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ABSTRACT

Differential private stochastic gradient descent (DP-SGD) with gradient clipping
(DP-SGD-GC) is an effective optimization algorithm that can train machine learn-
ing models with a privacy guarantee. Despite the popularity of DP-SGD-GC, its
convergence in the unbounded domain without the Lipschitz continuous assump-
tion is less-understood; existing analysis of DP-SGD-GC either impose additional
assumptions or end up with a utility bound that involves a non-vanishing bias
term. In this work, for smooth and unconstrained problems, we improve the cur-
rent analysis and show that DP-SGD-GC can achieve a vanishing utility bound
without any bias term. Furthermore, when the noise generated from subsampled
gradients is light-tailed, we prove that DP-SGD-GC can achieve nearly the same
utility bound as DP-SGD applies to the Lipschitz continuous objectives. As a
by-product, we propose a new clipping technique, called value clipping, to mitigate
the computational overhead caused by the classic gradient clipping. Experiments
on standard benchmark datasets are conducted to support our analysis.

1 INTRODUCTION

Training machine learning models that can achieve decent prediction accuracy while preserving data
privacy is fundamental in many modern machine learning applications. The concept of differential
privacy (DP) from Dwork (2006); Dwork & Roth (2014) offers an elegant mathematical framework
to characterize the privacy-preserving ability of randomized algorithms, which has been widely
applied to tasks including clustering, regression, principle component analysis, empirical-risk mini-
mization, matrix completion, graph distance estimation, optimization and deep learning (Chaudhuri
& Monteleoni, 2008; Chaudhuri et al., 2011; Agarwal et al., 2018; Ge et al., 2018; Jain et al., 2018;
Fan & Li, 2022; Fan et al., 2022). For the empirical-risk minimization (ERM) problem, among many
proposed methods, differential private stochastic gradient descent (DP-SGD) is an effective algorithm
that can solve the ERM problem with a privacy guarantee and achieve a reasonable utility bound.
DP-SGD has received substantial interest in recent years due to its simplicity and effectiveness (Song
et al., 2013; Bassily et al., 2014; Abadi et al., 2016; Wang et al., 2017; Bassily et al., 2019; Feldman
et al., 2020; Asi et al., 2021).

In the classic analysis of DP-SGD, the variance of the Gaussian noise used in each iteration of
DP-SGD relies crucially on the ℓ2-sensitivity of the loss function. Therefore most early works on
DP-SGD assume each individual loss function to be Lipschitz continuous in its domain (Song et al.,
2013; Bassily et al., 2014). However, many real-world problems are only smooth but not globally
Lipschitz continuous; for example, the unconstrained linear regression problem. There are two
techniques to circumvent the Lipschitz continuous assumption: (i) imposing an additional bounded
domain constraint to the original problem; (ii) clipping gradients in their 2-norm and using the clipped
gradients to update the model (Abadi et al., 2016). In practice, the gradient clipping technique is
usually more preferred than imposing a bounded domain constraint because the latter requires prior
knowledge of the distance between initialization and solution, which is typically unavailable for
unconstrained problems. In summary, the state-of-the-art implementations of DP-SGD all advocate
the gradient clipping technique.
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Table 1: The utility bound and assumptions needed by different algorithms for convex problems,
where d is the problem size, n is the number of data points and ϵ measures the privacy-preserving
ability; see Section 3 for more details. “†” is based on a trivial extension of Bassily et al. (2014).

Algorithms Domain Objective function Light-tail-noise Utility

DP-SGD (Bassily et al., 2014) Bounded Lipschitz cont. No Õ
(√

d/(nϵ)
)

DP-SGD† Bounded Smooth No Õ
(√

d/(nϵ)
)

DP-SGD (Wang et al., 2022) Bounded Hölder smooth No Õ
(√

d/(nϵ)
)

DP-SGD-GC (Ours) Unbounded Smooth Yes Õ
(√

d/(nϵ)
)

Despite the popularity of DP-SGD with gradient clipping (DP-SGD-GC), the convergence of DP-SGD-
GC for unconstrained problems that are not globally Lipschitz continuous has not been well-studied.
In fact, recent works (Chen et al., 2020; Song et al., 2021) have reported that DP-SGD-GC can
suffer from a constant utility in the worst case. With these negative results on the convergence of
DP-SGD-GC, one may consider DP-SGD-GC as an algorithm with a fundamental non-convergence
issue. In this work, we show that this is not the case. With a careful choice of the clipping threshold,
we prove that DP-SGD-GC can achieve the same utility bound as its non-clipped counterpart DP-SGD.
Formally, we summarize our contributions as follows.

• For unconstrained problems that are convex and smooth but not necessarily globally Lipschitz
continuous, we show that DP-SGD-GC can achieve a Õ(

√
d/(nϵ)) utility bound when the noise

generated from the subsampled gradients is light-tailed (Assumption 4.1)1, which is the same
as the utility bound of DP-SGD applies to the Lipschitz continuous problems. See Table 1
for a comparison to existing results. Our convergence analysis of DP-SGD-GC for convex,
smooth and unconstrained problems, to our knowledge, provide the first utility bound without a
non-vanishing bias term.

• We show that our analysis also applies to unconstrained smooth problems that can potentially be
nonconvex. Consequently, DP-SGD-GC can achieve a Õ(

√
d/(nϵ)) gradient norm bound for

smooth problems under the light-tail-noise assumption.

• This work is theoretical in essence but also includes a practical contribution (Section 5). We
develop a novel value clipping technique for problems that satisfy the weak growth condition
(Definition 3.1). The proposed value clipping technique can be implemented within one forward-
backward propagation on existing learning platforms and can alleviate the computation overhead
caused by gradient clipping. The efficiency of value clipping is demonstrated on real datasets.

2 RELATED WORK

DP-SGD with gradient clipping was initially proposed by Abadi et al. (2016). Gradient clipping and
its variants have been widely adopted by many privacy-aware training algorithms (Andrew et al.,
2021). Despite the popularity of gradient clipping, the convergence rate of DP-SGD-GC without the
Lipschitz continuous and bounded domain assumptions remains a challenging task; see (Wang et al.,
2022, Remark 5) for a short discussion on the hardness of removing the bounded domain assumption.
This challenging research question was not carefully studied until the recent works from Chen
et al. (2020) and Song et al. (2021), who provided counter-examples showing that DP-SGD-GC
can suffer from a constant utility in the worst case. Chen et al. (2020) studied the convergence of
DP-SGD-GC to a stationary point in the nonconvex setting and showed that an additional assumption
on gradient distribution is sufficient to derive a meaningful utility bound. Song et al. (2021) showed
that DP-SGD-GC converges to a perturbed objective function for the generalized linear model and
can suffer from a constant utility for the original objective in the worst case. Note that there are
some other recent works that study the convergence of DP-SGD-GC for smooth objective (Du et al.,
2021; Wu et al., 2021; Yang et al., 2022), the rates in these works usually involve a bias term due
to clipping. A concurrent work from Bu et al. (2022) suggests that a small clipping threshold can
yield promising performance for DP-SGD-GC in certain scenarios, such as training language models.
Their empirical discovery contrasts with the theoretical analysis in this work as our proof technique
relies on a large clipping threshold. Bu et al. (2022)’s experiments indicate that the analysis in this

1The light-tail assumption is standard for deriving high probability error bound of SGD in the literature.
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work may be further improvable; rigorous theoretical justification for the phenomenon described
by Bu et al. (2022) is worth future investigation. Another concurrent work from Yang et al. (2022)
studied the convergence of DP-SGD-GC under the generalized smooth condition, their analysis relies
on a different set of assumptions and do not overlap with this work.

On the practical side, the original implementation of gradient clipping was inefficient as one needs
to calculate the norm of each individual sample in every iteration. Many works (Goodfellow, 2015;
Abadi et al., 2016; Rochette et al., 2019; Bu et al., 2021; Subramani et al., 2021) have been carried
on to improve the efficiency of DP-SGD-GC from either engineering or algorithmic perspective. Our
proposed value clipping technique can be viewed as an alternative to the classic gradient clipping.

3 PRELIMINARIES

Notation Throughout this paper, for any positive integer n, we denote [n] := {1, 2, . . . , n}. We
denote ∥ · ∥ to be the vector 2-norm or matrix operator norm if not otherwise specified. We use the
notation Õ(·) to hide poly-logarithmic terms.

We consider the empirical-risk minimization (ERM) problem

minimize
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), (P)

where n is the number of training samples, fi’s are differentiable functions and w is the model
we wish to train. Throughout the paper, we assume that f is bounded below and its minimum is
attainable. We letW∗ to be the set of solutions for problem (P), and denote the optimal function
value as f∗. We assume that a lower bound of f∗ is known as a prior. Note that this assumption holds
in many realistic settings, for example the ERM problems are usually lower bounded by zero.

Next we introduce the weak growth condition (WGC), which is the cornerstone for our analysis.

Definition 3.1. A function h : Rd → R is (β1, β2)-WGC for some β1 > 0, β2 ≥ 0 if

∥∇h(w)∥2 ≤ β1

(
h(w)− infu∈Rd h(u)

)
+ β2 ∀w ∈ Rd.

