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Abstract

Foundation models for weather science are pre-trained on vast amounts of struc-
tured numerical data and outperform traditional weather forecasting systems. How-
ever, these models lack language-based reasoning capabilities, limiting their util-
ity in interactive scientific workflows. Large language models (LLMs) excel at
understanding and generating text but cannot reason about high-dimensional me-
teorological datasets. We bridge this gap by building a novel agentic framework
for weather science. Our framework includes a Python code-based environment
for agents (AnemoiWorld) to interact with weather data, featuring tools like an
interface to WeatherBench 2 dataset, geoquerying for geographical masks from
natural language, weather forecasting, and climate simulation capabilities. We
design Anemoi, a multi-turn LLM-based weather agent that iteratively analyzes
weather datasets, observes results, and refines its approach through conversational
feedback loops. We accompany the agent with a new benchmark, AnemoiBench,
with a scalable data generation pipeline that constructs diverse question-answer
pairs across weather-related tasks, from basic lookups to advanced forecasting,
extreme event detection, and counterfactual reasoning. Experiments on this bench-
mark demonstrate strong promise for LLM agents to help weather scientists reason
about meteorological data more effectively.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across diverse scientific
domains [6], revolutionizing fields from drug discovery [66} [59] and materials science [29, 23]] to
network biology [53]]. These models excel at processing textual content such as scientific literature,
source code [24], and structured data tables [64]. However, their application to domains requiring
reasoning over high-dimensional numerical data remains limited [55].

Meteorology offers a compelling yet challenging case study, as combining natural language reasoning
with complex atmospheric data has the potential to greatly advance weather research. Weather
prediction is a critical scientific challenge, with profound implications spanning agriculture, disaster
preparedness, transportation, and energy management [2]. The field has witnessed remarkable
progress through machine learning approaches, with foundation models [45], 127, [28 |5} |46]] now
achieving state-of-the-art performance in medium-range forecasting, often surpassing traditional
physics-based numerical simulations [42, 4]. However, current weather models operate exclusively
on structured numerical datasets such as reanalysis data, cannot incorporate valuable alternative
modalities like textual weather bulletins or field station reports, and crucially, lack interactive natural
language interfaces for querying or reasoning.

These highly technical tool interfaces (typically FORTRAN namelists) and esoteric formats (like
GRIB and HDF) create substantial barriers for non-experts that severely limits the accessibility of
valuable weather and climate data. Traditional meteorological workflows therefore require expert
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Prompt: Presented below is data AnemoiWorld
illustrating the global weather fields,

collected over a total duration of 54
hours, with measurements taken at 6-

def run(ds, geolocator, forecaster, simulator):
# code to detect extreme weather events

Code Block yherBench 2 dataset
N @ Sw
1; d on the af; ioned data, pl Situclaor
ased on the aforementioned data, please Anemoi z
provide an answer to the following Code Execution Server
R o P

Ascertain if an extreme weather event is N o \
presently occurring within the given Execution Results O
time-frame. If affirmative, detail the
@ Forecaster

nature of the event, specifying the
affected country and its regions. Geolocator

Response

Based on the provided data, the following extreme weather events are currently
underway:
A Tropical cyclone is impacting Mexico, with the provinces of Oaxaca, Tabasco,
and Veracruz being specifically affected.

Figure 1: Overview: We develop Anemoi, an agentic framework for weather science. Given a query,
the LLM-based agent Anemoi writes a code block which is sent to the code execution server. The
server orchestrates several tools to execute the code block and returns the execution results to the
agent. The agent either decides to execute more code to refine its output or respond back to the user.

interpretation to translate computational outputs into actionable insights, increasing costs and limiting
their utility in human-in-the-loop decision-support systems.

Multimodal LLMs can handle data from diverse modalities and offer a potential pathway to address
these challenges. Models capable of jointly processing text with images [56, [1, 132} 137, 311,135 136],
video [165} 1404 163, 12} [34]162], and audio [[14} 13} [15} 157,58l [17, 20] have shown impressive cross-
modal reasoning abilities. Yet atmospheric data poses unique challenges: its spatiotemporal, multi-
channel structure is fundamentally different from conventional modalities, requiring specialized
approaches for effective integration with language models. Initial attempts to bridge this gap have
shown promise but remain limited in scope. Early vision-language approaches to meteorology
[L0, 30} 139] have focused on narrow applications like extreme weather prediction using restricted
variable subsets, falling short of general-purpose meteorological reasoning. More recent multimodal
weather-language models [54] demonstrate the potential of this direction but still fail to match
established baselines across many important meteorological tasks. This persistent gap highlights a
fundamental challenge: despite significant progress in both weather foundation models and LLMs, no
existing system successfully unifies meteorological data with natural language reasoning for broad,
interactive scientific applications.

We address this challenge by first introducing an agentic environment that enables LLMs to interact
programmatically with meteorological data and models. We setup AnemoiWorld, a comprehensive
execution environment that exposes weather-focused capabilities through easy-to-use Python APIs.
The system includes interfaces to the WeatherBench 2 dataset [49], geoquery functionality for
translating between coordinates and named locations, state-of-the-art forecasting models [46], and
physics-based simulators. A FastAPI backend parallelizes code execution from LLM-generated
queries.

We then develop two code-generating systems of increasing sophistication within this agentic frame-
work. Anemoi-Direct generates Python code in a single step to solve weather problems directly
[19]. Anemoi-Reflective employs an iterative execution-refinement workflow: it executes code
to manipulate weather data, analyzes the results, and refines both code and output before providing
a final answer. Both approaches can automatically detect and correct errors produced during code
execution. Figure[I] gives an overview of our entire agentic pipeline.

