
When Maximum Entropy Misleads Policy Optimization

Ruipeng Zhang 1 Ya-Chien Chang 1 Sicun Gao 1

Abstract

The Maximum Entropy Reinforcement Learning
(MaxEnt RL) framework is a leading approach
for achieving efficient learning and robust perfor-
mance across many RL tasks. However, MaxEnt
methods have also been shown to struggle with
performance-critical control problems in practice,
where non-MaxEnt algorithms can successfully
learn. In this work, we analyze how the trade-
off between robustness and optimality affects the
performance of MaxEnt algorithms in complex
control tasks: while entropy maximization en-
hances exploration and robustness, it can also
mislead policy optimization, leading to failure
in tasks that require precise, low-entropy policies.
Through experiments on a variety of control prob-
lems, we concretely demonstrate this misleading
effect. Our analysis leads to better understand-
ing of how to balance reward design and entropy
maximization in challenging control problems.

1. Introduction
The Maximum Entropy Reinforcement Learning (MaxEnt
RL) framework (Ziebart et al., 2008; Abdolmaleki et al.,
2018; Haarnoja et al., 2018a; Han & Sung, 2021) augments
the standard objective of maximizing return with the ad-
ditional objective of maximizing policy entropy. MaxEnt
methods such as Soft-Actor Critic (SAC) (Haarnoja et al.,
2018a) have shown superior performance than other on-
policy or off-policy methods (Schulman, 2015; Schulman
et al., 2017; Lillicrap, 2015; Fujimoto et al., 2018) in many
standard continuous control benchmarks (Achiam, 2018;
Raffin et al., 2021; Weng et al., 2021; Huang et al., 2024).
Explanations of their performance include better explo-
ration, smoothing of optimization landscape, and enhanced
robustness to disturbances (Hazan et al., 2019; Ahmed et al.,
2019; Eysenbach & Levine, 2021).

1Computer Science and Engineering, UC San Diego. Corre-
spondence to: Ruipeng Zhang <ruz019@ucsd.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

SAC-Simplified PPO-RealisticSAC-Realistic

Failure
MaxEnt
gets misled

Low-entropy policy is required on
critical states to ensure success

High-entropy policy on mediocre
states leads to irrecoverable failure

Success⋯
𝐒

⋯
⋯

𝑥(𝑚) 𝑦(
𝑚)

𝑧(𝑚) 𝑧(𝑚)

𝑥(𝑚) 𝑥(𝑚)𝑦(
𝑚)

𝑦(
𝑚)

𝑧(𝑚)

Figure 1. (Upper) In the quadrotor control environment, SAC
learns well under simplified dynamics, but fails to learn when
under realistic dynamics models. PPO can learn well despite the
use of the latter. (Lower) Intuitive illustration of hard control prob-
lems, where critical states naturally require low-entropy policies,
while MaxEnt RL can favor mediocre states with robust policies of
low returns that branch out towards failure and are not recoverable.

Interestingly, the well-motivated benefits of MaxEnt and
SAC have not led to its dominance in RL for real-world
continuous control problems in practice (Shengren et al.,
2022; Tan & Karaköse, 2023; Xu et al., 2021; Radwan et al.,
2021). Most recent RL-based robotic control work (Kauf-
mann et al., 2023; Miki et al., 2022; Zhuang et al., 2024)
mostly still uses a combination of imitation learning and
fine-tuning with non-MaxEnt methods such as PPO (Schul-
man et al., 2017). The typical factors of consideration that
favor PPO over SAC in practice include computational cost,
sensitivity to hyperparameters, and ease of customization.
Often the performance by SAC is indeed shown to be infe-
rior to PPO despite efforts in tuning (Muzahid et al., 2021;
Lee & Moon, 2021; Nair et al., 2024). In fact, it is easy to
reproduce such behaviors. Figure 1 shows the comparison
of SAC and PPO for learning to control a quadrotor to fol-
low a path. When the underlying model for the quadrotor
is a simplified dynamics model, SAC can quickly learn a
stable controller. When a more realistic dynamics model
for the quadrotor is used, then SAC always fails, while PPO
can succeed under the same initialization and dynamics.

In this paper, we show how the conflict between maximizing

1

When Maximum Entropy Misleads Policy Optimization

entropy and maximizing overall return can be magnified and
hinder learning in performance-critical control problems
that naturally require precise, low-entropy policies to solve.

The example of quadcopter control in Figure 1 highlights a
common structure in complex control tasks: achieving de-
sired performance often requires executing precise actions
at a sequence of critical states. At these states, only a narrow
(often zero-dimensional) subset of the action space is fea-
sible, hence the ground-truth optimal policy has inherently
low entropy. (In aerodynamic terms, this is often referred to
as flying on the edge of instability.) Conversely, actions that
deviate from this narrow feasible set often lead to states that
are not recoverable: once the system enters these states, all
available actions tend to produce similarly poor outcomes
but accumulate short-term “entropy benefits” that can be
favored by MaxEnt. Over time, this drift can compound,
ultimately pushing the system into irrecoverable failure.

Consequently, MaxEnt RL may bias the agent toward subop-
timal behaviors rather than the precise low-entropy optimal
policies that are key to solving hard control problems.

Formalizing this intuition, we give an in-depth analysis of
the trade-off. Our main result is that for an arbitrary MDP,
there exists an explicit way of introducing entropy traps
that we define as Entropy Bifurcation Extension, such that
MaxEnt methods can be misled to consider an arbitrary pol-
icy distribution as MaxEnt-optimal, while the ground-truth
optimal policy is not affected by the extension. Importantly,
this is not a matter of sample efficiency or exploration bias
during training, but is the end result at the convergence of
MaxEnt algorithms. Consequently, the misleading effect of
entropy can occur easily where standard policy optimization
methods are not affected.

We then demonstrate that this concern is not theoretical,
and can in fact explain key failures of MaxEnt algorithms
in practical control problems. We analyze the behavior of
SAC in several realistic control environments, including
controlling wheeled vehicles at high speeds, quadrotors for
trajectory tracking, quadruped robot control that directly
corresponds to hardware platforms. We show that the gap
between the value landscapes under MaxEnt and regular
policy optimization explains the difficulty of SAC for con-
verging to feasible control policies on these environments.

Our analysis does not imply that MaxEnt is inherently un-
suitable for control problems. In fact, following the same
analysis, we can now concretely understand why MaxEnt
leads to successful learning on certain environments that
benefit from robust exploration, including common bench-
marking OpenAI Gym environments where SAC generally
performs well. Overall, the analysis aims to guide reward
design and hyperparameter tuning of MaxEnt algorithms
for complex control problems.

We will first give a toy example to showcase the core mis-
leading effect of entropy maximization in Section 4, and
then generalize the construction to the technique of entropy
bifurcation extension in Section 5. We then show experi-
mental results of how the misleading effects affect learning
in practice, and how the adaptive tuning of entropy further
validates our analysis in Section 6.

2. Related Work
MaxEnt RL and Analysis. The MaxEnt RL framework
incorporates an entropy term in the RL objective and per-
forms probability matching, such that the policy distribu-
tion aligns with the soft-value landscape (Ziebart et al.,
2008; Toussaint, 2009; Rawlik et al., 2013; Fox et al.,
2015; O’Donoghue et al., 2016; Abdolmaleki et al., 2018;
Haarnoja et al., 2018a; Mazoure et al., 2020; Han & Sung,
2021). MaxEnt RL has strong theoretical connections to
probabilistic inference (Toussaint, 2009; Rawlik et al., 2013;
Levine, 2018) and well-motivated for ensuring robustness
from a stochastic inference (Ziebart, 2010; Eysenbach &
Levine, 2021) and game-theoretic perspective (Grünwald
& Dawid, 2004; Ziebart et al., 2010; Han & Sung, 2021;
Kim & Sung, 2023). SAC and algorithms such as SAC-
NF (Mazoure et al., 2020), MME (Han & Sung, 2021) and
MEow (Chao et al., 2024) have outperformed most non-
MaxEnt methods in many standard benchmarking environ-
ments (Brockman, 2016; Todorov et al., 2012; Towers et al.,
2024). A common explanation of the benefits of MaxEnt is
that it enhances exploration (Haarnoja et al., 2018a; Hazan
et al., 2019), smoothes the optimization landscape (Ahmed
et al., 2019), and solves robust versions of the control prob-
lems (Eysenbach & Levine, 2021). Despite the benefits,
we show that they can also mislead MaxEnt to converge to
suboptimal policies in complex control problems.

Practical Difficulties with MaxEnt in Control Problems.
RL algorithms are well-known to be sensitive to parameter
tuning (Wang & Ni, 2020; Muzahid et al., 2021; Nair et al.,
2024). Various recent learning-based robotics control work
reported that SAC delivers suboptimal solutions compared
to PPO in complex control problems (Tan & Karaköse, 2023;
Xu et al., 2021; Radwan et al., 2021). We aim to understand
the discrepancy between such results and the generally good
performance of MaxEnt algorithms (Haarnoja et al., 2018b;
Achiam, 2018; Raffin et al., 2021).

Trade-off between robustness and optimality. There is a
long line of work studying the trade-off between robustness
and performance in supervised deep learning (Su et al.,
2018; Zhang et al., 2019; Tsipras et al., 2018; Raghunathan
et al., 2019; 2020; Yang et al., 2020). This trade-off in the
RL context often overlaps with exploration issues mentioned
above. Note that instead of sample efficiency or exploration
issues, in this work we focus on pointing out the deeper issue

2

When Maximum Entropy Misleads Policy Optimization

of misguiding policy optimization results at convergence.

