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Abstract

The last decade has seen an increase in the amount of high throughput data available
to researchers. While this has allowed scientists to explore various hypotheses
and research questions, it has also highlighted the importance of data integration
to facilitate knowledge extraction and discovery. Although many strategies have
been developed over the last few years, integrating data whilst generating an
interpretable embedding still remains challenging due to difficulty in regularisation,
especially when using deep generative models. Thus, we introduce a framework
called Regularised Multi-View Variational Autoencoder (RMV-VAE) to integrate
different omics data types whilst allowing researchers to obtain more biologically
meaningful embeddings.

1 Introduction

In the last few decades, technological progress has yielded a large quantity of heterogeneous high-
throughput data which has provided information about processes underpinning various diseases of
interest. This has allowed researchers to unveil molecular patterns in genomics, proteomics and
lipidomics leading to a much more detailed understanding of the pathways and systems that regulate
the immune response in humans. The sudden increase in data highlighted, at the same time, the
importance of integrating different types of molecular data together to enhance pattern discovery and
improve patient stratification.

Due to economic limitations, studies have historically focused on the use of uni-modal data, thus
concentrating on a single aspect of the Dna-Rna-Protein paradigm. While this approach has proven
valuable to gain insights into various conditions, the lack of robust data integration has limited
discoveries by failing to analyse biological systems as a whole.

This has been a limiting factor since, when looking at a particular data type, we are just analysing a
snapshot of the condition of interest and, therefore, it can only provide us with limited insights on the
complex processes underpinning a disease. Being mostly unfeasible to extensively monitor omics
changes over time, we can resort to the use of multiple data types to get a more complete picture of
the pathways being modulated in the process [1].

In this paper, we consider different omics data types as different "views" of the same system [2, 3].
We aim to use a fusion approach to integrate these views together whilst obtaining an interpretable
low dimensional data representation, or embedding, where points close in space share similar
characteristics. This is crucial when trying to use model’s embeddings for downstream tasks such as
clustering or when we aim to obtain clinically meaningful groups.
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Figure 1: Overview of the RMV-VAE framework. The framework is composed of two Variational
Autoencoders that take datasets as input and generate a regularised low dimensional representation of
the data. The regularisation is achieved by adding an attribute specific loss to the standard VAE loss.
The embeddings are then merged and subsequently used to predict outcomes.

In the following sections we will explore related work and we will present a few experiments that
support the use of our framework called Regularised Multi-View Variational Autoencoder (RMV-
VAE) on omics datasets. Our approach is summarised in figure 1.

1.1 Related works

Data integration and dimensionality reduction are central aspects of many data analysis pipelines
both in bioinformatics and other fields [4]. Among many models, Variational Autoencoders (VAEs)
have been shown to be useful at solving a variety of problems such as data compression, de-noising,
learning transferable representations of data and data fusion [5–7]. Nevertheless, a great limitation
of using VAEs in biology has been the inability to obtain regularised, and hence interpretable,
embeddings where points close in the original feature space are also close in the latent space, limiting
their use in clinical practice [8, 9].

In the context of omics data integration, OmiEmbed and SubOmiEmbed have shown the potential of
representation learning and self-representation learning at integrating data and performing downstream
predictions in a unified framework [10, 11]. Other implementations, such as Multi-Encoder VAE
applied to single cell data, have highlighted the importance of feeding different views of the same
data to obtain more robust data representations and more separable classes [3].

In single cells RNA-Seq experiments, Graph Neural Networks (GNN) such as GLUE (graph-linked
unified embedding) have also shown their potential at integrating datasets together by modeling
regulatory interactions across omics layers explicitly [12]. Other models such as scVI have also
been developed showing competitive results on single cell data [13]. While we acknowledge the
performance and usefulness of GNNs in single cell RNA-Seq data, we recognise that adapting these
models to bulk RNA-Seq data (used in these experiments) is a non-trivial task as it requires knowledge
of the interaction between the different data-types to allow the construction of a meaningful graph.

Thus, our work takes inspiration from the aforementioned VAE research, expanding it on the
generation of an interpretable, regularisable latent space. In particular, we designed this model
to allow researchers to not only perform downstream predictions, but also regularise the embeddings
by a gene or protein known to be important in that condition, thus improving patient stratification and
treatment.
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2 Proposed method

We propose a probabilistic framework that can be extended to N datasets allowing for dynamic
integration of omics data. The framework comprises two VAEs each composed of an encoder
and a decoder. Each VAE takes a dataset as input (X) and generates a low dimensional, or latent,
representation of the data (z). Once the data has been compressed, it is reconstructed by passing it
through a decoder which is symmetrical to the encoder. VAEs work by minimising the evidence
lower bound (ELBO). By using a reconstruction loss between the model’s input X and the output X̂
and a KL divergence between the encoded data and a Normal distribution, the model is forced to learn
the "real" signal present in the data, thus prioritising signal to noise 2. In addition, the KL divergence
forces the latent space to be more regularised than it would be just by using similar compression
methods such as Autoencoders.

