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Abstract

Foundation models for weather science are pre-trained on vast amounts of struc-1

tured numerical data and outperform traditional weather forecasting systems. How-2

ever, these models lack language-based reasoning capabilities, limiting their util-3

ity in interactive scientific workflows. Large language models (LLMs) excel at4

understanding and generating text but cannot reason about high-dimensional me-5

teorological datasets. We bridge this gap by building a novel agentic framework6

for weather science. Our framework includes a Python code-based environment7

for agents (AnemoiWorld) to interact with weather data, featuring tools like an8

interface to WeatherBench 2 dataset, geoquerying for geographical masks from9

natural language, weather forecasting, and climate simulation capabilities. We10

design Anemoi, a multi-turn LLM-based weather agent that iteratively analyzes11

weather datasets, observes results, and refines its approach through conversational12

feedback loops. We accompany the agent with a new benchmark, AnemoiBench,13

with a scalable data generation pipeline that constructs diverse question-answer14

pairs across weather-related tasks, from basic lookups to advanced forecasting,15

extreme event detection, and counterfactual reasoning. Experiments on this bench-16

mark demonstrate strong promise for LLM agents to help weather scientists reason17

about meteorological data more effectively.18

1 Introduction19

Large language models (LLMs) have demonstrated remarkable capabilities across diverse scientific20

domains [6], revolutionizing fields from drug discovery [66, 59] and materials science [29, 23] to21

network biology [53]. These models excel at processing textual content such as scientific literature,22

source code [24], and structured data tables [64]. However, their application to domains requiring23

reasoning over high-dimensional numerical data remains limited [55].24

Meteorology offers a compelling yet challenging case study, as combining natural language reasoning25

with complex atmospheric data has the potential to greatly advance weather research. Weather26

prediction is a critical scientific challenge, with profound implications spanning agriculture, disaster27

preparedness, transportation, and energy management [2]. The field has witnessed remarkable28

progress through machine learning approaches, with foundation models [45, 27, 28, 5, 46] now29

achieving state-of-the-art performance in medium-range forecasting, often surpassing traditional30

physics-based numerical simulations [42, 4]. However, current weather models operate exclusively31

on structured numerical datasets such as reanalysis data, cannot incorporate valuable alternative32

modalities like textual weather bulletins or field station reports, and crucially, lack interactive natural33

language interfaces for querying or reasoning.34

These highly technical tool interfaces (typically FORTRAN namelists) and esoteric formats (like35

GRIB and HDF) create substantial barriers for non-experts that severely limits the accessibility of36

valuable weather and climate data. Traditional meteorological workflows therefore require expert37
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Figure 1: Overview: We develop Anemoi, an agentic framework for weather science. Given a query,
the LLM-based agent Anemoi writes a code block which is sent to the code execution server. The
server orchestrates several tools to execute the code block and returns the execution results to the
agent. The agent either decides to execute more code to refine its output or respond back to the user.

interpretation to translate computational outputs into actionable insights, increasing costs and limiting38

their utility in human-in-the-loop decision-support systems.39

Multimodal LLMs can handle data from diverse modalities and offer a potential pathway to address40

these challenges. Models capable of jointly processing text with images [56, 1, 32, 37, 31, 35, 36],41

video [65, 40, 63, 12, 34, 62], and audio [14, 13, 15, 57, 58, 17, 20] have shown impressive cross-42

modal reasoning abilities. Yet atmospheric data poses unique challenges: its spatiotemporal, multi-43

channel structure is fundamentally different from conventional modalities, requiring specialized44

approaches for effective integration with language models. Initial attempts to bridge this gap have45

shown promise but remain limited in scope. Early vision-language approaches to meteorology46

[10, 30, 39] have focused on narrow applications like extreme weather prediction using restricted47

variable subsets, falling short of general-purpose meteorological reasoning. More recent multimodal48

weather-language models [54] demonstrate the potential of this direction but still fail to match49

established baselines across many important meteorological tasks. This persistent gap highlights a50

fundamental challenge: despite significant progress in both weather foundation models and LLMs, no51

existing system successfully unifies meteorological data with natural language reasoning for broad,52

interactive scientific applications.53

We address this challenge by first introducing an agentic environment that enables LLMs to interact54

programmatically with meteorological data and models. We setup AnemoiWorld, a comprehensive55

execution environment that exposes weather-focused capabilities through easy-to-use Python APIs.56

