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Abstract

DNA language models have revolutionized our ability to understand and design1

DNA sequences—the fundamental language of life—with unprecedented precision,2

enabling transformative applications in therapeutics, synthetic biology, and gene-3

editing. However, this capability also poses substantial dual-use risks, including4

the potential for creating pathogens, viruses, even bioweapons. To address these5

biosecurity challenges, we introduce two innovative watermarking techniques to6

reliably track the designed DNA: DNAMark and CentralMark. DNAMark employs7

synonymous codon substitutions to embed watermarks in DNA sequences while8

preserving the original function. CentralMark further advances this by creating9

inheritable watermarks that transfer from DNA to translated proteins, leveraging10

protein embeddings to ensure detection across the central dogma. Both methods11

utilize semantic embeddings to generate watermark logits, enhancing robustness12

against natural mutations, synthesis errors, and adversarial attacks. Evaluated on13

our therapeutic DNA benchmark, DNAMark and CentralMark achieve F1 detection14

scores above 0.85 under various conditions, while maintaining over 60% sequence15

similarity to ground truth and degeneracy scores below 15%. A case study on the16

CRISPR-Cas9 system underscores CentralMark’s utility in real-world settings. This17

work establishes a vital framework for securing DNA language models, balancing18

innovation with accountability to mitigate biosecurity risks.19

1 Introduction20

DNA serves as the cornerstone of the central dogma [13], orchestrating the flow of genetic infor-21

mation from DNA to RNA to proteins. Within this paradigm, DNA encodes the genetic blueprint,22

RNA acts as a dynamic messenger, and proteins execute a vast array of cellular functions (Figure 123

a). Recent advances in DNA language models have transformed our ability to understand and design24

DNA sequences with unprecedented precision [45, 8, 73, 46, 70, 41]. These models leverage compu-25

tational frameworks to decode complex sequence patterns, enabling groundbreaking applications in26

therapeutics, synthetic biology, gene-editing, and beyond.27

However, the remarkable capabilities of DNA language models also introduce significant dual-use28

risks [7, 51, 5]. For example, these models could lower the barrier to the creation of harmful biological29

agents, such as pathogens, viruses, or bioweapons. State-of-the-art DNA models excel in predicting30

and generating sequences with missense mutations or pathogenic properties [45, 8, 70, 41, 18],31

amplifying biosecurity concerns. The AI and scientific communities have recognized the emerging32

risks of DNA language models and are advocating robust guardrails and comprehensive oversight33

mechanisms [69, 62, 5, 51, 48].34

Recently, watermarking has emerged as an effective strategy to counter the misuse of large language35

models (LLMs), enabling the traceability of generated content to ensure accountability and mitigate36
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risks such as misinformation or malicious output [16, 33]. However, the application of watermarking37

to DNA language models presents unique and underexplored challenges. Unlike LLMs, which38

operate on expansive vocabularies, DNA language models are constrained by a small alphabet of39

only four nucleotides, complicating the design of robust watermarking strategies, such as green/red40

list approaches. Moreover, DNA is susceptible to natural mutations [61], synthesis errors, and41

sequencing inaccuracies [57], which can obscure or degrade watermarks. Additional complexities42

arise from biological constraints to preserve the functional integrity of encoded sequences to maintain43

their utility in applications like protein engineering. These challenges necessitate new watermarking44

frameworks tailored to the biological and computational intricacies of DNA sequence design.45

To tackle these challenges, we propose a function-invariant watermark DNAMark using synonymous46

codon substitutions and CentralMark that builds an inheritable watermark transferable from designed47

DNA to translated protein. DNAMark and CentralMark address the challenges with the following48

innovations: (1) To achieve robust watermark resistant to natural mutations and potential attacks,49

DNAMark and CentralMark utilize the generated DNA or translated protein embeddings (Evo2 [8]50

or ESM [36]) to predict watermark logits with trained watermark models. The watermark logits51

are then added to the original logits from DNA models to bias the next nucleotide selection for52

watermarking. The intuition is that DNA and protein embeddings are inherently robust to minor53

mutations, preserving semantic and functional integrity during watermark logit prediction. During54

training, the watermark model is optimized to prioritize semantic preservation and maintain an55

unbiased distribution, enhancing watermark robustness and performance. (2) To minimize disruption56

to DNA sequence quality and encoded protein function, DNAMark employs a sparse watermarking57

scheme with synonymous codon substitutions, selectively modifying only the third base of specific58

codons to ensure the resulting codon encodes the same amino acid as the unmarked sequence (Figure59

1 d). (3) To ensure inheritable watermark in both DNA and translated protein, CentralMark predicts60

watermark logits from protein embeddings and applies the watermark to the second base of each61

codon, enabling near non-overlapping separation of amino acids into green/red lists, facilitating62

reliable watermark detection across the central dogma (Figure 1 e).63

Using our curated therapeutic DNA benchmark (Figure 1b), DNAMark and CentralMark achieve64

robust F1 detection scores (>0.85) under various attacks, including nucleotide substitution, insertion,65

and deletion attacks. Meanwhile, DNA sequence qualities are preserved, with over 60% sequence66

similarity to ground truth and degeneracy scores below 15%. Case studies on watermarking a67

CRISPR-Cas9 system [11, 12] designed by Evo model [45] (Figure 1c) demonstrate CentralMark’s68

potential for practical applications in real-world synthetic biology and gene-editing.69

2 Related Works70

2.1 Watermark for Language Models71

Driven by the need to identify machine-generated text and mitigate potential misuse, the field of72

watermarking large language models (LLMs) has seen rapid development. Early and influential73

approaches, such as the one proposed by Kirchenbauer et al. [33], often referred to as KGW,74

introduced a method of biasing token generation towards a "green list" determined by a pseudorandom75

function seeded by preceding tokens. This creates a statistical watermark detectable with high76

accuracy (More details in Section 3). Subsequent works have aimed to improve detectability [23, 39,77

34], text quality [29, 24, 27, 71], capacity [23, 68, 72], robustness [38, 52], and public verifiability78

[22, 37]. For Example, to enhance watermark detectability, EWD [39] assigns weights to tokens79

based on their entropy during detection, enhancing sensitivity by emphasizing high-entropy tokens80

in z-score calculations. To mitigate the logits bias brought by KGW applying a uniform δ to green81

list tokens, Hu et al. [29] introduced two unbiased reweighting methods to preserve the original82

text distribution. Aiming at increasing the watermark capacity to convey additional information83

like timestamps, identifiers, or copyright. Fernandez et al. [23] expand binary vocabulary partition84

to multi-color partition. To further improve watermark robustness against removal attacks such as85

paraphrasing, semantic-invariant watermark methods [38, 52] are proposed to ensure that similar86

text semantics result in similar partition outcomes, which are robust to attacks. To achieve publicly87

verifiable watermarks, Fairoze et al. [22] have utilized a digital signature technology from the field of88

cryptography, involving generating watermarks using a private key and verifying them with a public89

key. Recently, Chen et al. [9] applies watermarks on protein language models, while it is unknown90

whether a watermark scheme can be designed for DNA language models and the central dogma.91
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Figure 1: Watemark DNA language models with DNAMark and CentralMark. (a). DNA plays a
key role in the central dogma; (b). A therapeutic DNA benchmark is constructed to evaluate DNA
watermarks; (c) Our watermark methods successfully watermarks CRISPR-Cas9 generated by Evo;
(d) DNAMark leverages watermark models and synonymous codon substitutions for DNA watermark;
(e) CentralMark uses ESM-based watermark model to achieve an inheritable watermark. Watermark
can be detected in both the DNA and the translated protein sequence generated with CentralMark.