To encode an attribute a along one dimension r of the latent space (z) we used a regularisation
loss introduced by Pati et al. [14] where, as we traverse along r, the value of a increases. The
regularisation is achieved by adding an additional term to the loss of this model. This allows users to
generate embeddings that "order" patients by the expression of a specific variable of interest (eg.
BRCA1 gene for breast cancer) improving results’ interpretation.

The attribute loss is formulated as follows:

Lr,a =MSE(tanh(Dr)− sgn(Da)) (1)

where MSE is the Mean Squared Error, Dr is the distance matrix computed for the regularised
dimension r, and Da is the distance matrix computed for the attribute we wish to encode along a
dimension of z. Tanh and sgn are the hyperbolic tangent function and sign function respectively.
This additional term is added to the standard Reconstruction and KL Loss 2 and forces a monotonic
relationship between the encoded attribute and a dimension of z allowing users to obtain a more
meaningful2 and structured latent space.

Loss = ||X − X̂||2 +KL[N(µx, σx), N(0, 1)] + Lr,a (2)

2.1 Training overview

The models used in training were built using Tensorflow v. 2.9.2. To ensure the generation of
interpretable embeddings, we tested the size of the networks, as well as the hidden layers and the
batch size manually, as in this particular setting optimising for performance would not necessarily
imply an increase in the embedding interpretability, a problem that has been previously discussed in
the literature [15].

We finally tested a range of nodes for the hidden layers [100, 80, 60, 40, 20, 10] to find the most
suitable architecture. Model training was performed on CPUs. Average run time for the BRCA
dataset (VAE/ RMV-VAE) was 30s and 28s respectively, while for the PAAD dataset was 11.8s (VAE)
and 28.06s (RMV-VAE) respectively. You can find our github repository here.

3 Experiments and results

We tested our framework on two diseases, breast cancer and pancreatic cancer. Both experiments
were performed using transcriptomics and methylomics datasets. We assessed the ability of our
framework to integrate different views of the same system 3 and then explored the interpretability of
the latent space generated (see appendix for additional experiments).

2We intend to obtain a data representation in which patients close in space share similar characteristics such
as a similar expression of a gene of interest.

3Different data modalities.
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Figure 2: Comparison of the embeddings obtained by RMV-VAE and a standard VAE on BRCA
datasets (ER). This figure shows the Principal Component Analysis (PCA) of each embedding
(transcriptomics, methylomics and transcriptomics and methylomics integrated). Steps of this pipeline
involve: (1) generating an embedding for each dataset first, (2) regularising the embedding by a
chosen variable (shown in figure 3) and (3) merging the embeddings to obtain a final representation
of both datasets

3.1 Experiment 1 - breast cancer datasets

We retrieved transcriptomics and methylomics datasets from the UCSC Xena TCGA data repository
containing 1212 and 885 patients respectively [16]. We preprocessed the data by only selecting the
patients present in both datasets reaching a total number of 787 patients. We preprocessed counts
using EdgeR [17] and then scaled the datasets before model fitting.

We started by looking at survival as outcome of interest. To encode the transcriptomics, we used a two-
layers Neural Network (NN) for both the encoder and the decoder while to encode the methylomics
we used a three-layers NN. Given the importance of the BRCA1 and TMEM101 genes in breast
cancer survival, we chose them to regularise the latent space of each dataset respectively. We then
generated the final embedding that we used for downstream predictions. We evaluated the embedding
on prediction tasks such as predicting survival and we compared the results to the ones obtained using
individual datasets or a standard VAE. As shown in table 1, the integration obtained by RMV-VAE
outperformed the standard VAE as well as individual datasets in predicting survival using a Random
Forest Classifier with five folds cross validation (mean accuracy 0.87 vs 0.85 e AUC of 0.62 vs 0.56).

We repeated the same experiment predicting Estrogen Receptor (ER) status. In this case, we
regularised the latent space by two genes known to play key roles in breast cancer’s ER status:
FOXA1 and AGR3. We then generated the final embedding that was used for predictions. Results
showed that our framework outperformed a standard VAE (using 5 folds CV, AUC of 0.91 vs 0.89 and
mean accuracy of 0.88 vs 0.87) at generating a more organised, low dimensional data representation,
as visible in table (see following section for more details) 1.