To systematically evaluate these approaches, we construct AnemoiBench, a comprehensive bench-
mark built on ERAS reanalysis data [21]] from WeatherBench 2 [49]. The benchmark combines
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human-authored and semi-synthetic tasks spanning 2062 question—answer pairs across 46 distinct
tasks. Tasks range from basic data lookups and forecasting to challenging research problems involving
extreme event detection, forecast report generation, and prediction and counterfactual analysis. We
also implement robust evaluation schemes to assess the scientific accuracy of all generated answers
across diverse meteorological reasoning tasks. We summarize our key contributions below.

We develop AnemoiWorld, an agentic environment providing unified Python APIs for meteorologi-
cal data, forecasting models, and climate simulation tools.

We introduce two code-generating systems that leverage AnemoiWorld: Anemoi-Direct for single-
step code generation and Anemoi-Reflective for iterative execution-refinement workflows to
solve open-ended meteorological problems.

We curate AnemoiBench, a challenging weather reasoning benchmark with 2062 question-answer
pairs across 46 meteorological task types.

Our evaluation shows that LLM agents achieve encouraging results on the benchmark, suggesting
that they can be effective assistants to weather scientists.

2 Related Work

Weather Foundation Models. Neural network-based weather forecasting systems [28, 148l 15, 147, 45|
7}, 146] have revolutionized meteorological prediction by demonstrating superior performance com-
pared to conventional physics-based approaches [42] while being significantly more computationally
efficient. Nevertheless, these architectures are predominantly trained for forecasting. In particular,
they do not support conversational interfaces or cross-domain reasoning capabilities.

Agentic frameworks for scientific discovery Agentic frameworks implement the per-
ceive—reason—plan—act loop by pairing LLMs with tools, memory, and feedback to pursue
long-horizon goals. Core patterns include interleaving reasoning with tool calls (ReAct [61]),
self-critique with episodic memory (Reflexion [51]), and self-supervised learning of API use (Tool-
former [S0]]). General-purpose libraries such as AutoGen provide a standard interface for multi-agent
conversation and tool invocation, making these patterns reusable across tasks [60].

In many scientific applications, these frameworks appear as domain agents and self-driving labs. In
chemistry, ChemCrow couples an LLM controller with a curated set of expert tools for synthesis and
analysis [9], while Coscientist integrates retrieval, code execution, and laboratory APIs to plan and
run experiments end-to-end [§]]. Biomedical agents extend the approach across literature, databases,
and analysis workflows (e.g., Biomni [22]]). Despite these advances across multiple scientific domains,
weather science remains largely unexplored territory for agentic approaches.

General-Purpose Vision-Language Models. Multi-modal vision language models [33| [1} 32 31,
37,138,135, 136]] demonstrate strong visual reasoning capabilities on general-purpose evaluation bench-
marks. However, adapting these models for applications in weather science presents considerable
difficulties. Standard VLM architectures assume RGB visual inputs and exhibit weaknesses in
quantitative analytical tasks. Meteorological data presents fundamentally different challenges through
high-dimensional, structured atmospheric measurements requiring specialized integration approaches
for language model compatibility. While weather-language hybrid models [54] seem promising, they
underperform relative to domain-specific baselines across critical meteorological applications.

Multimodal Weather Datasets. Recent research has developed several multimodal frameworks
that combine weather observations with textual information. These include the Terra collection
[L1], which integrates geographical imagery with descriptive text for general earth observation, and
ClimateIQA [10]], which focuses on extreme weather detection through wind measurement analysis.
Similarly, WeatherQA [39] specializes in severe weather interpretation using remote sensing data and
expert commentary, while CLLMate [30] connects media reports with ERAS observations for weather
event classification. Despite these valuable contributions, existing frameworks are narrow in scope.
They concentrate on narrow applications or utilize only small subsets of atmospheric variables. This
approach overlooks a fundamental characteristic of atmospheric dynamics: weather systems involve
complex multi-scale interactions across numerous meteorological parameters. To address these
limitations, our benchmark incorporates diverse weather reasoning tasks, both human-implemented
and semi-synthetically generated, that span across most WeatherBench2 data channels.
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Figure 2: Code Execution Server. Anemoi sends parallel requests to the server, which distributes
them to available workers. Each worker acquires resources from tool pools, loads datasets, injects
tools into the execution environment, executes code, and returns results or errors to the agent.

3 Anemoi: An Agentic Framework for Weather Science

3.1 AnemoiWorld: An Agentic Environment for Weather Science

The fragmented nature of weather science tools makes it challenging for LLMs to effectively leverage
them for scientific tasks. To address this, we introduce AnemoiWorld, a comprehensive agentic
environment that unifies weather science capabilities from diverse tools through a clean Pythonic
interface. Given a question, we leverage LLMs’ ability [19}125] to generate Python code and execute
it in a sandboxed environment. The output is then fed back to the model, along with any execution
errors. We design high-level APIs for the tools for ease of use, and include documentation extracted
from the docstrings in the models context at inference time.

The environment encompasses several essential weather science tools:

WeatherBench 2 Data Indexer. The environment provides the model accesses data through the
xarray dataset interface.