The system includes interfaces to the WeatherBench 2 dataset [49], geoquery functionality for57

translating between coordinates and named locations, state-of-the-art forecasting models [46], and58

physics-based simulators. A FastAPI backend parallelizes code execution from LLM-generated59

queries.60

We then develop two code-generating systems of increasing sophistication within this agentic frame-61

work. Anemoi-Direct generates Python code in a single step to solve weather problems directly62

[19]. Anemoi-Reflective employs an iterative execution–refinement workflow: it executes code63

to manipulate weather data, analyzes the results, and refines both code and output before providing64

a final answer. Both approaches can automatically detect and correct errors produced during code65

execution. Figure 1 gives an overview of our entire agentic pipeline.66

To systematically evaluate these approaches, we construct AnemoiBench, a comprehensive bench-67

mark built on ERA5 reanalysis data [21] from WeatherBench 2 [49]. The benchmark combines68

2



human-authored and semi-synthetic tasks spanning 2062 question–answer pairs across 46 distinct69

tasks. Tasks range from basic data lookups and forecasting to challenging research problems involving70

extreme event detection, forecast report generation, and prediction and counterfactual analysis. We71

also implement robust evaluation schemes to assess the scientific accuracy of all generated answers72

across diverse meteorological reasoning tasks. We summarize our key contributions below.73

• We develop AnemoiWorld, an agentic environment providing unified Python APIs for meteorologi-74

cal data, forecasting models, and climate simulation tools.75

• We introduce two code-generating systems that leverage AnemoiWorld: Anemoi-Direct for single-76

step code generation and Anemoi-Reflective for iterative execution-refinement workflows to77

solve open-ended meteorological problems.78

• We curate AnemoiBench, a challenging weather reasoning benchmark with 2062 question-answer79

pairs across 46 meteorological task types.80

• Our evaluation shows that LLM agents achieve encouraging results on the benchmark, suggesting81

that they can be effective assistants to weather scientists.82

2 Related Work83

Weather Foundation Models. Neural network-based weather forecasting systems [28, 48, 5, 47, 45,84

7, 46] have revolutionized meteorological prediction by demonstrating superior performance com-85

pared to conventional physics-based approaches [42] while being significantly more computationally86

efficient. Nevertheless, these architectures are predominantly trained for forecasting. In particular,87

they do not support conversational interfaces or cross-domain reasoning capabilities.88

Agentic frameworks for scientific discovery Agentic frameworks implement the per-89

ceive–reason–plan–act loop by pairing LLMs with tools, memory, and feedback to pursue90

long-horizon goals. Core patterns include interleaving reasoning with tool calls (ReAct [61]),91

self-critique with episodic memory (Reflexion [51]), and self-supervised learning of API use (Tool-92

former [50]). General-purpose libraries such as AutoGen provide a standard interface for multi-agent93

conversation and tool invocation, making these patterns reusable across tasks [60].94

In many scientific applications, these frameworks appear as domain agents and self-driving labs. In95

chemistry, ChemCrow couples an LLM controller with a curated set of expert tools for synthesis and96

analysis [9], while Coscientist integrates retrieval, code execution, and laboratory APIs to plan and97

run experiments end-to-end [8]. Biomedical agents extend the approach across literature, databases,98

and analysis workflows (e.g., Biomni [22]). Despite these advances across multiple scientific domains,99

weather science remains largely unexplored territory for agentic approaches.100

General-Purpose Vision-Language Models. Multi-modal vision language models [33, 1, 32, 31,101