2.2 DNA Language Models92

Driven by advances in LLMs, DNA Language Models (DNA LMs) have also experienced rapid93

progress in recent years. Early DNA LMs primarily focused on DNA sequence interpretation and94

property prediction [32, 75, 54, 4]. For instance, Enformer combined convolutional down-sampling95

with transformer layers to enable accurate gene-expression prediction [4], while the Nucleotide96

Transformer, trained on multi-species corpora, markedly improved variant-effect prediction [15].97

More recently, DNA LMs with advanced sequence generation capabilities have emerged [58, 73,98

46, 70, 41, 45, 8]. For example, HyenaDNA leveraged implicit long-range convolutions to scale99

context to one million tokens [46]. GENERATOR, a 1.2B transformer decoder trained on 386 billion100

base pairs of eukaryotic DNA, excels in generating viable protein-coding sequences [70]. Evo, a 7B101

model trained on billions of prokaryotic and viral base pairs, demonstrated advanced capabilities102

in designing CRISPR–Cas complexes [45]. Its successor, Evo2, was scaled using 9.3 trillion DNA103

base pairs with one-million-token context windows, yielding autoregressive models with 7B and 40B104

parameters. Evo2 enables genome-wide prediction and de novo synthesis of DNA sequences across105

all domains of life [8]. Evo2 excels in generating chromosome-scale sequences, including similar106

sequences to human mitochondrial, M. genitalium, and S. cerevisiae genomes.107

The advanced capabilities of DNA language models simultaneously raise significant biosafety and108

biosecurity concerns [69, 62]. Current countermeasures, such as sequence screening [1] and regulatory109

policies [5], are often suboptimal, as they may fail to detect AI-generated sequences or adapt to110

evolving model capabilities [48]. Robust watermarking techniques tailored for DNA could enable111

reliable tracing and detection of AI-generated DNA sequences, addressing these gaps.112

3 Preliminaries113

Autoregressive language models, such as transformer-based architectures, generate text by modeling114

the conditional probability of a token given its preceding context. Formally, for a sequence of tokens115

x = (x1, x2, . . . , xT ), an autoregressive model predicts the next token xt based on the probability116

distribution p(xt|x1:t−1; θ), where θ denotes the model parameters. The joint probability of the117
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sequence is expressed as:118

p(x; θ) =

T∏
t=1

p(xt|x1:t−1; θ). (1)

These models excel at producing coherent and contextually relevant text, but their widespread use119

raises concerns about content authenticity, ownership, and traceability.120

To address these challenges, watermarking techniques embed imperceptible identifiers into the121

outputs of language models. A watermark is a subtle, structured modification to the generated text,122

designed to be robust against post-processing (e.g., paraphrasing) while remaining inconspicuous to123

human readers. For example, the KGW watermarking scheme [33] modifies the token probability124

distribution during generation. Specifically, for a vocabulary V , KGW partitions tokens into a “green”125

list G ⊂ V and a complementary “red” list R = V \ G based on a cryptographic hash of the context.126

The probability of selecting a token xt ∈ G is boosted by an additive term δ, altering the sampling127

distribution as:128

pwm(xt|x1:t−1; θ) ∝ p(xt|x1:t−1; θ) + δ · I(xt ∈ G), (2)

where I(·) is the indicator function, and the modified distribution is normalized. This ensures the129

watermark is embedded without significantly degrading text quality.130

Watermark detection involves identifying the presence of these embedded identifiers in a suspect text.131

In the KGW scheme, detection leverages a statistical hypothesis test based on the z-score, which132

quantifies the likelihood that a given text x was generated by a watermarked model. Specifically,133

the detector counts the number of tokens in the green list, denoted r =
∑T

t=1 I(xt ∈ G), over the134

sequence of length T . Under the null hypothesis (no watermark), tokens are sampled uniformly from135

V , and the expected proportion of green tokens is γ = |G|/|V|. The z-score is computed as:136

z =
r − E[r]√

Var[r]
=

r − T · γ√
Tγ (1− γ)

, (3)

where E[r] = T · |G|
|V| and Var[r] = Tγ (1− γ) assume a binomial distribution for r. A high z-score137

(e.g., z ≥ τ for a threshold τ ) indicates the presence of the watermark, as the observed green token138

count significantly exceeds the expected count under the null hypothesis.139

4 Methods140

4.1 DNAMark: Function-invariant Watermark for DNA Models141

To achieve resistance to natural mutations and function preservation for synthetic biology, we first142

build DNAMark (Figure 1 (d)), a robust, and function-invariant watermark scheme for DNA language143

models in this section. Inspired by previous works on semantic-invariant watermarks for LLMs144

[38, 52], DNAMark utilizes a specialized trained watermark model to generate watermark logits145

for robustness. For watermarking in the coding region, we use synonymous codon substitutions146

to keep the coded amino acid unchanged. Moreover, adaptive watermark strength and entropy-147

guided watermark strategy are applied to balance sequence quality and detection accuracy.148

4.1.1 Watermark Model based on Evo2 Embeddings149

To embed a robust watermark in generated DNA sequences, DNAMark processes the sequence150

preceding the current token through the Evo2 [8] model to obtain functional embeddings, which are151

then transformed into watermark logits and combined with the original token logits. Leveraging152

DNA’s inherent robustness as an information carrier [10, 25, 21], where small mutations typically153

preserve encoded biological functions, DNAMark is designed to provide a durable watermark for154

DNA language models, resisting both natural mutations and adversarial modifications. Specifically,155

the watermark model in DNAMark satisfies two critical properties: semantic preservation, ensuring156

the watermark maintains the sequence’s biological semantics (e.g., protein coding or regulatory roles)157

by aligning logit similarities with Evo2 embedding similarities. Moreover, the logits should be varied158

sufficiently to enhance complexity and security. Otherwise, if the watermark logits are monotonous,159

the green list is more static and might be revealed by counting the token frequency. This compromises160

the watermark protection and leads to the risk of being cracked. The second property, unbiased161
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distribution, ensures that watermark logits exhibit no systematic preference for any nucleotide or162

codon and maintain a balanced distribution of positive and negative values, enhancing security against163

statistical attacks and ensuring robust, detectable watermarks for DNA sequences.164

To realize these properties, we trained the watermark model [38] (Appendix. G), comprising multiple165

fully connected layers and layer norm, with two main loss functions: an alignment loss and a166

normalization loss. The alignment loss aligns the watermark logit similarity with the Evo2 embedding167

similarity: we normalize the embedding similarities by subtracting their mean and applying the168

hyperbolic tangent function. The alignment loss La is defined as:169

La =
∑
i,j

∣∣∣∣∣∣ wi ·wj

∥wi∥2∥wj∥2
− tanh

k

 ei · ej
∥ei∥2∥ej∥2

− 1

|N |2
∑
k,l

ek · el
∥ek∥2∥el∥2

∣∣∣∣∣∣ , (4)

where ei is the Evo2 embedding for sequence i, wi is the watermark logit vector produced by the170

watermark model, |N | is the number of sequences, k is a hyperparameter controlling the similarity171

range, and ∥ · ∥2 denotes the Euclidean norm. This loss ensures watermark logits reflect DNA172

functional relationships while enhancing separability.173

Following [38], the normalization loss enforces unbiased token preference and balanced scores. It174

constrains the mean of the watermark logits to zero across tokens and sequences and ensures uniform175

absolute values for stability. The normalization loss Ln is defined as:176

Ln =

|N |∑
i=1

∣∣∣∣∣∣
|V|∑
j=1

w
(j)
i

∣∣∣∣∣∣+
|V|∑
j=1

∣∣∣∣∣∣
|N |∑
i=1

w
(j)
i

∣∣∣∣∣∣+ λ

|N |∑
i=1

|V|∑
j=1

∣∣∣R−w
(j)
i

∣∣∣ , (5)

where w(j)
i denotes the j-th value in the watermark logit; R is a hyperparameter specifying the target177

absolute value for each logit component, and λ is a weighting factor. This loss ensures the watermark178

is statistically neutral and detectable. The total loss combines the above two objectives. During179

watermarked generation, the watermark logits, scaled by a watermark strength factor δ, are added to180

the original logits to bias the sampling of the next nucleotide.181

4.1.2 Synonymous Codon Substitutions182

To design a function-invariant watermark for DNA language models, DNAMark employs synonymous183

codon substitution (SCS) within the coding DNA sequence (CDS), targeting the third base of codons184

to embed identifiers that preserve the encoded amino acid, critical for synthetic biology applications.185

