Securing the Language of Life: Inheritable Watermarks from DNA Language Models to Proteins

Anonymous Author(s)

Affiliation Address email

Abstract

DNA language models have revolutionized our ability to understand and design DNA sequences—the fundamental language of life—with unprecedented precision, enabling transformative applications in therapeutics, synthetic biology, and geneediting. However, this capability also poses substantial dual-use risks, including the potential for creating pathogens, viruses, even bioweapons. To address these biosecurity challenges, we introduce two innovative watermarking techniques to reliably track the designed DNA: DNAMark and CentralMark, DNAMark employs synonymous codon substitutions to embed watermarks in DNA sequences while preserving the original function. CentralMark further advances this by creating inheritable watermarks that transfer from DNA to translated proteins, leveraging protein embeddings to ensure detection across the central dogma. Both methods utilize semantic embeddings to generate watermark logits, enhancing robustness against natural mutations, synthesis errors, and adversarial attacks. Evaluated on our therapeutic DNA benchmark, DNAMark and CentralMark achieve F1 detection scores above 0.85 under various conditions, while maintaining over 60% sequence similarity to ground truth and degeneracy scores below 15%. A case study on the CRISPR-Cas9 system underscores CentralMark's utility in real-world settings. This work establishes a vital framework for securing DNA language models, balancing innovation with accountability to mitigate biosecurity risks.

1 Introduction

2

3

6

8

9

10

11 12

13

14

15

16

17

18

19

- DNA serves as the cornerstone of the central dogma [13], orchestrating the flow of genetic information from DNA to RNA to proteins. Within this paradigm, DNA encodes the genetic blueprint, RNA acts as a dynamic messenger, and proteins execute a vast array of cellular functions (Figure 1 a). Recent advances in DNA language models have transformed our ability to understand and design DNA sequences with unprecedented precision [45, 8, 73, 46, 70, 41]. These models leverage computational frameworks to decode complex sequence patterns, enabling groundbreaking applications in therapeutics, synthetic biology, gene-editing, and beyond.
- However, the remarkable capabilities of DNA language models also introduce significant dual-use risks [7, 51, 5]. For example, these models could lower the barrier to the creation of harmful biological agents, such as pathogens, viruses, or bioweapons. State-of-the-art DNA models excel in predicting and generating sequences with missense mutations or pathogenic properties [45, 8, 70, 41, 18], amplifying biosecurity concerns. The AI and scientific communities have recognized the emerging risks of DNA language models and are advocating robust guardrails and comprehensive oversight mechanisms [69, 62, 5, 51, 48].
- Recently, watermarking has emerged as an effective strategy to counter the misuse of large language models (LLMs), enabling the traceability of generated content to ensure accountability and mitigate

risks such as misinformation or malicious output [16, 33]. However, the application of watermarking to DNA language models presents unique and underexplored challenges. Unlike LLMs, which 38 operate on expansive vocabularies, DNA language models are constrained by a small alphabet of 39 only four nucleotides, complicating the design of robust watermarking strategies, such as green/red 40 list approaches. Moreover, DNA is susceptible to natural mutations [61], synthesis errors, and 41 sequencing inaccuracies [57], which can obscure or degrade watermarks. Additional complexities 42 arise from biological constraints to preserve the functional integrity of encoded sequences to maintain 43 their utility in applications like protein engineering. These challenges necessitate new watermarking frameworks tailored to the biological and computational intricacies of DNA sequence design. 45

