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Abstract

Learning a domain-invariant representation has become one of the most popular approaches
for domain adaptation/generalization. In this paper, we show that the invariant representation
may not be sufficient to guarantee a good generalization, where the labeling function shift
should be taken into consideration. Inspired by this, we first derive a new generalization
upper bound on the empirical risk that explicitly considers the labeling function shift.
We then propose Domain-specific Risk Minimization (DRM), which can model the
distribution shifts of different domains separately and select the most appropriate one for
the target domain. Extensive experiments on four popular domain generalization datasets,
CMNIST, PACS, VLCS, and DomainNet, demonstrate the effectiveness of the proposed
DRM for domain generalization with the following advantages: 1) it significantly outperforms
competitive baselines; 2) it enables either comparable or superior accuracies on all training
domains comparing to vanilla empirical risk minimization (ERM); 3) it remains very simple
and efficient during training, and 4) it is complementary to invariant learning approaches.

1 Introduction

Machine learning models usually suffer from degraded performance when the testing data comes from
a different distribution than the training data. To overcome the brittleness of classical Empirical Risk
Minimization (ERM), domain generalization (DG) approaches have recently been proposed Muandet et al.
(2013); Li et al. (2018b), where models are trained on multiple large-scale source domains/datasets and can be
deployed on unseen target domains directly without any data collection/annotation and/or model updating.

Deep learning has recently made a great success and most deep learning-based DG methods seek to learn an
invariant representation which is not only robust to all training domains but also can generalize to unknown
distributions that may have a shift from the training distribution Muandet et al. (2013); Arjovsky et al. (2019);
Sagawa et al. (2019); Li et al. (2018b). Among them, multi-source domain adaptation and its disentangled
variant have provided rigorous bounds for learning transferable representations with target domain data
available (Zhao et al., 2018; Ruichu et al., 2019). However, without accessing the data on the target domain,
feature alignment can be performed only among source domains, which inevitably raises a question: whether
the representation invariant to the source domain shift is good enough to generalize on the unseen target
domain?

To answer the above-mentioned question, we first construct a simple counterexample, where the invariant
representation learned on source domains fails to generalize on the target domain (please see the details of
this counterexample in the next section). This counterexample shows that without considering the labeling
function shifts of different domains, even a perfect domain-invariant representation among source domains may
also lead to very large errors on both source and target domains. To better understand the effect of labeling
function shifts for DG, we further prove a new generalization upper bound that considers labeling function
shifts between source and target domains. Specifically, an intuitive explanation of the new generalization
upper bound is as follows: since we cannot guarantee that all labeling functions are the same, we would rather
model all labeling functions and choose the most appropriate one for a good generalization during testing.

Therefore, in this paper, we introduce a shared encoder for all source domains with a group of domain-specific
classifiers during training. Specifically, each domain-specific classifier is responsible for the labeling function
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on a specific source domain. During testing, we further propose an entropy minimization strategy for classifier
selection. That is, given each data sample from the target domain, we choose the classifier with the most
confident prediction as to the final prediction. To this end, we devise a new method for domain generalization,
Domain-Specific Risk Minimization (DRM), which aims to reduce the negative impact of domain
labeling function variations and can be easily incorporated into most deep representation learning algorithms.
Our main contributions in this paper are as follows:

• A new perspective. Through a counterexample, we show the insufficiency of invariant representa-
tions and provide a new generalization bound that explicitly considers the conditional shift between
source and target domains.

• A new approach. We propose a new Domain-specific Risk Minimization (DRM) method, which
models all labeling functions in a domain-specific way during training, and then selects an appropriate
labeling function for the target domain based on the entropy minimization strategy.

• Extensive experiments. We perform extensive experiments on popular DG benchmarks showing
that DRM achieves very competitive performance and is orthogonal to other DG methods. Fur-
thermore, case studies show that DRM not only beats IRM Arjovsky et al. (2019) on the average
generalization performance but also reserves very strong recognition capability on source domains.

The rest of this paper is organized as follows. In Section 2, we analyze the failure cases of learning invariant
representations for domain generalization, and provide a new generalization bound by explicitly taking into
account label function shifts. After that, we present a domain-specific risk minimization (DRM) method
in Section 3. We discuss the related work in Section 5 and the experimental results are shown in Section 4.
Lastly, we conclude the paper in Section 6.