For a codon with fixed first two bases (e.g., CA) and an intended amino acid (e.g., Histidine for186

CAT), DNAMark defines green and red lists within the synonymous codon set (e.g., CAC as red187

list and CAT as green list), to keep the encoded protein unchanged (i.e., no matter red or green list188

is chosen, the same amino acid type). This approach is motivated by several considerations: First,189

synonymous codons produce identical amino acids, thereby maintaining the protein’s structure and190

function critical for applications in synthetic biology. Second, targeting the third base leverages the191

degeneracy of the genetic code, where mutations at this position are often silent [30], minimizing192

the influence of watermarking on DNA sequences. Third, by watermarking only the third base,193

DNAMark achieves a sparse watermark that balances robust detectability with high DNA sequence194

quality, minimizing disruptions to codon usage and sequence optimality. Following previous works195

[33, 23], we explicitly define the green and red lists for watermark. Considering different cases of196

synonymous codons (more details in Table B), the green and red lists (G,R) are constructed as:197

G,R =


{bg},S \ {bg} if |S| = 2 (e.g., T, C for CAT, CAC; Histidine),
{bg},S \ {bg} if |S| = 3 (e.g., T, C, A for ATT, ATC, ATA; Isoleucine),
{bg},S \ {bg} if |S| = 4 (e.g., T, C, A, G for GCT/ C/ A/ G; Alanine),
∅, ∅ if |S| = 1 (e.g., G for ATG; Methionine),

(6)

where S = {b3 ∈ {T,C,A,G} | translate(b1, b2, b3) = a} is the set of third bases yielding the198

same amino acid a, and |S| is the set size; b1, b2 are the first two bases, translate maps codons to199

amino acids; {bg} ∈ S is the green base list, selected as the base type with the highest watermark200

logits in S . For |S| = 2 (e.g., b1=C, b2=A, a=Histidine), one base is green (e.g., T for CAT) and one201

red (e.g., C for CAC); for |S| = 3 (e.g., b1=A, b2=T, a=Isoleucine), one is green (e.g., C) and two red202

(e.g., T, A); for |S| = 4 (e.g., b1=G, b2=C, a=Alanine), one is green and three red; and for |S| = 1203

(e.g., b1=A, b2=T, a=Methionine), watermarking is skipped as no synonymous alternatives exist.204
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4.1.3 Adaptive Watermark Strength and Entropy-guided Watermark205

Given the small vocabulary of DNA sequences (A, C, T, G) and the instability of autoregressive DNA206

language models, where excessive watermarking may produce invalid sequences such as repeated207

motifs or model corruption, DNAMark employs optimization strategies to balance detectability and208

sequence quality. Specifically, we introduce two optimization strategies: Adaptive Watermark Strength209

and Entropy-guided Watermarking. The Adaptive Watermark Strength strategy dynamically210

adjusts the watermark logit strength, δ, using an Exponential Moving Average (EMA) [28] based on211

the current z-score, zt, which measures the statistical significance of the watermark signal (i.e., green212

base frequency in green/red lists [33]). The strength is smoothly updated as a weighted average of213

the current strength within a target range [zmin, zmax]. The adjustment is defined as:214

adj(zt, zmin, zmax) =


zmin − zt if zt < zmin,

0 if zmin ≤ zt ≤ zmax,

zmax − zt if zt > zmax,

(7)

and δ is smoothly updated as a weighted average of the current strength and a target adjustment:215

δt+1 = (1− β)δt + β ·max (δmin,min (δmax, δt + κ · adj(zt, zmin, zmax))) , (8)
where δt is the strength at step t, β ∈ (0, 1) controls the update speed, δmin, δmax are bounds, and κ216

scales the adjustment. If zt < zmin, δ increases to enhance detectability; if zt > zmax, δ decreases to217

preserve sequence quality; and if zt ∈ [zmin, zmax], δ remains stable. During generation, watermark218

logits, scaled by δt, are added to the original logits.219

The Entropy-guided Watermarking strategy skips watermarking in low-entropy subsequences to220

avoid disrupting critical sequence patterns, such as regulatory motifs in UTRs. The entropy H of a221

subsequence s (e.g., a window of nucleotides) is computed as:222

H(s) = −
∑

b∈{T,C,A,G}

p(b) log p(b), (9)

where p(b) is the frequency of base b in s. If H(s) < Hthreshold, watermarking is skipped for that223

subsequence, ensuring minimal impact on functional elements like ribosome binding sites or structural224

motifs. These strategies together enhance DNAMark’s watermark, preserving sequence quality while225

maintaining robust detectability against mutations and adversarial edits.226

4.2 CentralMark: Inheritable Watermarks from DNA to Proteins227

Recent DNA language models not only learns DNA sequences but also captures the central dogma228

[13]’s flow of genetic information from DNA to RNA to protein [8, 45]. To extend the traceability229

of our DNA watermark beyond the nucleotide sequence, we introduce an inheritable watermark230

(CentralMark) detectable in both generated DNA and the translated protein sequence, a critical231

feature to ensure biosecurity and ownership verification in synthetic biology applications where232

proteins are the functional output (Figure 1 (e)). Unlike DNAMark introduced above, which uses233

synonymous codon substitutions to preserve protein function, the inheritable watermark deliberately234

alters amino acids by targeting the second base of codons in the coding DNA sequence (CDS),235

leveraging ESM [36] embeddings of the translated protein instead of Evo2 embeddings of DNA236

for both watermark generation and detection. We target the second base of each codon because237

it predominantly determines the encoded amino acid’s identity or chemical properties, facilitating238

precise amino acid substitutions, and enables near-nonoverlapping green and red lists for amino acids239

based on second-base patterns (see Table 3). Specifically, for a codon c = (b1, b2, b3) ∈ VCDS, where240

b2 ∈ {A,C,G, T}, we define a green/red list for the protein sequence by indexing the amino acid241

a = translate(c) to the second base b2:242

Ga = {a | translate(b1, b2, b3) = a, b2 ∈ Gb}, Ra = {a | translate(b1, b2, b3) = a, b2 ∈ Rb},
(10)

where Gb and Rb are the green and red sets of second bases (e.g., Gb = {C,G}), and translate243

maps codons to amino acids (e.g, Ga = {Leu, Pro, His, Gln, Arg, Val, Ala, Asp, Glu, Gly}). During244

watermarking, we bias the selection of codons with b2 ∈ Gb to embed the signature, which propagates245

to the protein as a biased distribution of amino acids in Ga. In CentralMark, the green sets of second246

bases are chosen by selecting the bases with the top-2 highest watermark logits. By embedding247

watermarks in DNA sequences based on their translated protein sequences, we enable subsequent248

detection of the protein sequences independently, without requiring additional DNA information.249
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4.3 Watermark Detection250

The watermark detection of DNAMark and CentralMark follows KGW’s calculating z score (Equation.251

3). We need to note that the expected proportion of green tokens, γ, may not be 0.5 in DNAMark252

and CentralMark due to the unique design, such as synonymous codon substitutions. Under the253

assumption of uniform codon usage, γ is set to 0.3559, 0.5, and 0.55 for DNAMark, CentralMark254