Geolocator. This tool provides comprehensive geospatial functionality for weather data analysis.
It handles forward geocoding (place names to coordinates) and reverse geocoding (coordinates to
location names) using the Natural Earth dataset [44]. Key operations include finding geographic
features at specific coordinates, retrieving boolean masks and area-weighted maps for regions, listing
sublocations, and calculating geodistances. Built using geopandas and shapely, it maintains
precomputed spatial caches for fast lookups.

Forecaster. We incorporate the Stormer model [46], a transformer-based neural weather prediction
system trained on WeatherBench 2. We chose it for its strong performance at short to medium range
forecasts while being orders of magnitude more efficient than traditional numerical models. Our
implementation abstracts checkpoint loading and preprocessing, providing a simple interface to run
forecasts from arbitrary atmospheric initial conditions and return outputs as xarray datasets.
Simulator. Our JAX-GCM simulator is an intermediate complexity atmospheric model built on
NeuralGCM’s dynamical core [26]. It incorporates physical parameterizations from the SPEEDY
Fortran model [42], including radiation, moist physics (clouds and convection), and vertical and
horizontal diffusion. We use the default T32 configuration (approximately 3.5° resolution) with 8
vertical layers. Built on JAX, we can run 5-day simulations in only ~ 25s on an A100 GPU.

Code Execution Server. AnemoiWorld requires a system capable of handling multiple weather
analysis tasks simultaneously without resource conflicts. We implement a FastAPI-based server-client
architecture where clients send code execution requests to a dedicated execution server that processes
them in parallel. The system maintains resource pools for each tool component to prevent contention
and enable true parallelism. Each pool contains one or more instances of the above tools. A resource
manager implements acquire/release semantics to ensure each execution thread has exclusive access
to a complete set of tools while preventing deadlocks.

Each execution follows a strict protocol: acquire resources from pools, load requested datasets,
inject tool instances into the execution environment, and execute user code with timeout protection.
The system captures all outputs and error information, which are sent back to the client for further
processing by the agent. Figure[2] provides an overview of the server.
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3.2 The Anemoi Family of Weather Agents

We design agentic systems that leverage AnemoiWorld to solve complex meteorological tasks.
Our approach constructs prompts containing comprehensive documentation of AnemoiWor1ld tools,
variable descriptions, units, and coordinate systems. The models generate Python functions using
these tools to solve the given questions, which execute on AnemoiWorld’s code execution server.
Any execution errors or timeouts are returned to the models, which regenerate code until the error is
resolved. We implement two distinct systems that differ in their execution strategy and refinement
approach. Both systems intentionally maintain simple designs to isolate and measure the agentic
capabilities of LLMs for solving weather science problems.

Anemoi-Direct generates a complete Python solution in one attempt and reports the execution output
as the final answer. This model runs the error-correction loop for a maximum of 5 times.

Anemoi-Reflective implements a multi-turn workflow that alternates between code generation and
execution phases. The agent executes individual code blocks and receives the output as observations.
The execution results are fed back to the LLM, which analyzes the observations and decides on the
next step. This iterative process enables the model to assess the scientific plausibility of outputs,
identify anomalies or mistakes in results, and refine subsequent code blocks to address logical errors.
We run the interaction loop for a maximum of 20 times per question.

4 AnemoiBench: A Comprehensive Weather Benchmark

Weather science problems require complex analysis of multi-scale atmospheric patterns, statistical
modeling of trends, and integration of diverse datasets from numerical models and expert reports.
We introduce AnemoiBench, a comprehensive benchmark that evaluates how effectively LLMs can
assist in real-world meteorological workflows. The benchmark comprises 46 distinct meteorological
tasks with answers derived from curated weather reports and human-generated or verified code.

4.1 Dataset Curation

We base our tasks around the ERAS reanalysis dataset [21], specifically from WeatherBench 2 [49].
The dataset provides global atmospheric data from 1979 to 2022. We use 1.5° spatial resolution with
6-hourly temporal resolution.

The capabilities measured by our curated tasks range from basic data lookups and computations to
more advanced problems involving forecasting, challenging research problems including extreme
event detection, forecast report generation, prediction analysis, and counterfactual reasoning. We
design tasks with increasing difficulty levels based on the complexity of tool usage required to answer
them, from simple single-step data queries to multi-step analytical workflows. Table 5| provide an
overview of the task types we implement as part of our benchmark.

For each task-type, we define natural language templates with placeholders such as location, variable,
and time window. To create task-specific examples, these placeholders are filled by randomly
sampling inputs, and the corresponding ground truth is computed deterministically using human-
written or human-verified synthetic code applied to the raw ERAS data. To add more diversity to the
training dataset, we use an LLM (specifically, GPT-40) to reword questions generated by our data
curation pipeline. Figure ] shows an example template, and a sample generated from it.

Using our framework, we construct a benchmark dataset comprising 2062 test samples spread across
46 tasks. For a detailed breakdown of dataset statistics, please refer to Appendix We provide
more details about how the tasks are implemented in the subsequent sections.