2 Preliminaries

Let X , Y, Z denote the input, output, and feature space, respectively. Let X, Y, Z denote the random variables
taking values from X , Y, Z, respectively. Each domain corresponds to a joint distribution Pi(X, Y ) with a
labeling function fi : X → [0, 1]1. In the DG setting, we have access to a labeled training dataset which
consists of several different but related training distributions (domains): D = ∪K

i=1Di, where K is the number
of domains. In this paper, we focus on a deterministic setting where the output Y = fi(X) is given by
a deterministic labeling function, fi, which varies from domain to domain. Let g : X → Z denote the
encoder/feature transformation and h : Z → {0, 1} denote the classifier/hypothesis. The error incurred by
h ◦ g under domain Di can be defined as ϵi(h ◦ g) = EX∼Di

[|h ◦ g(X) − fi(X)|]. Given fi and h as binary
classification functions, we have

ϵi(h ◦ g) = ϵi(h ◦ g, fi) = EX∼Di
[|h ◦ g(X) − fi(X)|]

= PrX∼Di
(h ◦ g(X) ̸= fi(X)).

(1)

During training, h ◦ g is trained using all image-label pairs from D. During testing, we perform a retrieval
task on the unseen target domain DT without additional model updating and we aim to minimize the error in
DT : minh◦g ϵT (h ◦ g). This objective encodes the goal of learning a model that does not depend on spurious
correlations (e.g., domain-specific information): if a model makes decisions according to domain-specific
information, it is natural to be brittle in an entirely distinct domain.

2.1 A Failure Case of Invariant Representation

In revealing flaws of learning invariant representations, we begin with a simple counterexample, where
invariant representations fail to generalize. As shown in Fig. 1, given the following four domains: Do ∼

1Most theories and examples in this paper considers binary classification for easy understanding and can be easily extended
to multi-class classification.
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Figure 1: A failure case of invariant representations for domain generalization. (a) Given four domains
in different colors, orange (µo = [−3.0, 3.0]), green (µg = [3.0, 3.0]), red (µr = [−3.0, −3.0]) and blue
(µb = [3.0, −3.0]). (b) Invariant representations learnt from domain Dr and Db by feature transformation
g(X) = Ix1<0 · (x1 + 3) + Ix1>0 · (x1 − 3). The grey color indicates the transformed target domains. (c) The
classification boundary learnt by DRM.

N ([−3, 3], I), Dg ∼ N ([3, 3], I), Dr ∼ N ([−3, −3], I), Db ∼ N ([3, −3], I), where X = (x1, x2) and

fo(X) =
{

0, x1 ≤ −3
1, x1 > −3 , fr(X) =

{
1, x1 ≤ −3
0, x1 > −3 ,

fg(X) =
{

0, x1 ≤ 3
1, x1 > 3 , fb(X) =

{
1, x1 ≤ 3
0, x1 > 3 ,

(2)

where I indicates the identity matrix. We then have that the hypothesis h∗(X) = 1 iff x1 ∈ (−3, 3) achieves
the perfect classification on all domains. Let Dr, Db denote source domains and Do, Dg denote target domains.
Given a feature transformation g(X) = Ix1<0 · (x1 + 3) + Ix1>0 · (x1 − 3) with the feature distribution
Drb = g ◦ Db = g ◦ Dr = N ([0, −3], I). Namely, the invariant representation is learnt, which is Drb. However,
the labeling functions fr of Dr and fb of Db are just the reverse such that fr(X) = 1 − fb(X); ∀X ∈ Drb.
In this case, we then have ϵrb(h) = 1 (see details of derivation in Appendix A.1). In other words, for any
hypothesis h, the invariant representation leads to large joint errors even on all source domains, let alone
unseen target domains. Therefore, given this counterexample, DG methods without considering labeling
function shift are fragmentary, however, as far as we know, no study on DG focus on such a challenging
problem. To make clear how labeling function shifts influence generalization performance, we prove a novel
domain generalization error bound by explicitly considering the labeling function shift in the next subsection.

2.2 Domain Generalization Bound

We first provide an upper bound that directly adapted from Ben-David et al. (2006); Zhang et al.
(2021a).