The weak growth condition bounds the norm of the gradient by a linear function of the objective
value. WGC is gaining increasing interest in recent years as multiple works have demonstrated that
WGC and its variants can improve the classic analysis of SGD-type algorithms (Schmidt & Roux,
2013; Needell et al., 2014; Vaswani et al., 2019; Qian et al., 2019; Stich, 2019; Khaled & Richtárik,
2020; Fang et al., 2021; Gower et al., 2021). It is easy to show that smooth functions that are bounded
below necessarily satisfy WGC; the following Lemma makes this precise.

Lemma 3.2. If a function h : Rd → R is L-smooth for some L > 0 and bounded below, e.g.,
infw∈Rd h(w) > −∞. Then h is (2L, 0)-WGC.

We stress that WGC is not a strong assumption. In fact, a wide range of nonconvex and nonsmooth
problems arising from the ERM problem also satisfy WGC, e.g., the Lipschitz continuous model
with smooth and convex loss function; see Fang et al. (2021, § 4.1) and Section D for more details.

We recall the standard definition of differential privacy (DP).

Definition 3.3 (Dwork, 2006). A randomized algorithm A is (ϵ, δ)-differentially private if for all
neighboring datasets D,D′ and for all events S in the output space of A, we have

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ.

If δ = 0, then A is said to be ϵ-differentially private.

The detailed algorithm of DP-SGD-GC is shown in Algorithm 1. It has been shown that DP-SGD-GC
is (ϵ, δ)-DP as long as the noise level σ is larger than certain threshold (Theorem 3.4).

Theorem 3.4 (Abadi et al., 2016, Theorem 1). Let q = B/n, where B is the batch size and n is the
number of data points. There exist constants c1 and c2, such that for any ϵ < c1q

2T , Algorithm 1 is

(ϵ, δ)-DP for any δ > 0 if σ ≥ c2
q
√

T log(1/δ)

ϵ .
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Algorithm 1 Differential-private SGD with gradient clipping (DP-SGD-GC)

1: Input: number of iteration T ∈ N, clipping threshold C > 0, noise level σ > 0, batch size
B ∈ [1, n], learning rate η > 0, initial iterate w(0).

2: for t← 0, . . . , T − 1 do
3: Sample a mini-batch Bt, where each data has probability B/n to be sampled;
4: g

(t)
i = ∇fi(w(t)) ∀i ∈ Bt;

5: g̃
(t)
i = g

(t)
i /max{1, ∥g(t)i ∥/C}, ∀i ∈ Bt;

6: w(t+1) = w(t) − η 1
B

(∑
i∈Bt

g̃
(t)
i + ξ(t)

)
, where ξ(t) ∼ N (0, C2σ2Id×d);

7: end for
8: Return: w(i) where i is uniform randomly sampled from {0, 1 . . . , T}.

4 MAIN THEORETICAL RESULTS

We present our main theoretical contributions in this section. Denote wpriv as the output of Algo-
rithm 1. We are interested in the upper bound of the excess empirical risk f(wpriv) − f∗ and the
gradient norm square ∥∇f(wpriv)∥2 without assuming fi’s to be Lipschitz continuous in Rd. Part
of our analysis relies on assuming the noise generated from subsampled gradients is “light-tailed”
(sub-Gaussian). Formally, we introduce the following assumption2.

Assumption 4.1. There exist ρ > 0 such that
Ei

[
exp

(
∥∇fi(w)−∇f(w)∥2/ρ2

)]
≤ e, ∀w ∈ Rd.

We note that the above light-tail assumption is a widely used assumption for the analysis of high
probability utility bound of SGD (Nemirovskii et al., 2009; Juditsky & Nesterov, 2014; Ghadimi
& Lan, 2013; Harvey et al., 2019; Feldman et al., 2020). Assumption 4.1 does not imply fi’s to be
globally Lipschitz continuous on Rd, and therefore will not trivialize our analysis. Note that there
is a recent trend on analyzing SGD and its variants with heavy-tail gradient noise (Gürbüzbalaban
et al., 2021). Our analysis does not apply to the heady-tail setting because our Proposition 4.2 relies
crucially on the light-tail-noise assumption.

The idea of our proof is concise. We first summarize the proof sketch as follows, and then explain the
technical details step by step.

Proof sketch:

• Assuming that the initial objective gap f(w(0))− f∗ is bounded. We are able to prove that,
with high probability, the iterates generated from SGD have bounded objective values that
only logarithmically depend on T .

• The weak growth condition allows us to convert the objective value upper bound to the
gradient norm upper bound. Thus, with high probability, gradient clipping will never happen
during the process of DP-SGD if the clipping threshold C is chosen appropriately.

• Finally, we can apply the classic convergence analysis of SGD (without gradient clipping)
and obtain a non-trivial excess empirical risk or gradient norm upper bound.

To begin with, we develop a uniform upper bound on the objective values, e.g., f(w(t)) where w(t)’s
are the iterates generated from the vanilla SGD algorithm (Algorithm 2) with sub-Gaussian noise.

Proposition 4.2 (Uniform upper bound on objective values of SGD with sub-Gaussian noise). Assume
f is L-smooth for some L > 0 and there exist σ̃ > 0 such that E[exp(∥ζ(t)∥2/σ̃2)] ≤ e for any

t ∈ N. Denote {w(t)}Tt=0 as the iterates generated from Algorithm 2 with η ≤ min
{

1
2L ,

1
σ̃
√
T

}
.

Then for any δ ∈ (0, 1),

max
t∈{0,1,...,T}

(
f(w(t))− f∗

)
≤ 2

(
f(w(0))− f∗

)
+O (log(T/δ))

with probability at least 1− δ.
2Note that there are several equivalent (up to constant) definitions of sub-Gaussian variable; see Vershynin,

2018, Proposition 2.5.2. These definitions are often used interchangeably in the literature.
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Algorithm 2 Stochastic gradient descent

1: Input: total iterations T ∈ N, learning rate η > 0, initial iterate w(0).
2: for t← 0, . . . , T − 1 do
3: w(t+1) = w(t) − η

(
∇f(w(t)) + ζ(t)

)
;

4: end for
5: Return: w(i) where i uniform randomly sampled from {0, 1 . . . , T}.

The conclusion stated in Proposition 4.2 may seem obvious at first glance as the training algorithm is
expected to produce almost decreasing objective values during the optimization process. However,
we note that deriving a nearly constant upper bound of f(w(t)) − f∗ that holds uniformly over
t ∈ {0, 1 . . . , T} without assuming Lipschitz continuity or bounded domain is nontrivial. Our proof
relies on a recently proposed technical tool called the generalized Freedman inequality (Harvey et al.,
2019); see Section B.1 for the detailed proof of Proposition 4.2. We also remark that Proposition 4.2
holds for the standard SGD algorithm without considering differential privacy, and thus may be of
independent interest.

Based on Proposition 4.2, we can further obtain an upper bound on each individual loss fi(w(t))− f∗
i

under Assumption 4.1, and therefore also upper bound ∥∇fi(w(t))∥ via the weak growth condition.

Proposition 4.3. Assume fi’s are L-smooth for some L > 0 and there exist σ̃ > 0 such that
E[exp(∥ζ(t)∥2/σ̃2)] ≤ e for any t ∈ N. Denote {w(t)}Tt=0 as the iterates generated from Algorithm 2

with η ≤ min
{

1
2L ,

1
σ̃
√
T

}
. Then for any δ ∈ (0, 1),

max
i∈[n],t∈[T ]

∥∇fi(w(t))∥ ≤
√
2β1(f(w(0))− f∗) +O

(√
log(1/δ) +

√
log T +

√
log n

)
(1)

holds with probability at least 1− δ for any δ ∈ (0, 1).

When Assumption 4.1 holds, Proposition 4.3 suggests that the upper bound of the maximum gradient
norm logarithmically depends on δ, T and n (eq. (1)).

Now we are ready to present our excess empirical risk bound and gradient norm bound for DP-SGD-
GC in terms of conditional expectation.

Proposition 4.4 (Convergence on conditional expectation). Assume that Assumption 4.1 holds. De-
note wpriv as the output of Algorithm 1 and define E := {∥fi(w(t))∥ ≤ C ∀i ∈ [n], t ∈ {0, 1 . . . , T}}
as the event of no clipping happens during the training of Algorithm 1. Let Df := f(w(0)) − f∗.
Given any ϵ > 0 and δ, δ′ ∈ (0.5, 1).

• Assume fi’s are convex and L-smooth for some L > 0. set T > ϵ/c1,

σ =
c2B

√
T log(1/δ)

nϵ
, C =

√
c3 + c4 log(nT/δ′), η = min

{
1

2L
,

c5B√
(Bρ2 + C2dσ2)T

}
,

(2)

where c1, c2, c5 are some absolute constants and c3, c4 are constants that depend on L and Df .
We have that Algorithm 1 is (ϵ, δ)-DP, Pr[E ] ≥ 1− δ′, and

E [f(wpriv)− f∗ | E ] ≤ O

 1

T
+

1√
BT

+

(√
log(1/δ′) +

√
log(Tn)

)√
d log(1/δ)

nϵ

 .

• Assume fi’s are L-smooth for some L > 0. Setting ϵ, σ, C, η as in eq. (2). It holds that Algorithm 1
is (ϵ, δ)-DP, Pr[E ] ≥ 1− δ′, and

E
[
∥∇f(wpriv)∥2 | E

]
≤ O

 1

T
+

1√
BT

+

(√
log(1/δ′) +

√
log(Tn)

)√
d log(1/δ)

nϵ

 .
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While the bounds stated in Proposition 4.4 are close to our objective, we note that these bounds
are expressed in terms of conditional expectation where the conditioning event happens with high
probability, which is different from the classic notion of convergence in expectation. Fortunately, we
show that it is easy to convert the bounds in Proposition 4.4 to expected utility bound when the random
variable f(wpriv)− f∗ (or ∥∇f(wpriv)∥2) is sub-exponential, which is true under Assumption 4.1.
Lemma A.9 serves as the main technical tool for this conversion.