4.1.1 Human-generated tasks

The human-generated tasks span all difficulty levels and represent realistic meteorological queries
curated in conjunction with a domain expert. For each task, a graduate student created a question
template and wrote Python code to answer the query. Easy tasks focus on basic data retrieval
operations like finding extrema, querying specific values, and identifying locations with particular
weather conditions. Medium-difficulty tasks introduce forecasting elements, asking for future weather
predictions at specific locations and times. Hard tasks incorporate more complex analytical concepts
such as anomaly detection relative to baselines and counterfactual scenario analysis. The most
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Figure 3: Semi-synthetic task generation pipeline: Semi-synthetic pipeline for generating weather
benchmark tasks. Weather-related texts are processed by a claim extraction agent to identify scientifi-
cally meaningful observational claims, which are then verified against ERAS meteorological data
through automated code generation. Verified claims are transformed into reusable templates and
manually reviewed. We can combine the verifier code with the templates and Weatherbench data to
produce samples.

challenging tasks demand comprehensive meteorological expertise and mirror real-world operational
workflows. These include extreme weather event detection, comprehensive weather assessments, and
generation of detailed forecast discussions that span regional to global scales. For instance, ENSO
outlook reports require synthesizing complex interactions between multiple atmospheric and oceanic
variables to produce coherent, scientifically grounded forecasts. We source the expert-generated
weather discussion reports from several online sources, such as the NOAA websiteﬂ and IRI Seasonal
Climate Forecasts/Outlooks. For extreme weather event tasks, we use records from the EM-DAT
international disaster database [16], matching event entries by date and location to the ERAS data.

4.1.2 Semi-synthetic task generation

To increase task diversity, we implement a semi-synthetic pipeline that transforms unstructured
weather-related text into verifiable benchmark tasks. Figure 3] provides an overview of the procedure.
The process begins with a claim extraction agent that analyzes weather texts from various sources,
using an LLM to identify scientifically meaningful observational claims about weather phenomena.
The agent focuses on quantifiable changes, trends, extremes, and relationships between variables.

These claims undergo verification through an automated agent that generates executable Python
code to validate each claim against the ERAS data. This verification step ensures that extracted
claims are not only linguistically coherent but also scientifically accurate when tested against actual
meteorological observations. The verified claims are then transformed into reusable templates that
support both quantitative measurements and qualitative comparisons, allowing generation of diverse
benchmark examples through parameter substitution.

We generate multiple candidate templates through this approach. Finally, we manually review them
for scientific interest and code correctness. In this way, we generate 32 distinct synthetic task types.

4.2 Evaluation Metrics

Since all our tasks are designed around weather tasks with objectively correct answers, we design an
evaluation pipeline that can assess the scientific correctness of the answers produced by the models.
The model answers fall into five primary categories: numeric, temporal, spatial (location-based)
and descriptive. Given that model outputs are in natural language, we evaluate them through a
multi-stage process:

"https://www.wpc.ncep.noaa.gov/discussions/hpcdiscussions.php?disc=pmdepd
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Numerical Answers. For numerical responses, we report the Standarized Median Absolute Error
between the predicted and reference values. In addition, we also report the 25%, 75% and 99%
quantiles of the standarized absolute error to provide a more complete picture of the error distribution.
To compare across variables with different scales and units, we divide the absolute error by the
standard deviation of the corresponding variable in the dataset.

Time-based Answers. We evaluate tasks with time values as responses using Median Absolute Error.
We omit the standarization step, since all the answers are in the same units (that is, hours). Like the
numerical answers case, we also report the 25%, 75% and 99% quantiles.

Location-based Answers. For questions whose answers are geographic locations, we first match the
extracted location name to one of the expected entries from the NaturalEarth dataset (e.g., mapping
“USA” to “United States of America”). For countries, we use the country_converter library [52].
For other geographic entities such as continents and water bodies, we apply fuzzy string matching
[3]], accepting matches above a predefined similarity threshold.

To quantitatively assess the geographic deviation between predicted and reference locations, we
employ the Earth Mover’s Distance (EMD) [43] as a primary evaluation metric. We begin by
generating surface area-weighted masks over a latitude—longitude grid for both the predicted and
reference locations. These masks are normalized to form probability distributions. To account for the
curvature of the Earth, we compute pairwise distances between grid points using geodesic distance.
The EMD is then calculated using the POT library [18]]. As a complementary metric, we also report
Location Accuracy, which simply measures whether the predicted and reference location strings are
an exact match.

Descriptive Answers. To evaluate descrptive answers, we employ a decomposition-and-aggregation
approach where the model’s response is first parsed into individual discussion points, each of which
is then probabilistically scored against the claims in the reference answer to determine whether it
supports or refutes the ground truth. Using logit probabilities from language model inference, the
system calculates how strongly each extracted point aligns with the reference material by comparing
the likelihood of SUPPORTS versus REFUTES tokens, converting these into numerical scores that
capture the degree of alignment [41]. The final evaluation aggregates these individual point scores
into an overall discussion quality metric, enabling fine-grained assessment that accounts for both
the factual accuracy and argumentative coherence of complex, multi-faceted responses rather than
treating the entire discussion as a monolithic unit.

Extreme Weather Tasks. In order to evaluate the extreme-weather tasks, we report two metrics: (1)
F1 score, which only assesses whether the model correctly predicts the occurrence of an extreme
event anywhere in the world, without considering event type or exact location. (2) Earthmover’s
Distance, which measures the agreement between the reference and predicted list of countries.

5 Experimental Results

We evaluate model performance across all task types from Section[d] As a zero-shot baseline, we test
a pre-trained frontier language model on weather reasoning questions using only natural language
metadata, that is, no structured weather data or numerical inputs. We use OpenAI’s gpt-5-nano and
gpt-5-mini as backend models for our Anemoi agents. Tables T|to]report results on AnemoiBench
for all models and the text-only baseline.