Proposition 1 Let H be a hypothesis space and denote D̃ as the induced distribution over feature space
Z for every distribution D over raw space. Define Di as a source distribution over X , which enables a
mixture construction of source domains as Dα =

∑K
i=1 αiDi(·). Denote a fictitious distribution Dα

T =∑K
i=1 α∗

i Di(·) as the convex combination of source domains which is the closest to DT , where α∗
1, ..., α∗

K =
arg minα1,...,αK

dH(DT ,
∑K

i=1 αiDi(·)). The fictitious distribution induces a feature space distribution D̃α
T =∑K

i=1 α∗
i D̃i(·). The following inequality holds for the risk ϵT (h) on any unseen target domain DT (see
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appendix A.2 for detailed derivations and explanations):

ϵT (h) ≤ λα +
K∑

i=1
αiϵi(h) + dH(D̃α

T , D̃α) + dH(D̃T , D̃α
T ). (3)

Many recent works on DG via learning invariant representations can get intuition from the above analysis Li
et al. (2018b); Ganin et al. (2016); Li et al. (2018c). Specifically, a parametric feature transformation
g : X → Z is learnt such that the induced source distributions on Z are close to each other. g is called
an invariant representation w.r.t H if dH(D̃i, D̃j) = 0, ∀i, j ∈ [1, 2, ..., K]. Besides, a hypothesis h over the
feature space Z is found to achieve small empirical errors on source domains. However, the bound also
depends on the risk of the optimal hypothesis λα, which is usually intractable to compute for most practical
hypothesis spaces and makes the bound conservative and loose in many cases. In this subsection, inspired
by the counterexample, we provide a tighter upper bound for DG that considers labeling function shifts as
follows.

Proposition 2 Let {Di, fi}K
i=1 and DT , fT be the empirical distributions and corresponding labeling func-

tion. For any hypothesis h ∈ H and transformation g, given mixed weights {αi}K
i=1;

∑K
i=1 αi = 1, αi ≥ 0,

we have:

ϵT (h ◦ g) ≤
K∑

i=1

(
EX∼Di

[
αi

PT (X)
Pi(X) |h ◦ g − fi|

]
+ αiEDT [|fi − fT |]

)
.

(4)

Proof: See Appendix A.3.

The above two terms in the upper bound have natural interpretations: the first term is the weighted source
errors, the second one measures the distance between the labeling functions from the source domain and
target domain. Compared to Eq. equation 3, Eq. equation 4 does not depend on λα, namely, the choice of
the hypothesis class H makes no difference. Besides, the new upper bound in Eq. equation 4 reflects the
influence of labeling function shifts and is independent of invariant representations.

Remark. Eq. (4) provides a new intuition on the design of DG models. Specifically, labeling functions fi, fT

and density ratios PT (x)
Pi(x) are constant and cannot be optimized. Therefore, we focus on mixed weights αi and

h ◦ g. The first term will be minimized when h ◦ g attains low errors in source domains. The second term
cannot be optimized directly, however, we can manipulate α to affect this term as follows. given fT , if we
can find the source domain Di∗ with a labeling function fi∗ that minimizes ET [|fi∗ − fT |], then we have that
αi = 1, iff i = i∗, otherwise 0 makes this term the minimum. As a whole algorithm, these two procedures
correspond to simultaneously finding the domain Di∗ whose labeling function is close to fT , setting αi∗ = 1
and learning h ◦ g on Di∗ to minimize the source error. Namely, as long as we can accurately estimate
ET [|fi − fT |], only one domain is required for training to minimize the error in the target domain. However,
calculating ET [|fi∗ − fT |] is intractable especially when DT is unseen during training. To tackle the challenge
and follow the intuition brought by Eq. equation 4, we propose a new Domain-Specific Risk Minimization
(DRM) method for domain generalization.

3 Domain-Specific Risk Minimization

The main training and testing pipelines using the proposed Domain-Specific Risk Minimization (DRM) are
shown in Figure 2. One of our main contributions is the modeling of domain-specific labeling function.
Specifically, given K source domains, DRM utilizes a shared encoder g and a group of classifiers {hi}K

i=1 for
all domains, respectively. The encoder is trained by all data samples while each classifier hi is trained by
using only images from the domain Di. In this way, DRM can attain 0 source error in the above-mentioned
counterexample by using g(X) = X and

hr(X) =
{

0 x1 ≤ −3
1 x1 > −3 , hb(X) =

{
1 x1 ≤ 3
0 x1 > 3 .
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Figure 2: An illustration of the training and testing pipelines using DRM. (a) during training, it jointly
optimizes an encoder shared by all domains and the specific classifiers for each individual domain. Lerm

indicates the cross-entropy loss function. (b) the new image is first classified by all classifiers and the entropy
Hi (i = 1, . . . , K) are then calculated. The logits with the minimum entropy will be used for the final
prediction.