37, 38, 35, 36] demonstrate strong visual reasoning capabilities on general-purpose evaluation bench-102

marks. However, adapting these models for applications in weather science presents considerable103

difficulties. Standard VLM architectures assume RGB visual inputs and exhibit weaknesses in104

quantitative analytical tasks. Meteorological data presents fundamentally different challenges through105

high-dimensional, structured atmospheric measurements requiring specialized integration approaches106

for language model compatibility. While weather-language hybrid models [54] seem promising, they107

underperform relative to domain-specific baselines across critical meteorological applications.108

Multimodal Weather Datasets. Recent research has developed several multimodal frameworks109

that combine weather observations with textual information. These include the Terra collection110

[11], which integrates geographical imagery with descriptive text for general earth observation, and111

ClimateIQA [10], which focuses on extreme weather detection through wind measurement analysis.112

Similarly, WeatherQA [39] specializes in severe weather interpretation using remote sensing data and113

expert commentary, while CLLMate [30] connects media reports with ERA5 observations for weather114

event classification. Despite these valuable contributions, existing frameworks are narrow in scope.115

They concentrate on narrow applications or utilize only small subsets of atmospheric variables. This116

approach overlooks a fundamental characteristic of atmospheric dynamics: weather systems involve117

complex multi-scale interactions across numerous meteorological parameters. To address these118

limitations, our benchmark incorporates diverse weather reasoning tasks, both human-implemented119

and semi-synthetically generated, that span across most WeatherBench2 data channels.120
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Figure 2: Code Execution Server. Anemoi sends parallel requests to the server, which distributes
them to available workers. Each worker acquires resources from tool pools, loads datasets, injects
tools into the execution environment, executes code, and returns results or errors to the agent.

3 Anemoi: An Agentic Framework for Weather Science121

3.1 AnemoiWorld: An Agentic Environment for Weather Science122

The fragmented nature of weather science tools makes it challenging for LLMs to effectively leverage123

them for scientific tasks. To address this, we introduce AnemoiWorld, a comprehensive agentic124

environment that unifies weather science capabilities from diverse tools through a clean Pythonic125

interface. Given a question, we leverage LLMs’ ability [19, 25] to generate Python code and execute126

it in a sandboxed environment. The output is then fed back to the model, along with any execution127

errors. We design high-level APIs for the tools for ease of use, and include documentation extracted128

from the docstrings in the models context at inference time.129

The environment encompasses several essential weather science tools:130

1. WeatherBench 2 Data Indexer. The environment provides the model accesses data through the131

xarray dataset interface.132

2. Geolocator. This tool provides comprehensive geospatial functionality for weather data analysis.133

It handles forward geocoding (place names to coordinates) and reverse geocoding (coordinates to134

location names) using the Natural Earth dataset [44]. Key operations include finding geographic135

features at specific coordinates, retrieving boolean masks and area-weighted maps for regions, listing136

sublocations, and calculating geodistances. Built using geopandas and shapely, it maintains137

precomputed spatial caches for fast lookups.138

3. Forecaster. We incorporate the Stormer model [46], a transformer-based neural weather prediction139

system trained on WeatherBench 2. We chose it for its strong performance at short to medium range140

forecasts while being orders of magnitude more efficient than traditional numerical models. Our141

implementation abstracts checkpoint loading and preprocessing, providing a simple interface to run142

forecasts from arbitrary atmospheric initial conditions and return outputs as xarray datasets.143

4. Simulator. Our JAX-GCM simulator is an intermediate complexity atmospheric model built on144

NeuralGCM’s dynamical core [26]. It incorporates physical parameterizations from the SPEEDY145

Fortran model [42], including radiation, moist physics (clouds and convection), and vertical and146

horizontal diffusion. We use the default T32 configuration (approximately 3.5◦ resolution) with 8147

vertical layers. Built on JAX, we can run 5-day simulations in only ≈ 25s on an A100 GPU.148

Code Execution Server. AnemoiWorld requires a system capable of handling multiple weather149

analysis tasks simultaneously without resource conflicts. We implement a FastAPI-based server-client150

architecture where clients send code execution requests to a dedicated execution server that processes151

them in parallel. The system maintains resource pools for each tool component to prevent contention152

and enable true parallelism. Each pool contains one or more instances of the above tools. A resource153

manager implements acquire/release semantics to ensure each execution thread has exclusive access154

to a complete set of tools while preventing deadlocks.155

Each execution follows a strict protocol: acquire resources from pools, load requested datasets,156

inject tool instances into the execution environment, and execute user code with timeout protection.157