The Anemoi agents significantly outperform the text-only baseline across all tasks, demonstrating
the agentic framework’s ability to effectively leverage the numerical data from WeatherBench. The
agents excel at numerical and temporal tasks, achieving very low absolute errors at the 25th and
50th percentiles. For location prediction, Anemoi-Reflective with gpt-5-mini achieves a strong
performance, with 89.05% accuracy and an EMD score of 2084.39. The agents show promise in
extreme weather detection (F1 scores > 0.4) and weather claim validation (best F1: 0.585). However,
all models struggle with report generation, with the best achieving only 0.351 on discussion scores.
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Model LLM | SAE(Q25) (1) SAE(Q50)(}) SAE(Q75)()) SAE (Q99) (|)

Anemoi-Reflective gpt-5-mini 2.68e-08 0.029 0.513 17.753
Anemoi-Direct gpt-5-mini 0.0 0.018 0.288 55.859
Text Only LLM gpt-5-mini 0.290 0.935 2.172 27.285

Anemoi-Reflective gpt-5-nano 0.0001 0.053 0.955 12.002
Anemoi-Direct gpt-5-nano 0.0 0.049 0.751 443.282
Text Only LLM gpt-5-nano 0.265 1.074 2.799 3116.1

Table 1: Output validity and error metric quantiles for numerical tasks. SAE stands for standardized
absolute error, the absolute error divided by the standard deviation of the relevant variable in the data.

Model LLM | AE(Q25) (1) AE(Q50)(}) AE Q75 () AE(Q9%9) ()
Anemoi-Reflective gpt-5-mini 0.0 0.0 12.0 146.1
Anemoi-Direct gpt-5-mini 0.0 0.0 12.0 156.0
Text Only LLM gpt-5-mini 12 30 72 26841.6
Anemoi-Reflective gpt-5-nano 0 0 6 39521.3
Anemoi-Direct gpt-5-nano 0 0 18 5.57e18
Text Only LLM gpt-5-nano 12 36 93 190.68

Table 2: Absolute error quantiles for time tasks, in units of hours.

Model LLM \ Location Accuracy (%)(1) EMD (km) () Extreme Weather F1 (1)
Anemoi-Reflective gpt-5-mini 89.05 2084.39 0.432
Anemoi-Direct gpt-5-mini 77.11 2317.97 0.466
Text Only LLM gpt-5-mini 16.92 5916.13 0.421
Anemoi-Reflective gpt-5-nano 65.17 2354.28 0.212
Anemoi-Direct gpt-5-nano 72.14 2549.28 0.184
Text Only LLM gpt-5-nano 15.42 5132.35 0

Table 3: Location metrics for location answer-based questions. EMD stands for Earth mover’s
Distance.

Model LLM | % Valid Outputs (1) Discussion Score (t) Boolean F1 (1)
Anemoi-Reflective gpt-5-mini 91.17 0.264 0.538
Anemoi-Direct gpt-5-mini 90.35 0.255 0.585
Text Only LLM gpt-5-mini 94.42 0.238 0.369
Anemoi-Reflective gpt-5-nano 88.80 0.351 0.452
Anemoi-Direct gpt-5-nano 93.55 0.267 0.496
Text Only LLM gpt-5-nano 91.5 0.344 0.397

Table 4: Overall percentage of valid outputs, numerical score (0-1) for discussion questions, and F1
score for boolean questions.

While Direct variants typically perform better on numerical tasks, Reflective variants show greater
resilience against extreme errors (99th percentile). This suggests self-reflection helps detect anomalies
like wrong magnitudes or unit mismatches. Reflective variants also outperform Direct variants in
report generation, likely because Direct models produce rigid responses since they directly output the
program outputs to text.

6 Conclusion

We tackled the challenging problem of enabling LLMs to reason over high-dimensional weather data
by developing, to our knowledge, the first agentic model for meteorology. Our contributions include:
(1) AnemoiWorld, an agentic environment with comprehensive meteorological tools, (2) the Anemoi
family of agents that leverage these tools, and (3) a scalable data pipeline producing a large, diverse
benchmark dataset (AnemoiBench). Our empirical evaluation shows that the agentic framework
enables effective reasoning about meteorological data, significantly outperforming text-only baselines.
The agents excel at most tasks but struggle with complex challenges like forecast report generation.
Beyond advancing weather science, our work provides a sandbox for developing more effective
agentic workflows. Future work could explore using larger datasets to train agents that produce more
scientifically accurate responses.



307

308
309
310
311

312
313

314

316
317

318
319

320
321
322

323
324

325
326
327

328
329

330
331
332

333
334
335

336

338

339
340
341

342
343
344

345
346
347

348
349
350

352
353

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in neural information processing systems,
35:23716-23736, 2022.

Richard B Alley, Kerry A Emanuel, and Fuqing Zhang. Advances in weather prediction. Science,
363(6425):342-344, 2019.

Max Bachmann, layday, Georgia Kokkinou, Jeppe Fihl-Pearson, dj, Henry Schreiner, Moshe
Sherman, Michal Gérny, pekkarr, Delfini, Dan Hess, Guy Rosin, Hugo Le Moine, Kwuang
Tang, Nicolas Renkamp, Trenton H, glynn, and odidev. rapidfuzz/rapidfuzz: Release 3.6.1,
December 2023.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather
prediction. Nature, 525(7567):47-55, 2015.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3d neural networks. Nature, 619(7970):533-538,
2023.