Furthermore, the choice of g is not a matter and we can easily generalize it to other cases. For example, given
g(X) = Ix1<0 · (x1 + 3) + Ix1>0 · (x1 − 3) for invariant representation. DRM can still attain 0 source error by
using

hr(X) =
{

0 x1 ≤ 0
1 x1 > 0 , hb(X) =

{
1 x1 ≤ 0
0 x1 > 0 .

If we go back to Eq. equation 4, with domain-specific classifiers, we then have the bound

K∑
i=1

αi

(
Ex∼Di

[
PT (x)
Pi(x) |hi ◦ g − fi|

]
+ EDT [|fi − fT |]

)
. (5)

Therefore, Eq. equation 5 shows that it is rather possible to achieve low errors on source domains by using the
domain-specific classifiers than just one hypothesis h. It is also possible but not efficient to use specific hi ◦ gi

for each domain. Besides, we also observe that, on the Colored MNIST dataset, it achieves the generalization
accuracy 64.8% when using specific hi ◦ gi, while it is 70.1% for using specific hi. A possible reason is that a
shared encoder g can be seen as an implicit regularization, which prevents the model from overfitting specific
domains.

We do not aim at a lower source error but also want to know “how to determine mixed weights α such that low
target domain error can be achieved?”. To answer this question, we devise a minimum entropy selection
strategy as follows. Given the following two assumptions: “the learnt hi ◦ g can well approximate fi” and
“the more confident prediction hi ◦ g makes on DT , the more similar fi and fT will be”. We then have, during
testing, the K individual classification logits as {ȳk}K

k=1, where ȳk = [yk
1 , ..., yk

c ], and c is the number of
classes. Then, the prediction entropy of ȳk can be calculated as

Hk = −
c∑

i=1

yk
i∑c

j=1 yk
j

log yk
i∑c

j=1 yk
j

. (6)

We choose the logit with the minimum entropy as the final prediction, namely i∗ = arg min{Hi}K
i=1 and

αi∗=1. In our experiments, we find that the prediction entropy is consistent with the domain similarity, e.g.,
in the counterexample, Do is more similar to Dr than to Db, hence the entropy when X ∈ Do is classified
by hr is less than the entropy classified by hb. In this way, Figure 1(c) shows that the learnt classification
boundaries can attain 0 test errors on both the unseen target domains Do and Dg. Note that not all datasets
have a significant visual difference between domains, and the prediction entropy is not exactly equivalent
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to the labeling function difference. A one-hot mixed weight is too deterministic and cannot fully utilize all
learned classifiers. Softing mixed weights can further boost generalization performance, i.e., we generate
the final prediction as

K∑
k=1

ȳk

H−γ
k∑K

i=1 H−γ
i

, (7)

where H−γ
k indicates the contribution of each classifier. Specifically, for γ = 0, we then have a uniform

combination, i.e., αi = 1/K, ∀i ∈ [1, 2, ..., K]; for γ → ∞, we then have a one-hot weight vector with
αi = 1 iff i = i∗ otherwise 0.

Remark. By modeling domain-specific labeling functions, DRM can further reduce source errors (i.e., the
first term in our upper bound); For the second term, the entropy-based selection strategy allows us to select
appropriate mixed weights and avoid directly calculating labeling function difference.

3.1 Case Studies

In this subsection, we perform case study analysis on the Colored MNIST dataset Arjovsky et al. (2019),
where spurious correlations are manually created and can thus be a good indicator, to verify the following
remarks:

• DRM has better generalizability than invariant learning-based methods.

• DRM retains high accuracies on source domains and is orthogonal to invariant learning-based methods.

• DRM implicitly reduces prediction entropy and the entropy-based strategy performs well on finding a proper
labeling function for inference.

As shown in Table 1, ERM achieves high accuracies on training domains but below-chance accuracy on
the test domain due to relying on the spurious correlations. IRM forms a tradeoff between training and
testing accuracy Arjovsky et al. (2019). An ERM model trained on only gray images, i.e., ERM (gray), is
perfectly invariant by construction, and attains a better tradeoff than IRM. The upper bound performance
of invariant representations (OIM) is a hypothetical model that not only knows all spurious correlations
but also has no modeling capability limit. For averaged generalization performance, DRM, without any
invariance regularization, outperforms IRM by a large margin (more than 2.4%). Besides, the training
accuracy attained by DRM is even higher than ERM and significantly higher than IRM and OIM. Note that
DRM is complementary with invariant learning-based methods, where incorporating CORAL Sun & Saenko
(2016) can further boost both training and testing performances. Though the Colored MNIST dataset is
a good indicator to show the model capacity for avoiding spurious correlation, these spurious correlations
therein are unrealistic and utopian. Therefore, when testing on large DG benchmarks (e.g., PACS, VLCS,
DomainNet), ERM outperforms IRM. Different from them, DRM not only performs well on the semi-synthetic
dataset but also attains state-of-the-art performance on large benchmarks.