Theorem 4.5 (Convergence on expectation). Suppose that Assumption 4.1 holds. Denote wpriv as
the output of Algorithm 1. Let Df := f(w(0)) − f∗. Given any ϵ > 0 and δ ∈ (0.5, 1). Setting
T, σ, η in the same way as eq. (2) and let C =

√
c3 + c4 log(nT ), where c1, c2, c5 are some absolute

constants and c3, c4 are constants that depend on L,Df .

• Assume fi’s are convex and L-smooth for some L > 0. Then Algorithm 1 is (ϵ, δ)-DP and

E [f(wpriv)− f∗] ≤ Õ

(
1

T
+

1√
BT

+

√
d

nϵ

)
.

Consequently, we have E [f(wpriv)− f∗] = Õ
(
d1/2(nϵ)−1

)
by setting T = Θ

(
n2ϵ2d−1

)
.

• Assume fi’s are L-smooth for some L > 0. Then Algorithm 1 is (ϵ, δ)-DP and

E
[
∥∇f(wpriv)∥2

]
≤ Õ

(
1

T
+

1√
BT

+

√
d

nϵ

)
.

Consequently, we have E
[
∥∇f(wpriv)∥2

]
= Õ

(
d1/2(nϵ)−1

)
by setting T = Θ

(
n2ϵ2d−1

)
.

Remark 4.1. Our results suggest that, when the problem is smooth, the Lipschitz continuous and
bounded domain assumptions can be removed almost for free when analyzing DP-SGD-GC with
light-tailed gradient noise; the only cost is some logarithmic terms.

Remark 4.2. Our analysis also holds for DP-GD-GC. When analyzing DP-GD-GC, Assumption 4.1
is no longer required. However, when Assumption 4.1 does not hold, there will be an additional
multiplicative term

√
n appear in eq. (1) and the final utility bound is Õ(

√
d/(
√
nϵ)).

Theorem 4.5 is the main theoretical contributions of this paper. The bounds stated in Theorem 4.5
nearly match the rate O(log(1/δ)d1/2(nϵ)−1), which is the best-known bound of DP-SGD with
the Lipschitz continuous or bounded domain assumption (Bassily et al., 2014). To our knowledge,
for unconstrained smooth problems, this is the first utility bound of DP-SGD-GC without a non-
vanishing bias term. Note that existing lower bound analyses for DP-SGD either assume the domain
is bounded (Bassily et al., 2014) or the loss is Lipschitz continuous (Song et al., 2021). Therefore
those lower bounds are not comparable with the upper bounds stated in Theorem 4.5. We leave the
lower bound of DP-SGD-GC for unconstrained smooth problems as a future direction to explore.

5 VALUE CLIPPING

This section focuses on the practical side of DP-SGD-GC. A well-known implementation issue of
Algorithm 1 is that the gradient clipping step (line 4 of Algorithm 1) requires to access the norm
of each individual gradient from the sampled batch, and naive implementation of DP-SGD-GC on
current deep learning platforms cannot fully exploit the parallelism of GPU; see some attempts that try
to mitigate this issue (Goodfellow, 2015; Rochette et al., 2019; Bu et al., 2021). The state-of-the-art
implementation of DP-SGD-GC is from Subramani et al. (2021), who developed a highly engineered
approach to exploit language primitives, compilation, and vectorization on certain deep learning
platforms. In this section, we propose a value clipping technique for functions that satisfy the weak
growth condition (Definition 3.1). The proposed value clipping can be viewed as an alternative to the
classic gradient clipping technique that is easy to implement on all existing deep learning platforms
such as PaddlePaddle.

The intuition behind value clipping is simple — when fi’s satisfy the weak growth condition, the
norm of their gradients can be bounded by a function of their objective values, e.g., ∥∇fi(w)∥ ≤√
β1(fi(w)− f∗

i ) + β2, therefore scaling the gradient by
√
β1(fi(w)− f∗

i ) + β2 ensures the scaled
gradient has a bounded norm. Formally,
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Algorithm 3 Differential-private SGD with value clipping (DP-SGD-VC)

1: Input: number of iteration T ∈ N, clipping threshold C > 0, noise level σ > 0, batch size
B ∈ [1, n], learning rate η > 0, initial iterate w(0), WGC parameters β1 > 0, β2 ≥ 0, f∗

lb ∈ R
that lower bound f∗

i ∀i ∈ [n].
2: for t← 0, . . . , T − 1 do
3: Sample a mini-batch Bt, where each data have probability B/n to be sampled;

4: g̃
(t)
i = ∇fi(w(t))/max

{
1,
√

β1(f(w(t))− f∗
lb) + β2/C

}
∀i ∈ Bt;

5: w(t+1) = w(t) − η 1
B

(∑
i∈Bt

g̃
(t)
i + ξ(t)

)
, where ξ(t) ∼ N (0, C2σ2Id×d);

6: end for
7: Return: w(i) where i uniform randomly sampled from {0, 1 . . . , T}.

∀w ∈ Rd, g̃ := fi(w)/max

{
1,

√
β1(fi(w)− f∗

i ) + β2

C

}
=⇒ ∥g̃∥ ≤ C.

The detailed algorithm of DP-SGD with value clipping, termed DP-SGD-VC, is shown in Algorithm 3.
Note that DP-SGD-VC requires knowing the WGC parameters β1, β2 and a lower bound of f∗

i ’s as
its input. The WGC parameters for simple models, including linear and logistic regression, are easy
to calculate. For feed-forward neural networks, the calculation of WGC parameters is achievable but
more involved; see Appendix D for details. It is easy to verify that DP-SGD-VC is (ϵ, δ)-DP because
the norm of the clipped gradient is guaranteed to be bounded by C; the following corollary is a direct
consequence of Theorem 3.4 and describes the DP property of DP-SGD-VC.

Corollary 5.1. Assume fi’s are (β1, β2)-WGC for some β1 > 0, β2 ≥ 0. Let q = B/n, where B is
the batch size and n is the number of data points. There exist constants c1 and c2, such that for any
ϵ < c1q

2T , Algorithm 3 is (ϵ, δ)-DP for any δ > 0 if σ ≥ c2q
√
T log(1/δ)ϵ−1.

Remark 5.1. DP-SGD-VC is easy to implement on existing auto-differentiation based deep learning
platforms. The value clipping step (line 4 of Algorithm 3) can be realized within one forward-
backward propagation if the WGC parameters are given in advance. Therefore DP-SGD-VC can be
as fast as the vanilla SGD algorithm.

6 NUMERICAL STUDY

We conduct experiments on two standard image classification benchmark datasets: MNIST (LeCun,
1998) and CIFAR10 (Krizhevsky & Hinton, 2009). In Appendix, we also present some experimental
results on synthetic data with light-tailed noise. For MNIST, we train a linear classifier and a two-
layer MLP with 128 hidden nodes respectively. For CIFAR10, to achieve decent accuracy, we use a
pre-trained VGG16 network (Simonyan & Zisserman, 2015) to extract informative high-level features.
Based on the 512-dimensional extracted features, we train a linear classifier and a two-layer MLP
with 128 hidden nodes respectively.

Implementation details For all experiments, we set the batch size B = 128, the noise level σ = 1.0
and the confidence level δ = 10−5. For MNIST, we try learning rate in {2× 10−3, 5× 10−3, 10−2}
for each experiment and report the best result. For CIFAR10 we fix the learning rate to be 0.1. All
experiments are conducted on a server with 4 CPUs and one NVIDIA Tesla P100 GPU.

6.1 THE EVOLUTION OF CLIPPING FREQUENCY DURING TRAINING

We run DP-SGD-GC with different clipping thresholds. In particular, we try C ∈ {1, 5, 20, 40} and
C ∈ {0.1, 0.2, 0.4, 1.0} for MNIST and CIFAR10 respectively. The evolutions of training accuracy
and clipping frequency per epoch with different clipping thresholds are shown in Figure 1. We can
observe that, in most cases, the clipping frequency decreases as the training accuracy goes up. This
observation aligns with the WGC as lower training loss implies a smaller average gradient norm and
further results in lower clipping frequency. We also see that, in most cases, the clipping frequency can
become close to 0 when the clipping threshold is chosen appropriately; this observation is consistent
with our theoretical analysis. Another interesting observation is the result of training the two-layer
neural network with MNIST and C ∈ {20, 40}. The clipping frequency is small initially and becomes
stable at 15% instead of decreasing to zero. We conjecture that this phenomenon is because the WGC
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Figure 1: The evolution of training accuracy and clipping frequency during DP-SGD-GC, where
the solid line represent training accuracy and the dashed line denote the clipping frequency
per epoch. The left two figures present the results on the MNIST dataset, the algorithm is about
(1.0379, 10−5)-DP. The right two figures show the results on the CIFAR10 dataset (feature extracted
by a pretrained VGG16 network), the algorithm is about (0.9580, 10−5)-DP.

Figure 2: Value clipping (VC) versus gradient clipping (GC) in terms of training accuracy.