3. Preliminaries
A Markov Decision Process (MDP) is defined by the tuple:
M = (S,A, P, r, γ) where: S is the state space, A is the
action space, which can be discrete or continuous, P (s′|s, a)
is the transition probability distribution, defining the prob-
ability of transitioning to state s′ after taking action a at
state s. r(s, a) is the reward function, which specifies the
immediate scalar reward received for taking action a at state
s. γ ∈ [0, 1) is the discount factor. A policy is a mapping
π : S → ∆A, where ∆A is the probability simplex over
the action space A, defines a probability distribution over
actions given any state in S. We often write the distribution
determined by a policy π at a state s as π(·|s). The goal of
standard RL is to find an optimal policy π∗ maximizes the
expected return over the trajectory of states and actions to
achieve the best cumulative reward.

Maximum Entropy RL extends the standard framework by
incorporating an entropy term into the objective, encourag-
ing stochasticity in the optimal policy. This modification
ensures that the agent not only maximizes reward but also
maintains exploration. Instead of maximizing only the ex-
pected sum of rewards, the agent maximizes the entropy-
augmented objective:

J(π) = E[
∞∑
t=0

γt(r(st, at) + αH(π(·|st)))] (1)

where H(π(·|s)) = −Ea∼π(·|s)[log π(a|s)] is the entropy
of the policy at state s. The coefficient α ≥ 0 controls
weight on entropy. The Bellman backup operator Tπ is:

TπQ(st, at) = r(st, at) + γEst+1∼p[V (st+1)], (2)

where V (st) = Eat∼π[Q(st, at)] +αH(π(·|st)) is the soft
state value at st. Treating Q-values as energy, the Boltzmann
distribution induced then at state s is defined as:

π∗
Q(a|s) = exp(α−1Qπ(s, a))/Z(π(·|s)) (3)

with Z(π(·|s)) =
∫
exp(α−1Qπ(s, a))da as the normaliza-

tion factor. Policy update in MaxEnt RL at each state s aims
to minimize the KL divergence between the policy π(·|s)
and π∗

Q(·|s). Naturally, π = π∗
Q itself is an optimal policy

at state s in the MaxEnt sense, since DKL(π∥π∗
Q) = 0.

4. A Toy Example
From the soft value definitions in MaxEnt, it is reasonable
to expect some trade-off between return and entropy. But
the key to understanding how it can affect the learning at
convergence in major ways is by introducing intermediate
states, where entropy shapes the soft values differently so

		𝑆!

		𝑆" 		𝑆#

		𝑆$% 		𝑆",$' 		𝑆#,$'

𝑎

𝑃(𝑠!|𝑠,𝑎) = 1

𝑟 = 1 𝑟 = −20 𝑟 = −1

MDP

Va
lu
e

Va
lu
e

𝑟 = 0 𝑟 = 0

Action

PPO

SAC

1−1

0−1 1

−0.1 0.1−0.1 0.1

0−1 1

𝐴" 𝐴#

Figure 2. (Left) MDP in the Toy Example: The MDP consists of
an initial state s0 and two subsequent states sg (good) and sb (bad).
It is clear that an optimal policy for s0 should be centered in the left
half of the action interval, since only sg can transit to the terminal
state s+T with positive reward. (Right) Learning results of SAC
and PPO at s0 at convergence. In the SAC plot, the soft Q-values
Q(s0, a) is higher for actions leading to sb, results in an incorrect
policy centered in A2, the wrong action region (µ: dashed green
line, σ: green area). We also show the learned Q-values without
entropy term with separate networks (red line), showing higher
values for actions leading to sg . In the PPO plot, it learns the
correct optimal policy.

that the MaxEnt-optimal policy is misled at an upstream
state. We show a simple example to illustrate this effect.
Consider an MDP (depicted in Figure 2) defined as follows:

• State space S = {s0, sg, sb, s+T , s
−
g,T , s

−
b,T }. Here s0 is

the critical state for selecting actions. sg is the “good” next
state for s0, and sb is the “bad” next state, in the sense that
only sg can transit to the terminal state s+T with positive
reward (under some subset of actions), while sb always
transits to terminal state s−b,T with negative reward.

• Action space A = [−1, 1], a continuous interval in R.

• The transitions on s0 are defined as follows, reflecting the
intuition mentioned above in the state definition:

– At state s0, any action in A1 = [−1, 0) leads to the good
state deterministically, i.e., ∀a ∈ A1, P (sg|s0, a) = 1,
while any action in A2 = [0, 1] leads to the bad state,
i.e., ∀a ∈ A2, P (sb|s0, a) = 1. Note that allowing zero-
dimensional overlap between the A1 and A2 with random
transitions at overlapping points will not change the results.

– The transitions from sg: P (s+T |sg, [−0.1, 0.1]) = 1 and
P (s−g,T |sg, [−1,−0.1) ∪ (0.1, 1]) = 1. That is, for any ac-
tion in a small fraction of the action space, a′ ∈ [−0.1, 0.1],
we can transit to the positive-reward terminal state s+T .

– The transitions from sb from any action deterministi-
cally lead to the negative-reward terminal state, i.e. ∀a′ ∈
A,P (s−b,T |sb, a′) = 1.

3

When Maximum Entropy Misleads Policy Optimization

• The rewards are collected only at the terminal states, with
r(s+T) = 1, r(s−g,T) = −20 and r(s−b,T) = −1. The dis-
count factor is set to γ = 0.99 and α is set to 1.

Given the MDP definition, it is clear that the ground truth
policy at s0 should allocate as much probability mass as
possible (within the policy class being considered) for ac-
tions in the A1 interval, because A1 is the only range of
actions that leads to sg , and then has a chance of collecting
positive rewards on the terminal state s+T , if the action on sg
correctly taken.

We can calculate analytically the soft Q values and the
policy distributions that are MaxEnt-optimal (shown in Ap-
pendix A.1). We can observe that the soft values of sg and
sb will force MaxEnt to favor sb at s0. Indeed, as shown in
Figure 2, the SAC algorithm with Gaussian policy has its
mean converged to the center of A2. The black curve in the
SAC plot shows the soft Q-values of the actions, showing
how entropy affects the bias. On the other hand, PPO cor-
rectly captured the policy that favors the A1 range. More
detailed explanations are in Appendix A.1.

We will illustrate how the misleading effect of entropy cap-
tured in the toy example can arise in realistic control prob-
lems through experimental results in Section 6.

5. Entropic Bifurcation Extension
Building on the intuition from the toy example, we introduce
a general method for manipulating MaxEnt policy optimiza-
tion. The method can target arbitrary states in any MDP and
“inject” special states with a special configuration of the soft
Q-value landscape to mislead the MaxEnt-optimal policy.
Importantly, the newly introduced states do not change the
optimal policy on any non-targeted original states (in either
the MaxEnt or non-MaxEnt sense), but can arbitrarily shape
the MaxEnt-optimal policy on the targeted state. Thus, the
technique can be applied on any number of states, and in the
extreme case to change the entire MaxEnt-optimal policy
to mirror the behavior of the worst possible policy on all
states, thereby creating an arbitrarily large gap between the
MaxEnt-optimal policy and the true optimal policy.

The key to our construction is to introduce new states that
create a bifurcating soft Q-value landscape, such that the
MaxEnt objective of probability matching biases the policy
to favor states with low return and also can not transit back
to desired trajectories, thus sabotaging learning.
Definition 5.1 (Entropic Bifurcation Extension). Consider
an arbitrary MDP M = ⟨SM , AM , PM , rM , γ⟩ with contin-
uous action space, the entropic bifurcation extension on M
at state s is a set E(M, s) of new MDPs M̂ of form:

M̂ = ⟨SM̂ , AM̂ , PM̂ , rM̂ , γ⟩ ∈ E(M, s).

constructed with the following steps (illustrated in Figure 3):

𝐒
𝑎

𝑃(𝑠!|𝑠, 𝑎)

𝐒′⋯
⋯

⋯

Backward
Compatibility

Forward
Compatibility

𝐒

𝐒𝝁
⋯
⋯

⋯

𝐒′ 𝐒𝐓
𝝁

(Terminal)

𝑃 = 1

𝐴"
𝐴$

#

𝑴 𝑴"

Figure 3. MDP M and its entropic bifurcation extension M̂ . The
extension captures the intuition in the toy example, by using ad-
ditional intermediate states which specifically designed reward to
mislead MaxEnt-optimal policies that match the soft-Q landscapes.

1. We writeN (s) = {s′|P (s′|s, a) > 0 for some a ∈ AM}
to denote the set of next states with non-zero transition
probability from s. We introduce new states as follows:

• For any s′ ∈ N (s), introduce a new state sµ that has
not appeared in the state space SM and let the corre-
spondence between s′ and sµ be marked as sµ = µ(s′).
We can then write Sµ = µ(N (s)) for the set of all new
states that are introduced in this way for state s.

• At the same time, for each sµ, we introduce a fresh
state sµT that is a new terminal state, and write the set
of such newly introduced terminal states as Sµ

T .

We now let the state space of M̂ be SM̂ = SM ∪ Sµ ∪ Sµ
T .

Note that Sµ, Sµ
T , and SM are always disjoint.

2. At the original state s, for each s′ ∈ N (s), we now set
PM̂ (s′|s, a) = 0 and PM̂ (µ(s′)|s, a) = PM (s′|s, a). That
is, we delay the transition to s′ and let the newly introduced
state sµ = µ(s′) take over the same transitions. For all other
states in SM \{s}, the transitions in M and M̂ are the same.