A comparison of the integration achieved by our framework and a standard VAE is shown in figure
2. The figure shows that the data compression obtained by RMV-VAE allows to better separate
ER-positive from ER-negative patients in all datasets, therefore leading to an improvement in the
final embedding generated.

3.2 Experiment 2 - pancreatic cancer datasets

We applied RMV-VAE to the TCGA Pancreatic Adenocarcinoma datasets, consisting of 181 patients.
We used a three-layers NN for the transcriptomics and two-layers NN for the methylomics. We
preprocessed the datasets by removing methylation sites with low variance and scaled the data before
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Table 1: Results: predicting survival and ER status in breast cancer

Model Survival (acc.) ER (acc.) Survival (AUC) ER (AUC)

RMV-VAE transcriptomics (t) 0.86 ± 0.01 0.81 ± 0.06 0.59 ± 0.10 0.69 ±0.04
RMV-VAE methylomics (m) 0.82 ± 0.02 0.84 ± 0.03 0.54 ± 0.05 0.88 ±0.04

RMV-VAE (t+m) 0.87 ± 0.01 0.88 ± 0.02 0.62 ± 0.11 0.91 ± 0.05
VAE transcriptomics (t) 0.84 ± 0.03 0.71 ± 0.03 0.55 ± 0.04 0.66 ± 0.03
VAE methylomics (m) 0.81 ± 0.01 0.88 ± 0.02 0.58 ± 0.04 0.89 ± 0.03

VAE (t+m) 0.85 ± 0.02 0.87 ± 0.02 0.56 ± 0.05 0.89 ± 0.03

Table 2: Results: predicting survival in pancreatic cancer (accuracy and AUC)

Model Survival (acc., std) Survival (AUC, std)

RMV-VAE counts (c) 0.6 ± 0.04 0.65 ± 0.07
RMV-VAE methylations (m) 0.54 ± 0.06 0.57 ± 0.10
RMV-VAE - (c + m) 0.62 ± 0.1 0.65 ± 0.08
VAE counts (c) 0.59 ± 0.05 0.58 ± 0.07
VAE methylations (m) 0.57 ± 0.06 0.54 ± 0.11
VAE - (c + m) 0.59 ± 0.04 0.57 ± 0.10

proceeding at generating the individual embeddings. The transcriptomics was preprocessed using
standard bioinformatics pipelines (edgeR).

To obtain the individual embeddings, we normalised the latent space by KRAS and PTGDR, two
driver genes that were shown to have diagnostic and prognostic value in pancreatic cancer [18, 19].
We then combined the embeddings and evaluated performance in predicting survival. As shown in
table 2, we obtained a better performance at predicting survival when using this framework compared
to a standard VAE (AUC of 0.65 vs 0.57, mean accuracy of 0.62 vs 0.59).

4 Latent space interpretability

One of the key reasons to generate data embeddings using Variational Autoencoders is their ability
to compress high dimensional data and obtain a low dimensional representation of it. However, a
problem that arises when using VAEs is the difficulty at generating ordered and interpretable latent
spaces, as patients that are known to be clinically similar in the original input data are not necessarily
close in the VAE embedding, slowing or limiting results’ interpretation. As some genes might be
known to play a crucial role in these conditions, we might want to not only compress the data, but also
obtain a representation in which patients are ordered by a particular attribute to help relate possible
embeddings’ clusters to already established clinical groups.

In the following section we will present some practical examples where this framework might be
useful.

4.1 Clinical examples

Aggressive phenotypes of ER+ breast cancer are known to be driven by FOXA1 augmentation and
expression which leads to activation of key mechanisms that promote metastatic programs [20].
Consequently, it might be useful to consider the expression of this gene when analysing breast cancer.
In figure 3, (A), we show the embedding obtained by our model (RMV-VAE) and we compare it to the
embedding obtained by a standard VAE and to the original expression data. For each embedding, we
plotted the PCA to allow 2d comparisons between them. The panel shows the improvement in class
separation (ER+/-) on the top row, and the improvement in regularisation on the bottom row. Results
show that our framework allows us to obtain a more structured latent space where patients are ordered
by the expression of the FOXA1 gene. This leads to an improvement compared to the embedding
of the original data and the standard VAE where patients with high and low expression were not
easily separable. Regularising the latent space by FOXA1 we achieve a much clearer separation
between ER-negative patients, described in the literature as having low FOXA1 expression levels,
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Figure 3: Comparisons between the embedding obtained by our framework (RMV-VAE), the original
input data and the embedding obtained by a standard VAE. For each embedding, we plotted its
PCA to show the results in two dimensions. As shown in the figure, regularising by FOXA1 (A)
we obtained a better segregation between ER+ and ER- in the transcriptomics. In fact, we can now
see more clearly that ER- patients have very low levels of FOXA1 compared to ER+ that show, in
contrast, mild-to-high levels of this gene. Regularising the methylomics data by AGR3 (B) shows an
improvement in the separation of the two classes compared to the original data and compared to the
classic VAE.

and ER-positive patients that tend to display medium-to-high expression of this gene, improving
overall data interpretation.