Figure 3: Value clipping (VC) versus gradient clipping (GC) in terms of testing accuracy.

parameters of the neural network grow as the training goes and thus prevent some gradient norms
from being smaller than the clipping threshold.

6.2 THE EVALUATION OF DP-SGD-VC

We set f∗
lb = 0 for all experiments with DP-SGD-VC. The calculation of the WGC parameters for

a feed-forward neural network with cross-entropy loss is given in Section D, where β2 = 0 and
β1 depends on the spectral norm of each layer of neural networks. Compared with vanilla SGD,
DP-SGD-VC has an additional cost to calculate the spectral norm of each layer in each iteration. As
shown in the following content, the overhead of calculating the spectral norm is not significant.

Training and testing accuracy The training and testing accuracy of DP-SGD-GC and DP-SGD-
VC with different clipping thresholds are shown in Figure 2 and Figure 3. We can observe that
DP-SGD-VC converges slightly slower than DP-SGD-GC in terms of the epoch. This observation
should not be surprising as DP-SGD-VC uses an upper bound of the gradient norm for clipping and
will result in a smaller effective learning rate than DP-SGD-GC. For CIFAR10, the training and
testing are easy as the model is trained on pre-trained features; both DP-SGD-VC and DP-SGD-GC
can achieve similar accuracy at the end of training. For MNIST, there is an unfortunate loss of training
and testing accuracy. For MNIST with the linear model, there is a ∼ 2% loss in training and testing

8
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Table 2: Per epoch runtime of different methods. SGD without gradient clipping is the baseline
method; Micro-batching is the naive implementation of DP-SGD-GC; GC and VC are the classic
gradient clipping and the proposed value clipping, respectively. We bold the shortest per epoch
runtime among methods besides SGD.

Data Model SGD Micro-batching GC-Opacus DP-SGD-VC

MNIST Linear 6.83s 34.82s 12.80s 8.62s
MNIST 2-layer NN 6.91s 43.75s 16.61s 8.96s
CIFAR Linear 0.58s 23.99s 4.13s 1.25s
CIFAR 2-layer NN 0.65s 30.86s 7.47s 1.70s

accuracy. For MNIST with two-layer NN, there is a 2 ∼ 3% loss in training and testing accuracy
for C ∈ {20, 40} and a ∼ 4% loss for C = 10. The gap between DP-SGD-GC and GP-SGD-VC
is more obvious when the clipping threshold is small. We conjecture that the loss of training and
testing accuracy is due to our estimation of f∗

i . The estimation f∗
lb = 0 is accurate for CIFAR10

as the model can almost perfectly fit all pre-trained data. However, the estimation is inaccurate for
MNIST and thus results in a loose upper bound of the gradients’ norm.

Comparing the computational time per epoch We report the per epoch runtime of different
algorithms in Table 2. All experiments are conducted on a server with one NVIDIA Tesla P100 GPU.
The vanilla SGD without privacy consideration is the baseline method and is the fastest among all
algorithms. Micro-batching is the naive implementation of DP-SGD-GC and is significantly slower
than SGD. GC-Opacus is the implementation of DP-SGD-GC from the (highly optimized) Opacus
package; we can see that there is still a gap between the performance of GC-Opacus and the standard
non-private SGD algorithm. DP-SGD-VC is our implementation of DP-SGD with the proposed
value clipping technique. We can observe that DP-SGD-VC is slightly slower than the standard SGD
algorithm and faster than other private training methods.

Limitations Despite the efficiency of DP-SGD-VC, it also has certain limitations: (i) as shown in
the experiments, DP-SGD-VC may cause some loss in training/testing accuracy if our estimation for
the WGC parameters is loose; (ii) DP-SGD-VC requires calculating the WGC parameters, which
we show is available for feed-forward neural works with cross-entropy loss. However, it would
be hard to apply VC to more complicated network architectures with arbitrary loss in a black-box
manner, e.g., transformers with ranking loss. Overall, we consider DP-SGD-VC as an alternative for
DP-SGD-GC that is computationally cheap; DP-SGD-VC can perform similarly to DP-SGD-GC in
certain scenarios but can also be not applicable in other situations.

7 CONCLUSION AND FUTURE WORK

This paper studied the convergence behavior of a widely used privacy-preserving learning algorithm
called DP-SGD-GC. Our analysis extended the convergence of DP-SGD-GC to smooth and uncon-
strained problems without assuming the objective to be globally Lipschitz continuous. We believe that
our theoretical results improved the current understanding of DP-SGD-GC and provided new insights
for practitioners and researchers to use DP-SGD-GC and design new algorithms. Our analysis can
potentially be used for other privacy-preserving learning algorithms such as adaptive DP-SGD (Asi
et al., 2021) and DP-SGD with subspace identification (Zhou et al., 2021; Song et al., 2021).

Our work implies some future directions. Firstly, the light-tail noise condition may not hold in some
machine learning applications (Gürbüzbalaban et al., 2021). In these scenarios, the utility bound of
DP-GD-GC (Remark 4.2) is

√
n worse than the best-known bound of DP-SGD-GC for Lipschitz

functions. Whether it is possible to further improve the utility bound with heavy-tail-noise is an
interesting question. Another direction is to explore the lower bound of DP-SGD-GC with a carefully
tuned clipping threshold for smooth and unconstrained problems. Lastly, we may also combine our
analysis with more methods and schemes in optimization, e.g., adaptive gradient methods, gradient
compression, and distributed optimization (Kingma & Ba, 2015; Agarwal et al., 2018; Zhou et al.,
2020; Li et al., 2022).
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8 APPENDIX

APPENDIX A LEMMAS

A.1 STANDARD FACTS

Lemma A.1. For any a, b ∈ R, it is true that (a+ b)2 ≤ 2a2 + 2b2.

Lemma A.2. It holds that
∑∞

i=1(i/2
i) = 2.

Lemma A.3. Given n random events A1, A2, . . . , An. It holds that

Pr[∪ni=1Ai] = Pr[A1] + Pr[Ac
1 ∩A2] + . . .+ Pr[∩n−1

i=1 A
c
i ∩An].

A.2 SUB-GAUSSIAN AND SUB-EXPONENTIAL PROPERTIES

Lemma A.4 (Sub-Gaussian properties, Vershynin, 2018, Proposition 2.5.2). Let X be a random
variable. Then the following properties are equivalent; the parameters Ki, i = 1, . . . , 4 differ from
each other by at most an absolute constant factor.

• The tails of X satisfy

Pr[|X| ≥ t] ≤ 2 exp(−t2/K2
1 ) ∀t ≥ 0.

• The moment generating function (MGF) of X2 satisfies

E[exp(λX2)] ≤ exp(K2
2λ) ∀λ ∈ [0, 1/K2

2 ].

• The MGF of X2 is bounded at some point, e.g.,

E[exp(X2/K2
3 )] ≤ e.

• E[X] = 0 and the MGF of X satisfies

E[exp(λX)] ≤ exp(K2
4λ

2) ∀λ ∈ R.

Lemma A.5 (Harvey et al., 2019, Lemma A.4). Let X1, X2, . . . , Xn be random variables. Assume
that there exist K1,K2, . . . ,Kn > 0 such that E[exp(λXi)] ≤ exp(λKi) for all 0 ≤ λ ≤ 1/Ki.
Then E[exp(λ

∑n
i=1 Xi)] ≤ exp(λ

∑n
i=1 Ki) for all 0 ≤ λ ≤ 1/

∑n
i=1 Ki.

Lemma A.6 (Harvey et al., 2019, Claim A.7). Suppose X is a random variable such that there
exists constants c and K such that E[exp(λX)] ≤ c exp(λK) for all 0 ≤ λ ≤ 1/K. Then for any
δ ∈ (0, 1), Pr[X ≥ K log(1/δ)] ≤ ceδ.

Note that the original lemmas from Harvey et al. (2019) assume E[exp(λX)] ≤ exp(λK) for all
λ ≤ 1/K. It is easy to check that their results also hold for X such that E[exp(λX)] ≤ exp(λK)
for all 0 ≤ λ ≤ 1/K.

Lemma A.7. Let X1, X2, . . . , XT be random variables such that E[exp(λXi)] ≤ exp(λK) ∀λ ∈
[0,K] for all i ∈ {1, 2, . . . , T}. Then there exists absolute positive constant c such that

Pr
[∑T

i=1 Xi ≥ TK log(1/δ)
]
≤ ceδ for any δ ∈ (0, 1).

Proof. By Lemma A.5,

E

[
exp

(
λ

T∑
i=1

Xi

)]
≤ exp(TKλ) ∀λ ∈ [0, (TK)−1].

Then Lemma A.6 gives

Pr

[
T∑

i=1

Xi ≥ TK log(1/δ)

]
≤ ceδ ∀δ ∈ (0, 1).

The above finishes the proof.
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Lemma A.8 (Tail bound for the maximum of sub-Gaussian variables). Let X1, X2, . . . , Xn be
random variables. Assume that there exist K > 0 such that E[exp(λXi)] ≤ exp(λ2K2) for all
λ ∈ R and i ∈ [n]. Then there exist some absolute positive constant c such that

Pr

[
max
i∈[n]
|Xi| ≥ cK

√
log(2n) + ct

]
≤ exp(−t2/K2) ∀t ≥ 0.

Proof. By Lemma A.4, there exist some absolute constant c > 0 such that

Pr[|Xi| ≥ t] ≤ 2 exp
(
−t2/(c2K2)

)
∀t ≥ 0, i ∈ [n].