To tackle these challenges, we propose a function-invariant watermark **DNAMark** using synonymous codon substitutions and CentralMark that builds an inheritable watermark transferable from designed DNA to translated protein. DNAMark and CentralMark address the challenges with the following innovations: (1) To achieve robust watermark resistant to natural mutations and potential attacks, 49 DNAMark and CentralMark utilize the generated DNA or translated protein embeddings (Evo2 [8] or ESM [36]) to predict watermark logits with trained watermark models. The watermark logits are then added to the original logits from DNA models to bias the next nucleotide selection for 52 watermarking. The intuition is that DNA and protein embeddings are inherently robust to minor mutations, preserving semantic and functional integrity during watermark logit prediction. During training, the watermark model is optimized to prioritize semantic preservation and maintain an unbiased distribution, enhancing watermark robustness and performance. (2) To minimize disruption to DNA sequence quality and encoded protein function, **DNAMark** employs a sparse watermarking scheme with synonymous codon substitutions, selectively modifying only the third base of specific codons to ensure the resulting codon encodes the same amino acid as the unmarked sequence (Figure 1 d). (3) To ensure inheritable watermark in both DNA and translated protein, CentralMark predicts watermark logits from protein embeddings and applies the watermark to the second base of each codon, enabling near non-overlapping separation of amino acids into green/red lists, facilitating reliable watermark detection across the central dogma (Figure 1 e).

Using our curated therapeutic DNA benchmark (Figure 1b), DNAMark and CentralMark achieve robust F1 detection scores (>0.85) under various attacks, including nucleotide substitution, insertion, and deletion attacks. Meanwhile, DNA sequence qualities are preserved, with over 60% sequence similarity to ground truth and degeneracy scores below 15%. Case studies on watermarking a CRISPR-Cas9 system [11, 12] designed by Evo model [45] (Figure 1c) demonstrate CentralMark's potential for practical applications in real-world synthetic biology and gene-editing.

Related Works 70

46

47

48

51

53

54

55

56

57

59

60

61

62

63

64

65

66

67

68

69

71

72

73

74

75 76

78

79

80

81

82

83

84

85

86

87

88

89

Watermark for Language Models

Driven by the need to identify machine-generated text and mitigate potential misuse, the field of watermarking large language models (LLMs) has seen rapid development. Early and influential approaches, such as the one proposed by Kirchenbauer et al. [33], often referred to as KGW, introduced a method of biasing token generation towards a "green list" determined by a pseudorandom function seeded by preceding tokens. This creates a statistical watermark detectable with high accuracy (More details in Section 3). Subsequent works have aimed to improve detectability [23, 39, 34], text quality [29, 24, 27, 71], capacity [23, 68, 72], robustness [38, 52], and public verifiability [22, 37]. For Example, to enhance watermark detectability, EWD [39] assigns weights to tokens based on their entropy during detection, enhancing sensitivity by emphasizing high-entropy tokens in z-score calculations. To mitigate the logits bias brought by KGW applying a uniform δ to green list tokens, Hu et al. [29] introduced two unbiased reweighting methods to preserve the original text distribution. Aiming at increasing the watermark capacity to convey additional information like timestamps, identifiers, or copyright. Fernandez et al. [23] expand binary vocabulary partition to multi-color partition. To further improve watermark robustness against removal attacks such as paraphrasing, semantic-invariant watermark methods [38, 52] are proposed to ensure that similar text semantics result in similar partition outcomes, which are robust to attacks. To achieve publicly verifiable watermarks, Fairoze et al. [22] have utilized a digital signature technology from the field of cryptography, involving generating watermarks using a private key and verifying them with a public key. Recently, Chen et al. [9] applies watermarks on protein language models, while it is unknown whether a watermark scheme can be designed for DNA language models and the central dogma.

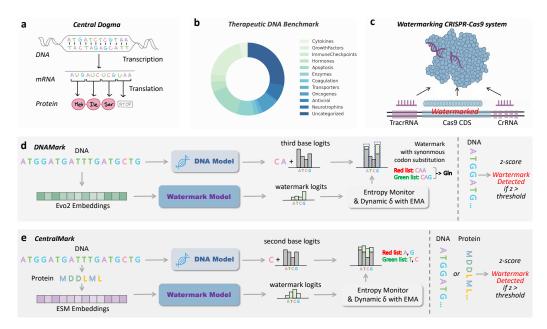


Figure 1: Watemark DNA language models with DNAMark and CentralMark. (a). DNA plays a key role in the central dogma; (b). A therapeutic DNA benchmark is constructed to evaluate DNA watermarks; (c) Our watermark methods successfully watermarks CRISPR-Cas9 generated by Evo; (d) DNAMark leverages watermark models and synonymous codon substitutions for DNA watermark; (e) CentralMark uses ESM-based watermark model to achieve an inheritable watermark. Watermark can be detected in both the DNA and the translated protein sequence generated with CentralMark.

