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Abstract— Planning and control for uncertain contact sys-
tems is challenging as it is not clear how to propagate uncer-
tainty for planning. We use a particle filter-based approach to
propagate moments for stochastic complementarity system. To
circumvent the issues of open-loop chance constrained planning,
we propose a contact-aware controller for covariance steering
of the complementarity system. Our optimization problem is
formulated as Non-Linear Programming (NLP) using bilevel
optimization. We verify that our contact-aware controller is
able to steer the covariance of the states for stochastic contact-
rich tasks.

I. INTRODUCTION

Contacts lead to discontinuous dynamics and thus, plan-
ning through contacts requires careful treatment of con-
straints arising due to these discontinuities. Complementar-
ity constraints offer an efficient way of modeling contact
systems. However, uncertainty in contact systems could
lead to stochastic complementarity systems [1], [2]. Even
though complementarity systems are well studied, stochastic
complementarity systems are not well understood. The state
and complementarity variables are implicitly related via the
complementarity constraints – uncertainty in one leads to
stochastic evolution of other. This makes uncertainty prop-
agation challenging. Furthermore, multiplicity of solutions
to the complementarity variables also makes it difficult to
characterize the stochastic evolution.

We present a particle-based technique to perform feedback
control of stochastic complementarity systems. We present
covariance control for the stochastic complementarity sys-
tems by solving for a trajectory-centric feedback controller to
enable efficient control along long-horizon trajectories. See
[3] for more details.

II. RELATED WORK

Our proposed stochastic optimization problem is related
to three major areas of work. The first area is optimization
with complementarity constraints. This topic has been well
studied in optimization and robotics literature [4], [5], [6],
[7], [8], [9]. This approach has been shown to work well
for generating trajectories for manipulation and locomo-
tion problems. However, it cannot be trivially extended to
stochastic complementarity systems to introduce robustness.

Using stochastic complementarity constraints for planning
robust manipulation is not so well understood in literature.
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Some of the recent work could be found in [10], [1].
However, the problem with these approaches is that the
uncertainty needs to be very small otherwise the optimiza-
tion might be infeasible. Consequently, these approaches
could fail to provide robust plans for uncertain contact
systems. Furthermore, uncertainty propagation for stochastic
complementarity systems is not properly modeled in these
approaches. One of the reasons is the implicit relationship
between contact and state variables in complementarity con-
straints.

Open-loop Chance-Constrained Optimization (CCO)
could lead to quite conservative solutions to satisfy chance
constraints, covariance steering methods have gained
attention[11], [12], [13]. Covariance steering methods
are able to design feedforward and feedback gains
simultaneously to satisfy chance constraints. However, these
cannot be directly applied to contact-rich systems.

III. PROBLEM FORMULATION

A. Stochastic Discrete-time Linear Complementarity Systems

In this work, we consider the Stochastic Discrete-time
Linear Complementarity Systems (SDLCS):

xk+1 =Ak(ξ)xk +Bkuk + Ck(ξ)λk+1 + gk(ξ)

+ wk(ξ) (1a)
0 ≤ λk+1 ⊥Dk(ξ)xk + Ekuk + Fk(ξ)λk+1 + hk(ξ)

+ lk(ξ) ≥ 0 (1b)

where k is the time-step index, xk ∈ Rnx is the state,
uk ∈ Rnu is the control input, and λk ∈ Rnc is the
algebraic variable (e.g., contact forces). We define x =
[x1, . . . , xT ], u = [u0, . . . , uT−1], λ = [λ1, . . . , λT ]. The
parameter ξ ∼ Ξ is the uncertain parameter with distribution
Ξ. In addition, Ak(ξ) ∈ Rnx×nx , Bk ∈ Rnx×nu , Ck(ξ) ∈
Rnx×nc , gk(ξ) ∈ Rnx , Dk(ξ) ∈ Rnc×nx , Ek ∈ Rnc×nu ,
Fk(ξ) ∈ Rnc×nc , and hk(ξ) ∈ Rnc are all dependent on the
uncertain parameter ξ. For simplicity, we abbreviate ξ from
these matrices for the discussion in the following sections.
The notation 0 ≤ a ⊥ b ≥ 0 denotes the complementarity
constraints a ≥ 0, b ≥ 0, ab = 0. The initial state of the
system x0(ξ) is also assumed to be uncertain.

In the following, we make the assumption that Fk(ξ) is a
P-matrix [14] for all k and ξ. Under this assumption, there is
an unique solution λk+1 to (1b) for each ξ and any uk, xk.
From this it is easy to infer that there exists an unique
trajectory x and λ for any realization of uncertainty ξ ∼ Ξ
and controls u from every initial condition x0(ξ).