The system captures all outputs and error information, which are sent back to the client for further158

processing by the agent. Figure 2 provides an overview of the server.159
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3.2 The Anemoi Family of Weather Agents160

We design agentic systems that leverage AnemoiWorld to solve complex meteorological tasks.161

Our approach constructs prompts containing comprehensive documentation of AnemoiWorld tools,162

variable descriptions, units, and coordinate systems. The models generate Python functions using163

these tools to solve the given questions, which execute on AnemoiWorld’s code execution server.164

Any execution errors or timeouts are returned to the models, which regenerate code until the error is165

resolved. We implement two distinct systems that differ in their execution strategy and refinement166

approach. Both systems intentionally maintain simple designs to isolate and measure the agentic167

capabilities of LLMs for solving weather science problems.168

Anemoi-Direct generates a complete Python solution in one attempt and reports the execution output169

as the final answer. This model runs the error-correction loop for a maximum of 5 times.170

Anemoi-Reflective implements a multi-turn workflow that alternates between code generation and171

execution phases. The agent executes individual code blocks and receives the output as observations.172

The execution results are fed back to the LLM, which analyzes the observations and decides on the173

next step. This iterative process enables the model to assess the scientific plausibility of outputs,174

identify anomalies or mistakes in results, and refine subsequent code blocks to address logical errors.175

We run the interaction loop for a maximum of 20 times per question.176

4 AnemoiBench: A Comprehensive Weather Benchmark177

Weather science problems require complex analysis of multi-scale atmospheric patterns, statistical178

modeling of trends, and integration of diverse datasets from numerical models and expert reports.179

We introduce AnemoiBench, a comprehensive benchmark that evaluates how effectively LLMs can180

assist in real-world meteorological workflows. The benchmark comprises 46 distinct meteorological181

tasks with answers derived from curated weather reports and human-generated or verified code.182

4.1 Dataset Curation183

We base our tasks around the ERA5 reanalysis dataset [21], specifically from WeatherBench 2 [49].184

The dataset provides global atmospheric data from 1979 to 2022. We use 1.5◦ spatial resolution with185

6-hourly temporal resolution.186

The capabilities measured by our curated tasks range from basic data lookups and computations to187

more advanced problems involving forecasting, challenging research problems including extreme188

event detection, forecast report generation, prediction analysis, and counterfactual reasoning. We189

design tasks with increasing difficulty levels based on the complexity of tool usage required to answer190

them, from simple single-step data queries to multi-step analytical workflows. Table 5 provide an191

overview of the task types we implement as part of our benchmark.192

For each task-type, we define natural language templates with placeholders such as location, variable,193

and time window. To create task-specific examples, these placeholders are filled by randomly194

sampling inputs, and the corresponding ground truth is computed deterministically using human-195

written or human-verified synthetic code applied to the raw ERA5 data. To add more diversity to the196

training dataset, we use an LLM (specifically, GPT-4o) to reword questions generated by our data197

curation pipeline. Figure 4 shows an example template, and a sample generated from it.198

Using our framework, we construct a benchmark dataset comprising 2062 test samples spread across199

46 tasks. For a detailed breakdown of dataset statistics, please refer to Appendix A.1. We provide200

more details about how the tasks are implemented in the subsequent sections.201

4.1.1 Human-generated tasks202

The human-generated tasks span all difficulty levels and represent realistic meteorological queries203

curated in conjunction with a domain expert. For each task, a graduate student created a question204

template and wrote Python code to answer the query. Easy tasks focus on basic data retrieval205

operations like finding extrema, querying specific values, and identifying locations with particular206

weather conditions. Medium-difficulty tasks introduce forecasting elements, asking for future weather207

predictions at specific locations and times. Hard tasks incorporate more complex analytical concepts208

such as anomaly detection relative to baselines and counterfactual scenario analysis. The most209
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Figure 3: Semi-synthetic task generation pipeline: Semi-synthetic pipeline for generating weather
benchmark tasks. Weather-related texts are processed by a claim extraction agent to identify scientifi-
cally meaningful observational claims, which are then verified against ERA5 meteorological data
through automated code generation. Verified claims are transformed into reusable templates and
manually reviewed. We can combine the verifier code with the templates and Weatherbench data to
produce samples.