2.2 DNA Language Models

Driven by advances in LLMs, DNA Language Models (DNA LMs) have also experienced rapid progress in recent years. Early DNA LMs primarily focused on DNA sequence interpretation and property prediction [32, 75, 54, 4]. For instance, Enformer combined convolutional down-sampling with transformer layers to enable accurate gene-expression prediction [4], while the Nucleotide Transformer, trained on multi-species corpora, markedly improved variant-effect prediction [15]. More recently, DNA LMs with advanced sequence generation capabilities have emerged [58, 73, 46, 70, 41, 45, 8]. For example, HyenaDNA leveraged implicit long-range convolutions to scale context to one million tokens [46]. GENERATOR, a 1.2B transformer decoder trained on 386 billion base pairs of eukaryotic DNA, excels in generating viable protein-coding sequences [70]. Evo, a 7B model trained on billions of prokaryotic and viral base pairs, demonstrated advanced capabilities in designing CRISPR—Cas complexes [45]. Its successor, Evo2, was scaled using 9.3 trillion DNA base pairs with one-million-token context windows, yielding autoregressive models with 7B and 40B parameters. Evo2 enables genome-wide prediction and *de novo* synthesis of DNA sequences across all domains of life [8]. Evo2 excels in generating chromosome-scale sequences, including similar sequences to human mitochondrial, *M. genitalium*, and *S. cerevisiae* genomes.

The advanced capabilities of DNA language models simultaneously raise significant biosafety and biosecurity concerns [69, 62]. Current countermeasures, such as sequence screening [1] and regulatory policies [5], are often suboptimal, as they may fail to detect AI-generated sequences or adapt to evolving model capabilities [48]. Robust watermarking techniques tailored for DNA could enable reliable tracing and detection of AI-generated DNA sequences, addressing these gaps.

3 Preliminaries

Autoregressive language models, such as transformer-based architectures, generate text by modeling the conditional probability of a token given its preceding context. Formally, for a sequence of tokens $\mathbf{x}=(x_1,x_2,\ldots,x_T)$, an autoregressive model predicts the next token x_t based on the probability distribution $p(x_t|x_{1:t-1};\theta)$, where θ denotes the model parameters. The joint probability of the

sequence is expressed as:

$$p(\mathbf{x}; \theta) = \prod_{t=1}^{T} p(x_t | x_{1:t-1}; \theta).$$
 (1)

These models excel at producing coherent and contextually relevant text, but their widespread use raises concerns about content authenticity, ownership, and traceability.

To address these challenges, watermarking techniques embed imperceptible identifiers into the 121 outputs of language models. A watermark is a subtle, structured modification to the generated text, 122 designed to be robust against post-processing (e.g., paraphrasing) while remaining inconspicuous to 123 human readers. For example, the KGW watermarking scheme [33] modifies the token probability 124 distribution during generation. Specifically, for a vocabulary V, KGW partitions tokens into a "green" 125 list $\mathcal{G} \subset \mathcal{V}$ and a complementary "red" list $\mathcal{R} = \mathcal{V} \setminus \mathcal{G}$ based on a cryptographic hash of the context. 126 The probability of selecting a token $x_t \in \mathcal{G}$ is boosted by an additive term δ , altering the sampling 127 distribution as: 128

$$p_{\text{wm}}(x_t|x_{1:t-1};\theta) \propto p(x_t|x_{1:t-1};\theta) + \delta \cdot \mathbb{I}(x_t \in \mathcal{G}), \tag{2}$$

where $\mathbb{I}(\cdot)$ is the indicator function, and the modified distribution is normalized. This ensures the watermark is embedded without significantly degrading text quality.