(DNA), and CentralMark (Protein) respectively. The details are included in the Appendix. E.255

5 Experiments256

5.1 Experiment Settings257

BenchMark Construction To construct a biologically grounded benchmark for evaluating DNA258

watermarks, we curated a set of therapeutically important protein-coding genes from Homo sapi-259

ens (Human) and existing drug modalities. These genes were selected based on their established260

relevance in clinical and pharmaceutical contexts, encompassing categories such as cytokines (e.g.,261

IL2 [60], TNF [50]), growth factors (e.g., VEGFA [35], EGF [26]), immune checkpoint proteins262

(e.g., PDCD1 [59], CD274 [19]), apoptosis regulators (e.g., TP53 [40], BCL2 [64]), oncogenes (e.g.,263

KRAS [56], BRAF [17]), antiviral effectors (e.g., IFNA1 [44], TLR3 [3]), coagulation factors (e.g.,264

F8 [63], F2 [67]), and other categories relevant to disease and therapy. For each gene, we queried265

the NCBI RefSeq database [49] to retrieve validated coding DNA sequences (CDS) with canonical266

start and stop codons. We integrated secondary structure annotations (helix, β-strand, loop) from267

UniProt [65] to ensure structural context. Monomeric proteins with varied secondary structures were268

selected, constructing a benchmark with 400 DNA sequences (More details in Appendix. C). In Case269

Study, we explored watermarking CRISPR-Cas9 with both coding and non-coding regions.270

Attacks To evaluate the robustness of our proposed watermarking scheme, we subjected the271

watermarked DNA sequences to a series of simulated genetic alterations, mimicking common272

evolutionary and mutational processes. These in silico attacks comprised three distinct types of273

modifications: (1) Synonymous Codon Substitutions replace codons with alternatives that encode274

the same amino acid [14, 47] (2) Nucleotide Substitutions means changing randomly seleted275

nucleotides to other types in DNA [53, 66], which can lead to either synonymous or non-synonymous276

codon changes; and (3) Insertions and deletions (Indels), are structural variants that add or remove277

nucleotides. Here we consider add or remove codons [42, 43]. These attacks are performed at a278

frequency of 5% across the sequence to simulate a harsh test for the watermark’s detectability and279

robustness (natural mutation frequency 10−3 − 10−8 [55, 20]).280

Evaluations For each DNA sequence, we use the first half as a prompt to the DNA language281

models and generate the rest for 5 times. Inspired by previous works on LLM watermark [38, 74],282

we report the detection True positive rates at different false positive rates (1% and 10%) to avoid the283

impact of detection thresholds (τ ). To assess the quality of generated DNA sequences, we compute284

the Sequence Identity to the ground truth, where higher values indicate better alignment, and the285

Degeneracy Score, defined as the percentage of a sequence covered by repetitive substrings longer286

than four nucleotides, where lower values are preferable, following Evo [45].287

DNA Language Models and Baselines We evaluate DNAMark and CentralMark on the latest288

and largest DNA language models, Evo [45] and Evo2 (7B, and 40B) [8]. Our methods can also289

be applied to other DNA models. Hyperparameters are set to k = 20, λ = 10, κ = 0.1, δmin =290

0.5, δmax = 3.5, zmin = 2.5, zmax = 4.0, Hthreshold = 2.0, and the Adam optimizer (lr=1e-3) is used291

for training (Selected Hyperparamter analysis in Figure 4). We adapt KGW with 1, 2, and 4 codon292

window sizes to DNA as a baseline. All experiments are conducted on 4 Tesla H100 GPUs.293

5.2 Results and Robustness Analysis294

In Table 1, we compare the performance of DNAMark and CentralMark, detected using DNA and pro-295

tein sequences, against KGW-1, KGW-2, and KGW-4 under various attack scenarios. Watermarking296

and detecting DNA sequences is notably more challenging than in natural language models, where297

methods like KGW achieve near-100% TPR for texts [33], compared to only 70–80% TPR for DNA.298
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Table 1: We compared the performance of our watermarking methods, DNAMark and CentralMark
(DNA/Protein), with baselines, including KGW-k [33], with DNA language model Evo2-7B [8]. Tests
evaluated watermark detection accuracy under no attack, synonymous codon substitution, Nucleotide
Substitutions, and insertion-deletion (Indels) attacks.

No attack Synonymous Codon Substitution
Method 1% FPR 10% FPR 1% FPR 10% FPR

TPR F1 TPR F1 TPR F1 TPR F1

KGW-1 0.765 0.862 0.805 0.845 0.580 0.729 0.756 0.815
KGW-2 0.770 0.865 0.820 0.854 0.545 0.701 0.740 0.805
KGW-4 0.774 0.868 0.817 0.852 0.371 0.537 0.520 0.642
DNAMark 0.845 0.911 0.915 0.908 0.820 0.896 0.896 0.898
CentralMark (DNA) 0.875 0.928 0.920 0.911 0.854 0.916 0.910 0.905
CentralMark (Protein) 0.868 0.924 0.922 0.912 0.860 0.920 0.904 0.902

Nucleotide Substitutions Indels
Method 1% FPR 10% FPR 1% FPR 10% FPR

TPR F1 TPR F1 TPR F1 TPR F1

KGW-1 0.520 0.680 0.710 0.785 0.515 0.675 0.723 0.794
KGW-2 0.505 0.667 0.658 0.749 0.477 0.642 0.645 0.739
KGW-4 0.330 0.493 0.551 0.668 0.339 0.503 0.497 0.623
DNAMark 0.808 0.902 0.886 0.892 0.795 0.878 0.860 0.877
CentralMark (DNA) 0.840 0.908 0.890 0.894 0.765 0.862 0.850 0.872
CentralMark (Protein) 0.825 0.900 0.885 0.892 0.759 0.858 0.832 0.861

We identify two primary reasons for this disparity: (1) DNA’s limited vocabulary of four nucleotides299

(A, C, G, T), versus tens of thousands of tokens in natural language models, severely constrains300

green/red list assignments, reducing the watermark’s statistical distinctiveness. (2) DNA language301

models exhibit greater brittleness than large language models (LLMs), showing high sensitivity to302

perturbations in their output distributions. When the watermark strength δ is excessive, it overly biases303

nucleotide selection, leading to model collapse (e.g., generating repetitive motifs like AAAAA),304

which compromises both sequence quality and watermark detectability.305

Across all attack conditions, DNAMark and CentralMark consistently outperform KGW baselines in306

TPR and F1 scores at both 1% and 10% FPR. The detection F1 of DNAMark and CentralMark are all307

above 0.85. CentralMark (DNA) achieves the highest performance in most cases, followed closely308

by CentralMark (Protein) and DNAMark. The unique design of CentralMark makes the watermark309

detectable in both the generated DNA and the translated protein. The robustness of DNAMark and310

CentralMark is due to their use of embeddings (Evo2, ESM), which capture functional/semantic311

similarity, making watermarks robust even with attacks. For instance, DNAMark and CentralMark312

achieve high TPR and F1 scores under synonymous codon substitutions, as these changes preserve313

amino acid sequences and minimally affect the embeddings.314

Comparing different attacks, we observe that Nucleotide Substitutions and Indels are the most strong315

attacks: Substitutions can lead to non-synonymous codons, and Indels can disrupt sequence patterns316

critical for watermark integrity. For example, the TRP of CentralMark with Indels drops to around317

76%, highlighting the severity of these attacks. Nevertheless, DNAMark and CentralMark outperform318

all baselines. Future work will focus on enhancing robustness to such challenging attacks.319

5.3 Generation Quality and Ablation Studies320

It is important to keep the sequence quality when watermarking DNA for practical use. In Figure321