B. Stochastic Control for Contact-Rich Systems

To design a robust controller satisfying chance constraints
over SDLCS, the following optimization problem can be
formulated:

min
u

T∑
k=1

∥Eξ∼Ξ [xk(ξ, u)]− xd∥2Q +

T−1∑
k=0

∥uk∥2R (2a)

s.t. uk ∈ U (2b)
Prξ∼Ξ (x(ξ, u) ∈ X ) ≥ ∆ (2c)

where Q = Q⊤ is positive semidefinite, R = R⊤ is
positive definite, U is a convex polytope consisting of a
finite number of linear inequality constraints. xd is the target
state at t = T . The set X represents a convex safe region
where the entire state trajectory has to lie in. We assume
that X = {x ∈ RnxT | gi(x) ≤ 0 ∀ i = 1, . . . , ng}. Pr
denotes the probability of an event and ∆ is the user-
defined minimum safety probability, where the probability
of satisfying constraints is at least greater than ∆.

IV. COVARIANCE STEERING

A. Particle-based Control for Contact-Rich Systems

We propose to solve (2) approximately using the Sample
Average Approximation (SAA). In particular, we obtain
N realizations of the uncertainty ΞN = {ξ1, . . . , ξN} by
sampling the distribution Ξ. In other words, we approximate
the distribution Ξ using a finite-dimensional distribution
ΞN which follows an uniform distribution on the samples.
Accordingly, the SAA for (2) is given as

min
u

T∑
k=1

∥∥Eξ∼ΞN [xk(ξ, u)]− xd

∥∥2
Q
+

T−1∑
k=0

∥uk∥2R (3a)

s.t. uk ∈ U (3b)
Prξ∼ΞN (x(ξ, u) ∈ X ) ≥ ∆. (3c)

There remains the implicit function x(ξ, u) which requires
us to simulate the SDLCS for every realization of ξ ∈ ΞN .
We opt to remove this difficulty by replacing the implicit
functions with the corresponding trajectories xi, λi for each
ξi ∈ ΞN . Our formulation using N particles is given by:

min
xi,u,λi

T∑
k=1

∥∥∥∥∥ 1

N

N∑
i=1

xi
k − xd

∥∥∥∥∥
2

Q

+

T−1∑
k=0

∥uk∥2R (4a)

s.t. xi
k+1 = Ai

kx
i
k +Bkuk + Ci

kλ
i
k+1 + gik + wi

k (4b)

0 ≤ λi
k+1 ⊥ Di

kx
i
k + Ekuk + F i

kλ
i
k+1

+ hi
k + lik ≥ 0 (4c)

xi
0 = x0(ξ

i) (4d)
uk ∈ U (4e)

1

N

N∑
i=1

I
(
xi ∈ X

)
≥ ∆ (4f)

where I(·) is an indicator function returning 1 when the
conditions in the operand are satisfied and 0 otherwise.
Note that xi, λi represent the state and algebraic variable

trajectory, respectively, propagated from a particular set of
particles xi

0, θ
i
k where θik = [Ai

k, C
i
k, g

i
k, D

i
k, F

i
k, h

i
k, w

i
k, v

i
k].

Using N trajectories obtained from N particles, we ap-
proximate mean of random variables as Eξ∼Ξ[xk(ξ, u)] ≈
1
N

∑N
i=1 x

i
k,Eξ∈Ξ[λk(ξ, u)] ≈ 1

N

∑N
i=1 λ

i
k. In (4), we ap-

proximate (2a) using the mean variable as shown in (4a).
Chance constraints (2c) can be also approximated as (4f)
using N realization trajectories, which can be formulated as
integer constraints (see [15]).

In this work, we consider the following controllers:

feedforward : uk = vk (5a)
feedback : uk = vk +Kk(xk − x̄k) + Lk(λk − λ̄k) (5b)

where Kk, Lk are feedback gains to control covariance. For
brevity, we use x̄k = 1

N

∑N
i=1 x

i
k, λ̄k = 1

N

∑N
i=1 λ

i
k. We

emphasize that controlling both states and contact variables
is critical for contact-rich systems and thus we also introduce
Lk(λk−λ̄k) to (5b) to stabilize the system. Here, we focus on
discussing feedback controller (5b) for (4). Our optimization
formulation for covariance steering of SDLCS would be:

min
xi,v,K,L,λi

T∑
k=1

||x̄k − xd||2Q +

T−1∑
k=0

∥uk∥2R (6a)

s. t. xi
k+1 = (Ai

k +BkKk)x
i
k +Bkvk

+ (Ci
k +BkLk)λ

i
k+1 + ḡik

−BkKkx̄k −BkLkλ̄k+1 + wi
k (6b)

0 ≤ λi
k+1 ⊥ (Di

k + EkKk)x
i
k

+ Ekvk + (F i
k + EkLk)λ

i
k+1

+ hi
k − EkKkx̄k − EkLkλ̄k+1 + lik ≥ 0 (6c)

(4d), (4e), (4f) (6d)

To solve (6), we need to take care of, (6b), (6c) and (4f).
One method is mixed-integer programming. It is possible that
binary variables can be used to deal with integer constraints
(4f) using Big-M formulation. Also, bilinear terms in (6b)
and (6c) can be approximated using McCormick envelopes,
leading to additional binary variables. As a result, a number
of binary variables are introduced and we observed that it
is almost impossible to obtain a single feasible solution.
Instead, we use NLP which can solve (6b) as nonlinear
constraints and (6c) as complementarity constraints.