Then we simply apply union bound to obtain the conclusion. For any t ≥ 0,

Pr

[
max
i∈[n]
|Xi| ≥ cK

√
log(2n) + ct

]
≤

n∑
i=1

Pr
[
|Xi| ≥ cK

√
log(2n) + ct

]
≤ 2n exp

(
−(cK

√
log(2n) + ct)2/(c2K2)

)
≤ exp(log(2n)) exp

(
−K2 log(2n)

K2
−

2tK
√

log(2n)

K2
− t2

K2

)

= exp

(
−
2tK

√
log(2n)

K2
− t2

K2

)
≤ exp(−t2/K2),

which yields the desired result.

Lemma A.9. Let X be a random variable and E be a random event such that E[|X| | E ] ≤ α and
Pr[E ] ≥ 1 − δ for some α > 0, δ ∈ (0, 1). If X satisfies Pr[|X| − β ≥ t] ≤ 2 exp(−t/K) ∀t ≥ 0
for some β,K > 0. Then

E [|X|] ≤ α+ δβ + δ log(8/δ)K.

Proof. Let Q : [0, 1]→ R ∪ {∞} be the quantile function for the random variable |X|, e.g.,

Q(p) = inf
{
x ∈ R

∣∣ p ≤ Pr[|X| ≤ x]
}

∀p ∈ [0, 1].

By the assumption that |X| − β is sub-exponential, we have that

Q(1− δ′) ≤ β +K log(2/δ′) ∀δ′ ∈ (0, 1). (3)

Now we are ready to prove the conclusion. First notice that

E[|X|] = Pr[E ]E[|X| | E ] + Pr[Ec]E[|X| | Ec]
≤ α+ E[|X| · 1Ec ], (4)

where 1Ec is the indicator function with the event Ec. The remaining is to bound E[|X| · 1Ec ].
Define a new set of events Ai :=

{
|X| ∈

[
Q
(
1− δ

2i−1

)
, Q
(
1− δ

2i

)]}
, i = 1, 2, . . ., and denote

the probability measure space as (Ω,F , µ). Then

E[|X| · 1Ec ] =

∫
Ω

|X| · 1Ecdµ(ω)

≤
∫
Ω

|X| · 1|X|≥Q(1−δ)dµ(ω)

≤
∞∑
i=1

∫
Ω

|X| · 1Ai
dµ(ω)

≤
∞∑
i=1

δ

2i
Q

(
1− δ

2i

)
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(i)

≤ δβ +

∞∑
i=1

δ

2i
K log

(
2i+1

δ

)

≤ δβ + δK

( ∞∑
i=1

1

2i
((i+ 1) log(2) + log(1/δ))

)
(ii)

≤ δβ + δK(3 log(2) + log(1/δ)),

where (i) is by eq. (3) and (ii) is by the standard scalar inequality (Lemma A.2). The above together
with eq. (4) yields the desired result.

A.3 THE GENERALIZED FREEDMAN INEQUALITY

We restate the generalized Freedman inequality and its corollary from Harvey et al. (2019).

Lemma A.10 (Generalized Freedman Inequality, Harvey et al., 2019, Theorem 3.2). Let {di,Fi}Ti=1
be a martingale difference sequence. Suppose vi−1 ≥ 0,∀i ∈ [T ] are Fi−1-measurable random
variables such that E[exp(λdi) | Fi−1] ≤ exp(λ

2

2 vi−1) for all i ∈ [T ], λ > 0. Let St =
∑t

i=1 di
and Vt =

∑t
i=1 vi−1. Let αi ≥ 0 and α = maxi∈[T ] αi. Then

Pr

[
T⋃

t=1

{
St ≥ x and Vt ≤

t∑
i=1

αidi + β

}]
≤ exp

(
− x

4α+ 8β/x

)
∀x, β > 0.

The following lemma is an immediate consequence from the generalized Freedman inequality.

Lemma A.11. Let {di,Fi}Ti=1 be a martingale difference sequence. Suppose vi−1 ≥ 0,∀i ∈ [T ]

are Fi−1-measurable random variables such that E[exp(λdi) | Fi−1] ≤ exp(λ
2

2 vi−1) for all
i ∈ [T ], λ > 0. Let St =

∑t
i=1 di and Vt =

∑t
i=1 vi−1. Let δ ∈ (0, 1) and suppose there are

positive values R(δ) > 0 and non-negative values {α(t)
i , i = 1, 2, . . . , T, t = 1, 2, . . . , T} such that

Pr

[
T⋂

t=1

{
Vt ≤

t∑
i=1

α
(t)
i di +R(δ)

}]
≥ 1− δ.

Let α = maxi∈[T ],t∈[T ] α
(t)
i . Then

Pr

[
T⋃

t=1

{St ≥ x}

]
≤ δ + T exp

(
− x

4α+ 8R(δ)/x

)
∀x, β > 0.

Proof. Given δ ∈ (0, 1), x ∈ R. Define the events At := {St ≥ x} and Bt :={
Vt ≤

∑t
i=1 α

(t)
i di +R(δ)

}
. Then

Pr

[
T⋃

t=1

{St ≥ x}

]
= Pr

[
T⋃

t=1

At

]

= Pr

[(
T⋃

t=1

At

)⋂(
T⋂

t=1

Bt

)]
+ Pr

[(
T⋃

t=1

At

)⋂(
T⋂

t=1

Bt

)c]
(i)

≤ Pr

[(
T⋃

t=1

At

)⋂(
T⋂

t=1

Bt

)]
+ δ

≤ Pr

[
T⋃

t=1

(
At

⋂(
T⋂

i=1

Bi

))]
+ δ

≤ Pr

[
T⋃

t=1

(
At

⋂
Bt

)]
+ δ
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Algorithm 4 Stochastic gradient descent

1: Input: total iterations T ∈ N, learning rate η > 0, initial iterate w(0).
2: for t← 0, . . . , T − 1 do
3: w(t+1) = w(t) − η

(
∇f(w(t)) + ξ(t)

)
;

4: end for
5: Return: w(i) where i uniform randomly sampled from {0, 1 . . . , T}.

(ii)

≤
T∑

t=1

Pr
[
At

⋂
Bt

]
+ δ

(iii)

≤ δ + T exp

(
− x

4α+ 8R(δ)/x

)
∀x, β > 0,

where (i) is by the assumption Pr
[
∩Tt=1Bt

]
≥ 1 − δ, (ii) is by union bound (note that we can not

directly use Lemma A.10 since Vt relies on α
(t)
1 , . . . , α

(t)
t instead of α1, . . . , αt), (iii) is by applying

Lemma A.10 for T times.

A.4 OTHER LEMMAS

Recall Lemma 3.2.

Proof of Lemma 3.2. By the smoothness of h, we have

h(v) ≤ h(u) + ⟨∇h(u), v − u⟩+ L

2
∥v − u∥2 u, v ∈ Rd.

Making the identification that v = u−∇h(u)/L. We obtain

h(u−∇h(u)/L) ≤ h(u)− 1

2L
∥∇h(u)∥2

=⇒ inf
v∈Rd

h(v) ≤ h(u−∇h(u)/L) ≤ h(u)− 1

2L
∥∇h(u)∥2

=⇒ ∥∇h(u)∥2 ≤ 2L

(
h(u)− inf

v∈Rd
h(v)

)
∀u ∈ Rd.

Next, we review the standard convergence rate of SGD algorithm in the following lemma.

Lemma A.12 (Ghadimi & Lan, 2013, Theorem 2.1). Denote ŵ as the output of Algorithm 4. Assume
that fi’s are L-smooth for some L > 0, η ≤ 1/L and there exist σ ≥ 0 such that E[∥ξ(t)∥2] ≤ σ2

for all t ∈ N.

• If fi’s are further convex, then

E[f(ŵ)− f∗] ≤ infw∈W∗ ∥w(0) − w∥2

(T + 1)η
+ σ2η,

whereW∗ is the set of solutions.

• If fi’s are not necessarily convex, then

E
[
∥∇f(ŵ)∥2

]
≤

2
(
f(w(0))− f∗)
(T + 1)η

+ Lσ2η.

The following lemma connects the WGC parameters of fi’s to the WGC parameters of f .

Lemma A.13. Assume that fi’s are (β1, β2)-WGC for all i ∈ [n]. Then f := 1
n

∑n
i=1 fi is

(β1, β2 + Γβ1)-WGC, where Γ = 1
n

∑n
i=1(f

∗ − f∗
i ).
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Proof.

∥∇f(w)∥2
(i)

≤ 1

n

n∑
i=1

∥∇fi(w)∥2

(ii)

≤ 1

n

n∑
i=1

β1(fi(w)− f∗
i ) + β2

≤ β1 (f(w)− f∗) + Γβ1 + β2,

where (i) is by the convexity of ∥ · ∥2 and (ii) is by the assumption that fi’s are (β1, β2)-WGC.

APPENDIX B PROOFS FOR SECTION 4
B.1 PROOF OF PROPOSITION 4.2
Proof. We begin with the smoothness of f ,

f(w(t+1)) ≤ f(w(t)) + ⟨∇f(w(t)), w(t+1) − w(t)⟩+ L

2
∥w(t+1) − w(t)∥2

= f(w(t))− η∥∇f(w(t))∥2 − η⟨∇f(w(t)), ζ(t)⟩+ Lη2

2
∥∇f(w(t)) + ζ(t)∥2

= f(w(t))−
(
η − Lη2

2

)
︸ ︷︷ ︸

≥ 0

∥∇f(w(t))∥2 + Lη2

2
∥ζ(t)∥2︸ ︷︷ ︸
zt

+(Lη2 − η)⟨∇f(w(t)), ζ(t)⟩︸ ︷︷ ︸
ut

.