challenging tasks demand comprehensive meteorological expertise and mirror real-world operational210

workflows. These include extreme weather event detection, comprehensive weather assessments, and211

generation of detailed forecast discussions that span regional to global scales. For instance, ENSO212

outlook reports require synthesizing complex interactions between multiple atmospheric and oceanic213

variables to produce coherent, scientifically grounded forecasts. We source the expert-generated214

weather discussion reports from several online sources, such as the NOAA website1 and IRI Seasonal215

Climate Forecasts/Outlooks. For extreme weather event tasks, we use records from the EM-DAT216

international disaster database [16], matching event entries by date and location to the ERA5 data.217

4.1.2 Semi-synthetic task generation218

To increase task diversity, we implement a semi-synthetic pipeline that transforms unstructured219

weather-related text into verifiable benchmark tasks. Figure 3 provides an overview of the procedure.220

The process begins with a claim extraction agent that analyzes weather texts from various sources,221

using an LLM to identify scientifically meaningful observational claims about weather phenomena.222

The agent focuses on quantifiable changes, trends, extremes, and relationships between variables.223

These claims undergo verification through an automated agent that generates executable Python224

code to validate each claim against the ERA5 data. This verification step ensures that extracted225

claims are not only linguistically coherent but also scientifically accurate when tested against actual226

meteorological observations. The verified claims are then transformed into reusable templates that227

support both quantitative measurements and qualitative comparisons, allowing generation of diverse228

benchmark examples through parameter substitution.229

We generate multiple candidate templates through this approach. Finally, we manually review them230

for scientific interest and code correctness. In this way, we generate 32 distinct synthetic task types.231

4.2 Evaluation Metrics232

Since all our tasks are designed around weather tasks with objectively correct answers, we design an233

evaluation pipeline that can assess the scientific correctness of the answers produced by the models.234

The model answers fall into five primary categories: numeric, temporal, spatial (location-based)235

and descriptive. Given that model outputs are in natural language, we evaluate them through a236

multi-stage process:237

1https://www.wpc.ncep.noaa.gov/discussions/hpcdiscussions.php?disc=pmdepd
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1. Verification: Determine whether the models response contains a relevant and valid answer. At this238

stage, we merely assess whether or not the response has an appropriate answer to the given question,239

and not its correctness. We use gpt-4.1-mini for this purpose.240

2. Extraction: Extract the specific answer from the model response using another LLM prompt.241

3. Scoring: Apply scoring methods specific to the type of question, which are detailed below.242

Numerical Answers. For numerical responses, we report the Standarized Median Absolute Error243

between the predicted and reference values. In addition, we also report the 25%, 75% and 99%244

quantiles of the standarized absolute error to provide a more complete picture of the error distribution.245

To compare across variables with different scales and units, we divide the absolute error by the246

standard deviation of the corresponding variable in the dataset.247

Time-based Answers. We evaluate tasks with time values as responses using Median Absolute Error.248

We omit the standarization step, since all the answers are in the same units (that is, hours). Like the249

numerical answers case, we also report the 25%, 75% and 99% quantiles.250

Location-based Answers. For questions whose answers are geographic locations, we first match the251

extracted location name to one of the expected entries from the NaturalEarth dataset (e.g., mapping252

“USA” to “United States of America”). For countries, we use the country_converter library [52].253

For other geographic entities such as continents and water bodies, we apply fuzzy string matching254