3. For all the newly introduced states in Sµ, their action
space is a new Aµ ⊆ R. At each sµ ∈ Sµ, we will define
transitions on two disjoint intervals, i.e., Asµ

1 ∪Asµ

2 ⊆ Aµ

and Asµ

1 ∩Asµ

2 = ∅. This partitioning is sµ-dependent (they
will be used to tune the soft-Q landscapes), but for notational
simplicity we will just write Aµ

1 and Aµ
2 when possible.

Overall, the new MDP M̂ has action spaceAM̂ = AM∪Aµ.

4. At each sµ, the transitions are defined to produce bifurca-

4

When Maximum Entropy Misleads Policy Optimization

tion behaviors, as follows. For any a ∈ Aµ
1 , P (s′|sµ, a) = 1.

That is, such actions deterministically lead back to the s′

in the original MDP. On the other side, any a ∈ Aµ
2 leads

the the new terminal state, P (sµT |sµ, a) = 1. That is, the
two intervals of action introduce bifurcation into two next
states, both deterministically. This design generalizes the
construction in the toy example, splitting the action space
into one part that recovers the original MDP, and a second
part that leads to non-recoverable suboptimal behaviors.

5. The reward function rM̂ is the same as rM on all the
original states and actions, i.e., rM̂ (s, a) = rM (s, a) for
all (s, a) ∈ SM × AM . The reward on the new state is
rM̂ (sµ, a) = 0 for any action a ∈ Aµ

2 . On the new terminal
state sµT , we can choose r(sµT) to shape the soft-Q values as
needed. The same discount γ is shared between M and M̂ .

Notation 5.2. The construction above defines the set of all
possible bifurcation extensions Es(M). For any specific
instance, the only tunable parameters are the size of |Aµ

1 |
and |Aµ

2 |, as well as rewards on the newly introduced states
sµ and sµT . We will show that these parameters already
give enough degrees of freedom to shape the soft Q-value
landscapes and policy at the target state s.

Our main theorem relies on two important lemmas, which
guarantee that we can use the newly introduced states to
arbitrarily shape the policy at the targeted state s, without
affecting the policy at another state in the original MDP.

• Backward compatibility ensures that any fixed value
of V (s) can remain invariant, by finding an appro-
priate soft Q-value landscape at s. Importantly, this
Q-landscape can be shaped to match an arbitrary policy
distribution at s.

• Forward compatibility ensures that by choosing ap-
propriate r(sTµ), |A

µ
1 |, |A

µ
2 |, the MaxEnt optimal value

on V (sµ) can match arbitrary target values, using the
original values on the original next states s′ ∈ N (s).

These two properties ensure the feasibility of shaping the
MaxEnt-optimal policy at the targeted state s without af-
fecting the policy on any other states of the original MDP.
Formally, the lemmas can be stated as follows and the proofs
are in the Appendix:

Lemma 5.3 (Backward Compatibility). Let π(·|s) : AM →
[0, 1] be an arbitrary policy distribution over the action
space at the targeted state s. Let vs ∈ R be an arbitrary
desired value for state s. There exists a value function
V : Sµ → R on all the newly introduced states sµ such that
vs is the optimal soft value of s under the MaxEnt-optimal
policy at s (Definition 4).

Lemma 5.4 (Forward Compatibility). Let sµ = µ(s′) be
the newly introduced state for s′ ∈ N (s). Let V (s′) be

an arbitrarily fixed value for the original next state s′, and
r(sµ, a) an arbitrary reward for the newly introduced state
sµ. Let v ∈ R be an arbitrary target value. Then, there exist
choices of Aµ

1 , Aµ
2 , and r(sµT) such that V (sµ) = v is the

optimal soft value for the bifurcating state sµ.

The lemmas ensure that for any transition in the original
state, (s, a, s′), and for any value V πM

M (s) and V πM

M (s′) in
M under some policy πM , there exist parameter choices in
the bifurcation extension that maintains the same values of
VM (s) and VM (s′), while shaping the MaxEnt-optimal pol-
icy arbitrarily. Consequently, the bifurcation extension can
create an arbitrary value gap between the MaxEnt-optimal
policy and the ground truth optimal policy at the targeted
state s. This leads to the main theorem:

Theorem 5.5 (Bifurcation Extension Misleads MaxEnt RL).
Let M be an MDP with optimal MaxEnt policy π∗, and s an
arbitrary state in SM . Let π(·|s) be an arbitrary distribution
over the action space AM at state s. We can construct
an entropy bifurcation extension M̂ of M such that M̂ is
equivalent to M restricted to SM \{s} and does not change
its optimal policy on those states, while the MaxEnt-optimal
policy at s after entropy bifurcation extension can follow an
arbitrary distribution π(·|s) over the actions.

Proposition 5.6 (Bifurcation Extension Preserves Optimal
Policies). By setting r(sµ, a) = (1 − γ)V (s′) for every
newly introduced bifurcating state sµ = µ(s′) and a ∈ Aµ

1 ,
the optimal policy is preserved under bifurcation extension.

Now, since this construction can alter the policy at any state
without affecting other states, it can be independently used
at any number of states simultaneously, and alter the entire
policy of the MDP. In particular, the bifurcation extensions
can force the MaxEnt-optimal policy to match the worst
policy in the original MDP.

Corollary 5.7. Let M be an MDP whose optimal policy
has value J+ and its worst policy (minimizing return) has
value J−. By applying entropy bifurcation extension on
M on all states in M , we can obtain an MDP M̂ whose
MaxEnt-optimal policy has value J− while its ground-truth
optimal policy still has value J+.

Remark 5.8. Our theoretical analysis does not need to use
properties of function approximators or other components of
practical MaxEnt algorithms, because the MaxEnt-optimal
policies can be directly characterized and manipulated, as
they must align with the soft-Q landscape. In the next
section we show how this theoretical analysis explains the
practical behaviors of SAC in realistic control environments.

6. Experiments
We now show empirical evidence of how the misleading ef-
fect of entropy can play a crucial role in the performance of

5

When Maximum Entropy Misleads Policy Optimization

PPO SAC

Vehicle Quadrotor OpenCat Acrobot Obstacle2D

Figure 4. Reward performance of SAC and PPO across five environments with five random seeds. Note that we choose to show SAC
and PPO because they are the best representatives of MaxEnt and non-MaxEnt algorithms.

MaxEnt algorithms, both when they fail in complex control
tasks and when they outperform non-MaxEnt methods.

We first analyze the performance of the algorithms on con-
tinuous control environments that involve realistic complex
dynamics, including quadrotor control (direct actuation on
the propellers), wheeled vehicle path tracking (nonlinear
dynamic model at high speed), and quadruped robot con-
trol (high-fidelity dynamics simulation from commercial
project (PetoiCamp)). We show how the soft value land-
scapes mislead policy learning at critical states that led to
the failure of the control task, while non-MaxEnt algorithms
such as PPO can successfully acquire high-return actions.

We also revisit some common benchmark environments
to show how the superior performance of MaxEnt can be
attributed to the same “misleading” effect that prevents it
from getting stuck as non-MaxEnt methods. It reinforces
more well-known advantages of MaxEnt with grounded
explanations supported by our theoretical understanding.

To further validate our theory, we add new adaptive entropy
tuning in SAC, enabling it to switch from soft-Q to normal
Q values when their landscapes have much discrepancy. We
then observe that the performance of SAC is improved in
the environments where it was failing. In particular, the
newly learned policy acquires visibly-better control actions
on critical states. This form of adaptive entropy tuning is not
intended as a new algorithm – it relies on global estimation
of Q values that is hard to scale. Instead, the goal is to show
the importance of understanding the effect of entropy, as
directions for future improvement of MaxEnt algorithms.

Environments. In the Vehicle environment, the task is
to control a wheeled vehicle under the nonlinear dynamic
bicycle model (Kong et al., 2015) to move at a constant high
speed along a path. Effective control is critical for steering
the vehicle onto the path. In the Quadrotor environment,
the task is to control a quadrotor to track a simple path un-
der small perturbations. The actions are the independent
speeds of its four rotors (Rubı́ et al., 2020), which makes
the learning task harder than simpler models. The Open-
cat environment simulates an open-source Arduino-based

𝑸!"#$(𝒔, 𝒂)

𝑸%&'()(𝒔, 𝒂)

State

Track Vehicle PathTarget

𝝅*+,

𝝅--.

𝝅!$//0
--.

𝝅$10"$$&/
--.

𝝅$10"$$&/
*+,

𝝅!$//0
*+,

-1

1

1

-1

thrott
le

steer

Q
(s
,a
)

Figure 5. Soft and Plain Q-value landscapes in Vehicle. (Left)
Q landscapes with Qsoft(s, a) and without Qplain(s, a) entropy.
Introduced Entropy in SAC elevates the true Q values to encour-
age exploration, risking missing the only feasible optimal actions.
(Right) Rendering of the queried state. The grey rectangle denotes
the vehicle with the black arrow as its heading direction. The cur-
rent SAC policy steers the vehicle left and moves forward, while
the PPO policy reasonably steers it back on track with braking,
aligning with the optimal region indicated by Qplain.

quadruped robot (PetoiCamp). The action space is the 8
joint angles of the robot. Acrobot is a two-link planar robot
arm with one end fixed at the shoulder and the only actuated
joint at the elbow (Spong, 1995). The action is changed to
continuous torque values instead of simpler discrete values
in OpenAI Gym (Brockman, 2016). In Obstacle2D, the
goal is to navigate an agent to the goal behind a wall, which
creates a clear suboptimal local policy that the agent should
learn to avoid. Hopper is the standard MuJoCo environ-
ment (Todorov et al., 2012) where SAC typically learns
faster and more stably than PPO.