B. Bilevel Optimization for Particle-based Control

To solve (6) using NLP, we need to solve integer con-
straints (4f) in NLP fashion. To achieve this, we propose the
following bilevel optimization problem.

min
xi,v,K,L,λi,ti,z∗

T∑
k=1

∥x̄k − xd∥2Q +

T−1∑
k=0

∥uk∥2R (7a)

s. t. (6b), (6c), (4e) (7b)

∀j = 1, . . . , ng, gj(x) ≤ ti, (7c)

1

N

N∑
i=1

zi,∗ ≥ ∆ (7d)



∀i = 1, . . . , N, zi,∗ = argmin
zi

tizi|0 ≤ zi ≤ 1 (7e)

We introduce time-invariant parameter ti ∈ R1 for each
set of trajectory realization i. If xi ∈ X , ti ≥ −ϵ with
ϵ ≥ 0. In contrast, if x ̸∈ X , ti ≥ 0. This condition is
encoded in (7c). We have in total N lower-level optimization
problems (7e), where each optimization is formulated as
linear programming. zi ∈ R1 is the decision variable used
in i -th lower-level optimization problem.

The purpose of (7e) is to count the number of trajectory
realizations that are inside X . The optimal solution of (7e)
can be as follows:

zi =


1, ti < 0

[0, 1] , ti = 0

0, ti > 0

(8)

If ti < 0, (7c) argues that xi ∈ X and thus we count this i-th
trajectory propagated from i-th particles as one. If ti = 0,
(7c) argues that xi lies on the boundary of X and thus we
count this i-th trajectory propagated from i-th particles as
one. If ti > 0, then xi is not within X , and thus we count
it as zero. Then (7d) considers the approximated chance
constraints.

Since the upper-level optimization decision variable ti can
be influenced by other upper-level decision variables, we
need to solve these two problems simultaneously, leading
to a bilevel optimization problem. Since the lower-level
optimization problems are formulated as N linear program-
ming problems, we can efficiently solve the entire bilevel
optimization problem using the Karush-Kuhn-Tucker (KKT)
condition as follows:

min
xi,v,K,L,λi,ti,zi,∗,wi

+,wi
−

(7a) (9a)

s. t. (7b), (7c), (7d) (9b)

∀i = 1, . . . , N, 0 ≤ zi,∗ ≤ 1, wi
+, w

i
− ≥ 0 (9c)

wi
+(z

i,∗ − 1) = 0, wi
−(z

i,∗) = 0, (9d)

ti + wi
+ − wi

− = 0 (9e)

where wi
+, w

i
− are Lagrange multipliers associated with zi−

1 ≤ 0, −zi ≤ 0, respectively.

V. RESULTS

We implement our method using IPOPT [16] with PY-
ROBOCOP [5]. When we run (9), we use 1000 samples to
calculate the empirical probability of failure to evaluate the
satisfaction of chance constraints. Readers are encouraged to
read [3] to see all results.

Here we explain how we simulate trajectories (i.e., per-
form MC simulation for SDLCS, see [1] for more details).
We propagate the dynamics by finding the roots of the
complementarity system with sampled parameters given the
control sequence obtained from optimization. We run each
case for 1000 trials with different sampled parameters to
estimate the probability of failure. Note that, unlike the
continuous-domain dynamics, we cannot rollout the dynam-
ics for SDLCS with the given control sequences since we do
not have the access to λk+1.
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Fig. 1: (a): cartpole with softwalls. (b): acrobot with soft joints.

Fig. 2: Uncertainty propagation for cartpole system.

A. Uncertainty Propagation for SDLCS

We demonstrate uncertainty propagation for a cartpole
system with softwalls (see [9] for more details). Here we
consider both k1 and k2 follows uniform distributions where
upper bound of uniform distribution for k1 and k2 is 14,
12, respectively, and the lower bound is 5 for both k1 and
k2. In this experiment, we do not apply any controller: we
simply propagate SDLCS given uncertain parameters in order
to show how the SDLCS behaves.