2 (a) & (b), we show the Sequence Identity to the ground truth and the Degeneracy Score of the322

generated DNA sequences by different watermark methods. Compared with KGW, DNAMark and323

CentralMark shows more alignment with no watermark, indicating higher generation quality. This324

can be attributed to the sparse watermark adapted to DNA and unique methods such as synonymous325

codon substitution of DNAMark, minimizing the side-effects on sequence quality. In Figure 2 (c), we326
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(a) (b) (c) (d)

Figure 2: (a) & (b) Generated DNA sequence quality measured by Sequence Identity (the higher
the better) and Degeneracy Score (the lower the better). (c) Ablation studies of Entropy Guidance,
Adaptive δ with EMA, Alignment and Normalization loss, and the watermark model. We perform
3-time generations for each model and show the standard deviation. (d) Applying DNAMark to
different DNA language models and measuring the watermark detection F1 score. mD: megaDNA.

did ablation studies of various components in DNAMark. Generally, Adaptive watermark strength327

with EMA and the watermark model are most critical to the successful watermark detection.328

5.4 Generalization to Different DNA Models and Time Complexity329

In Figure 2 (d), we observe that DNAMark demonstrates robust watermark detection across a range330

of DNA language models. Using models of varying sizes—megaDNA (145M and 277M parameters),331

Evo2 (1B, 7B, and 40B), and Evo1 (7B)—DNAMark achieves F1 scores from 0.851 to 0.919. Smaller332

models, such as megaDNA-145M (F1=0.851) and 277M (F1=0.855), deliver respectable detection333

accuracy, but are limited by reduced generation capability. Larger models like Evo2-7B (F1=0.911)334

and Evo2-40B (F1=0.919) excel, leveraging high-capacity embeddings to enhance generation quality335

and watermark detection. We further measure the generation time cost of DNAMark and CentralMark,336

comparing them to a baseline with no watermark generation. The time complexity increases by337

approximately 30% (Table 7), attributable to the compact size of the watermark model.338

5.5 Case Study of Watermarking CRISPR-Cas9 System339

Figure 3: Predicted structure of Evo-
desinged Cas9 with CentralMark.

To show the practical application in gene editing, we utilized340

the Evo model (evo-1-8k-crispr) to generate the CRISPR-Cas9341

[11, 12] DNA sequences, embedding a watermark during gen-342

eration using CentralMark. Following [45], we use Prodigal343

[31] to extract Cas9 CDS, MinCED [6] to detect CRISPR ar-344

rays, and AlphaFold3 (AF3) [2] to predict the structure. Figure345

3 visualizes the generated watermarked Cas9 aligned with the346

wild-type SpCas9 crystal structure (PDB ID: 4OO8). The gen-347

erated sequence achieves a TM-score of 0.6802, indicating348

high structural alignment, and a Z-score of 5.41, confirming349

strong watermark detectability. These results demonstrate the350

efficacy of watermarking Evo-generated CRISPR-Cas9 DNA351

sequences with minimal impact on biological quality.352

6 Conclusions353

In this paper, we tackle the pressing biosecurity challenges arising from DNA language models,354

which hold immense potential for genetic engineering but also pose dual-use risks by enabling the355

creation of harmful biological agents. To counter these risks, we propose DNAMark, a watermarking356

method that uses synonymous codon substitutions to embed robust, function-preserving watermarks357

in DNA sequences, and CentralMark, an advanced technique that generates inheritable watermarks358

detectable in both DNA and translated proteins. Future work should explore watermark schemes359

independent of green/red lists to enhance adaptability, investigate their effects on UTRs for regulatory360

insights, and validate DNAMark and CentralMark through wet lab experiments. These steps are vital361

to responsibly balance genetic technology innovation with biosecurity.362
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A Broad Impacts580

The societal implications of DNAMark and CentralMark are profound and multifaceted. On the581

positive side, these watermarking techniques mitigate biosecurity threats by enabling researchers,582

regulators, and biosafety organizations to track and verify the origins of synthetic DNA, deterring583

malicious applications such as the engineering of pathogens. This traceability fosters trust in syn-584

thetic biology, supporting advancements in therapeutics, agriculture, and environmental solutions.585

Moreover, by establishing a framework for responsible innovation, these methods could encourage586

international collaboration on biosecurity standards, strengthening global oversight of genetic tech-587

nologies. However, negative consequences must also be considered. The watermarking methods588

may not be entirely impervious to circumvention by sophisticated adversaries who could exploit589

vulnerabilities, such as reverse-engineering watermarks or introducing mutations to obscure them.590

This limitation risks fostering a false sense of security among stakeholders, potentially undermining591

trust in regulatory frameworks if breaches occur. Additionally, the computational and expertise barri-592

ers to implementing these watermarks could disproportionately burden smaller research institutions593

or developing nations, exacerbating inequities in access to cutting-edge genetic technologies. In594

the future, we will further refine our watermark methods and establish a community to advance595

watermarking research and reduce the potential negative impacts.596
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B Codon-to-Amino-Acid Table597

1st/2nd U C A G

U

UUU Phe
UUC Phe
UUA Leu
UUG Leu

UCU Ser
UCC Ser
UCA Ser
UCG Ser

UAU Tyr
UAC Tyr
UAA Stop
UAG Stop

UGU Cys
UGC Cys
UGA Stop
UGG Trp

C

CUU Leu
CUC Leu
CUA Leu
CUG Leu

CCU Pro
CCC Pro
CCA Pro
CCG Pro

CAU His
CAC His
CAA Gln
CAG Gln

CGU Arg
CGC Arg
CGA Arg
CGG Arg

A

AUU Ile
AUC Ile
AUA Ile
AUG Met

ACU Thr
ACC Thr
ACA Thr
ACG Thr

AAU Asn
AAC Asn
AAA Lys
AAG Lys

AGU Ser
AGC Ser
AGA Arg
AGG Arg

G

GUU Val
GUC Val
GUA Val
GUG Val

GCU Ala
GCC Ala
GCA Ala
GCG Ala

GAU Asp
GAC Asp
GAA Glu
GAG Glu

GGU Gly
GGC Gly
GGA Gly
GGG Gly

598

Table 2: Standard RNA codon table organized by the first two nucleotides. Each cell shows four
codons sharing the same first two bases.

Second Base Amino Acids
A Isoleucine (Ile), Methionine (Met), Threonine (Thr), Asparagine (Asn), Lysine (Lys), Serine (Ser), Arginine (Arg)
C Leucine (Leu), Proline (Pro), Histidine (His), Glutamine (Gln), Arginine (Arg)
G Valine (Val), Alanine (Ala), Aspartic Acid (Asp), Glutamic Acid (Glu), Glycine (Gly)
T Phenylalanine (Phe), Leucine (Leu), Serine (Ser), Tyrosine (Tyr), Cysteine (Cys), Tryptophan (Trp), Stop

Table 3: Second base to amino acid mapping for the standard genetic code. This table lists the amino
acids corresponding to each possible second base (A, C, G, T) in codons of the coding DNA sequence
(CDS), used for CentralMark’s inheritable watermark, where the second base is modified to embed a
detectable signature in the translated protein.