The prediction entropy is often related to the fact that more confident predictions tend to be correct Wang
et al. (2021). In Figure 3(a), we find that the entropy in target domain (d = 2) tends to be greater than the
entropy in source domains, where the source domain with stronger spurious correlations (d = 1) also has larger
entropy than easier one (d = 0). Fortunately, with the entropy minimization strategy, we can find the most
confident classifier for a given data sample, and DRM can reduce the entropy of predictions (Figure 3(b)).
To further analyze the entropy minimization strategy, we visualize the domain-classifier correlation matrix
in Figure 3(c), where the entropy between the domain and its corresponding classifier is minimal, verifying
the efficiency of the entropy minimization strategy. Please refer to Section 4.3 for more analysis on the
domain-classifier correlation matrix.

4 Experiments

In this section, we evaluate the proposed DRM on several popular DG benchmarks. We also perform detailed
ablation studies and analyses to better understand the proposed method.
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+90% (d = 0) +80% (d = 1) -90% (d = 2) Avg
Method train test train test train test train test
ERM 86.1±3.9 71.8±0.4 83.6±0.5 72.9±0.1 87.5±3.4 28.7±0.5 85.7 57.8
IRM 78.2±9.5 72.0±0.1 70.6±9.1 72.5±0.3 85.3±4.7 58.5±3.3 78 67.7

DRM 81.8±9.8 86.7±2.4 90.2±0.2 80.6±0.2 88.0±4.5 43.1±7.5 86.7 70.1
DRM+CORAL 83.4±8.6 85.3±2.3 91.6±0.7 80.7±0.2 89.4±4.9 47.2±3.6 88.1 71.1

RG 50 50 50 50 50 50 50 50
OIM 75 75 75 75 75 75 75 75

ERM (gray) 84.8±2.7 73.9±0.3 84.3±1.4 73.7±0.4 83.4±2.3 73.8±0.7 84.2 73.8

Table 1: Accuracies (%) of different methods on training/testing domains for the Colored MNIST synthetic
task. OIM (optimal invariant model) and RG (random guess) are hypothetical mechanisms.

DRM ERM (gray) ERM IRM
Algorithm

0

10

20

30

40

50

60

A
vg

. E
nt

d=0 d=1 d=2

(a)

DRM ERM (gray) ERM IRM
Algorithm

0

10

20

30

40

50

60

70

A
vg

. E
nt

d=0 d=1 d=2

(b)

Dom .0 Dom. 1 Dom. 2
0

1
2

9.2 14 12

12 14 13

18 19 8.2

10

15

(c)

Figure 3: The entropy of different predictions. (a) Training domain {0, 1} and testing domain {2}. (b) The
average of training/testing domains {0, 1}/{2}, {0, 2}/{1}, and {1, 2}/{0}. (c) Domain-classifier correlation
matrix, the value vij is the entropy of predictions incurred by predicting samples in domain i with classifier j.
Dom.i indicates the classifier for the domain d = i.

4.1 Experimental Setup

We use four popular domain generalization benchmark datasets: Colored MNIST Arjovsky et al. (2019),
Rotated MNIST Ghifary et al. (2015), PACS Li et al. (2017), VLCS Torralba & Efros (2011), and Domain-
Net Peng et al. (2019). We compare our model with ERM Vapnik (1999), IRM Arjovsky et al. (2019),
Mixup Yan et al. (2020), MLDG Li et al. (2018a), CORAL Sun & Saenko (2016), DANN Ganin et al.
(2016), CDANN Li et al. (2018c), MTL Blanchard et al. (2021), SagNet Nam et al. (2021), ARM Zhang
et al. (2021b), VREx Krueger et al. (2021), RSC Huang et al., Fish Shi et al. (2022), and Fishr Rame et al.
(2021). Following Gulrajani & Lopez-Paz (2021), we use the same backbone network, ConvNet for Rotated
MNIST and Colored MNIST, and ResNet-50 for the remaining datasets. For fair comparison, we use similar
hyperparameters to Gulrajani & Lopez-Paz (2021) for all other datasets except the DomainNet dataset,
where we observe that the proposed DRM does not converge within 5k iterations and we thus train it with
an extra of 5k iterations.