Watermark detection involves identifying the presence of these embedded identifiers in a suspect text. In the KGW scheme, detection leverages a statistical hypothesis test based on the z-score, which quantifies the likelihood that a given text ${\bf x}$ was generated by a watermarked model. Specifically, the detector counts the number of tokens in the green list, denoted $r = \sum_{t=1}^{T} \mathbb{I}(x_t \in \mathcal{G})$, over the sequence of length T. Under the null hypothesis (no watermark), tokens are sampled uniformly from \mathcal{V} , and the expected proportion of green tokens is $\gamma = |\mathcal{G}|/|\mathcal{V}|$. The z-score is computed as:

$$z = \frac{r - \mathbb{E}[r]}{\sqrt{\text{Var}[r]}} = \frac{r - T \cdot \gamma}{\sqrt{T\gamma(1 - \gamma)}},$$
(3)

where $\mathbb{E}[r] = T \cdot \frac{|\mathcal{G}|}{|\mathcal{V}|}$ and $\mathrm{Var}[r] = T\gamma \, (1-\gamma)$ assume a binomial distribution for r. A high z-score (e.g., $z \geq \tau$ for a threshold τ) indicates the presence of the watermark, as the observed green token count significantly exceeds the expected count under the null hypothesis.

4 Methods

140

141

149

4.1 DNAMark: Function-invariant Watermark for DNA Models

To achieve resistance to natural mutations and function preservation for synthetic biology, we first build DNAMark (Figure 1 (d)), a robust, and function-invariant watermark scheme for DNA language models in this section. Inspired by previous works on semantic-invariant watermarks for LLMs [38, 52], DNAMark utilizes a specialized trained watermark model to generate watermark logits for robustness. For watermarking in the coding region, we use synonymous codon substitutions to keep the coded amino acid unchanged. Moreover, adaptive watermark strength and entropy-guided watermark strategy are applied to balance sequence quality and detection accuracy.

4.1.1 Watermark Model based on Evo2 Embeddings

To embed a robust watermark in generated DNA sequences, DNAMark processes the sequence 150 preceding the current token through the Evo2 [8] model to obtain functional embeddings, which are 151 then transformed into watermark logits and combined with the original token logits. Leveraging 152 DNA's inherent robustness as an information carrier [10, 25, 21], where small mutations typically 153 preserve encoded biological functions, DNAMark is designed to provide a durable watermark for DNA language models, resisting both natural mutations and adversarial modifications. Specifically, 155 the watermark model in DNAMark satisfies two critical properties: semantic preservation, ensuring 156 the watermark maintains the sequence's biological semantics (e.g., protein coding or regulatory roles) 157 by aligning logit similarities with Evo2 embedding similarities. Moreover, the logits should be varied 158 sufficiently to enhance complexity and security. Otherwise, if the watermark logits are monotonous, 159 the green list is more static and might be revealed by counting the token frequency. This compromises the watermark protection and leads to the risk of being cracked. The second property, unbiased

distribution, ensures that watermark logits exhibit no systematic preference for any nucleotide or codon and maintain a balanced distribution of positive and negative values, enhancing security against statistical attacks and ensuring robust, detectable watermarks for DNA sequences.

To realize these properties, we trained the watermark model [38] (Appendix. G), comprising multiple fully connected layers and layer norm, with two main loss functions: an alignment loss and a normalization loss. The alignment loss aligns the watermark logit similarity with the Evo2 embedding similarity: we normalize the embedding similarities by subtracting their mean and applying the hyperbolic tangent function. The alignment loss \mathcal{L}_a is defined as:

$$\mathcal{L}_{a} = \sum_{i,j} \left| \frac{\mathbf{w}_{i} \cdot \mathbf{w}_{j}}{\|\mathbf{w}_{i}\|_{2} \|\mathbf{w}_{j}\|_{2}} - \tanh \left(k \left(\frac{\mathbf{e}_{i} \cdot \mathbf{e}_{j}}{\|\mathbf{e}_{i}\|_{2} \|\mathbf{e}_{j}\|_{2}} - \frac{1}{|N|^{2}} \sum_{k,l} \frac{\mathbf{e}_{k} \cdot \mathbf{e}_{l}}{\|\mathbf{e}_{k}\|_{2} \|\mathbf{e}_{l}\|_{2}} \right) \right) \right|, \tag{4}$$

where \mathbf{e}_i is the Evo2 embedding for sequence i, \mathbf{w}_i is the watermark logit vector produced by the watermark model, |N| is the number of sequences, k is a hyperparameter controlling the similarity range, and $\|\cdot\|_2$ denotes the Euclidean norm. This loss ensures watermark logits reflect DNA functional relationships while enhancing separability.