3-Letter 1-Letter 3-Letter 1-Letter 3-Letter 1-Letter
Ala A Gly G Pro P
Arg R His H Ser S
Asn N Ile I Thr T
Asp D Leu L Trp W
Cys C Lys K Tyr Y
Glu E Met M Val V
Gln Q Phe F

Table 4: Amino Acid Three-Letter to One-Letter Code Mapping
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C Therapeutic DNA Benchmark599

Table 5: Statistics of CDS sequences in each therapeutic category.
Category Count Avg Length Min Length Max Length
Cytokines 15 556.20 282 759
GrowthFactors 77 665.88 180 3501
ImmuneCheckpoints 14 816.21 525 1578
Hormones 18 431.67 333 654
Apoptosis 58 848.90 471 1182
Enzymes 31 4101.10 912 7650
Coagulation 9 2630.33 651 7056
Transporters 7 3706.71 1479 4443
Oncogenes 31 1735.35 567 2424
Antiviral 3 2000.00 570 2715
Neurotrophins 28 1052.68 726 2391
Uncategorized 112 1784.22 255 5028

Table 6: Representative therapeutic genes by category.
Category Genes
Cytokines IL2, IL6, IL10, TNF, IFNG
GrowthFactors EGF, FGF1, VEGFA, PDGFA, TGFB1
ImmuneCheckpoints PDCD1, CD274, CTLA4, LAG3
Hormones INS, LEP, GH1, PTH
Apoptosis BCL2, CASP3, TP53
Enzymes JAK1, CDK4, MAPK1, MTOR
Coagulation F8, F9, F2
Transporters ABCB1, CFTR, SLC2A1
Oncogenes KRAS, BRAF, MYC
Antiviral IFNA1, IFNB1, TLR3
Neurotrophins NGF, BDNF, NTRK1

D More Results of DNAMark and CentralMark600

Watermarking Method Evo(7B) Evo(40B)
No Watermark 9.7 30.5
DNAMark 12.4 37.2
CentralMark 13.2 40.5

Table 7: Generation times (in seconds) for producing a 128-nucleotide DNA sequence using No
Watermark, DNAMark, and CentralMark on Evo(7B) and Evo(40B) models. DNAMark and Central-
Mark incur computational overhead due to obtaining embedding and watermark model computations.
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E Calculation Details of γ601

E.1 Calculation of Expected Green Token Proportion (γ) for DNAMark602

In the DNAMark watermarking scheme, γ represents the expected proportion of green tokens (third603

bases in the green list G) under the null hypothesis of no watermark, where the first two bases of604

codons are uniformly distributed. This calculation is performed for watermarkable positions, i.e.,605

codons with synonymous third bases |S| ≥ 2, as defined in Equation (6) and detailed in Appendix B.606

The process is summarized as follows:607

1. Identify watermarkable codons: For each codon prefix (b1, b2), uniformly distributed608

over 16 possibilities (probability 1
16 ), the synonymous set S = {b3 ∈ {T,C,A,G} |609

translate(b1, b2, b3) = a} determines the number of third bases encoding the intended610

amino acid a. Excluding stop codons, the 61 sense codons yield 59 watermarkable codons:611

32 with |S| = 4 (e.g., Alanine: GCT, GCC, GCA, GCG), 3 with |S| = 3 (e.g., Isoleucine:612

ATT, ATC, ATA), and 24 with |S| = 2 (e.g., Histidine: CAT, CAC).613

2. Assign green list probability: For each watermarkable codon, the green list G = {bg}614

contains one base from S , selected as the base with the highest watermark logits. Under the615

null hypothesis, the third base is chosen uniformly from S, so the probability of selecting616

the green base is 1
|S| .617

3. Compute γ: The expected proportion γ is the weighted average of 1
|S| over all watermark-618

able codons, weighted by their counts:619

γ =

∑4
k=2(number of codons with |S| = k)× 1

k

total watermarkable codons
.

Calculating contributions: 32× 1
4 = 8 for |S| = 4, 3× 1

3 = 1 for |S| = 3, and 24× 1
2 = 12620

for |S| = 2. Total = 8 + 1 + 12 = 21. With 59 watermarkable codons, γ = 21
59 ≈ 0.3559.621

This γ value serves as the baseline for watermark detection, enabling the z-score calculation to622

identify the presence of a watermark by comparing observed green base frequencies against this623

expected proportion.624

E.2 Calculation of Expected Green Amino Acid Proportion (γ) for CentralMark625

In the CentralMark watermarking scheme, γ represents the expected proportion of green amino626

acids in the translated protein sequence under the null hypothesis, assuming a uniform distribution627

over the 20 standard amino acids. The watermark targets the second base of codons, with the green628

set Gb comprising the two bases with the top-2 watermark logits from {A,C,G, T}, as defined in629

Equation (10) and detailed in Table 3. Since Gb is not fixed, we average γ over all possible pairs630

Gb ∈ {{A,C}, {A,G}, {A, T}, {C,G}, {C, T}, {G,T}}. The process is summarized as follows:631

1. Identify green amino acids: For each Gb, the green amino acids Ga = {a |632

translate(b1, b2, b3) = a, b2 ∈ Gb} are the union of amino acids associated with the633

two second bases, per Table 3 (e.g., Gb = {A,C} yields 11 amino acids).634

2. Compute per-pair γ: For each Gb, γ = Number of unique amino acids in Ga

20 , reflecting the uniform635

probability 1
20 per amino acid. Values range from 10

20 (e.g., {C,G}) to 12
20 (e.g., {A,G}).636

3. Average γ: Assuming equal likelihood for each Gb, the average is:637

γ =
1

6

(
11

20
+

12

20
+

12

20
+

10

20
+

10

20
+

11

20

)
=

11

20
= 0.55.

This γ serves as the baseline for detecting the CentralMark watermark in protein sequences, enabling638

z-score calculations to identify biased amino acid distributions.639
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F Influence of Hyperparameter Selection640

In Figure. 4, we show the influence of δmax on the watermark detection F1 and sequence degeneracy641

score of DNAMark. We observe that too large δmax may lead to worse sequence quality measured642

by degeneracy, and δmax in a suitable range maximizes detection F1. In experiments, we choose643

δmax = 3.5 as the default setting.644

(a) (b)

Figure 4: Hyperparamter analysis of δmax

G Details of Watermark Model645

Our watermark model adopts an architecture similar to SIR [38], consisting of a series of residual646

blocks with ReLU activation, as detailed in the code. However, our implementation incorporates647

additional LayerNorm layers after each residual block to stabilize training and improve convergence.648

Notably, the input embeddings for our model are derived from Evo2 (7B) and ESM2 (35M), leveraging649

their robust representations to enhance the model’s ability to capture the biological semantics of650

DNA/protein sequences. To train the watermark model, we crawl 1000 random human coding651

sequences (CDS) from RefGen, subsample them to extract 20-length codons/amino acid embeddings652

with the Evo/Evo2 and ESM2 as input, and fine-tune the model for 200 epochs using the combination653

of alignment and normalization loss (Equation. 4 and 5). More details of code are included at654

https://anonymous.4open.science/r/DNA_Watermark-1687/README.md .655
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656
1class ResidualBlock(nn.Module):657

2def __init__(self , dim):658

3super(ResidualBlock , self).__init__ ()659

4self.fc = nn.Linear(dim , dim)660

5self.relu = nn.ReLU()661

6662

7def forward(self , x):663

8out = self.fc(x)664

9out = self.relu(out)665

10out = out + x666

11return out667

12668

13class WatermarkModel(nn.Module):669

14def __init__(self , num_layers =4, input_dim =1024 , hidden_dim =500,670

output_dim =4):671

15super(TransformModel , self).__init__ ()672

16self.layers = nn.ModuleList ()673

17self.norms = nn.ModuleList ()674

18self.layers.append(nn.Linear(input_dim , hidden_dim))675

19self.norms.append(nn.LayerNorm(hidden_dim))676

20for _ in range(num_layers - 2):677

21self.layers.append(ResidualBlock(hidden_dim))678

22self.norms.append(nn.LayerNorm(hidden_dim))679

23self.layers.append(nn.Linear(hidden_dim , output_dim))680

24self.norms.append(nn.LayerNorm(output_dim))681

25682

26def forward(self , x):683

27for i in range(len(self.layers)):684

28x = self.layers[i](x)685

29x = self.norms[i](x)686

30return x687688

20



H Case Study of CRISPR-Cas9 Design with CentralMark689

Here, we show the designed Cas9 sequence with CentralMark + Evo, aligned with the wild type. The690

total DNA similarity is 67.3%.