4.2 Results

In this subsection, we report the performance of DRM under different generalization settings as follows.

Domain generalization. The average domain generalization results on all benchmarks are shown in
Table 2. We observe consistent improvements achieved by DRM compared to existing algorithms, where the
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Method Colored MNIST Rotated MNIST VLCS PACS DomainNet Avg
ERM Vapnik (1999) 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 41.3 ± 0.1 72.2
IRM Arjovsky et al. (2019) 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 28.0 ± 5.1 70.9
Mixup Yan et al. (2020) 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 39.6 ± 0.1 72.2
MLDG Li et al. (2018a) 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 41.6 ± 0.1 72.4
CORAL Sun & Saenko (2016) 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 41.8 ± 0.1 72.6
DANN Ganin et al. (2016) 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 38.3 ± 0.1 71.6
CDANN Li et al. (2018c) 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 38.5 ± 0.2 72.3
MTL Blanchard et al. (2021) 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 40.8 ± 0.1 72.1
SagNet Nam et al. (2021) 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 40.8 ± 0.2 72.2
ARM Zhang et al. (2021b) 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 36.0 ± 0.2 72.2
VREx Krueger et al. (2021) 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 30.1 ± 3.7 72.1
RSC Huang et al. 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 38.9 ± 0.6 71.8
Fish Shi et al. (2022) 61.8 ± 0.8 97.9 ± 0.1 77.8 ± 0.6 85.8 ± 0.6 43.4 ± 0.3 73.3
Fishr Rame et al. (2021) 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 41.8 ± 0.2 74.7
DRM 70.1 ± 2.0 98.1 ± 0.2 80.0 ± 0.3 87.5 ± 1.2 42.4 ± 0.1 75.6
DRM+CORAL 71.1 ± 1.7 98.3 ± 0.1 79.0 ± 2.4 87.4 ± 0.9 42.7 ± 0.1 75.7

Table 2: Out-of-distribution generalization performance.

Rotated MNIST
Method 0 15 30 45 60 75 Avg
ERM 99.1±0.2 98.8±0.5 99.0±0.1 99.1±0.2 99.0±0.2 98.9±0.4 99.0
IRM 92.9±1.8 92.6±2.5 94.7±1.0 89.9±1.5 92.1±2.2 94.9±1.5 92.9
DRM(ours) 99.0±0.2 99.0±0.3 99.0±0.3 99.0±0.2 99.1±0.2 99.0±0.2 99.0

DomainNet
Method clip info paint quick real sketch Avg
ERM 50.4±11.4 58.3±6.2 53.4±12.6 54.6±12.7 50.8±11.0 51.9±12.6 53.2
IRM 33.4±4.1 53.2±1.4 34.0±4.1 35.1±3.4 33.0±3.8 31.5±3.1 36.7
DRM(ours) 50.1±14.3 58.3±10.4 52.5±14.7 58.1±10.3 50.2±13.2 52.1±11.5 53.6

Table 3: In-distribution performance on Rotated MNIST and DomainNet.

average accuracy achieved by DRM (75.6%) clearly outperforms all other methods. This result suggests that
DRM has strong generalization capability on not only small semi-synthesis datasets but also large real-world
benchmarks. Refer to Appendix C for generalization results on every domain of all benchmarks.

Source domain accuracy. Current DG methods do not consider keeping very good performance on
source domains, while it is also of great importance in real-world applications Yang et al. (2021). Taking the
performance on source domain into account, we then show the in-distribution performances of Rotated MNIST
and DomainNet in Table 3, and VLCS and PACS in Table 4. Specifically, here we compare the classification
performances (e.g., on PACS, when ‘P’ is chosen as the unseen target domain, the average classification
performance on other domains is reported). DRM achieves comparable or even superior performance on
source domains compared to ERM and beats IRM by a large margin.

Method VLCS PACS
C L S V Avg A C P S Avg

ERM 78.2±3.3 87.8±9.0 86.3±10.2 83.3±11.6 83.9 96.7±0.3 96.4±1.5 95.3±1.2 96.3±0.1 96.2
IRM 76.9±2.9 88.2±8.9 85.3±9.8 77.3±1.0 81.9 95.9±1.6 94.2±2.5 94.3±1.0 94.5±1.8 94.7
DRM(ours) 78.5±2.9 87.2±9.2 87.3±9.0 84.0±10.9 84.3 96.9±0.3 96.4±1.3 95.2±0.9 96.1±0.6 96.2

Table 4: In-distribution performance on VLCS and PACS.