Overall Performance. Fig. 4 shows the overall perfor-
mance comparison of the learning curves of SAC and PPO
across environments. We notice that SAC performs worse
than PPO in the first three environments that are harder to
control under complex dynamics, while significantly outper-
forming PPO in Acrobot, Obstacle2D, and Hopper (shown
in Appendix D.3). Our goal is to understand how these be-
haviors are affected by entropy in the soft value landscapes.

6

When Maximum Entropy Misleads Policy Optimization

6.1. Misleading Soft-Q Landscapes

In Figure 5, we show the Q values on a critical state in the
Vehicle control environment, where the vehicle is about
to deviate much from the path to be tracked. Because of
the high entropy of the policy on the next states where the
vehicle further deviates, the soft-Q value landscape at this
state is as shown in the top layer on the left in Figure 5.
It fails to understand that critical actions are needed, but
instead encourages the agent to stay in the generally high
soft-Q value region, where the action at the center is shown
as the green arrow on the right-hand side plot in the Figure 5.
It is clear that the action leads the vehicle to aggressively
deviate more from the target path. On the other hand, the
plain Q value landscape, as shown in the bottom layer on
the left, uses exactly the same states that the SAC agent
collected in the buffer to train, and it can realize that only a
small region in the action space corresponds to greater plain
Q values. The blue dot in the plot, mapped to the blue action
vector on the vehicle, shows a correct action direction that
steers the vehicle back onto the desired path. Notably, this
is the action learned by PPO at this state, and it generally
explains the success of PPO in this environment.

State

PPO SAC Motor #1 Motor #1

M
ot

or
 #

3

𝑸!"#$(𝒔, 𝒂) 𝑸%&'()(𝒔, 𝒂)

Target Path

Figure 6. Q landscapes in Quadrotor. (Left) The current state
is at the end of the black trajectory. The Red dashed line is the
target track. (Right) Qsoft and Qplain at this state. SAC fails to push
upward with minimal action at this state, leading to failure against
gravity. PPO successfully applies greater thrust to the back motor
(#3), flying the quadrotor towards the path.

In Figure 6, we observe similar behaviors in the Quadrotor
control environment. The quadrotor should track a hori-
zontal path. The controller should apply forward-leaning
thrusts to the two rotors parallel to the path, while balancing
the other two rotors. The middle and right plots in Figure 6
show the MaxEnt and plain Q values in the action space for
the two rotors aligned with the forward direction. Again,
because of the high entropy of soft-Q values on mediocre
next states that will lead to failure, the value landscape of
SAC favors a center at the green dot in the plots, which
corresponds to actions of the green arrow in the plot on the
left. In contrast, the plain Q value landscape shows that
actions of high quality are centered differently. In particular,
the blue dot indicates a good action that can be acquired by
PPO, controlling the quadrotor towards the right direction.

Torque #1

𝑸!"#$(𝒔, 𝒂) 𝑸%&'()(𝒔, 𝒂)

Torque #1

To
rq

ue
 #

2

Current state 𝜋!"# 𝜋$! 𝜋$"

𝜋$"

𝜋$!

𝝅!"#

Figure 7. (Upper) Comparison of soft-Q (left) and plain-Q (right)
value landscapes at the current state shown below. (Lower) The
second to fourth snapshots show Hopper’s state after taking actions
at the circled position of corresponding colors in the action space
shown above. The SAC policy benefits from entropy by ’leaning
forward’, a risky move despite this action being suboptimal in the
current ground truth value.

6.2. Benefits of Misleading Landscapes

It is commonly accepted that the main benefit of MaxEnt
is the exploratory behavior that it naturally encourages, es-
pecially in continuous control problems where exploration
is harder to achieve than in discrete action spaces. That
is, entropy is designed to “intentionally mislead” to avoid
getting stuck at local solutions. We focused on showing
how this design can unintentionally cause failure in learn-
ing, but the same perspective allows us to more concretely
understand the benefits of MaxEnt in control problems. We
briefly discuss here and more details are in the Appendix.

Figure 7 shows the comparison between the soft-Q and plain
Q landscapes for the training process in Hopper, plotted at
a particular state shown in the snapshots in the figure. The
action learned by SAC is in fact not a high-return action at
this point of the learning process. According to the plain
Q values, the agent should take actions that lead to more
stable poses. However, after this risky move of SAC, the na-
ture of the environment makes it possible to achieve higher
rewards, which led to successful learning. Figure 8 shows
the similar positive outcome of MaxEnt encouraged by the
soft value landscape. Overall, it is important to note that the
effectiveness of MaxEnt learning depends crucially on the
nature of the underlying environment, and our analysis aims
to give a framework for understanding how reward design
and entropy-based exploration should be carefully balanced.

7

When Maximum Entropy Misleads Policy Optimization

53.3

94.1

73.7

Soft Q values

Obstacle2D

Advantage values

-204.06

0.03

0

xx

y

Acrobot

Environment

PPOSAC

Figure 8. Q/Advantage landscapes of SAC and PPO in Obstacle2D
and Acrobot. (Upper) In the Obstacle2D environment, SAC
successfully bypasses the wall while PPO fails, as explained by the
Soft-Q/Advantage landscapes. (Lower) In Acrobot, SAC learns a
more stable control policy (applying the right torque to neutralize
momentum to prevent failing) while PPO updates are stuck at a
local solution that fails to robustly stabilize.

SAC-AdaEntSAC

Vehicle

Quadrotor

Figure 9. Performance of SAC-AdaEnt v.s. SAC. (Left) Learning
curves. (Middle) Full trajectory rendering. (Right) Behavior of
policy on critic states. In Vehicle, SAC-AdaEnt successfully steers
and brakes to bring the vehicle back on track. In Quadrotor, it
effectively lifts the quadrotor to follow the designated path.

6.3. Importance of Adaptive Entropy Scaling

To further test the theory that the use of soft values in Max-
Ent can negatively affect learning, we modify the SAC algo-
rithm by actively monitoring the discrepancy between the
soft Q-value landscape and the plain Q-values.

We simultaneously train two networks for Qsoft and Qplain.
During policy updates, we sample from action space at each
state under the current policy and evaluate their Qsoft and
Qplain values. If Qsoft deviates significantly from Qplain, it
indicates that entropy could mislead the policy, and we rely
on Qplain as the target Q-value for the policy update instead.
This adaptive approach, named SAC-AdaEnt, ensures a
balance between promoting exploration in less critical states

and prioritizing exploitation in states where the misleading
effects may result in failure. Note that SAC-AdaEnt is
different from SAC with an auto-tuned entropy coefficient
with uniform entropy adjustment across all states.

Figure 9 shows how the adaptive tuning of entropy in SAC-
AdaEnt affects learning. In both the Vehicle and Quadrotor
environments, the policy learned by SAC-AdaEnt mostly
corrects the behavior of the SAC policy, as illustrated in
their overall trajectories and the critical shown in the plots.

Note that the simple change of SAC-MaxEnt is not intended
as a new efficient algorithm, because measuring the discrep-
ancy of the Q landscapes requires global understanding at
each state, which is unrealistic in high dimensions. It does
confirm the misleading effects of entropy in control environ-
ments where the MaxEnt approach was originally failing.
More details of the algorithm are in Appendix E.

7. Conclusion
We analyzed a fundamental trade-off of the MaxEnt RL
framework for solving challenging control problems. While
entropy maximization improves exploration and robustness,
it can also mislead policy optimization towards failure.

We introduced Entropy Bifurcation Extension to show how
the ground-truth policy distribution at certain states can be-
come adversarial to the overall learning process in MaxEnt
RL. Such effects can naturally occur in real-world control
tasks, where states with precise low-entropy policies are
essential for success.

Our experiments validated the theoretical analysis in practi-
cal environments such as high-speed vehicle control, quadro-
tor trajectory tracking, and quadruped control. We also
showed that adaptive tuning of entropy can alleviate the
misleading effects of entropy, but may offset its benefits too.
Overall, our analysis provides concrete guidelines for under-
standing and tuning the trade-off between reward design and
entropy maximization in RL for complex control problems.
We believe the results also have implications for potential
adversarial attacks in RL from human feedback scenarios.

Acknowledgment
We thank the anonymous reviewers for their helpful com-
ments in revising the paper. This material is based on work
supported by NSF Career CCF 2047034, NSF CCF DASS
2217723, and NSF AI Institute CCF 2112665.

Impact Statement
Our paper offers both theoretical and experimental insights
without immediate negative impacts. However, it con-
tributes to a deeper understanding of entropy maximization

8

When Maximum Entropy Misleads Policy Optimization

principles and their role in reinforcement learning, laying
the groundwork for future advancements in MaxEnt RL that
may also involve new models of adversarial attacks and
defense on RL-based engineering of critical AI systems.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,

Heess, N., and Riedmiller, M. Maximum a posteriori
policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Achiam, J. Spinning Up in Deep Reinforcement Learn-
ing. 2018. URL https://github.com/openai/
spinningup.

Ahmed, Z., Le Roux, N., Norouzi, M., and Schuurmans, D.
Understanding the impact of entropy on policy optimiza-
tion. In International conference on machine learning,
pp. 151–160. PMLR, 2019.

Brockman, G. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Chao, C.-H., Feng, C., Sun, W.-F., Lee, C.-K., See, S.,
and Lee, C.-Y. Maximum entropy reinforcement learn-
ing via energy-based normalizing flow. arXiv preprint
arXiv:2405.13629, 2024.

Eysenbach, B. and Levine, S. Maximum entropy rl (prov-
ably) solves some robust rl problems. arXiv preprint
arXiv:2103.06257, 2021.

