPHYRUS-DIRECT 3922.410 91.080 0.600
gpt-5-mini Text Only LLM 8523.200 85.680 0.388

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 3052.840 74.900 0.636
gemini-2.5-flash ZEPHYRUS-DIRECT 3363.630 89.630 0.545
gemini-2.5-flash Text Only LLM 9802.010 82.990 0.259

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 4472.600 82.570 0.473
Qwen3-Coder-30B ZEPHYRUS-DIRECT 4352.850 85.680 0.447
Qwen3-Coder-30B Text Only LLM 9738.010 91.290 0.436

Table 9: Performance metrics for Hard difficulty questions across all models. The data is split into
two tables for readability. Lower is better for metrics with (↓), higher is better for (↑). Best results for
each LLM family are in bold.

LLM Model Variant
EMD

(km) (↓)
Extreme

Weather F1 (↑)

gpt-5-mini ZEPHYRUS-REFLECTIVE 8729.210 0.432
gpt-5-mini ZEPHYRUS-DIRECT 8130.290 0.466
gpt-5-mini Text Only LLM 7661.750 0.421

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 7598.740 0.382
gemini-2.5-flash ZEPHYRUS-DIRECT 6855.860 0.425
gemini-2.5-flash Text Only LLM 8226.770 0.247

Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 8519.790 0.292
Qwen3-Coder-30B ZEPHYRUS-DIRECT 9009.340 0.260
Qwen3-Coder-30B Text Only LLM 7621.380 0.586

LLM Model Variant
% Valid

Outputs (↑)
Discussion
Score (↑)

gpt-5-mini ZEPHYRUS-REFLECTIVE 98.220 0.264
gpt-5-mini ZEPHYRUS-DIRECT 100.000 0.255
gpt-5-mini Text Only LLM 100.000 0.238

gemini-2.5-flash ZEPHYRUS-REFLECTIVE 88.550 0.275
gemini-2.5-flash ZEPHYRUS-DIRECT 100.000 0.235
gemini-2.5-flash Text Only LLM 100.000 0.383
Qwen3-Coder-30B ZEPHYRUS-REFLECTIVE 94.400 0.293
Qwen3-Coder-30B ZEPHYRUS-DIRECT 100.000 0.231
Qwen3-Coder-30B Text Only LLM 100.000 0.344

Table 10: Performance metrics for Very Hard difficulty questions across all models. The data is
split into two tables for readability. Lower is better for metrics with (↓), higher is better for (↑). Best
results for each LLM family are in bold.
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