[3], accepting matches above a predefined similarity threshold.255

To quantitatively assess the geographic deviation between predicted and reference locations, we256

employ the Earth Mover’s Distance (EMD) [43] as a primary evaluation metric. We begin by257

generating surface area-weighted masks over a latitude–longitude grid for both the predicted and258

reference locations. These masks are normalized to form probability distributions. To account for the259

curvature of the Earth, we compute pairwise distances between grid points using geodesic distance.260

The EMD is then calculated using the POT library [18]. As a complementary metric, we also report261

Location Accuracy, which simply measures whether the predicted and reference location strings are262

an exact match.263

Descriptive Answers. To evaluate descrptive answers, we employ a decomposition-and-aggregation264

approach where the model’s response is first parsed into individual discussion points, each of which265

is then probabilistically scored against the claims in the reference answer to determine whether it266

supports or refutes the ground truth. Using logit probabilities from language model inference, the267

system calculates how strongly each extracted point aligns with the reference material by comparing268

the likelihood of SUPPORTS versus REFUTES tokens, converting these into numerical scores that269

capture the degree of alignment [41]. The final evaluation aggregates these individual point scores270

into an overall discussion quality metric, enabling fine-grained assessment that accounts for both271

the factual accuracy and argumentative coherence of complex, multi-faceted responses rather than272

treating the entire discussion as a monolithic unit.273

Extreme Weather Tasks. In order to evaluate the extreme-weather tasks, we report two metrics: (1)274

F1 score, which only assesses whether the model correctly predicts the occurrence of an extreme275

event anywhere in the world, without considering event type or exact location. (2) Earthmover’s276

Distance, which measures the agreement between the reference and predicted list of countries.277

5 Experimental Results278

We evaluate model performance across all task types from Section 4. As a zero-shot baseline, we test279

a pre-trained frontier language model on weather reasoning questions using only natural language280

metadata, that is, no structured weather data or numerical inputs. We use OpenAI’s gpt-5-nano and281

gpt-5-mini as backend models for our Anemoi agents. Tables 1 to 4 report results on AnemoiBench282

for all models and the text-only baseline.283

The Anemoi agents significantly outperform the text-only baseline across all tasks, demonstrating284

the agentic framework’s ability to effectively leverage the numerical data from WeatherBench. The285

agents excel at numerical and temporal tasks, achieving very low absolute errors at the 25th and286

50th percentiles. For location prediction, Anemoi-Reflective with gpt-5-mini achieves a strong287

performance, with 89.05% accuracy and an EMD score of 2084.39. The agents show promise in288

extreme weather detection (F1 scores > 0.4) and weather claim validation (best F1: 0.585). However,289

all models struggle with report generation, with the best achieving only 0.351 on discussion scores.290
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Model LLM SAE (Q25) (↓) SAE (Q50) (↓) SAE (Q75) (↓) SAE (Q99) (↓)

Anemoi-Reflective gpt-5-mini 2.68e-08 0.029 0.513 17.753
Anemoi-Direct gpt-5-mini 0.0 0.018 0.288 55.859
Text Only LLM gpt-5-mini 0.290 0.935 2.172 27.285

Anemoi-Reflective gpt-5-nano 0.0001 0.053 0.955 12.002
Anemoi-Direct gpt-5-nano 0.0 0.049 0.751 443.282
Text Only LLM gpt-5-nano 0.265 1.074 2.799 3116.1

Table 1: Output validity and error metric quantiles for numerical tasks. SAE stands for standardized
absolute error, the absolute error divided by the standard deviation of the relevant variable in the data.

Model LLM AE (Q25) (↓) AE (Q50) (↓) AE (Q75) (↓) AE (Q99) (↓)

Anemoi-Reflective gpt-5-mini 0.0 0.0 12.0 146.1
Anemoi-Direct gpt-5-mini 0.0 0.0 12.0 156.0
Text Only LLM gpt-5-mini 12 30 72 26841.6

Anemoi-Reflective gpt-5-nano 0 0 6 39521.3
Anemoi-Direct gpt-5-nano 0 0 18 5.57e18
Text Only LLM gpt-5-nano 12 36 93 190.68

Table 2: Absolute error quantiles for time tasks, in units of hours.