Fox, R., Pakman, A., and Tishby, N. Taming the noise in
reinforcement learning via soft updates. arXiv preprint
arXiv:1512.08562, 2015.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018.

Grünwald, P. D. and Dawid, A. P. Game theory, maximum
entropy, minimum discrepancy and robust bayesian deci-
sion theory. 2004.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pp. 1861–1870, Stockholmsmässan, Stockholm Sweden,
10–15 Jul 2018a. PMLR.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Han, S. and Sung, Y. A max-min entropy framework for
reinforcement learning. Advances in Neural Information
Processing Systems, 34:25732–25745, 2021.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Interna-
tional Conference on Machine Learning, pp. 2681–2691.
PMLR, 2019.

Huang, S., Gallouédec, Q., Felten, F., Raffin, A., Dossa, R.
F. J., Zhao, Y., Sullivan, R., Makoviychuk, V., Makovi-
ichuk, D., Danesh, M. H., Roumégous, C., Weng, J.,
Chen, C., Rahman, M. M., M. Araújo, J. G., Quan, G.,
Tan, D., Klein, T., Charakorn, R., Towers, M., Berth-
elot, Y., Mehta, K., Chakraborty, D., KG, A., Charraut,
V., Ye, C., Liu, Z., Alegre, L. N., Nikulin, A., Hu, X.,
Liu, T., Choi, J., and Yi, B. Open RL Benchmark:
Comprehensive Tracked Experiments for Reinforcement
Learning. arXiv preprint arXiv:2402.03046, 2024. URL
https://arxiv.org/abs/2402.03046.

Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M.,
Koltun, V., and Scaramuzza, D. Champion-level drone
racing using deep reinforcement learning. Nature, 620
(7976):982–987, 2023.

Kim, W. and Sung, Y. An adaptive entropy-regularization
framework for multi-agent reinforcement learning. In In-
ternational Conference on Machine Learning, pp. 16829–
16852. PMLR, 2023.

Kong, J., Pfeiffer, M., Schildbach, G., and Borrelli, F. Kine-
matic and dynamic vehicle models for autonomous driv-
ing control design. In 2015 IEEE intelligent vehicles
symposium (IV), pp. 1094–1099. IEEE, 2015.

Lee, M. H. and Moon, J. Deep reinforcement learning-
based uav navigation and control: A soft actor-critic with
hindsight experience replay approach. arXiv preprint
arXiv:2106.01016, 2021.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Lillicrap, T. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

Mazoure, B., Doan, T., Durand, A., Pineau, J., and Hjelm,
R. D. Leveraging exploration in off-policy algorithms via
normalizing flows. In Conference on Robot Learning, pp.
430–444. PMLR, 2020.

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V.,
and Hutter, M. Learning robust perceptive locomotion
for quadrupedal robots in the wild. Science robotics, 7
(62):eabk2822, 2022.

9

https://github.com/openai/spinningup
https://github.com/openai/spinningup
https://arxiv.org/abs/2402.03046

When Maximum Entropy Misleads Policy Optimization

Muzahid, A. J. M., Kamarulzaman, S. F., and Rahman, M. A.
Comparison of ppo and sac algorithms towards decision
making strategies for collision avoidance among multiple
autonomous vehicles. In 2021 International Conference
on Software Engineering & Computer Systems and 4th
International Conference on Computational Science and
Information Management (ICSECS-ICOCSIM), pp. 200–
205. IEEE, 2021.

Nair, V. G., D’Souza, J. M., Asha, C., and Rafikh, R. M. A
scoping review on unmanned aerial vehicles in disaster
management: Challenges and opportunities. Journal of
Robotics and Control (JRC), 5(6):1799–1826, 2024.

O’Donoghue, B., Munos, R., Kavukcuoglu, K., and Mnih, V.
Combining policy gradient and q-learning. arXiv preprint
arXiv:1611.01626, 2016.

PetoiCamp. Opencat: Open-source quadruped robot. URL
https://github.com/PetoiCamp/OpenCat?
tab=readme-ov-file.

Radwan, M. O., Sedky, A. A. H., and Mahar, K. M. Ob-
stacles avoidance of self-driving vehicle using deep rein-
forcement learning. In 2021 31st International Confer-
ence on Computer Theory and Applications (ICCTA), pp.
215–222. IEEE, 2021.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J. C., and
Liang, P. Adversarial training can hurt generalization.
arXiv preprint arXiv:1906.06032, 2019.

Raghunathan, A., Xie, S. M., Yang, F., Duchi, J., and Liang,
P. Understanding and mitigating the tradeoff between ro-
bustness and accuracy. arXiv preprint arXiv:2002.10716,
2020.

Rawlik, K., Toussaint, M., and Vijayakumar, S. On stochas-
tic optimal control and reinforcement learning by approx-
imate inference. 2013.

Rubı́, B., Pérez, R., and Morcego, B. A survey of path fol-
lowing control strategies for uavs focused on quadrotors.
Journal of Intelligent & Robotic Systems, 98(2):241–265,
2020.

Schulman, J. Trust region policy optimization. arXiv
preprint arXiv:1502.05477, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shengren, H., Salazar, E. M., Vergara, P. P., and Palensky,
P. Performance comparison of deep rl algorithms for
energy systems optimal scheduling. In 2022 IEEE PES
Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe), pp. 1–6. IEEE, 2022.

Spong, M. W. The swing up control problem for the acrobot.
IEEE control systems magazine, 15(1):49–55, 1995.

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., and Gao,
Y. Is robustness the cost of accuracy? – a comprehensive
study on the robustness of 18 deep image classification
models. In Computer Vision – ECCV 2018, pp. 644–661.
Springer International Publishing, 2018.

Tan, Z. and Karaköse, M. A new approach for drone track-
ing with drone using proximal policy optimization based
distributed deep reinforcement learning. SoftwareX, 23:
101497, 2023.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

Toussaint, M. Robot trajectory optimization using approxi-
mate inference. In Proceedings of the 26th annual inter-
national conference on machine learning, pp. 1049–1056,
2009.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola,
G., Deleu, T., Goulão, M., Kallinteris, A., Krimmel, M.,
KG, A., et al. Gymnasium: A standard interface for
reinforcement learning environments. arXiv preprint
arXiv:2407.17032, 2024.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy.
arXiv preprint arXiv:1805.12152, 2018.

Wang, Y. and Ni, T. Meta-sac: Auto-tune the entropy
temperature of soft actor-critic via metagradient. arXiv
preprint arXiv:2007.01932, 2020.

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A., Zhang,
M., Su, H., and Zhu, J. Tianshou: A highly modular-
ized deep reinforcement learning library. arXiv preprint
arXiv:2107.14171, 2021.

Xu, C., Zhu, R., and Yang, D. Karting racing: A revisit
to ppo and sac algorithm. In 2021 International Con-
ference on Computer Information Science and Artificial
Intelligence (CISAI), pp. 310–316. IEEE, 2021.

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov, R.,
and Chaudhuri, K. A closer look at accuracy vs. robust-
ness. arXiv preprint arXiv:2003.02460, 2020.

10

https://github.com/PetoiCamp/OpenCat?tab=readme-ov-file
https://github.com/PetoiCamp/OpenCat?tab=readme-ov-file

When Maximum Entropy Misleads Policy Optimization

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In Proceedings of the 36th
International Conference on Machine Learning, pp. 7472–
7482. PMLR, 2019.

Zhuang, Z., Yao, S., and Zhao, H. Humanoid parkour
learning. arXiv preprint arXiv:2406.10759, 2024.

Ziebart, B. D. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy. Carnegie Mel-
lon University, 2010.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Ziebart, B. D., Bagnell, D., and Dey, A. K. Maximum
causal entropy correlated equilibria for markov games.
In Workshops at the Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

11

When Maximum Entropy Misleads Policy Optimization

A. Details on the Toy Example
A.1. Calculation of soft Q(s0, a) for SAC

𝑆!

𝑆"

PPO SAC

Figure 10. Toy Example Results of SAC and PPO at states sg and sb

In the MaxEnt framework, the policy at s0 is iteratively updated towards the Boltzmann distribution π∗
Q(·|s0). Given the

simple transitions in the MDP, we can easily calculate the Q values for any action. We use α = 1 for the entropy coefficient.

A.1.1. DIRECT CALCULATION WITHOUT PARAMETRIZATION

Since transitions from s0 to sg and sb are deterministic and yields zero reward, we have

Q(s0, a) = γV (sg/b) = γEa′∼π[Q(sg/b, a
′)− α log π(a′|sg/b)] = γ

∫
π(a′|sg/b) logZ(sg/b)da′ = γ logZ(sg/b)

under the optimal policy π = π∗ = exp(α−1Q(sg/b, a
′))/Z(sg/b).

For a ∈ [−1, 0) which transits to sg ,

Q(s0, a) = γ logZ(sg) = γ log(

∫ 1

−1

exp[Q(sg, a
′)] da′) = γ log(

∫ 0.1

−0.1

e1 da′+
∫ −0.1

−1

e−20 da′+
∫ 1

0.1

e−20 da′) = −0.603,

and a ∈ [0, 1] which transits to sb,

Q(s0, a) = γ logZ(sb) = γ log(

∫ 1

−1

exp[Q(sb, a
′)] da′) = γ log(

∫ 1

−1

e−1 da′) = −0.304,

As Q(s0, [−1, 0)) < Q(s0, [0, 1]), SAC is theoretically expected to incorrectly select a ∈ [0, 1] as the optimal policy.