Similarly, the AGR3 gene is a gene known to regulate cell adhesion and migration in breast cancer,
two key steps in tumour spreading and metastasis formation [21]. This gene is known to be highly
methylated in ER-negative patients and it is therefore a good biomarker to identify these two clinically
different groups. Good identification of ER-positive or negative patients would result in more adequate
treatment choices and therefore higher chances of survival. In figure 3 section (B), we can compare
the embedding obtained by our framework to the original expression data and to the embedding
generated by a standard VAE. The figure shows that using our framework we achieved a more
organised latent space which results in more separable classes compared to the other embeddings.

The same patterns apply to genes such as BRCA1 and TMEM101 (not shown here).

To achieve similar results using a standard VAE, trial and error would be the only option and there
would be no guarantee of achieving a good result. Thus, we suggest the use of this framework to
allow researchers to have more flexibility in the regularisation of their embeddings.

5 Discussion

Data integration is a key aspect of biomedical research [1]. However, effective and meaningful data
integration is still challenging to achieve due to technical limitations. In this paper, we introduced a
new framework, called RMV-VAE, to integrate different data types and obtain more meaningful, low
dimensional representations of the data.

We tested our framework on two diseases, breast cancer and pancreatic cancer and we demonstrated
the importance of integrating omics data to achieve higher performance at downstream tasks such as
predicting ER status or survival.

We compared the results obtained using RMV-VAE to the results obtained using a standard VAE
showing an increase in performance when using this framework. In particular, we tested RMV-VAE
at predicting survival and ER status for breast cancer, and survival for pancreatic cancer registering an
increase in performance in all experiments. The improvement in pancreatic cancer was striking given
that this type of cancer is notoriously hard to classify due to the high heterogeneity of the human
population.

6



In addition to integration, which is a key aspect of many data science pipelines, we tried to improve
the latent space of VAEs to allow scientists and researchers to use them for downstream tasks. To
incorporate their expertise to the embeddings, we formulated an ah-hoc regularisation of the latent
space to obtain embeddings where patients with similar expression of fundamental genes are found
close together. By doing so, we facilitated results interpretation allowing researchers to relate new
results to already existent clinical groups.

6 Conclusion

Our framework provides a way to integrate and interpret omics data effectively allowing researchers
to customise their analyses and explore genes or biomarkers that are known to play central roles in a
given disease. In this paper, we introduced this framework, we demonstrated its utility on two real
life examples, and we discussed use cases in clinical practice.
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A Benchmarking against MAUI

Table of results comparing MAUI (Multi-omics Autoencoder Integration) to RMV-VAE and a standard
VAE. MAUI is based on Variational Autoencoders and has been shown to be effective at integrating
different omics datasets together [22]. Although we have already benchmarked VAEs before, here we
compare it to this specific implementation.

In these experiments, MAUI was set with a hidden layer/latent layer of 1300/600 (survival) and
1400/600 (ER) for the BRCA data and 1300/600 for the PAAD data. The experiments were executed
on Google Colab and the run time was on overage 16m.
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Table 3: Results: predicting survival and ER status in breast cancerusing MAUI

Model Survival (acc.) ER (acc.) Survival (AUC) ER (AUC)

RMV-VAE (t+m) 0.87 ± 0.01 0.88 ± 0.02 0.62 ± 0.11 0.91 ± 0.05
VAE (t+m) 0.85 ± 0.02 0.87 ± 0.02 0.56 ± 0.05 0.89 ± 0.03

MAUI 0.86 ± 0.003 0.76 ± 0.01 0.44 ± 0.03 0.62 ± 0.04

Table 4: Results: predicting survival in pancreatic cancer (accuracy and AUC) using MAUI

Model Survival (acc., std) Survival (AUC, std)

RMV-VAE - (t + m) 0.62 ± 0.1 0.65 ± 0.08
VAE - (t + m) 0.59 ± 0.04 0.57 ± 0.10
MAUI 0.56 ± 0.08 0.51 ± 0.1

9


	Introduction
	Related works

	Proposed method
	Training overview

	Experiments and results
	Experiment 1 - breast cancer datasets
	Experiment 2 - pancreatic cancer datasets

	Latent space interpretability
	Clinical examples

	Discussion
	Conclusion
	Benchmarking against MAUI