Fig. 2 shows the evolution of uncertainty for the aforemen-
tioned system. At t = 0 s, there is no uncertainty for state
θt=0. However, because we provide uncertainty with k1 and
k2, λt=0.1 has uncertainty. This is again because given real-
ization of uncertain parameters, complementarity constraints
give a realization of λ and y, resulting in uncertainty in λ and
y. This stochastic λt=0.1 brings uncertainty in θt=0.1 based
on (1). As shown in Fig. 2, both state and complementarity
variables are stochastic. This can not be captured in approx-
imations like Expected Residual Minimization (ERM) [10].

B. Cartpole with Softwalls

We demonstrate our open- and closed-loop controllers for
cartpole with softwalls system. x is the cart position and
θ is the pole angle. u1 is the control and λ1, λ2 are the
reaction forces at from the wall 1, 2, respectively. For the
actual value of the physical parameters, see [3]. We assume
that the uncertainty arises from the k1, k2 and use the same
distribution in Sec V-A. We set dt = 0.1 for the explicit
Euler integration and T = 6.

The results using ERM and our controller for the open-
loop trajectory are shown in Fig. 3, Fig. 4. We observed
that the proposed open-loop controller shows the better
satisfaction of chance constraints compared to the ERM-
based method. Also, we observe that the gap between the
commanded ∆ used in our optimization and ∆test obtained
from MC simulation over testing dataset is smaller the gap
between the commanded ∆ used in ERM method and ∆test
obtained from MC simulation over testing dataset. This
is because our method explicitly considers propagation of
uncertainty for SDLCS while the ERM-based method is



Fig. 3: Simulated trajectories for cartpole system using ERM-based con-
troller. ∆ = 0.2 and ∆test = 0.083. Red lines show boundaries specified
in chance constraints.

Fig. 4: Simulated trajectories for cartpole system using our open-loop
controller. ∆ = 0.2 and ∆test = 0.190 where ∆ is input of optimization
and ∆test is the empirically obtained success rate from MC simulation. Red
lines show boundaries specified in chance constraints.

unable to consider.
We observe in Table I, (9) for open-loop controller with

high ∆ was unable to find feasible solutions but (9) for
closed-loop controller could find feasible solutions. Since
the closed-loop controller can change feedback gains to
satisfy chance constraints, it could find feasible solutions
with high ∆. Also, Table I shows that the contact-aware
closed-loop controller could find the feasible solution with
high ∆ = 0.8, 0.7 but the non-contact-aware controller (i.e.,
Lk = 0,∀k in (5b)) could not. For SDLCS, introducing
feedback to both states and forces is important to realize the
robust motion. The MC simulation results using our contact-
aware closed-loop controller are shown in Fig. 5. In contrast
to Fig. 3 and Fig. 4, the closed-loop controller could bound
the distribution of the states because it controls covariance.

C. Acrobot with Soft Joints

We demonstrate our controller for acrobot with soft joints
system (see [9] for more details). θ1 is the first joint angle and
θ2 is the second joint angle. u1 is the control at the second
joint and λ1, λ2 are the reaction forces at from the wall 1, 2,
respectively. For the actual value of the physical parameters,
see [3]. We consider the stochastic physical parameters k
and l2 where k is the stiffness of the walls and l2 is the
length of the second rod. We assume that k follows uniform
distribution where the upper bound and the lower bound of
the distribution is 1.6 and 0.6, respectively. We assume that
l2 follows a truncated Gaussian distribution where we set
the mean to 1.0, variance to 0.01, the upper bound of the
interval is 1.3, and the lower bound of the interval is 0.7. We
set dt = 0.04 for the explicit Euler integration and T = 15.

The open- and closed-loop trajectories are shown in Fig. 6.
We observed that both controller could satisfy chance con-
straints over the testing dataset and the closed-loop controller
shows the better performance.

Fig. 5: Simulated trajectories for cartpole system using our closed-loop
controller. Top: ∆ = 0.6 and ∆test = 0.510, bottom: ∆ = 0.2 and
∆test = 0.188, where ∆ is input of optimization and ∆test is the empirically
obtained success rate from MC simulation. Red lines show boundaries
specified in chance constraints.

TABLE I: Comparison of feasibility for cartpole system among open-, non-
contact-aware closed, and contact-aware-closed controllers with different ∆.
◦ and × show if optimization finds a feasible solution or not, respectively.

∆ 0.8 0.7 0.6 0.4 0.2
Open-loop × × × ◦ ◦

Non-contact-aware closed-loop × × ◦ ◦ ◦
Contact-aware closed-loop ◦ ◦ ◦ ◦ ◦

VI. CONCLUSION

This paper presents a study of SDLCS to perform co-
variance steering using particles. It is shown that our work
could design open- and closed-loop controllers with chance
constraints by appropriately considering the evolution of
uncertainty for SDLCS.
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