A.1.2. CALCULATION WITH EMPIRICAL PARAMETERIZATION

Empirically with Gaussian policy, we can also compute Q(s0, a) given the policies on sg, sb, as shown in Figure 10.
In practice, π(sg) = Squash[N (µ(sg), σ(sg))], π(sb) = Squash[N (µ(sb), σ(sb))], where µ(sg) = 0.013, σ(sg) =
0.027, µ(sb) = 0.016, σ(sb) = 0.877 specifically, thus

Q(s0, a) = γV (sg/b) = γEa′∼π(sg/b)[Q(sg/b, a
′)− α logN π(a′|sg/b) + α log(1− tanh2(a′))]

We can compute this numerically as

Q(s0, a) = γV (sg) ≈ −1.696 for a ∈ [−1, 0)

Q(s0, a) = γV (sb) ≈ −0.485 for a ∈ [0, 1]

Those values are consistent with the results in Figure 2. Consequently, as expected, MaxEnt algorithms such as SAC quickly
converge to the MaxEnt-optimal policy that leads almost all trajectories to the terminal state s−b,T with negative rewards.

12

When Maximum Entropy Misleads Policy Optimization

A.2. Results of PPO policies

The advantage landscapes at s0, sg, sb are shown in Figure 2 and Figure 10. From those, PPO is observed to converge to the
correct optimal policy.

A.3. Remarks on arbitrary α

Although we set α = 1 in the toy example for simplicity, it can be an arbitrary non-negative value.

Remark A.1. If MaxEnt policy is mislead at s0 i.e. Q(s0, a|a ∈ [−1, 0)) < Q(s0, a|a ∈ [0, 1]) when α = 1, for arbitrary
α ̸= 1, we can keep misleading MaxEnt policy through reward scaling

r̂(s+T) = αr(s+T), r̂(s
−
g,T) = αr(s−g,T), r̂(s

−
b,T) = αr(s−b,T)

Proof. For arbitrary α,

Q(s0, a) = γEa′∼π[Q(sg/b, a
′)− α log π(a′|sg/b)] = γα logZQ/α(sg/b)

where π matches the optimal softmax policy exp(Q(sg/b,a
′)/α)

ZQ/α(sg/b)
, and ZQ/α(sg/b) =

∫
exp

Q(sg/b,a
′)

α da′.

For r̂(s+T), r̂(s
−
g,T), r̂(s

−
b,T), we have Q̂(sg/b, a

′) = αQ(sg/b, a
′), and ZQ/α(sg/b) =

∫
exp Q̂(sg/b, a

′)da. Therefore the
ordering of ZQ/α(sg) and ZQ/α(sb) is the same as the original ZQ(sg) and ZQ(sb).

Remark A.2. For arbitrary α, we can always find r−b so that the optimal policy for standard RL (e.g. PPO) will favor sg
while MaxEnt policy will favor sb, i.e. Q(s0, a|a ∈ [−1, 0)) < Q(s0, a|a ∈ [0, 1]).

Proof. Let Q(s0, a|a ∈ [−1, 0)) < Q(s0, a|a ∈ [0, 1]), we can get

logZQ/α(sg) < logZQ/α(sb)

log

∫
exp

Q(sg, a
′)

α
da′ < log[exp(

r−b
α

) · |A|]

α log

∫
exp

Q(sg, a
′)

α
da′ − α log |A| < r−b < r+

Given α log
∫
exp

Q(sg,a
′)

α da′ ≤ maxa′ Q(sg, a
′) + α log |A|, we have left-hand side is upper bounded by

maxa′ Q(sg, a
′) = r+. As long as supa′ Q(sg, a

′) < r+, the open interval I(sg) =
(
α log

∫
exp

Q(sg,a
′)

α da′ −

α log |A|, r+
)

is non-empty. Therefore, we can always pick r−b ∈ I(sg) so that Q(s0, a|a ∈ [−1, 0)) < Q(s0, a|a ∈ [0, 1])

i.e. MaxEnt favors sb.

B. Full Proofs
Lemma B.1 (Lemma 5.3, Backward Compatibility). Let π(·|s) : AM → [0, 1] be an arbitrary policy distribution over the
action space at the targeted state s. Let vs ∈ R be an arbitrary desired value for state s. There exists a value function
V : Sµ → R on all the newly introduced states sµ such that vs is the optimal soft value of s under the MaxEnt-optimal
policy at s (Definition 4).

Proof. Based on the definition of soft value,

V (st) = Eat∼π[Q(st, at)] + αH(π(·|st)) (4)

we need to show that there exists a function Q : {s} ×AM → R such that

vs = V (s) = Ea∼π(·|s)[Q(s, a)] + αH(π(·|s))

13

When Maximum Entropy Misleads Policy Optimization

which minimizes the KL-divergence between π and the Boltzmann distribution induced by Q, i.e.,

DKL(π(· | s) ∥ π∗
Q) = 0.

To ensure DKL(π(·|s)∥π∗
Q) = 0, we can directly construct Q(s, a) such that it matches the optimal policy

π∗
Q(a|s) =

exp
(
α−1Q(s, a)

)
Z(Q)

,

with normalization term Z(Q) =
∫
AM

exp
(
α−1Q(s, a)

)
da.

Taking logarithms on both sides and rearranging for Q(s, a):

Q(s, a) = α log π(a | s) + α logZ(s), (5)

where the normalization factor is a constant that we can arbitrarily choose without changing the KL divergence. Let
c = α logZ(s).

Next, taking expectation over π:

Ea∼π(·|s)[Q(s, a)] =

∫
AM

π(a | s)Q(s, a)da.

Substituting in Q(s, a) from Eq. (5), we have

Ea∼π(·|s)[Q(s, a)] =

∫
π(a|s) (α log π(a|s) + c) da

= α

∫
π(a|s) log π(a|s)da+ c

∫
π(a|s)da

= −αH(π(·|s)) + c.

Now, to match the soft value function V (s), we can set:

vs = Ea∼π[Q(s, a)] + αH(π(·|s)) = c− αH(π(·|s)) + αH(π(·|s)) = c. (6)

Thus, solving for c, we obtain c = vs.

Substituting back into Eq. (5), we get
Q(s, a) = α log π(a | s) + vs.

This ensures that both vs = V (s) = Ea∼π[Q(s, a)] + αH(π(·|s)) and DKL(π(·|s)∥π∗
Q) = 0 are satisfied.

Lemma B.2 (Lemma 5.4, Forward Compatibility). Let sµ = µ(s′) be the newly introduced state for s′ ∈ N (s). Let
V (s′) be an arbitrarily fixed value for the original next state s′, and r(sµ, a) an arbitrary reward defined for the newly
introduced state sµ. Let v ∈ R be an arbitrarily chosen target value. Then, there exist choices of Aµ

1 , Aµ
2 , and r(sµT) such

that V (sµ) = v is the optimal soft value for the bifurcating state sµ.

Proof. Following the definition of the MaxEnt value (Definition 4), we need to show:

v = V (sµ) = Ea∼π(·|sµ)[Q(sµ, a)] + αH(π(·|sµ)), (7)

where π(·|sµ) is the policy distribution at sµ that exactly matches the Boltzmann distribution induced by some Q-function
Q(sµ, a), i.e., DKL(π∥π∗

Q) = 0.

With the bifurcating action space Aµ = Aµ
1 ∪A

µ
2 and deterministic transitions, we define:

Q1 = r(sµ, a) + γV (s′), (8)
Q2 = γr(sµT), (9)

14

When Maximum Entropy Misleads Policy Optimization

where r(sµ, a) is an arbitrarily fixed reward for any a ∈ Aµ
1 , and for any a ∈ Aµ

2 , we set r(sµ, a) = 0. Since r(sµ, a) and
V (s′) are fixed, only Q2 is tunable via the choice of r(sµT).

A policy that minimizes the KL-divergence with π∗
Q at sµ is:

π(a|sµ) =

eQ1/α

|Aµ
1 |eQ1/α+|Aµ

2 |eQ2/α , a ∈ Aµ
1 ,

eQ2/α

|Aµ
1 |eQ1/α+|Aµ

2 |eQ2/α , a ∈ Aµ
2 .

and we define the normalization term as:

Z(Q) = |Aµ
1 |eQ1/α + |Aµ

2 |eQ2/α.

The probabilities over action subspaces are:

p1 =
|Aµ

1 |eQ1/α

Z(Q)
, p2 =

|Aµ
2 |eQ2/α

Z(Q)
.

The expected value is:

Ea∼π[Q(sµ, a)] = p1Q1 + p2Q2. (10)

The entropy of π(·|sµ) is:
H(π(·|sµ)) = −(p1Q1 + p2Q2)/α+ logZ(Q),

so
αH(π(·|sµ)) = −(p1Q1 + p2Q2) + α logZ(Q). (11)

Substituting Eqs. 10 and 11 into Eq. 7:

V (sµ) = p1Q1 + p2Q2 + αH(π(·|sµ))
= p1Q1 + p2Q2 − (p1Q1 + p2Q2) + α logZ(Q)

= α logZ(Q). (12)

Thus, in this corrected version, we observe that:

V (sµ) = α log
(
|Aµ

1 |eQ1/α + |Aµ
2 |eQ2/α

)
.

Solving for r(sµT), we get:

r(sµT) =
1

γ

[
α log

(
ev/α − |Aµ

1 |eQ1/α

|Aµ
2 |

)]
.

which is valid for all α > 0, and the function
V (sµ) = α logZ(Q)

is a surjection onto R when varying over |Aµ
1 |, |A

µ
2 |, and r(sµT), we conclude that for any v ∈ R, a valid construction exists

such that V (sµ) = v.