(5)

Let

Zt :=

t∑
i=0

zi, Ut :=

t∑
i=0

ui.

Recursively apply eq. (5) gives

f(w(t)) ≤ f(w(0)) + ZT−1 + Ut−1, ∀t = 0, 1, . . . , T. (6)

All we need is to show that ZT−1 and Ut−1 are bounded above with high probability. First, we bound
ZT−1. Notice that ζ(t)’s are sub-Gaussian variables, therefore ZT−1 is sub-exponential. We apply
Lemma A.7, there exist some absolute constant c1 > 0 such that for any δ′ ∈ (0, 0.5),

ZT−1 ≤
Lη2

2

(
c1T σ̃

2 log(1/δ′)
)

≤ c1L log(1/δ′)

2
(By the definition of η) (7)

with probability at least 1− δ′.

Next we bound the term Ut−1. Noticing that {Ut}∞t=0 is a martingale sequence, we bound it by the
generalized Freedman inequality (Lemma A.10). Denote Ft−1 to be the σ-Algebra generated from
{w(1), . . . , w(t)}. Then by the definition of ζ(t), we have

E
[
exp

(
u2
t/((Lη

2 − η)2σ̃2∥∇f(w(t))∥2)
) ∣∣∣ Ft−1

]
≤ e,

where we use the inequality ∥ut∥2 ≤ (Lη2 − η)2∥∇f(w(t))∥2∥ζ(t)∥2. By the properties of sub-
Gaussian variable (Lemma A.4), there exist some absolute constant c2 > 0 such that

E [exp (λut) | Ft−1] ≤ exp

(
λ2

2
c2(Lη

2 − η)2σ̃2∥∇f(w(t))∥2
)
∀λ ∈ R.

Let vt−1 := c2(Lη
2 − η)2σ̃2∥∇f(w(t))∥2. Then

vt−1 ≤ 2c2Lη
2σ̃2(f(w(t))− f∗) (By the weak growth condition)

≤ 2c2L

T
(f(w(t))− f∗) (By η ≤ 1/(σ̃

√
T )) .
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Furthermore, for any t = 0, 1, . . . , T − 1,

Vt :=

t∑
i=0

vi−1

≤ c2

t∑
i=0

(
2L

T
(f(w(i))− f∗)

)

≤ c2

t∑
i=0

2L

T

(
f(w(0))− f∗ + ZT−1 + Ui−1

)
(By eq. (6))

≤ 2c2L(f(w
(0))− f∗ + ZT−1) +

2c2L

T

t∑
i=0

i−1∑
j=0

uj

≤ 2c2L(f(w
(0))− f∗ + ZT−1) +

2c2L

T

t∑
i=0

(t− i)ui (Rearranging)

≤ 2c2L(f(w
(0))− f∗ + ZT−1) + 2c2L

t∑
i=0

t− i

T
ui.

Combining the above with eq. (7), with probability 1− δ′

Vt ≤ 2c2L
(
f(w(0))− f∗ + c1L log(1/δ′)/2

)
+ 2c2L

t∑
i=0

t− i

T
ui ∀t = 0, 1, . . . , T − 1.

Now we are ready to apply Lemma A.11. Making the identification

di = ui, α
(t)
i = 2c2L

t− i

T
, α = 2c2L, R(δ′) = 2c2L

(
f(w(0))− f∗ + c1L log(1/δ′)/2

)
and apply Lemma A.11 gives

Pr

[
T−1⋃
t=0

{Ut ≥ x}

]
≤ δ′ + T exp

(
− x

4α+ 8R(δ′)/x

)
∀x > 0.

It is easy to verify that with the choice x = max
{
4
√

R(δ′) log(T/δ′), 8α log(T/δ′)
}

, we have

Pr

[
T−1⋃
t=0

{Ut ≥ x}

]
≤ 2δ′. (8)

Therefore, with probability at least 1− 2δ′,

max
t=0,1,...,T

f(w(t))− f∗

(i)

≤ f(w(0))− f∗ + c1L log(1/δ′)/2

+ max

{
4
√(

2c2L(f(w(0))− f∗ + c1L log(1/δ′)/2)
)
log(T/δ′), 16c2L log(T/δ′)

}
(ii)

≤
(√

f(w(0))− f∗ + c1L log(1/δ′)/2 + 4
√
c2L log(T/δ′)

)2

(iii)

≤ 2
(
f(w(0))− f∗ + c1L log(1/δ′)/2

)
+ 32c2L log(T/δ′),

where (i) is by eq. (6) and eq. (8), (ii) is by the fact that max{a, b} ≤ a+ b and
√
a+ b ≤

√
a+
√
b

for any a, b ≥ 0, (iii) is by Lemma A.1. Substitute δ′ with δ/2, we obtain the desired result.
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B.2 PROOF OF PROPOSITION 4.3

Proof. By the assumption that fi’s are L-smooth, we know that f is also L-smooth. Therefore f is
(2L, 0)-WGC (By Lemma 3.2), e.g.,

∥∇f(w(t))∥ ≤
√

2L
(
f(w(t))− f∗

)
∀t = 0, 1, . . . , T.

Apply Proposition 4.2. We obtain that

max
t=0,1,...,T

∥∇f(w(t))∥ ≤
√
4L
(
f(w(0))− f∗ + c1L log(2/δ)/2

)
+ 64c2L2 log(2T/δ) (9)

with probability at least 1− δ for some absolute positive constants c1, c2.

The remaining is to bound the individual gradient norm ∥∇fi(w(t))∥. When Assumption 4.1 holds,
we have that

max
i∈[n],t=0,1,...,T

∥∇fi(w(t))∥ ≤ max
t∈{0,1...,T}

∥∇f(w(t))∥+ max
i∈[n],t=0,1,...,T

∥∇fi(w(t))− f(w(t))∥.

By Assumption 4.1, we know that ∥∇fi(w)−∇f(w)∥ is sub-Gaussian for all w ∈ Rd. Therefore
we can apply Lemma A.8 to bound the maximum of sub-Gaussian variables, which gives

max
i∈[n],t=0,1,...,T

∥∇fi(w(t))− f(w(t))∥ < c3ρ
√

log(n(T + 1)) + c3
√
ρ log(1/δ) (10)

for some absolute positive constant c3 > 0 and any δ ∈ (0, 1).

Combining eq. (9) and eq. (10). We obtain that

max
i∈[n],t=0,1,...,T

∥∇fi(w(t))∥ ≤
√
4L
(
f(w(0))− f∗ + c1L log(2/δ)/2

)
+ 64c2L2 log(2T/δ)

+ c3ρ
√
log(n(T + 1)) + c3

√
ρ log(1/δ)

with probability at least 1− 2δ, which yields the desired result eq. (1) under Assumption 4.1.

B.3 PROOF OF PROPOSITION 4.4

Proof. We first consider the case that fi’s are convex and smooth. By Lemma 3.2, we know that fi’s
are (2L, 0)-WGC in this scenario. Setting

C =
√
4L
(
f(w(0))− f∗ + c1L log(2/δ′)/2 + 16c2L log(2T/δ′)

)
+ c3ρ

√
log(n(T + 1)) + c3

√
ρ log(1/δ′),

σ = c4
q
√
T log(1/δ)

ϵ
,

(11)

where c1, c2, c3 correspond to the absolute positive constants that appeared in the proof of Proposi-
tion 4.2, c4 is some positive constant that appeared in Theorem 3.4.

Next we need to apply Proposition 4.3. Denote Bt as the batch sampled at the t-th iteration and let

ζ(t) :=
1

|Bt|

(∑
i∈Bt

∇fi(w(t)) + ξ(t)

)
−∇f(w(t)).

By the definition of ξ(t) and Assumption 4.1, ζ(t)’s satisfy

E
[
∥ζ(t)∥2/

(
c5ρ

2

B
+

c5C
2dσ2

B2

)]
≤ e (by the property of Poisson sampling) ,

where c5 is some positive absolute constant. Let

σ̃2 = c5

(
ρ2

B
+

C2dσ2

B2

)
, η = min

{
1

2L
,

1

σ̃
√
T

}
. (12)
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Then Proposition 4.3 tells us that Algorithm 2 with the above setup of σ̃ and η will produce iterates
such that

∥∇fi(w(t))∥ ≤ C, ∀i ∈ [n], t = 0, 1, . . . , T,

with probability 1− δ′.

The above analysis is based on Algorithm 2. Next, we draw the connection between Algorithm 2
with the above setup of parameters and Algorithm 1 with the parameter setup in eq. (11) and η
defined as in eq. (12). We introduce some new notation to help our analysis. To distinguish between
Algorithm 2 (SGD) and Algorithm 1 (DP-SGD-GC), we denote {w̃(t)}Tt=0 as the iterates from
Algorithm 2 and {w(t)}Tt=0 as the iterates from Algorithm 1. We further let Ẽt and Et as the event
{∥∇fi(w̃(t))∥ ≤ C,∀i ∈ [n]} and {∥∇fi(w(t))∥ ≤ C, ∀i ∈ [n]} respectively. For two random
variables A and B, we denote A ∼ B if A and B are independent and identically distributed.
Consider two independent runs of Algorithm 2 and Algorithm 1 with w̃(0) = w(0), we are going to
show that

• [w̃(0), . . . , w̃(T )] conditioned on the event ∩Tt=0Ẽt has the same distribution as
[w(0), . . . , w(T )] conditional on the event ∩Tt=0Et;

• Pr[∩Tt=0Ẽt] = Pr[∩Tt=0Et].