Multi-domain generalization. IRM Arjovsky et al. (2019) introduces specific conditions for an upper
bound on the number of training environments required such that an invariant optimal model can be obtained,
which stresses the importance of several training environments. In this paper, we reduce the training
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Rotated MNIST
Target domains {0, 30, 60} Target domains {15, 45, 75}

Method 0 30 60 15 45 75 Avg
ERM 96.0±0.3 98.8±0.4 98.7±0.1 98.8±0.3 99.1±0.1 96.7±0.3 98.0
IRM 80.9±3.2 94.7±0.9 94.3±1.3 94.3±0.8 95.5±0.5 91.1±3.1 91.8
DRM(ours) 97.1±0.2 98.8±0.2 98.9±0.3 98.8±0.1 98.8±0.0 98.1±0.7 98.4

Table 5: Generalization performance on multiple unseen target domains.

environments on the Rotated MNIST from five to three. As shown in Table 5, as the number of training
environment decreases, the performance of IRM fall sharply (e.g., the averaged accuracy from 97.5% to
91.8%), and the performance on the most challenging domains d = {0, 5} decline the most (94.9% → 80.9%
and 95.2% → 91.1%). In contrast, both ERM and DRM retain high generalization performances while
DRM outperforms ERM on domains d = {0, 5}.

4.3 Ablation Studies and Analysis

Art Painting Cartoon Photo Sketch
D
og

E
le
ph
an
t

Figure 4: Some examples from PACS.

Correlation matrix. From the correlation matrices,
we find that: (i) The entropy of predictions between
one source domain and its corresponding classifier
is minimal. (ii) On the target domain, classifiers
cannot attain very low entropy as they attained on
the corresponding source domains. (iii) The entropy
of predictions has a certain correlation with domain
similarity. For example, in Figure 5(a), classifier
for domain d = 1 (with rotation angle 15◦) attains
the minimum entropy on the unseen target domain
d = 0 (no rotation). As the rotation angle increases,
the entropy also increases. This phenomena has also
occurred in other domains. Please refer to Figure 9
for more correlation matrices. We also visualize some examples from the PACS dataset in Figure 4, where we
can see that the style of d = 3 is more similar to d = 1, and d = 2 is very dissimilar to d = {1, 3}, etc. Almost
all of these similarity characters can be seen from the correlation matrix in Figure 5(b), namely, domain
similarity encoded in the correlation matrices is consistent with our visual common sense.

Softing mixed weights. Figure 7 shows ablation experiments of hyper-parameter γ on three benchmarks.
Different benchmarks show different preferences on γ. For easy benchmarks Rotated MNIST and Colored
MNIST, softing mixed weights is needless. The reason behinds this phenomenon can be found in Figure 5(a),
the optimal classifier for target domain 0 of Rotated MNIST is exactly the classifier 1 and the prediction
entropies will increase as the rotation angle increases. Hence, selecting the most approximate classifier based
on the minimum entropy selection strategy is enough to attain superior generalization results. However,
prediction entropies on other larger benchmarks, e.g., VLCS, are not so regular as on the Rotated MNIST.
On realistic benchmarks, a mixing of classifiers can bring some improvements. Besides, normalization, which
is a method to reduce classification confidence2, is also needless for semi-synthetic datasets (Rotated MNIST
and Colored MNIST) and valuable for realistic benchmarks.

Model complexity. As shown in Table 6, methods that require manipulating gradients (Fish Shi et al.
(2022)) or following the meta-learning pipeline (ARM Zhang et al. (2021b)) have much slower training
speed compared to ERM. The proposed DRM, without the need for aligning representations Ganin et al.
(2016); Li et al. (2018c), matching gradient Shi et al. (2022), or learning invariant representations Ar-
jovsky et al. (2019); Zhang et al. (2021b), has a training speed that is faster than most existing DG

2Given two classification results from 2 classifiers [2.1, 0.4, 0.5], [0.3, 0.6, 0.1] and assume the weights are all 1. The result is
[2.4, 1.0, 0.6] with normalization and [1.0, 0.73, 0.27] without normalization. The former is more confident than the latter.
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Figure 5: Domain-classifier correlation matrices on (a) Rotated MNIST, (b) PACS, and (c) VLCS datasets.
Domain d = 0 as the target domain.