Following [38], the normalization loss enforces unbiased token preference and balanced scores. It constrains the mean of the watermark logits to zero across tokens and sequences and ensures uniform absolute values for stability. The normalization loss \mathcal{L}_n is defined as:

$$\mathcal{L}_{n} = \sum_{i=1}^{|N|} \left| \sum_{j=1}^{|\mathcal{V}|} \mathbf{w}_{i}^{(j)} \right| + \sum_{j=1}^{|\mathcal{V}|} \left| \sum_{i=1}^{|N|} \mathbf{w}_{i}^{(j)} \right| + \lambda \sum_{i=1}^{|N|} \sum_{j=1}^{|\mathcal{V}|} \left| R - \mathbf{w}_{i}^{(j)} \right|,$$
 (5)

where $\mathbf{w}_i^{(j)}$ denotes the j-th value in the watermark logit; R is a hyperparameter specifying the target absolute value for each logit component, and λ is a weighting factor. This loss ensures the watermark is statistically neutral and detectable. The total loss combines the above two objectives. During watermarked generation, the watermark logits, scaled by a watermark strength factor δ , are added to the original logits to bias the sampling of the next nucleotide.

4.1.2 Synonymous Codon Substitutions

To design a function-invariant watermark for DNA language models, DNAMark employs *synonymous codon substitution (SCS)* within the coding DNA sequence (CDS), targeting the *third base* of codons to embed identifiers that preserve the encoded amino acid, critical for synthetic biology applications. For a codon with fixed first two bases (e.g., CA) and an intended amino acid (e.g., Histidine for CAT), DNAMark defines green and red lists within the synonymous codon set (e.g., CAC as red list and CAT as green list), to keep the encoded protein unchanged (i.e., no matter red or green list is chosen, the same amino acid type). This approach is motivated by several considerations: **First**, synonymous codons produce identical amino acids, thereby maintaining the protein's structure and function critical for applications in synthetic biology. **Second**, targeting the third base leverages the degeneracy of the genetic code, where mutations at this position are often silent [30], minimizing the influence of watermarking on DNA sequences. **Third**, by watermarking only the third base, DNAMark achieves a sparse watermark that balances robust detectability with high DNA sequence quality, minimizing disruptions to codon usage and sequence optimality. Following previous works [33, 23], we explicitly define the green and red lists for watermark. Considering different cases of synonymous codons (more details in Table B), the green and red lists (*G. R.*) are constructed as:

$$\mathcal{G}, \mathcal{R} = \begin{cases} \{b_g\}, \mathcal{S} \setminus \{b_g\} & \text{if } |\mathcal{S}| = 2 \text{ (e.g., T, C for CAT, CAC; Histidine)}, \\ \{b_g\}, \mathcal{S} \setminus \{b_g\} & \text{if } |\mathcal{S}| = 3 \text{ (e.g., T, C, A for ATT, ATC, ATA; Isoleucine)}, \\ \{b_g\}, \mathcal{S} \setminus \{b_g\} & \text{if } |\mathcal{S}| = 4 \text{ (e.g., T, C, A, G for GCT/ C/ A/ G; Alanine)}, \\ \emptyset, \emptyset & \text{if } |\mathcal{S}| = 1 \text{ (e.g., G for ATG; Methionine)}, \end{cases}$$
(6)

where $\mathcal{S}=\{b_3\in\{T,C,A,G\}\mid \mathtt{translate}(b_1,b_2,b_3)=a\}$ is the set of third bases yielding the same amino acid a, and $|\mathcal{S}|$ is the set size; b_1,b_2 are the first two bases, $\mathtt{translate}$ maps codons to amino acids; $\{b_g\}\in\mathcal{S}$ is the green base list, selected as the base type with the highest watermark logits in \mathcal{S} . For $|\mathcal{S}|=2$ (e.g., b_1 =C, b_2 =A, a=Histidine), one base is green (e.g., T for CAT) and one red (e.g., C for CAC); for $|\mathcal{S}|=3$ (e.g., b_1 =A, b_2 =T, a=Isoleucine), one is green (e.g., C) and two red (e.g., T, A); for $|\mathcal{S}|=4$ (e.g., b_1 =G, b_2 =C, a=Alanine), one is green and three red; and for $|\mathcal{S}|=1$ (e.g., b_1 =A, b_2 =T, a=Methionine), watermarking is skipped as no synonymous alternatives exist.