Figure 5: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.

691
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Figure 6: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.
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Figure 7: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.
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NeurIPS Paper Checklist692

1. Claims693

Question: Do the main claims made in the abstract and introduction accurately reflect the694

paper’s contributions and scope?695

Answer: [Yes]696

Justification: The abstract and introductions clearly summaries the contributions of this697

paper.698

Guidelines:699

• The answer NA means that the abstract and introduction do not include the claims700

made in the paper.701

• The abstract and/or introduction should clearly state the claims made, including the702

contributions made in the paper and important assumptions and limitations. A No or703

NA answer to this question will not be perceived well by the reviewers.704

• The claims made should match theoretical and experimental results, and reflect how705

much the results can be expected to generalize to other settings.706

• It is fine to include aspirational goals as motivation as long as it is clear that these goals707

are not attained by the paper.708

2. Limitations709

Question: Does the paper discuss the limitations of the work performed by the authors?710

Answer: [Yes]711

Justification: The authors discussed the limitations and potential future works in experiments712

and discussions.713

Guidelines:714

• The answer NA means that the paper has no limitation while the answer No means that715

the paper has limitations, but those are not discussed in the paper.716

• The authors are encouraged to create a separate "Limitations" section in their paper.717

• The paper should point out any strong assumptions and how robust the results are to718

violations of these assumptions (e.g., independence assumptions, noiseless settings,719

model well-specification, asymptotic approximations only holding locally). The authors720

should reflect on how these assumptions might be violated in practice and what the721

implications would be.722

• The authors should reflect on the scope of the claims made, e.g., if the approach was723

only tested on a few datasets or with a few runs. In general, empirical results often724

depend on implicit assumptions, which should be articulated.725

• The authors should reflect on the factors that influence the performance of the approach.726

For example, a facial recognition algorithm may perform poorly when image resolution727

is low or images are taken in low lighting. Or a speech-to-text system might not be728

used reliably to provide closed captions for online lectures because it fails to handle729

technical jargon.730

• The authors should discuss the computational efficiency of the proposed algorithms731

and how they scale with dataset size.732

• If applicable, the authors should discuss possible limitations of their approach to733

address problems of privacy and fairness.734

• While the authors might fear that complete honesty about limitations might be used by735

reviewers as grounds for rejection, a worse outcome might be that reviewers discover736

limitations that aren’t acknowledged in the paper. The authors should use their best737

judgment and recognize that individual actions in favor of transparency play an impor-738

tant role in developing norms that preserve the integrity of the community. Reviewers739

will be specifically instructed to not penalize honesty concerning limitations.740

3. Theory assumptions and proofs741

Question: For each theoretical result, does the paper provide the full set of assumptions and742

a complete (and correct) proof?743
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Answer: [NA]744

Guidelines:745

• The answer NA means that the paper does not include theoretical results.746

• All the theorems, formulas, and proofs in the paper should be numbered and cross-747

referenced.748

• All assumptions should be clearly stated or referenced in the statement of any theorems.749

• The proofs can either appear in the main paper or the supplemental material, but if750

they appear in the supplemental material, the authors are encouraged to provide a short751

proof sketch to provide intuition.752

• Inversely, any informal proof provided in the core of the paper should be complemented753

by formal proofs provided in appendix or supplemental material.754

• Theorems and Lemmas that the proof relies upon should be properly referenced.755

4. Experimental result reproducibility756

Question: Does the paper fully disclose all the information needed to reproduce the main ex-757

perimental results of the paper to the extent that it affects the main claims and/or conclusions758

of the paper (regardless of whether the code and data are provided or not)?759

Answer: [Yes]760

Justification: All the experimental settings are clearly described in the paper.761

Guidelines:762

• The answer NA means that the paper does not include experiments.763

• If the paper includes experiments, a No answer to this question will not be perceived764

well by the reviewers: Making the paper reproducible is important, regardless of765

whether the code and data are provided or not.766

• If the contribution is a dataset and/or model, the authors should describe the steps taken767

to make their results reproducible or verifiable.768

• Depending on the contribution, reproducibility can be accomplished in various ways.769

For example, if the contribution is a novel architecture, describing the architecture fully770

might suffice, or if the contribution is a specific model and empirical evaluation, it may771

be necessary to either make it possible for others to replicate the model with the same772

dataset, or provide access to the model. In general. releasing code and data is often773

one good way to accomplish this, but reproducibility can also be provided via detailed774

instructions for how to replicate the results, access to a hosted model (e.g., in the case775

of a large language model), releasing of a model checkpoint, or other means that are776

appropriate to the research performed.777

• While NeurIPS does not require releasing code, the conference does require all submis-778

sions to provide some reasonable avenue for reproducibility, which may depend on the779

nature of the contribution. For example780

(a) If the contribution is primarily a new algorithm, the paper should make it clear how781

to reproduce that algorithm.782

(b) If the contribution is primarily a new model architecture, the paper should describe783

the architecture clearly and fully.784

(c) If the contribution is a new model (e.g., a large language model), then there should785

either be a way to access this model for reproducing the results or a way to reproduce786

the model (e.g., with an open-source dataset or instructions for how to construct787

the dataset).788

(d) We recognize that reproducibility may be tricky in some cases, in which case789

authors are welcome to describe the particular way they provide for reproducibility.790

In the case of closed-source models, it may be that access to the model is limited in791

some way (e.g., to registered users), but it should be possible for other researchers792

to have some path to reproducing or verifying the results.793

5. Open access to data and code794

Question: Does the paper provide open access to the data and code, with sufficient instruc-795

tions to faithfully reproduce the main experimental results, as described in supplemental796

material?797
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Answer: [Yes]798

Justification: The paper provides data, code, and sufficient instructions to reproduce799

the main results (https://anonymous.4open.science/r/DNA_Watermark-1687/800

README.md).801

Guidelines:802

• The answer NA means that paper does not include experiments requiring code.803

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/804

public/guides/CodeSubmissionPolicy) for more details.805

• While we encourage the release of code and data, we understand that this might not be806

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not807

including code, unless this is central to the contribution (e.g., for a new open-source808

benchmark).809

• The instructions should contain the exact command and environment needed to run to810

reproduce the results. See the NeurIPS code and data submission guidelines (https:811

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.812

• The authors should provide instructions on data access and preparation, including how813

to access the raw data, preprocessed data, intermediate data, and generated data, etc.814

• The authors should provide scripts to reproduce all experimental results for the new815

proposed method and baselines. If only a subset of experiments are reproducible, they816

should state which ones are omitted from the script and why.817

• At submission time, to preserve anonymity, the authors should release anonymized818

versions (if applicable).819

• Providing as much information as possible in supplemental material (appended to the820

paper) is recommended, but including URLs to data and code is permitted.821

6. Experimental setting/details822

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-823

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the824

results?825

Answer: [Yes]826

Justification: The training and test details are specified in the experiments.827