The first conclusion should be obvious. Given w̃(0) = w(0), we can conclude that w̃(1) ∼ w(1) condi-
tioned on Ẽ0 and E0 (both gradients are bounded), which further implies w̃(2) ∼ w(2) conditioned on
Ẽ1 and E1 and so on.

For the second conclusion, we prove by induction. Given w̃(0) = w(0), the base case Pr[Ẽ0] = Pr[E0]
is obviously true. Next, given Pr[∩mt=0Ẽt] = Pr[∩mt=0Et], we are going to prove Pr[∩m+1

t=0 Ẽt] =
Pr[∩m+1

t=0 Et]. Knowing that

Pr[∩m+1
t=0 Ẽt] = 1− Pr[∪m+1

t=0 Ẽct ]

= 1−
(
Pr[Ẽc0 ] + Pr[Ẽ0 ∩ Ẽc1 ] + . . .+ Pr[∩mt=0Ẽt ∩ Ẽcm+1]

)
(by Lemma A.3) .

We only need to prove that Pr[∩pt=0Ẽt ∩ Ẽcp+1] = Pr[∩pt=0Et ∩ Ecp+1] ∀p = 0, 1, . . . ,m, which
is equivalent to Pr[Ẽcp+1 | ∩

p
t=0Ẽt] Pr[∩

p
t=0Ẽt] = Pr[Ecp+1 | ∩

p
t=0Et] Pr[∩

p
t=0Et]. By induction,

suppose Pr[∩pt=0Ẽt] = Pr[∩pt=0Et] holds. Conditioning on the two events ∩pt=0Ẽt and ∩pt=0Et, it is
obvious that w̃(p+1) ∼ w(p+1) and therefore Pr[Ẽcp+1 | ∩

p
t=0Ẽt] = Pr[Ecp+1 | ∩

p
t=0Et]. Combining

the above together, we prove that Pr[∩m+1
t=0 Et] and finish the induction.

With the above two conclusions, we can transfer the convergence of Algorithm 2 conditioned on the
event ∩Tt=0Ẽt to Algorithm 1 conditioned on the event ∩Tt=0Et.

Next, the conditional convergence of SGD. The proof is simply based on the law of total expectation.
Denote w̃out as the output of Algorithm 2 and Ẽ = ∩Tt=0Ẽt.

E[f(w̃out)− f∗ | Ẽ ] Pr[Ẽ ] + E[f(w̃out)− f∗ | Ẽc] Pr[Ẽc] = E[f(w̃out)− f∗]

=⇒ E[f(w̃out)− f∗ | Ẽ ] Pr[Ẽ ] ≤ E[f(w̃out)− f∗]

(i)
=⇒ E[f(w̃out)− f∗ | Ẽ ] ≤ 2E[f(w̃out)− f∗], (13)

where (i) is by the fact that Pr[Ẽ ] ≥ 1− δ′ ≥ 0.5.

Now we can transfer the convergence of conditional SGD to conditional DP-SGD-GC. Notice that
the term E[∥ξ(t)∥2] in Lemma A.12 is bounded by σ̃2, then the classic convergence rate of SGD
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(Lemma A.12) gives that

E [f(wpriv)− f∗ | E ]

= E
[
f(w̃out)− f∗ | Ẽ

]
≤ 2E [f(w̃out)− f∗] (by eq. (13))

≤ 2D2
w

(T + 1)η
+ 2σ̃2η (by Lemma A.12)

(i)

≤ 4LD2
w

T
+

2D2
wσ̃√
T

+
2σ̃√
T

(ii)

≤ O

(
2LD2

w

T
+

D2
wρ√
BT

+
D2

wCσ
√
d

B
√
T

+
ρ√
TB

+
Cσ
√
d

B
√
T

)
(iii)

≤ O

(
2LD2

w

T
+

D2
wρ√
BT

+
D2

wCq
√
d log(1/δ)

Bϵ
+

ρ√
TB

+
Cq
√

d log(1/δ)

Bϵ

)
(iv)
= O

(
2LD2

w

T
+

D2
wρ√
BT

+
D2

wC
√
d log(1/δ)

nϵ
+

ρ√
TB

+
C
√
d log(1/δ)

nϵ

)
(v)
= O

(
D2

w

T
+

D2
wρ√
BT

+
D2

w(log(1/δ
′) + log(n) + log(T ))

√
d log(1/δ)

nϵ

)
,

where (i) is by the definition of η, (ii) is by the definition of σ̃, (iii) is by the definition of σ (eq. (11)),
(iv) is by the definition of q = B/n, (v) is by noticing C = O(log(1/δ′) + log(n) + log(T )) from
eq. (11).

When fi’s are L-smooth but not necessarily convex. We set the parameters the same as for the
convex case. Apply the convergence rate of SGD for smooth but not necessarily convex functions
(Lemma A.12). Following the same proof template as for the convex case, can we obtain the desired
result.

B.4 PROOF OF THEOREM 4.5

Proof. The outline of the proof is summarized as follows.

• First we show that the excess empirical risk e.g., f(wpriv) − f∗ or gradient norm square
e.g.,∥∇f(wpriv)∥2 are sub-exponential random variables. We also derive a pessimistic
upper bound of their sub-exponential parameters (Lemma B.1)3.

• Next, we develop a technical tool to convert conditional expected error bound (the condi-
tioning event happens with high probability) to expected error bound for sub-exponential
random variables (Lemma A.9).

• Finally, by tuning δ′ (the probability that gradient clipping happens during training; see
Proposition 4.4), Lemma A.9 together with Lemma B.1 and Proposition 4.4 yield the desired
result.

3We do not try to optimize the bound in Lemma B.1 as we show that a loose bound is enough for our purpose.
The bound in Lemma B.1 should be improvable.
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Now we proceed to the detailed proof. Consider the case that fi’s are convex and L-smooth. Let
T, σ, C, η satisfy eq. (2). We apply Lemma A.9 by making the identification

X := f(wpriv)− f∗;

α := O

D2
w

T
+

D2
w√
BT

+
D2

w

(√
log(1/δ′) +

√
log(Tn)

)√
d log(1/δ)

nϵ


β := 2(f(w(0))− f∗) +

T 2C2

L

K :=
T 2C2dσ2

c1LB2
,

where the choice of α is by Proposition 4.4 and the choice of β and K is by Lemma B.1. Then
Lemma A.9 gives that

E[|X|] = α+ δ′β + δ′ log(8/δ′)K

(i)
= Õ

(
1

T
+

1√
BT

+

√
d

nϵ

)
,

where (i) is true by setting

δ′ = min

{
β−1

(
1

T
+

1√
BT

+

√
d

nϵ

)
,K−1

(
1

T
+

1√
BT

+

√
d

nϵ

)}
.

Note that the above proof template works as long as we can construct β,K that polynomially depends
on T, n, d, ϵ — we can tune δ′ to convert all polynomial terms in β and K to polylogarithm terms by
Lemma A.9. We find Lemma A.9 a quite convenient technical tool for our analysis and we are not
aware if this result exist in the literature.

When fi’s are smooth but not necessarily convex. The proof follows exactly the same as the convex
case (just need to let X := ∥∇f(wpriv)∥2, β := 4L(f(w(0)) − f∗) + 2T 2C2,K = 2T 2C2dσ2

c1B2 and
apply eq. (15) instead of eq. (14)). We omit the details to avoid tedious repetition.

Lemma B.1 (A pessimistic bound for DP-SGD-GC). Assume that fi’s are L-smooth. Let wpriv be
the output from Algorithm 1 with η ≤ 1/L. Then

Pr

[
f(wpriv)− f∗ ≥ 2(f(w(0))− f∗) +

T 2C2

L
+ t

]
≤ 2 exp

(
− tc1LB

2

T 2C2dσ2

)
∀t ≥ 0. (14)

Furthermore,

Pr
[
∥∇f(wpriv)∥2 ≥ 4L(f(w(0))− f∗) + 2T 2C2 + t

]
≤ 2 exp

(
− tc1B

2

2T 2C2dσ2

)
∀t ≥ 0.

(15)
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Proof. We begin with the smoothness of f , for any t ∈ {0, 1, . . . , T}

f(w(t)) ≤ f(w(0)) + ⟨∇f(w(0)), w(t) − w(0)⟩+ L

2
∥w(t) − w(0)∥2

(i)

≤ f(w(0)) +
1

2L
∥∇f(w(0))∥2 + L∥w(t) − w(0)∥2

≤ f(w(0)) +
1

2L
∥∇f(w(0))∥2 + L

∥∥∥∥∥∥η
t−1∑
i=0

 1

B

∑
j∈Bt

g̃
(i)
j +

1

B
ξ(i)

∥∥∥∥∥∥
2

(ii)

≤ f(w(0)) +
1

2L
∥∇f(w(0))∥2 + Lη2T

T−1∑
i=0

∥∥∥∥∥∥ 1

B

∑
j∈Bt

g̃
(i)
j +

1

B
ξ(i)

∥∥∥∥∥∥
2

(iii)

≤ f(w(0)) +
1

2L
∥∇f(w(0))∥2 + Lη2T 2C2 +

Lη2T

B2

T−1∑
i=0

∥ξ(i)∥2

(iv)

≤ f(w(0)) + (f(w(0))− f∗) + Lη2T 2C2 +
Lη2T

B2

T−1∑
i=0

∥ξ(i)∥2

(v)

≤ f(w(0)) + (f(w(0))− f∗) +
T 2C2

L
+

T

LB2

T−1∑
i=0

∥ξ(i)∥2︸ ︷︷ ︸
ZT

, (16)

where (i) is by the fact that ⟨a, b⟩ ≤ 1
2λ∥a∥

2 + λ
2 ∥b∥

2 ∀λ > 0, (ii) is by the convexity of ∥ · ∥2, (iii)
is because of ∥g̃(i)j ∥ ≤ C due to gradient clipping, (iv) is by the weak growth condition, (v) is by the
assumption on learning rate (η ≤ 1/L).