4.1.3 Adaptive Watermark Strength and Entropy-guided Watermark

205

223

224

225

226

227

228

233

234

235

236

237

238

239

240

241

Given the small vocabulary of DNA sequences (A, C, T, G) and the instability of autoregressive DNA 206 language models, where excessive watermarking may produce invalid sequences such as repeated 207 motifs or model corruption, DNAMark employs optimization strategies to balance detectability and 208 sequence quality. Specifically, we introduce two optimization strategies: Adaptive Watermark Strength 209 and Entropy-guided Watermarking. The Adaptive Watermark Strength strategy dynamically 210 adjusts the watermark logit strength, δ , using an Exponential Moving Average (EMA) [28] based on the current z-score, z_t , which measures the statistical significance of the watermark signal (i.e., green 212 base frequency in green/red lists [33]). The strength is smoothly updated as a weighted average of 213 the current strength within a target range $[z_{\min}, z_{\max}]$. The adjustment is defined as: 214

$$adj(z_{t}, z_{\min}, z_{\max}) = \begin{cases} z_{\min} - z_{t} & \text{if } z_{t} < z_{\min}, \\ 0 & \text{if } z_{\min} \le z_{t} \le z_{\max}, \\ z_{\max} - z_{t} & \text{if } z_{t} > z_{\max}, \end{cases}$$
(7)

and δ is smoothly updated as a weighted average of the current strength and a target adjustment:

$$\delta_{t+1} = (1 - \beta)\delta_t + \beta \cdot \max\left(\delta_{\min}, \min\left(\delta_{\max}, \delta_t + \kappa \cdot \operatorname{adj}(z_t, z_{\min}, z_{\max})\right)\right), \tag{8}$$

where δ_t is the strength at step $t, \beta \in (0,1)$ controls the update speed, δ_{\min} , δ_{\max} are bounds, and κ scales the adjustment. If $z_t < z_{\min}$, δ increases to enhance detectability; if $z_t > z_{\max}$, δ decreases to preserve sequence quality; and if $z_t \in [z_{\min}, z_{\max}]$, δ remains stable. During generation, watermark logits, scaled by δ_t , are added to the original logits.

The **Entropy-guided Watermarking strategy** skips watermarking in low-entropy subsequences to avoid disrupting critical sequence patterns, such as regulatory motifs in UTRs. The entropy H of a subsequence s (e.g., a window of nucleotides) is computed as:

$$H(s) = -\sum_{b \in \{T, C, A, G\}} p(b) \log p(b), \tag{9}$$

where p(b) is the frequency of base b in s. If $H(s) < H_{\text{threshold}}$, watermarking is skipped for that subsequence, ensuring minimal impact on functional elements like ribosome binding sites or structural motifs. These strategies together enhance DNAMark's watermark, preserving sequence quality while maintaining robust detectability against mutations and adversarial edits.

4.2 CentralMark: Inheritable Watermarks from DNA to Proteins

Recent DNA language models not only learns DNA sequences but also captures the central dogma [13]'s flow of genetic information from DNA to RNA to protein [8, 45]. To extend the traceability of our DNA watermark beyond the nucleotide sequence, we introduce an inheritable watermark (CentralMark) detectable in both generated DNA and the translated protein sequence, a critical feature to ensure biosecurity and ownership verification in synthetic biology applications where proteins are the functional output (Figure 1 (e)). Unlike DNAMark introduced above, which uses synonymous codon substitutions to preserve protein function, the inheritable watermark deliberately alters amino acids by targeting the second base of codons in the coding DNA sequence (CDS), leveraging ESM [36] embeddings of the translated protein instead of Evo2 embeddings of DNA for both watermark generation and detection. We target the second base of each codon because it predominantly determines the encoded amino acid's identity or chemical properties, facilitating precise amino acid substitutions, and enables near-nonoverlapping green and red lists for amino acids based on second-base patterns (see Table 3). Specifically, for a codon $c = (b_1, b_2, b_3) \in \mathcal{V}_{CDS}$, where $b_2 \in \{A, C, G, T\}$, we define a green/red list for the protein sequence by indexing the amino acid a = translate(c) to the second base b_2 :