Model LLM Location Accuracy (%)(↑) EMD (km) (↓) Extreme Weather F1 (↑)

Anemoi-Reflective gpt-5-mini 89.05 2084.39 0.432
Anemoi-Direct gpt-5-mini 77.11 2317.97 0.466
Text Only LLM gpt-5-mini 16.92 5916.13 0.421

Anemoi-Reflective gpt-5-nano 65.17 2354.28 0.212
Anemoi-Direct gpt-5-nano 72.14 2549.28 0.184
Text Only LLM gpt-5-nano 15.42 5132.35 0

Table 3: Location metrics for location answer-based questions. EMD stands for Earth mover’s
Distance.

Model LLM % Valid Outputs (↑) Discussion Score (↑) Boolean F1 (↑)

Anemoi-Reflective gpt-5-mini 91.17 0.264 0.538
Anemoi-Direct gpt-5-mini 90.35 0.255 0.585
Text Only LLM gpt-5-mini 94.42 0.238 0.369

Anemoi-Reflective gpt-5-nano 88.80 0.351 0.452
Anemoi-Direct gpt-5-nano 93.55 0.267 0.496
Text Only LLM gpt-5-nano 91.5 0.344 0.397

Table 4: Overall percentage of valid outputs, numerical score (0-1) for discussion questions, and F1
score for boolean questions.

While Direct variants typically perform better on numerical tasks, Reflective variants show greater291

resilience against extreme errors (99th percentile). This suggests self-reflection helps detect anomalies292

like wrong magnitudes or unit mismatches. Reflective variants also outperform Direct variants in293

report generation, likely because Direct models produce rigid responses since they directly output the294

program outputs to text.295

6 Conclusion296

We tackled the challenging problem of enabling LLMs to reason over high-dimensional weather data297

by developing, to our knowledge, the first agentic model for meteorology. Our contributions include:298

(1) AnemoiWorld, an agentic environment with comprehensive meteorological tools, (2) the Anemoi299

family of agents that leverage these tools, and (3) a scalable data pipeline producing a large, diverse300

benchmark dataset (AnemoiBench). Our empirical evaluation shows that the agentic framework301

enables effective reasoning about meteorological data, significantly outperforming text-only baselines.302

The agents excel at most tasks but struggle with complex challenges like forecast report generation.303

Beyond advancing weather science, our work provides a sandbox for developing more effective304

agentic workflows. Future work could explore using larger datasets to train agents that produce more305

scientifically accurate responses.306
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A Appendix505

A.1 Dataset Details506

Table 5 details all the tasks in AnemoiBench, and table A.1 reports the number of samples generated507

grouped by difficulty and type.508

A.2 Example from the dataset509

Based on the provided data, Africa experienced the highest
average Surface temperature over the specified time-period, with
an average Surface temperature of 303.5 K.

 {'type': 'wb2', 'variables': ['mean_sea_level_pressure',
'10m_u_component_of_wind', '10m_v_component_of_wind',
'2m_temperature', 'geopotential', 'specific_humidity',
'temperature', 'u_component_of_wind', 'v_component_of_wind'],
'time_indices': '54746:54747:1'}

 

The following data shows a snapshot of the global weather fields.

Based on the above data, answer the following question: Which
continent experienced the highest average Surface temperature?

Based on the above data, answer the following question:

The following data shows a snapshot of the global weather fields.

{data}

Which {geofeature} experienced the {extremum_direction} average
{variable}?","Based on the provided data, {answer} experienced the
{extremum_direction} average {variable} over the specified time-
period, with an average {variable} of {answer_numeric}."