Abeba Birhane, Atoosa Kasirzadeh, David Leslie, and Sandra Wachter. Science in the age of
large language models. Nature Reviews Physics, 5(5):277-280, 2023.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A
foundation model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Daniil A Boiko, Robert MacKnight, Ben Kline, Gabe Gomes, et al. Autonomous chemical
research with large language models. Nature, 624:570-578, 2023.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, Philippe
Schwaller, et al. Augmenting large language models with chemistry tools. Nature Machine
Intelligence, 6(5):525-535, 2024.

Jian Chen, Peilin Zhou, Yining Hua, Dading Chong, Meng Cao, Yaowei Li, Zixuan Yuan, Bing
Zhu, and Junwei Liang. Vision-language models meet meteorology: Developing models for
extreme weather events detection with heatmaps. arXiv preprint arXiv:2406.09838, 2024.

Wei Chen, Xixuan Hao, Yuankai Wu, and Yuxuan Liang. Terra: A multimodal spatio-temporal
dataset spanning the earth. Advances in Neural Information Processing Systems, 37:66329—
66356, 2024.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu,
Wengqi Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling
and audio understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuan-
jun Lv, Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. arXiv preprint
arXiv:2407.10759, 2024.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
audio-language models. arXiv preprint arXiv:2311.07919, 2023.

Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time
dialogue. arXiv preprint arXiv:2410.00037, 2024.

D. Delforge, V. Wathelet, R. Below, C. Lanfredi Sofia, M. Tonnelier, J. A. F. van Loenhout, and
N. Speybroeck. EM-DAT: The Emergency Events Database. International Journal of Disaster
Risk Reduction, page 105509, 2025.



354
355

356
357
358
359
360
361

362
363
364

365
366
367
368

369
370
371

372
373

374
375
376
377

378
379

380
381
382

383
384
385

386
387
388
389

390
391
392

393
394

395
396
397

398
399
400

[17] Seungheon Doh, Keunwoo Choi, and Juhan Nam. Talkplay: Multimodal music recommendation
with large language models. arXiv preprint arXiv:2502.13713, 2025.

[18] RA©mi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, AurAO©lie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, LA®o
Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander
Tong, and Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research,
22(78):1-8, 2021.

[19] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pages 10764-10799. PMLR, 2023.

[20] Sreyan Ghosh, Zhifeng Kong, Sonal Kumar, S Sakshi, Jachyeon Kim, Wei Ping, Rafael Valle,
Dinesh Manocha, and Bryan Catanzaro. Audio flamingo 2: An audio-language model with

long-audio understanding and expert reasoning abilities. arXiv preprint arXiv:2503.03983,
2025.

[21] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, Andras Horanyi, Joaquin Mufioz-
Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global
reanalysis. Quarterly journal of the royal meteorological society, 146(730):1999-2049, 2020.

[22] Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, et al. Biomni: A
general-purpose biomedical ai agent. bioRxiv, 2025.

[23] Kevin Maik Jablonka, Qianxiang Ai, Alexander Al-Feghali, Shruti Badhwar, Joshua D Bocarsly,
Andres M Bran, Stefan Bringuier, L Catherine Brinson, Kamal Choudhary, Defne Circi, et al.
14 examples of how llms can transform materials science and chemistry: a reflection on a large
language model hackathon. Digital discovery, 2(5):1233-1250, 2023.

[24] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation. arXiv preprint arXiv:2406.00515, 2024.

[25] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. Swe-bench: Can language models resolve real-world github issues? In
The Twelfth International Conference on Learning Representations.

[26] Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers,
Milan Klower, James Lottes, Stephan Rasp, Peter Diiben, et al. Neural general circulation
models for weather and climate. Nature, 632(8027):1060-1066, 2024.

[27] Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani,
David Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. Fourcastnet: Accel-
erating global high-resolution weather forecasting using adaptive fourier neural operators. In
Proceedings of the platform for advanced scientific computing conference, pages 1-11, 2023.

[28] Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning
skillful medium-range global weather forecasting. Science, 382(6677):1416-1421, 2023.

[29] Ge Lei, Ronan Docherty, and Samuel J Cooper. Materials science in the era of large language
models: a perspective. Digital Discovery, 3(7):1257-1272, 2024.

[30] Haobo Li, Zhaowei Wang, Jiachen Wang, Alexis Kai Hon Lau, and Huamin Qu. Cllmate: A
multimodal Ilm for weather and climate events forecasting. arXiv preprint arXiv:2409.19058,
2024.

[31] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image

pre-training with frozen image encoders and large language models. In International conference
on machine learning, pages 19730-19742. PMLR, 2023.

10



401
402
403

404
405
406

407
408

410

411
412

413
414

415
416

417

418
419
420

421
422
423

424
425
426
427

428
429
430

431
432

433
434

436

437
438
439
440

441
442
443
444

445
446
447

[32] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In International
conference on machine learning, pages 12888-12900. PMLR, 2022.

[33] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694-9705, 2021.

[34] Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava:
Learning united visual representation by alignment before projection. In Proceedings of the

2024 Conference on Empirical Methods in Natural Language Processing, pages 5971-5984,
2024.

[35] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning, 2023.

[36] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024.

[37] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023.

[38] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

[39] Chenggian Ma, Zhanxiang Hua, Alexandra Anderson-Frey, Vikram Iyer, Xin Liu, and Lianhui
Qin. Weatherqa: Can multimodal language models reason about severe weather? arXiv preprint
arXiv:2406.11217, 2024.