$$\mathcal{G}_a = \{ a \mid \mathtt{translate}(b_1, b_2, b_3) = a, b_2 \in \mathcal{G}_b \}, \, \mathcal{R}_a = \{ a \mid \mathtt{translate}(b_1, b_2, b_3) = a, b_2 \in \mathcal{R}_b \},$$
(10)

where \mathcal{G}_b and \mathcal{R}_b are the green and red sets of second bases (e.g., $\mathcal{G}_b = \{C, G\}$), and translate maps codons to amino acids (e.g., $\mathcal{G}_a = \{\text{Leu, Pro, His, Gln, Arg, Val, Ala, Asp, Glu, Gly}\}$). During watermarking, we bias the selection of codons with $b_2 \in \mathcal{G}_b$ to embed the signature, which propagates to the protein as a biased distribution of amino acids in \mathcal{G}_a . In CentralMark, the green sets of second bases are chosen by selecting the bases with the top-2 highest watermark logits. By embedding watermarks in DNA sequences based on their translated protein sequences, we enable subsequent detection of the protein sequences independently, without requiring additional DNA information.

4.3 Watermark Detection

The watermark detection of DNAMark and CentralMark follows KGW's calculating z score (Equation. 3). We need to note that the expected proportion of green tokens, γ , may not be 0.5 in DNAMark and CentralMark due to the unique design, such as synonymous codon substitutions. Under the assumption of uniform codon usage, γ is set to 0.3559, 0.5, and 0.55 for DNAMark, CentralMark (DNA), and CentralMark (Protein) respectively. The details are included in the Appendix. E.

5 Experiments

257

271

272

273

274

275

279

280

281

283

287

294

295

5.1 Experiment Settings

BenchMark Construction To construct a biologically grounded benchmark for evaluating DNA 258 watermarks, we curated a set of therapeutically important protein-coding genes from Homo sapi-259 ens (Human) and existing drug modalities. These genes were selected based on their established 260 relevance in clinical and pharmaceutical contexts, encompassing categories such as cytokines (e.g., 261 IL2 [60], TNF [50]), growth factors (e.g., VEGFA [35], EGF [26]), immune checkpoint proteins 262 (e.g., PDCD1 [59], CD274 [19]), apoptosis regulators (e.g., TP53 [40], BCL2 [64]), oncogenes (e.g., 263 KRAS [56], BRAF [17]), antiviral effectors (e.g., IFNA1 [44], TLR3 [3]), coagulation factors (e.g., 264 F8 [63], F2 [67]), and other categories relevant to disease and therapy. For each gene, we queried 265 the NCBI RefSeq database [49] to retrieve validated coding DNA sequences (CDS) with canonical 266 start and stop codons. We integrated secondary structure annotations (helix, β -strand, loop) from 267 UniProt [65] to ensure structural context. Monomeric proteins with varied secondary structures were selected, constructing a benchmark with 400 DNA sequences (More details in Appendix. C). In Case Study, we explored watermarking CRISPR-Cas9 with both coding and non-coding regions.

Attacks To evaluate the robustness of our proposed watermarking scheme, we subjected the watermarked DNA sequences to a series of simulated genetic alterations, mimicking common evolutionary and mutational processes. These *in silico* attacks comprised three distinct types of modifications: (1) **Synonymous Codon Substitutions** replace codons with alternatives that encode the same amino acid [14, 47] (2) **Nucleotide Substitutions** means changing randomly seleted nucleotides to other types in DNA [53, 66], which can lead to either synonymous or non-synonymous codon changes; and (3) **Insertions and deletions (Indels)**, are structural variants that add or remove nucleotides. Here we consider add or remove codons [42, 43]. These attacks are performed at a frequency of 5% across the sequence to simulate a harsh test for the watermark's detectability and robustness (natural mutation frequency $10^{-3} - 10^{-8}$ [55, 20]).