Theorem B.3 (Theorem 5.5, Bifurcation Extension Misleads MaxEnt RL). Let M be an MDP with optimal MaxEnt policy
π∗, and s an arbitrary state in SM . Let π(·|s) be an arbitrary distribution over the action space AM at state s. We can
construct an entropy bifurcation extension M̂ of M such that M̂ is equivalent to M restricted to SM \ {s} and does not
change its optimal policy on those states, while the MaxEnt-optimal policy at s after entropy bifurcation extension can
follow an arbitrary distribution π(·|s) over the actions.

In other words, without affecting the rest of the MDP, we can introduce bifurcation extension at an arbitrary state such that
the MaxEnt optimal policy becomes arbitrarily bad at the affected state.

15

When Maximum Entropy Misleads Policy Optimization

Proof. Following Lemma 5.4, we introduce the bifurcation extension as Definition 5.1 and obtain Q-values on all the newly
introduced states Q(s, a) such that V (s) remains unchanged, while the MaxEnt optimal policy at s becomes π(|s). Given
such target Q(s, a), which now impose target values on the introduced bifurcation states, i.e., V (sµ) = Q(s, a)/P (s′|s, a),
because by construction P (sµ|s, a) = P (s′|s, a) > 0. We then use the forward compatibility Lemma 5.4 to set the
parameters in the bifurcation extension, such that V (sµ) is attained by the MaxEnt policy at sµ, without changing the
existing values on the original next states V (s′) for any s′ ∈ N (s). Since we have not changed the values on s or any
s′ ∈ N (s), the bifurcation extension does not affect the policy on any other state in SM \ {s}. At the same time, the target
arbitrary policy π(·|s) is now a MaxEnt optimal policy at s.

Proposition B.4 (Proposition 5.6, Bifurcation Extension Preserves Optimal Policies). By setting r(sµ, a) = (1− γ)V (s′)
for every newly introduced bifurcating state sµ = µ(s′) and a ∈ Aµ

1 , the optimal policy is preserved under bifurcation
extension.

Proof. In the non-MaxEnt setting, the state value of sµ maximizes the Q-value, and the optimal policy chooses the actions
in Aµ

1 . Since r(sµ, a) = (1− γ)V (s′), the additional reward on (sµ, a) ensures that V (sµ) = V (s′). Note that Lemma 5.4
holds for arbitrary r(sµ, a). Consequently, there is no change in Q(s, a) and the optimal policy remains the same between
M and M̂ .

C. Environments
C.1. Vehicle

The task is to control a wheeled vehicle to maintain a constant high speed while following a designated path. Practically,
the vehicle chases a moving goal, which travels at a constant speed, by giving negative rewards to penalize the distance
difference. Also the vehicle receives a penalty for deviating from the track. The overall reward is

r = rgoal + rtrack = −||pvehicle − pgoal||2 + βb|R2
vehicle −R2

track|

where pvehicle, pgoal are the positions for vehicle and the goal respectively, βb = 0.3 is the scaling factor, Rtrack = 10 is the
radius of the quarter-circle track and Rvehicle =

√
x2vehicle + y2vehicle is the vehicle’s radial distance from the origin. The initial

state is set to make steering critical for aligning the vehicle with the path, given an initial forward speed of v = 3. The action
space is steering and throttle. The vehicle follows a dynamic bicycle model (Kong et al., 2015), where throttle and steering
affect speed, direction, and lateral dynamics. It introduces slip, acceleration, and braking, requiring the agent to manage
stability and traction for precise path tracking.

C.2. Quadrotor

The task is to control a quadrotor to track a simple path while handling small initial perturbations. The quadrotor also chases
a target moving at a constant speed. The reward is given by the distance between the quadrotor and the target, combined
with a penalty on the quadrotor’s three Euler angles to encourage stable orientation and prevent excessive tilting.

The overall reward function is:

r = rgoal + rstability = −β||pquadrotor − ptarget||2 − |θ| − |ϕ| − |ψ|

where pquadrotor, ptarget are the positions for quadrotor and the target respectively, θ, ϕ, ψ are the Euler angles, β = 5 is a
scaling factor. Simplified: Since the track aligns with one of the rotor axes, we fix the thrust of the orthogonal rotors to
zero, providing additional stabilization. The agent controls only the thrust and pitch torque, simplifying the task. Realistic:
The agent must fully control all four rotors, with the action space consisting of four independent rotor speeds, making
stabilization and trajectory tracking more challenging.

C.3. Opencat

The Opencat environment simulates an open-source Arduino-based quadruped robot, which is based on Petoi’s OpenCat
project (PetoiCamp). The task focuses on controlling the quadruped’s joint torques to achieve stable locomotion while
adapting to perturbations. The action space consists of 8 continuous joint torques, corresponding to the two actuated joints
for each of the four legs. The agent must learn to coordinate leg movements efficiently to maintain balance and move toward.

16

When Maximum Entropy Misleads Policy Optimization

C.4. Acrobot

Acrobot is a two-link planar robot arm with one end fixed at the shoulder (θ1) and an actuated joint at the elbow (θ2) (Spong,
1995). The control action for this underactuated system involves applying continuous torque at the free joint to swing the
arm to the upright position and stabilize it. The task is to minimize the deviation between the joint angle (θ1) and the target
upright position (θ1 = π), while maintaining zero angular velocity when the arm is upright. The reward function is defined
as follows:

r = −
(
(θ1 − π)2 + (θ2)

2 + 0.1(θ̇1)
2 + 0.1(θ̇2)

2
)

C.5. Obstacle2D

The goal is to navigate an 2D agent to the goal (3, 0) while avoiding a wall spanning y = [−2, 2] starting from (0, 0). The
action range is [−3, 3], which makes it sufficient for the agent to avoid the wall in one step. The reward function is based on
progress toward the goal, measured as the difference in distance before and after taking a step. For special cases, it receives
+500 for reaching the goal, -200 for hitting the wall.

C.6. Hopper

Hopper is from OpenAI Gym based on mujoco engine, which aims to hop forward by applying action torques on the joints.

D. Details on Experiments
D.1. Training without entropy in target Q values

In Sec. 4 and Sec. 6, we simultaneously train Q networks with (soft) and without (plain) the entropy term in the target Q
values, in order to illustrate the effect of entropy on policy optimization. Specifically,

T πQsoft(st, at) = r(st, at) + γEst+1,at+1 [Qsoft(st+1, at+1)− α log π(at+1|st+1)]]

T πQplain(st, at) = r(st, at) + γEst+1,at+1 [Qplain(st+1, at+1)]]

with the rest of the SAC algorithm unchanged. We still update the policy based on the target Q with entropy, i.e. Qsoft(st, at)
as original SAC and training Qplain(st, at) is just for better understanding for entropy’s role in the policy updating dynamics.

D.2. Experiment Hyperparameters

The hyperparameters for training the algorithms are in Table 1 and Table 2.

D.3. Performance of DDPG and SAC with Auto-tuned Entropy Coefficient

We also run SAC with auto-tuned α and DDPG across all six environments, as shown in Fig. 11. The first row includes
environments where SAC fails due to critical control requirements, while the second row shows cases where SAC performs
better. Notably, auto-tuning the entropy temperature in SAC improves performance in some critical environments but not all,
and it still fails to surpass PPO.

D.4. Benefits of Misleading Landscapes in SAC

Nonetheless, entropy in target Q is beneficial as designed because of necessary exploration. In Gym Hopper, we investigate
the state shown in Fig. 12. Entropy smooths the Q landscape in regions that may not produce optimal actions at the current
training stage, encouraging exploration and enabling the policy to achieve robustness rather than clinging solely to the
current optima.

D.5. PPO Trapped by Advantage Zero-Level Sets.

Without extra entropy to encourage exploration, PPO as an on-policy RL algorithm can be trapped in the zero-level set of
advantages. In Obstacle2D (Fig. 13 first row), we plot the policy of the initial state, where the optimal action is to move
to either the upper or lower corner of the wall, avoiding it in one step. The reward is designed to encourage the agent to
approach the goal while penalizing collisions with a large negative reward. The region in front of the wall is a higher-reward

17

When Maximum Entropy Misleads Policy Optimization

Table 1. Hyperparameters for SAC(SAC-auto-alpha), PPO, and DDPG
Hyperparameter SAC / SAC-auto-α PPO DDPG
Discount factor (γ) 0.99 0.99 0.99
Entropy coefficient (α) 0.2/ N/A 0 /
Exploration noise 0 0 0.1
Target smoothing coefficient (τ) 0.005 / 0.005
Batch size 256 64 256
Replay buffer size 1M 2048 1M
Hidden layers 2 2 2
Hidden units per layer 256(64 for Toy Example) 256(64 for Toy Example) 256
Activation function ReLU Tanh ReLU
Optimizer Adam Adam Adam
Number of updates per environment step 1 10 1
Clipping parameter (ϵ) / 0.2 /
GAE parameter (λ) / 0.95 /

Table 2. Learning Rates for SAC and PPO Across Different Environments
Algorithm Learning Rate Vehicle Quadrotor Opencat Acrobot Obstacle2D Hopper

SAC Actor 1e-3 3e-4 1e-3 1e-3 1e-3 1e-3
Q-function 1e-3 3e-4 1e-3 1e-3 1e-3 1e-3

SAC auto-α α 1e-3 3e-4 1e-3 1e-3 1e-3 1e-3

PPO Actor 3e-4 3e-4 1e-4 3e-4 3e-4 3e-4
Value function 3e-4 3e-4 1e-4 3e-4 3e-4 3e-4

DDPG Actor 1e-3 3e-4 3e-4 1e-3 1e-3 1e-3
Q-function 1e-3 3e-4 3e-4 1e-3 1e-3 1e-3

PPO SAC SAC-auto-alpha DDPG

Figure 11. Performance of All Algorithms across six environments

area because of the instant approaching reward. The advantage landscape reveals that PPO’s policy moves to the center of
the positive advantage region but remains confined by the zero-level set. Notably, although the optimal regions (upper and
lower corners) have positive advantages, PPO remains trapped due to its local behavior. The coupling of exploration and
actual policy worsens this issue—if PPO fails to explore actions to bypass the wall, its policy’s σ shrinks, further reducing

18

When Maximum Entropy Misleads Policy Optimization

Torque #1

𝑸!"#$(𝒔, 𝒂) 𝑸%&'()(𝒔, 𝒂)

Torque #1

To
rq

ue
 #

2

Current state 𝜋!"# 𝜋$! 𝜋$"

𝜋$"

𝜋$!