Figure 4: (left) Example Template from which samples are generated (right) A sample generated
using the template.
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ID Natural Language Description Answer Type Difficulty Type

1 Which location experienced the highest/lowest average variable Location Easy Human
2 What is the min/max/mean variable in location Numerical Easy Human
3 Which sublocation has the highest/lowest recorded variable Location Easy Human
4 How many hours from start did location experience extremum Temporal Easy Human
5 What is the variable value at location at specific time Numerical Easy Human

6 What will the variable be in location after time interval (forecast) Numerical Medium Human
7 When will location experience its extremum in future period (forecast) Temporal Medium Human
8 Difference between max and min within region (forecast) Numerical Medium Synthetic
9 Maximum difference between two regions (forecast) Numerical Medium Synthetic
10 Maximum value in region (forecast) Numerical Medium Synthetic
11 By how much minimum will fall below threshold in first N days (fore-

cast)
Numerical Medium Synthetic

12 By how much minimum will be below threshold across region (forecast) Numerical Medium Synthetic
13 Maximum day-to-day decrease between consecutive days (forecast) Numerical Medium Synthetic
14 Maximum value observed anywhere in region (forecast) Numerical Medium Synthetic
15 How much mean will differ between two regions (forecast) Numerical Medium Synthetic
16 Difference in mean between two regions (forecast) Numerical Medium Synthetic
17 Accumulated total in region (forecast) Numerical Medium Synthetic
18 Time-averaged value of variable in region (forecast) Numerical Medium Synthetic
19 How much area-averaged value will increase from current (forecast) Numerical Medium Synthetic
20 Maximum value expected in region (forecast) Numerical Medium Synthetic
21 Minimum value averaged over region (forecast) Numerical Medium Synthetic
22 Fraction p of grid points will exceed threshold (forecast) Yes/No Medium Synthetic
23 Temporal trend will exceed threshold (forecast) Yes/No Medium Synthetic
24 Spatial difference between regions will exceed threshold (forecast) Yes/No Medium Synthetic
25 Count of grid points will exceed threshold (forecast) Yes/No Medium Synthetic
26 Minimum will exceed threshold in > N% of grid points (forecast) Yes/No Medium Synthetic
27 Variable will exceed threshold at > N% of grid points (forecast) Yes/No Medium Synthetic

28 Which locations experienced unusual anomaly vs baseline List of locations Hard Human
29 Cumulative sum of positive anomalies above threshold (forecast) Numerical Hard Synthetic
30 Maximum spatial extent exceeding threshold simultaneously (forecast) Numerical Hard Synthetic
31 At least N consecutive days will exceed threshold (forecast) Yes/No Hard Synthetic
32 Maximum will exceed threshold on at least N distinct days (forecast) Yes/No Hard Synthetic
33 Maximum will exceed threshold on each of the final N days (forecast) Yes/No Hard Synthetic
34 Maximum will exceed threshold for N consecutive days from day X

(forecast)
Yes/No Hard Synthetic

35 Regional max and mean will simultaneously meet conditions (forecast) Yes/No Hard Synthetic
36 Simultaneous conditions will occur in two regions (forecast) Yes/No Hard Synthetic
37 Crossover between conditions will occur in timeframe (forecast) Yes/No Hard Synthetic
38 Regional fraction exceeding threshold will meet criteria (forecast) Yes/No Hard Synthetic
39 Variable will be within range for > N contiguous grid points (forecast) Yes/No Hard Synthetic
40 Zonal gradient will exceed threshold per degree longitude (forecast) Yes/No Hard Synthetic
41 How will variable change in lead time if variable is modified (counter-

factual)
Numerical Hard Human

42 Identify if extreme weather event will occur in next N hours (forecast) Descriptions Very Hard Human
43 Check if extreme weather event is happening now Descriptions Very Hard Human
44 Generate global 3-month climate forecast report (forecast) Descriptions Very Hard Human
45 Provide detailed US meteorological analysis and forecast (forecast) Descriptions Very Hard Human
46 Generate ENSO climate update and outlook (forecast) Descriptions Very Hard Human

Table 5: Complete set of Weather Tasks, grouped by difficulty.

Difficulty Human Tasks Human Samples Synthetic Tasks Synthetic Samples Total Samples

Easy 5 800 0 0 800
Medium 2 156 20 256 412
Hard 2 329 12 153 482
Very Hard 5 393 0 0 393

Total 14 1,678 32 384 2,062

Table 6: Dataset Statistics: Number of samples grouped by difficulty and type
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