Guidelines:828

• The answer NA means that the paper does not include experiments.829

• The experimental setting should be presented in the core of the paper to a level of detail830

that is necessary to appreciate the results and make sense of them.831

• The full details can be provided either with the code, in appendix, or as supplemental832

material.833

7. Experiment statistical significance834

Question: Does the paper report error bars suitably and correctly defined or other appropriate835

information about the statistical significance of the experiments?836

Answer: [Yes]837

Justification: Yes, the error bars are provided in figures.838

Guidelines:839

• The answer NA means that the paper does not include experiments.840

• The authors should answer "Yes" if the results are accompanied by error bars, confi-841

dence intervals, or statistical significance tests, at least for the experiments that support842

the main claims of the paper.843

• The factors of variability that the error bars are capturing should be clearly stated (for844

example, train/test split, initialization, random drawing of some parameter, or overall845

run with given experimental conditions).846

• The method for calculating the error bars should be explained (closed form formula,847

call to a library function, bootstrap, etc.)848

• The assumptions made should be given (e.g., Normally distributed errors).849
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• It should be clear whether the error bar is the standard deviation or the standard error850

of the mean.851

• It is OK to report 1-sigma error bars, but one should state it. The authors should852

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis853

of Normality of errors is not verified.854

• For asymmetric distributions, the authors should be careful not to show in tables or855

figures symmetric error bars that would yield results that are out of range (e.g. negative856

error rates).857

• If error bars are reported in tables or plots, The authors should explain in the text how858

they were calculated and reference the corresponding figures or tables in the text.859

8. Experiments compute resources860

Question: For each experiment, does the paper provide sufficient information on the com-861

puter resources (type of compute workers, memory, time of execution) needed to reproduce862

the experiments?863

Answer: [Yes]864

Justification: The information on computer resources is provided in experiments.865

Guidelines:866

• The answer NA means that the paper does not include experiments.867

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,868

or cloud provider, including relevant memory and storage.869

• The paper should provide the amount of compute required for each of the individual870

experimental runs as well as estimate the total compute.871

• The paper should disclose whether the full research project required more compute872

than the experiments reported in the paper (e.g., preliminary or failed experiments that873

didn’t make it into the paper).874

9. Code of ethics875

Question: Does the research conducted in the paper conform, in every respect, with the876

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?877

Answer: [Yes]878

Justification: The research conducted in the paper conform the NeurIPS code of ethics.879

Guidelines:880

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.881

• If the authors answer No, they should explain the special circumstances that require a882

deviation from the Code of Ethics.883

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-884

eration due to laws or regulations in their jurisdiction).885

10. Broader impacts886

Question: Does the paper discuss both potential positive societal impacts and negative887

societal impacts of the work performed?888

Answer: [Yes]889

Justification: The paper discusses the broad impacts in the introduction and conclusions.890

Guidelines:891

• The answer NA means that there is no societal impact of the work performed.892

• If the authors answer NA or No, they should explain why their work has no societal893

impact or why the paper does not address societal impact.894

• Examples of negative societal impacts include potential malicious or unintended uses895

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations896

(e.g., deployment of technologies that could make decisions that unfairly impact specific897

groups), privacy considerations, and security considerations.898
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• The conference expects that many papers will be foundational research and not tied899

to particular applications, let alone deployments. However, if there is a direct path to900

any negative applications, the authors should point it out. For example, it is legitimate901

to point out that an improvement in the quality of generative models could be used to902

generate deepfakes for disinformation. On the other hand, it is not needed to point out903

that a generic algorithm for optimizing neural networks could enable people to train904

models that generate Deepfakes faster.905

• The authors should consider possible harms that could arise when the technology is906

being used as intended and functioning correctly, harms that could arise when the907

technology is being used as intended but gives incorrect results, and harms following908

from (intentional or unintentional) misuse of the technology.909

• If there are negative societal impacts, the authors could also discuss possible mitigation910

strategies (e.g., gated release of models, providing defenses in addition to attacks,911

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from912

feedback over time, improving the efficiency and accessibility of ML).913

11. Safeguards914

Question: Does the paper describe safeguards that have been put in place for responsible915

release of data or models that have a high risk for misuse (e.g., pretrained language models,916

image generators, or scraped datasets)?917

Answer: [NA]918

Guidelines:919

• The answer NA means that the paper poses no such risks.920

• Released models that have a high risk for misuse or dual-use should be released with921

necessary safeguards to allow for controlled use of the model, for example by requiring922

that users adhere to usage guidelines or restrictions to access the model or implementing923

safety filters.924

• Datasets that have been scraped from the Internet could pose safety risks. The authors925

should describe how they avoided releasing unsafe images.926

• We recognize that providing effective safeguards is challenging, and many papers do927

not require this, but we encourage authors to take this into account and make a best928

faith effort.929

12. Licenses for existing assets930

Question: Are the creators or original owners of assets (e.g., code, data, models), used in931

the paper, properly credited and are the license and terms of use explicitly mentioned and932

properly respected?933

Answer: [Yes]934

Justification: All the related assets used in the paper are well credited.935

Guidelines:936

• The answer NA means that the paper does not use existing assets.937

• The authors should cite the original paper that produced the code package or dataset.938

• The authors should state which version of the asset is used and, if possible, include a939

URL.940

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.941

• For scraped data from a particular source (e.g., website), the copyright and terms of942

service of that source should be provided.943

• If assets are released, the license, copyright information, and terms of use in the944

package should be provided. For popular datasets, paperswithcode.com/datasets945

has curated licenses for some datasets. Their licensing guide can help determine the946

license of a dataset.947

• For existing datasets that are re-packaged, both the original license and the license of948

the derived asset (if it has changed) should be provided.949

• If this information is not available online, the authors are encouraged to reach out to950

the asset’s creators.951
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13. New assets952

Question: Are new assets introduced in the paper well documented and is the documentation953

provided alongside the assets?954

Answer: [Yes]955

Justification: The benchmark datasets will be release after further screening and the related956

documentation with be provided.957

Guidelines:958

• The answer NA means that the paper does not release new assets.959

• Researchers should communicate the details of the dataset/code/model as part of their960

submissions via structured templates. This includes details about training, license,961

limitations, etc.962

• The paper should discuss whether and how consent was obtained from people whose963

asset is used.964

• At submission time, remember to anonymize your assets (if applicable). You can either965

create an anonymized URL or include an anonymized zip file.966

14. Crowdsourcing and research with human subjects967

Question: For crowdsourcing experiments and research with human subjects, does the paper968

include the full text of instructions given to participants and screenshots, if applicable, as969

well as details about compensation (if any)?970

Answer: [NA]971

Guidelines:972

• The answer NA means that the paper does not involve crowdsourcing nor research with973

human subjects.974

• Including this information in the supplemental material is fine, but if the main contribu-975

tion of the paper involves human subjects, then as much detail as possible should be976

included in the main paper.977

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,978

or other labor should be paid at least the minimum wage in the country of the data979

collector.980

15. Institutional review board (IRB) approvals or equivalent for research with human981

subjects982

Question: Does the paper describe potential risks incurred by study participants, whether983

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)984

approvals (or an equivalent approval/review based on the requirements of your country or985

institution) were obtained?986

Answer: [NA]987

Guidelines:988

• The answer NA means that the paper does not involve crowdsourcing nor research with989

human subjects.990

• Depending on the country in which research is conducted, IRB approval (or equivalent)991

may be required for any human subjects research. If you obtained IRB approval, you992

should clearly state this in the paper.993

• We recognize that the procedures for this may vary significantly between institutions994

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the995

guidelines for their institution.996

• For initial submissions, do not include any information that would break anonymity (if997

applicable), such as the institution conducting the review.998

16. Declaration of LLM usage999

Question: Does the paper describe the usage of LLMs if it is an important, original, or1000

non-standard component of the core methods in this research? Note that if the LLM is used1001

only for writing, editing, or formatting purposes and does not impact the core methodology,1002

scientific rigorousness, or originality of the research, declaration is not required.1003
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Answer: [NA]1004

Justification: The paper does not use LLMs as a component of the core method.1005

Guidelines:1006

• The answer NA means that the core method development in this research does not1007

involve LLMs as any important, original, or non-standard components.1008

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1009

for what should or should not be described.1010
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