Method Colored MNIST Rotated MNIST PACS
Time (sec) # Params Time (sec) # Params Time (sec) # Params

ERM 71.02 0.3542M 168.32 0.3546M 2,717.5 22.4326M
IRM 101.49 0.3542M 236.8 0.3546M 2,786.3 22.4326M

CDANN 89.14 0.4492M 191.61 0.4513M 2,744.8 23.01M
ARM 161.51 0.4573M 360.69 0.4562M 6,616.9 22.5398M
FISH 137.17 0.3542M 251.76 0.3546M 23,849.5 22.4326M

DRM(ours) 83.39 0.3544M 203.15 0.3595M 2,895.1 22.46M

Table 6: Comparisons of different methods on number of parameters and training time.

methods especially on small datasets (ColoredMNIST and RotatedMNIST). The training speed of DRM is
slower than ERM because of the need for training additional K − 1 classifiers. As the number of do-
mains/classes increases or the feature dimension increases, the training time of DRM will increase accordingly,
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Figure 6: Loss curves.

however, DRM is always comparable to ERM and much faster than
Fish and ARM. For model parameters, since all classifiers in our
implementation are just a linear layer, the total parameters of DRM is
similar to ERM and much less than existing methods such as CDANN
and ARM.

Convergence analysis. The training dynamics of DRM and several
baselines on PACS dataset are shown in Figure 6, where d = 0 is the
target domain. We can see that, due to the adversarial training nature,
Domain adversarial training method (DANN) is highly unstable and
hard to converge. IRM has a similar pattern yet is more stable.
ARM follows a meta-learning pipeline and converges slowly. In
contrast, DRM converges even faster than ERM thanks to the specific
classifiers.

5 Related work

Domain adaptation and domain generalization Domain/Out-of-distribution generalization (Muandet
et al., 2013; Sagawa et al., 2019; Li et al., 2018a; Blanchard et al., 2021; Li et al., 2018c; Zhang et al., 2021a;
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Figure 7: Different mixing weights on the (a) Colored MNIST (target domain d = 2) (b) Rotated MNIST
(target domain d = 0), and (c) PACS datasets (target domain d = 3). Given a classification vector
ȳ = [y1, y2, ..., yc], c is the number of classes, performing normalization means that let yi = yi/

∑c
j=1 yj before

mixing.

2022) aims to learn a model that can extrapolate well in unseen environments. Representative methods like
Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) and its variant (Ahuja et al., 2020) are recently
proposed to tackle this challenge. IRM centers on the objective of extracting data representations that lead to
invariant prediction across environments under a multi-environment setting. In this paper, we emphasize the
importance of labeling function modeling and show that, even without an invariance strategy, the proposed
DRM can attain superior generalization capacity.

Labeling function shift and multi classifiers. Labeling function shift or conditional shift is not a novel
concept and is commonly used in domain adaptation Zhao et al. (2019); Stojanov et al. (2021); Zhang
et al. (2013). There are also some studies on DG that take into account this problem. CDANNLi et al.
(2018c) considers the scenario where both P (X) and P (Y |X) change across domains and propose to learn a
conditional invariant neural network to minimize the discrepancy in P (X|Y ) across different domains. Liu
et al. (2021) explores both the conditional and label shifts in DG and aligns the conditional shift via the
variational Bayesian inference. The proposed DRM is different from these studies because we want the
labeling functions P (Y |X) more specific to each domain rather than invariant.

Ensemble learning in domain generalization learn ensembles of multiple specific models for different
source domains to improve the generalization ability, e.g., domain-specific neural networks layer Ding & Fu
(2017), domain-specific classifiers Wang et al. (2020), and domain-specific batch normalization Segu et al.
(2020). Domain-specific classifiers are also used in this work, however, classifiers ensemble is not important for
DRM. In contrast, the proposed classifier selection strategy can select the most appropriate labeling function
for prediction and attains superior performance to baselines.

6 Conclusion

In this paper, we study the important problem of labeling function shifts for domain generalization theoretically
and empirically. We first construct an example to show that learning an invariant representation without
considering the labeling function shift is not sufficient for a good generalization. We then prove a novel upper
bound for the target error, which motivates us to propose DRM to eliminate the negative effects brought by
labeling function shifts. DRM achieves not only a superior generalization performance but also maintain low
source errors simultaneously. We hope that our results can shed new light on the model design for domain
generalization problems. One possible direction is to estimate αi

PT (x)
Pi(x) and then reweight data samples, which

will be the subject of our future study. In addition, the minimum entropy selection strategy is used intuitively
but lacks a theoretical connection to the labeling function difference. Hence another possible direction is to
improve current strategy or propose a new strategy that is not only theoretically rigorous but also empirically
works better.
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