By the definition of ξ(i), ZT follows from the sub-exponential distribution. By Lemma A.4, there
exist some absolute constant c1 > 0 such that

Pr [|ZT | ≥ t] ≤ 2 exp

(
− tc1LB

2

T 2C2dσ2

)
.

Combining with eq. (16), we have that

Pr

[
f(wpriv)− f∗ ≥ 2(f(w(0))− f∗) +

T 2C2

L
+ t

]
≤ 2 exp

(
− tc1LB

2

T 2C2dσ2

)
∀t ≥ 0,

which finishes the proof for eq. (14).

By the weak growth condition, we further have that

∥∇f(wpriv)∥2 ≤ 2L(f(wpriv)− f∗)

Therefore

Pr
[
∥∇f(wpriv)∥2 ≥ 4L(f(w(0))− f∗) + 2T 2C2 + 2Lt

]
≤ 2 exp

(
− tc1LB

2

T 2C2dσ2

)
∀t ≥ 0,

which finishes the proof for eq. (15).

APPENDIX C MISSING EXPERIMENTS

C.1 EXPERIMENTS ON SYNTHETIC DATA

The light-tail-noise assumption may not hold when training neural networks on real-world data. To
keep consitent with our theory, we conduct experiment with synthetic data and artificial Gaussian
noise. Our synthetic data has 10, 000 samples and each sample is generated from a 256-dimensional
standard Gaussian distribution and a ground truth linear model. To simulate stochastic gradient with
light-tailed noise, we perform linear regression and add standard Gaussian noise (light-tailed) for
the true gradient. The experimental results are shown in Figure 4. The conclusion is the same as in
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Figure 4: The evolution of clipping frequency and the comparison of gradient clipping (GC) and
value clipping (VC).

Section 6: the evolution of clipping frequency has a decreasing trend and our value clipping technique
can achieve similar accuracy as gradient clipping. The experiment in this part indicates that training
neural networks on MNIST and CIFAR also enjoys light-tail-noise or the light-tail-noise assumption
is removable.

C.2 MORE EXPERIMENTS ON TESTING ACCURACY

In this section, we compare the testing accuracy of DP-SGD-GC (the baseline method) and DP-SGD-
VC with different setup of ϵ and δ. We set the noise level σ ∈ {0.5, 1, 2, 4, 8} and confidence level
δ ∈ {10−3, 10−4, 10−5}; each (σ, δ) pair decides a privacy parameter ϵ, which can be calculated by
the Opacus package. The result are shown in Figure 5.

Figure 5: Testing accuracy of gradient clipping (GC) a value clipping (VC) with varying ϵ and δ.

We can observe that the performance gap between WGC and VC grows as the privacy level ϵ becomes
larger. For linear model, the testing accuracy gap is ∼ 2% when ϵ ∼ 10 and the gap is ∼ 5% when
ϵ ∼ 0.01. For two-layer neural networks, the performance gap is larger, the testing accuracy gap is
∼ 3% when ϵ ∼ 10 and the gap is about ∼ 9% when ϵ ∼ 0.01. The experimental result should not
be too surprising; imposing smaller ϵ implies adding more noise to the gradient, which will further
increase the gradient norm and clipping frequency, and will eventually amplify the error created by
VC.

APPENDIX D MORE ON THE WEAK GROWTH CONDITION

We review some existing results and describe the weak growth condition for feed-forward neural
networks with cross-entropy loss. First, we review the generalized growth condition (Fang et al.,
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2021, Proposition 4.1). Consider the objective

min
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w) :=
1

n

n∑
i=1

ℓ(hi(w)), (17)

where ℓ : R → R≥0 is a nonnegative 1-dimensional loss function that is convex, 1-smooth, and
satisfies inf ℓ = 0. The functions hi’s are assumed to be β-Lipschitz continuous for some β > 0.
Then fi’s and f are shown to satisfy the following weak growth condition.

Lemma D.1 (Fang et al., 2021, Proposition 4.1). For any w ∈ Rd,

∥∂fi(w)∥2 ≤ 2β2fi(w) ∀i ∈ [n], and ∥∂f(w)∥2 ≤ 2β2f(w),

where ∂f(w) is the Clarke’s generalized gradient (Clarke, 1981).

We refer readers to Fang et al. (2021) for more details on the derivation of the above lemma. Note
that fi’s and f in eq. (17) can be nonconvex, and the above lemma suggests that the weak growth
condition holds for a certain class of nonconvex ERM.

D.1 WEAK GROWTH CONDITION FOR FEED-FORWARD NEURAL NETWORKS WITH
CROSS-ENTROPY LOSS

We give a simple extension of Lemma D.1 to feed-forward neural networks with cross-entropy loss.

We denote the number of classes as K. For simplicity, we consider a feed-forward neural network
with fixed width m. We denote the parameter of a H-layer feed-forward neural network as W :=
(W1, . . . ,WH), where W1 ∈ Rm×d,WH ∈ RK×m and Wi ∈ Rm×m, i = 2, 3, . . . ,H − 1. We
further denote ∥W∥2F =

∑H
i=1 ∥Wi∥2F . With a little abuse of notation, we denote σ as the ReLU

activation, e.g., σ(x) = (max{x1, 0}, . . . ,max{xm, 0}). Note that neural networks with the ReLU
activation is not differentiable everywhere on its domain. We define the “gradient” of a ReLU neural
networks in the same way as in Allen-Zhu et al. (2019, Fact 2.6).

We consider a single training sample x (which is enough for our purpose) and define the architecture
of the H-layer feed-forward neural network as

h0 = x,

hj = σ(zj), zj = Wjhj−1 ∀j ∈ [H − 1],

ŷ = WHhH−1,

where hj is the hidden variables of the j-th layer, ŷ is the prediction produced by the network.

Without loss of generality, we assume that the label for our training sample is the first class. Then by
the definition of the cross-entropy loss, we have that

f(W) = − log

(
exp(ŷ1)∑K
i=1 exp(ŷi)

)
= log

(
1 +

K∑
i=2

exp(ŷi − ŷ1)

)
.

Making the identification

ℓ(α) = log(1 + exp(α)) and g(ŷ) = log

(
K∑
i=2

exp(ŷi − ŷ1)

)
.

Then

f(W) = ℓ(g(ŷ)).

It is obvious that ℓ satisfy the assumptions made by Lemma D.1. In order to apply Lemma D.1, all
the remaining is to bound

∥∥∥∂g(ŷ)
∂W

∥∥∥. First, we notice that

∇ŷg(ŷ) =

[
−1, exp(ŷ2 − ŷ1)∑K

i=2 exp(ŷi − ŷ1)
,

exp(ŷ3 − ŷ1)∑K
i=2 exp(ŷi − ŷ1)

, . . . ,
exp(ŷK − ŷ1)∑K
i=2 exp(ŷi − ŷ1)

]
=⇒ ∥∇ŷg(ŷ)∥1 = 2

=⇒ ∥∇ŷg(ŷ)∥2 ≤ 2. (18)
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Then we need to bound
∥∥∥ ∂ŷ
∂W

∥∥∥. Directly applying Allen-Zhu et al. (2019, Fact 2.6) gives that∥∥∥∥ ∂ŷ

∂Wi

∥∥∥∥
F

≤ ∥hi−1∥2
H∏

j=i+1

∥Wj∥2 ≤ ∥x∥2
H∏

j=1,j ̸=i

∥Wj∥2 (19)

for all i ∈ [H].

Combining Lemma D.1, eq. (18) and eq. (19), we obtain the following weak growth condition

∥∂f(W)∥2F =

H∑
i=1

∥∂Wif(W)∥2F ≤ 8∥x∥22
H∑
i=1

H∏
j=1,j ̸=i

∥Wj∥22f(W).

Furthermore, by ∥∇ŷg(ŷ)∥2 ≤ 2 and Allen-Zhu et al. (2019, Fact 2.6). We also have

∥∂f(W)∥2F =

H∑
i=1

∥∂Wif(W)∥2F ≤ 4∥x∥22
H∑
i=1

H∏
j=1,j ̸=i

∥Wj∥22.

To sum up, we obtain

∥∂f(W)∥2F =

H∑
i=1

∥∂Wi
f(W)∥2F ≤ 4∥x∥22

H∑
i=1

H∏
j=1,j ̸=i

∥Wj∥22 min{1, 2f(W)}.

To access the WGC-parameters, we need to compute ∥Wj∥2, j ∈ [H] in each iteration, the overhead
can be amortized by increasing batch size.
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