𝝅!"#

Figure 12. Q landscapes in Hopper. Upper: We set torque #0 (top torso) as the current µSAC
0 to plot Qsoft and Qplain for torque #1

(middle thigh) and #2 (bottom leg) in the state shown in the bottom-left figure. Lower: Rendered hopper’s gestures result from the
corresponding policies. SAC’s policy benefits from entropy by ’leaning further forward’, taking a risky move despite this action being
suboptimal in the current true Q. Investigating the peaks o1 and o2 in Qplain reveals that the hopper tends to ’bend its knee’ and ’jump up’
when following the corresponding policies, demonstrating less exploration.

exploration and leading to entrapment. We can also observe this across training stages, as shown in Fig. 14.

A similar phenomenon is observed in Acrobot (Fig. 13 second row), where PPO’s policy shrinks prematurely, leading to
insufficient exploration.

However, this phenomenon can also be viewed as a strength of PPO, as it builds on the current optimal policy and makes
incremental improvements step by step, thus not misled by suboptimal actions introduced by entropy. As a result, PPO
performs better in environments where the feasible action regions are small and narrow in the action space, such as in
Vehicle, Quadrotor, and OpenCat, which closely resemble real-world control settings.

E. Details on SAC-AdaEnt
E.1. Pseudocode

We provide the detailed algorithm in Algorithm 1.

E.2. SAC-AdaEnt improves performance in environments that SAC fails

To further validate the misleading entropy claim and enhance SAC’s performance in critical environments, we propose
SAC with Adaptive Entropy (SAC-AdaEnt) and test it on Vehicle and Quadrotor environments, showing improvements
in Fig. 15. In these environments, SAC relies excessively on entropy as it dominates the soft Q values. To address this,
SAC-AdaEnt adaptively combines target Q values with and without entropy. Specifically, we simultaneously train Qsoft
and Qplain as in Appendix D.1. During policy updates, we sample multiple actions per state under the current policy and
evaluate their Qsoft and Qplain values. By comparing these values, we compute the similarity of the two landscapes. If Qsoft
deviates significantly from Qplain, indicating that entropy could mislead the policy, we rely on Qplain as the target Q value
instead. Otherwise, entropy is retained to encourage exploration. This adaptive approach ensures a balance between safe
exploration and exploitation, promoting exploration in less critical states and prioritizing exploitation in states where errors
could result in failure. Note that SAC-AdaEnt is fundamentally different from SAC with an auto-tuned entropy coefficient,

19

When Maximum Entropy Misleads Policy Optimization

53.3

94.1

73.7

Soft Q values

Obstacle2D

Advantage values

-204.06

0.03

0

xx

y

Acrobot

Environment

PPOSAC

Figure 13. Q/Advantage landscapes of SAC and PPO in Obstacle2D and Acrobot. Upper: In Obstacle2D with start (0, 0), goal (3, 0),
and a wall at x = 2 spanning y = [−2, 2], SAC succeeds in bypassing the wall whereas PPO fails. We plot the Q/Advantage landscape of
the initial state. For SAC, entropy encourages exploration, guiding updates toward the upper and lower ends of the wall via soft Q. In
contrast, PPO remains trapped despite the presence of positive advantage regions near the wall’s ends. Lower: In Acrobot, both algorithms
achieve swing-up, but near the stabilization height, SAC applies the right torque to neutralize momentum, preventing it from falling again.
In contrast, PPO remains stuck in a local optimum, leading to repeated failures.

-204.52

0.08

0

-203.98

0.05

0

-205.24

0.04

0

-204.33

0.03

0

-204.53

0.02

0

-204.50

0.02

0

(a) (b) (c)

(d) (e) (f)

Figure 14. Advantage landscapes in Obstacle2D for PPO. (a) to (f) show the advantage landscapes at different training stages for the
initial state, where PPO’s policy center remains trapped in front of the wall while σ gradually shrinks.

20

When Maximum Entropy Misleads Policy Optimization

Algorithm 1 SAC with Adaptive Entropy (SAC-AdaEnt)
Initialize: Actor network πθ, Q networks and their paired target networks for Q-target with/without entropy
ϕ1, ϕ2, ϕtarg,1, ϕtarg,2 (w/ entropy), ϕ′1, ϕ

′
2, ϕ

′
targ,1, ϕ

′
targ,2 (w/o entropy), replay buffer D, similarity threshold ϵ

for each training step do
Sample action at ∼ πθ(at|st) and observe st+1, rt
Store (st, at, rt, st+1) in replay buffer D
for each gradient update step do

Sample minibatch of transitions (s, a, r, s′) from D
Compute target value:

y = r + γ

(
min
i=1,2

Q̂ϕi
(s′, a′)− α log πθ(a

′|s′)
)
, y′ = r + γ

(
min
i=1,2

Q̂ϕ′
i
(s′, a′)

)
Update Q networks:

ϕi ← ϕi − ηQ∇ϕi

1

N

N∑
n=1

(ϕi(s, a)− y)2, ϕ′i ← ϕ′i − ηQ∇ϕ′
i

1

N

N∑
n=1

(ϕ′i(s, a)− y′)2

For each s, sample actions using current policy As = {as|as ∼ πθ(·|s)}
Compute similarity score:

sim(Q,Q′) =
Q(s) ·Q′(s)

∥Q(s)∥∥Q′(s)∥
,where Q(s) =

[
min
i=1,2

Q̂ϕi
(s, as)

]
as∼πθ(a|s)

, Q′(s) =

[
min
i=1,2

Q̂ϕ′
i
(s, as)

]
as∼πθ(a|s)

Update actor policy using reparameterization trick:

θ ← θ − ηπ∇θEs∼D,a∼πθ

{
α log πθ(a|s)−Qϕ1

(s, a), if sim(Q,Q′) > ϵ

α log πθ(a|s)−Qϕ′
1
(s, a), otherwise

Update target networks:

Q̂ϕi ← τQϕi + (1− τ)Q̂ϕi , Q̂ϕ′
i
← τQϕ′

i
+ (1− τ)Q̂ϕ′

i

end for
end for

which applies a uniform entropy adjustment across all states. In contrast, SAC-AdaEnt adaptively adjusts entropy for each
state, making it particularly effective in environments requiring precise control and careful exploration.

E.3. SAC-AdaEnt preserves performance in environments that SAC succeeds

Not only SAC-AdaEnt improves performance in environments where SAC struggles, but it also retains SAC’s strengths in
those where SAC already excels. We report SAC-AdaEnt’s results on Hopper, Obstacle2D, and Acrobot as in Table. 3:

Algorithm Hopper Obstacle2D Acrobot

SAC 3484.46± 323.87 501.98± 0.62 −45.25± 7.94
SAC-AdaEnt 3285.17± 958.43 501.50± 0.57 −36.31± 16.42

Table 3. Performance (mean ± std) of SAC and SAC-AdaEnt across tasks.

21

When Maximum Entropy Misleads Policy Optimization

SAC-AdaEntSAC

Vehicle

Quadrotor

Figure 15. Performance of SAC-AdaEnt v.s. SAC. Left: Reward Improvement. Middle: Full trajectory rendering. Right: Behavior of
policy on critic states. In Vehicle, SAC-AdaEnt successfully steers and brakes to bring the vehicle back on track, while in Quadrotor, it
effectively lifts the quadrotor to follow the designated path.

F. Additional Experiments on Other MaxEnt algorithm
Although SAC is a powerful MaxEnt algorithm, to ensure our findings generalize beyond SAC’s particular implementation
of entropy regularization, we also evaluate Soft Q-Learning (SQL), an alternative MaxEnt method. SQL extends traditional
Q-learning by incorporating an entropy bonus into its Bellman backup, resulting in a policy that maximizes both expected
return and action entropy—thereby fitting within the maximum-entropy RL framework. It can extend to continuous actions
by parameterizing both the soft Q-function and policy with neural networks and using the reparameterization trick for
efficient, entropy-regularized updates. We compare the performance of all algorithms on Vehicle, Quadrotor and Hopper.
The results in Table. 4 show that SQL also suffers from the entropy-misleading issue, but its AdaEnt variant effectively
mitigates this weakness.

Algorithm Vehicle Quadrotor Hopper

SAC (α = 0.2) −2003.85± 867.82 −475.29± 244.96 3484.46± 323.87
SAC (auto-α) −1551.96± 636.88 −666.62± 233.19 2572.00± 901.35
SAC-AdaEnt −1250.45± 725.40 −247.58± 45.15 3285.17± 958.43
SQL −2715.48± 453.00 −6082.51± 1632.35 2998.21± 158.19
SQL-AdaEnt −2077.59± 266.84 −4499.35± 863.73 3115.94± 25.19

Table 4. Performance (mean ± std) across Vehicle, Quadrotor, and Hopper tasks for various algorithms.

22