[40] Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

[41] Veeramakali Vignesh Manivannan, Yasaman Jafari, Srikar Eranky, Spencer Ho, Rose Yu,
Duncan Watson-Parris, Yian Ma, Leon Bergen, and Taylor Berg-Kirkpatrick. Climaga: An
automated evaluation framework for climate question answering models. In The Thirteenth
International Conference on Learning Representations.

[42] Franco Molteni, Roberto Buizza, Tim N Palmer, and Thomas Petroliagis. The ecmwf ensemble
prediction system: Methodology and validation. Quarterly journal of the royal meteorological
society, 122(529):73-119, 1996.

[43] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad.
Royale Sci., pages 666-704, 1781.

[44] Natural Earth. Natural earth data. https://www.naturalearthdata.com/, 2024. Accessed:
2024-11-15.

[45] Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.
Climax: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

[46] Tung Nguyen, Rohan Shah, Hritik Bansal, Troy Arcomano, Romit Maulik, Rao Kotamarthi, Ian
Foster, Sandeep Madireddy, and Aditya Grover. Scaling transformer neural networks for skillful
and reliable medium-range weather forecasting. Advances in Neural Information Processing
Systems, 37:68740-68771, 2024.

[47] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al.
Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural
operators. arXiv preprint arXiv:2202.11214, 2022.

[48] Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
weather forecasting with machine learning. Nature, 637(8044):84-90, 2025.

11


https://www.naturalearthdata.com/

448
449
450
451

452
453
454
455

457

458
459

461
462
463

464
465
466
467

468
469
470

471
472
473

474
475
476

477
478
479
480

481
482

484
485
486
487

488
489
490

491
492
493

494
495
496

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russell,
Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, et al. Weatherbench 2: A
benchmark for the next generation of data-driven global weather models. Journal of Advances
in Modeling Earth Systems, 16(6):e2023MS004019, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—
68551, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. 36:8634-8652, 2023.

Konstantin Stadler. The country converter coco - a python package for converting country
names between different classification schemes. Journal of Open Source Software, 2(16):332,
2017.

Christina V Theodoris, Ling Xiao, Anant Chopra, Mark D Chaffin, Zeina R Al Sayed, Matthew C
Hill, Helene Mantineo, Elizabeth M Brydon, Zexian Zeng, X Shirley Liu, et al. Transfer learning
enables predictions in network biology. Nature, 618(7965):616—-624, 2023.

Sumanth Varambally, Veeramakali Vignesh Manivannan, Yasaman Jafari, Luyu Han, Zachary
Novack, Zhirui Xia, Salva Riihling Cachay, Srikar Eranky, Ruijia Niu, Taylor Berg-Kirkpatrick,
Duncan Watson-Parris, Yian Ma, and Rose Yu. Aquilon: Towards building multimodal weather
LLMs. In ICML 2025 Workshop on Assessing World Models, 2025.

Lei Wang, Shan Dong, Yuhui Xu, Hanze Dong, Yalu Wang, Amrita Saha, Ee-Peng Lim, Caiming
Xiong, and Doyen Sahoo. Mathhay: An automated benchmark for long-context mathematical
reasoning in llms. arXiv preprint arXiv:2410.04698, 2024.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm:
Simple visual language model pretraining with weak supervision. In International Conference
on Learning Representations, 2022.

Junda Wu, Zachary Novack, Amit Namburi, Jiaheng Dai, Hao-Wen Dong, Zhouhang Xie,
Carol Chen, and Julian McAuley. Futga: Towards fine-grained music understanding through
temporally-enhanced generative augmentation. arXiv preprint arXiv:2407.20445, 2024.

Junda Wu, Zachary Novack, Amit Namburi, Jiaheng Dai, Hao-Wen Dong, Zhouhang Xie, Carol
Chen, and Julian McAuley. Futga-mir: Enhancing fine-grained and temporally-aware music
understanding with music information retrieval. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2025.

Kehan Wu, Yingce Xia, Pan Deng, Renhe Liu, Yuan Zhang, Han Guo, Yumeng Cui, Qizhi Pei,
Lijun Wu, Shufang Xie, et al. Tamgen: drug design with target-aware molecule generation
through a chemical language model. Nature Communications, 15(1):9360, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger,
and Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations.
In First Conference on Language Modeling, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

Bogiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yugian Yuan, Guanzheng Chen, Sicong
Leng, Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation
models for image and video understanding. arXiv preprint arXiv:2501.13106, 2025.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 543-553, 2023.

12



497
498
499

500
501

503
504

505

506

507
508

509

[64] Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bohan Zhang, Guanlin Li, Zijun Yao, Kangli
Xu, Jinchang Zhou, Daniel Zhang-Li, et al. Tablellm: Enabling tabular data manipulation by
IIms in real office usage scenarios. arXiv preprint arXiv:2403.19318, 2024.

[65] Yue Zhao, Ishan Misra, Philipp Krihenbiihl, and Rohit Girdhar. Learning video representations
from large language models. In arXiv preprint arXiv:2212.04501, 2022.

[66] Yizhen Zheng, Huan Yee Koh, Maddie Yang, Li Li, Lauren T May, Geoffrey I Webb, Shirui
Pan, and George Church. Large language models in drug discovery and development: From
disease mechanisms to clinical trials. arXiv preprint arXiv:2409.04481, 2024.

A Appendix

A.1 Dataset Details

Table 5 details all the tasks in AnemoiBench, and table [A-T|reports the number of samples generated

grouped by difficulty and type.

A.2 Example from the dataset

The following data shows a snapshot of the global weather fields.
{data}

Based on the above data, answer the following question:

Which {geofeature} experienced the {extremum_direction} average
{variable}?","Based on the provided data, {answer} experienced the
{extremum_direction} average {variable} over the specified time-
period, with an average {variable} of {answer_numeric}."

Example Template

The following data shows a snapshot of the global weather fields.

{'type': 'wb2', 'variables': ['mean_sea_level pressure',
'10m_u_component_of_wind', 'l0m_v_component_of_wind',
'2m_temperature', 'geopotential', 'specific_humidity',
'temperature', 'u_component_of wind', 'v_component of wind'],
"time_indices': '54746:54747:1')

Based on the above data, answer the following question: Which
continent experienced the highest average Surface temperature?

Based on the provided data, Africa experienced the highest
average Surface temperature over the specified time-period, with
an average Surface temperature of 303.5 K.

Generated Sample

Figure 4: (left) Example Template from which samples are generated (right) A sample generated

using the template.
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ID Natural Language Description Answer Type Difficulty Type
1 Which location experienced the highest/lowest average variable Location Easy Human
2 What is the min/max/mean variable in location Numerical Easy Human
3 Which sublocation has the highest/lowest recorded variable Location Easy Human
4 How many hours from start did location experience extremum Temporal Easy Human
5  What is the variable value at location at specific time Numerical Easy Human
6 What will the variable be in location after time interval (forecast) Numerical Medium Human
7 When will location experience its extremum in future period (forecast) Temporal Medium Human
8  Difference between max and min within region (forecast) Numerical Medium  Synthetic
9  Maximum difference between two regions (forecast) Numerical Medium  Synthetic
10 Maximum value in region (forecast) Numerical Medium  Synthetic
11 By how much minimum will fall below threshold in first N days (fore- Numerical Medium  Synthetic
cast)
12 By how much minimum will be below threshold across region (forecast) Numerical Medium  Synthetic
13 Maximum day-to-day decrease between consecutive days (forecast) Numerical Medium  Synthetic
14  Maximum value observed anywhere in region (forecast) Numerical Medium Synthetic
15  How much mean will differ between two regions (forecast) Numerical Medium  Synthetic
16  Difference in mean between two regions (forecast) Numerical Medium  Synthetic
17 Accumulated total in region (forecast) Numerical Medium  Synthetic
18  Time-averaged value of variable in region (forecast) Numerical Medium  Synthetic
19  How much area-averaged value will increase from current (forecast) Numerical Medium Synthetic
20  Maximum value expected in region (forecast) Numerical Medium  Synthetic
21 Minimum value averaged over region (forecast) Numerical Medium  Synthetic
22 Fraction p of grid points will exceed threshold (forecast) Yes/No Medium  Synthetic
23 Temporal trend will exceed threshold (forecast) Yes/No Medium  Synthetic
24  Spatial difference between regions will exceed threshold (forecast) Yes/No Medium  Synthetic
25  Count of grid points will exceed threshold (forecast) Yes/No Medium  Synthetic
26  Minimum will exceed threshold in > N % of grid points (forecast) Yes/No Medium  Synthetic
27  Variable will exceed threshold at > N % of grid points (forecast) Yes/No Medium  Synthetic
28  Which locations experienced unusual anomaly vs baseline List of locations Hard Human
29  Cumulative sum of positive anomalies above threshold (forecast) Numerical Hard Synthetic
30 Maximum spatial extent exceeding threshold simultaneously (forecast) Numerical Hard Synthetic
31  Atleast N consecutive days will exceed threshold (forecast) Yes/No Hard Synthetic
32 Maximum will exceed threshold on at least N distinct days (forecast) Yes/No Hard Synthetic
33 Maximum will exceed threshold on each of the final N days (forecast) Yes/No Hard Synthetic
34  Maximum will exceed threshold for N consecutive days from day X Yes/No Hard Synthetic
(forecast)
35 Regional max and mean will simultaneously meet conditions (forecast) Yes/No Hard Synthetic
36  Simultaneous conditions will occur in two regions (forecast) Yes/No Hard Synthetic
37  Crossover between conditions will occur in timeframe (forecast) Yes/No Hard Synthetic
38  Regional fraction exceeding threshold will meet criteria (forecast) Yes/No Hard Synthetic
39  Variable will be within range for > N contiguous grid points (forecast) Yes/No Hard Synthetic
40  Zonal gradient will exceed threshold per degree longitude (forecast) Yes/No Hard Synthetic
41  How will variable change in lead time if variable is modified (counter- Numerical Hard Human
factual)
42 Identify if extreme weather event will occur in next N hours (forecast) Descriptions Very Hard Human
43 Check if extreme weather event is happening now Descriptions Very Hard Human
44 Generate global 3-month climate forecast report (forecast) Descriptions Very Hard ~ Human
45  Provide detailed US meteorological analysis and forecast (forecast) Descriptions Very Hard ~ Human
46  Generate ENSO climate update and outlook (forecast) Descriptions Very Hard  Human

Table 5: Complete set of Weather Tasks, grouped by difficulty.

Difficulty Human Tasks Human Samples  Synthetic Tasks  Synthetic Samples  Total Samples

Easy 5 800 0 0 800
Medium 2 156 20 256 412
Hard 2 329 12 153 482
Very Hard 5 393 0 0 393
Total 14 1,678 32 384 2,062

Table 6: Dataset Statistics: Number of samples grouped by difficulty and type
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