Evaluations For each DNA sequence, we use the first half as a prompt to the DNA language models and generate the rest for 5 times. Inspired by previous works on LLM watermark [38, 74], we report the detection True positive rates at different false positive rates (1% and 10%) to avoid the impact of detection thresholds (τ) . To assess the quality of generated DNA sequences, we compute the **Sequence Identity** to the ground truth, where higher values indicate better alignment, and the **Degeneracy Score**, defined as the percentage of a sequence covered by repetitive substrings longer than four nucleotides, where lower values are preferable, following Evo [45].

DNA Language Models and Baselines We evaluate DNAMark and CentralMark on the latest and largest DNA language models, Evo [45] and Evo2 (7B, and 40B) [8]. Our methods can also be applied to other DNA models. Hyperparameters are set to $k=20, \lambda=10, \kappa=0.1, \delta_{\min}=0.5, \delta_{\max}=3.5, z_{\min}=2.5, z_{\max}=4.0, H_{\text{threshold}}=2.0$, and the Adam optimizer (lr=1e-3) is used for training (Selected Hyperparameter analysis in Figure 4). We adapt KGW with 1, 2, and 4 codon window sizes to DNA as a baseline. All experiments are conducted on 4 Tesla H100 GPUs.

5.2 Results and Robustness Analysis

In Table 1, we compare the performance of DNAMark and CentralMark, detected using DNA and protein sequences, against KGW-1, KGW-2, and KGW-4 under various attack scenarios. Watermarking and detecting DNA sequences is notably more challenging than in natural language models, where methods like KGW achieve near-100% TPR for texts [33], compared to only 70–80% TPR for DNA.

Table 1: We compared the performance of our watermarking methods, DNAMark and CentralMark (DNA/Protein), with baselines, including KGW-k [33], with DNA language model Evo2-7B [8]. Tests evaluated watermark detection accuracy under no attack, synonymous codon substitution, Nucleotide Substitutions, and insertion-deletion (Indels) attacks.

	No attack				Synonymous Codon Substitution			
Method	1% FPR		10% FPR		1% FPR		10% FPR	
	TPR	F1	TPR	F1	TPR	F1	TPR	F1
KGW-1	0.765	0.862	0.805	0.845	0.580	0.729	0.756	0.815
KGW-2	0.770	0.865	0.820	0.854	0.545	0.701	0.740	0.805
KGW-4	0.774	0.868	0.817	0.852	0.371	0.537	0.520	0.642
DNAMark	0.845	0.911	0.915	0.908	0.820	0.896	0.896	0.898
CentralMark (DNA)	0.875	0.928	0.920	0.911	0.854	0.916	0.910	0.905
CentralMark (Protein)	0.868	0.924	0.922	0.912	0.860	0.920	0.904	0.902
	Nucleotide Substitutions			I	ndels			

	Nucleotide Substitutions				Indels			
Method	1% FPR		10% FPR		1% FPR		10% FPR	
	TPR	F1	TPR	F1	TPR	F1	TPR	F1
KGW-1	0.520	0.680	0.710	0.785	0.515	0.675	0.723	0.794
KGW-2	0.505	0.667	0.658	0.749	0.477	0.642	0.645	0.739
KGW-4	0.330	0.493	0.551	0.668	0.339	0.503	0.497	0.623
DNAMark	0.808	0.902	0.886	0.892	0.795	0.878	0.860	0.877
CentralMark (DNA)	0.840	0.908	0.890	0.894	0.765	0.862	0.850	0.872
CentralMark (Protein)	0.825	0.900	0.885	0.892	0.759	0.858	0.832	0.861

We identify two primary reasons for this disparity: (1) DNA's limited vocabulary of four nucleotides (A, C, G, T), versus tens of thousands of tokens in natural language models, severely constrains green/red list assignments, reducing the watermark's statistical distinctiveness. (2) DNA language models exhibit greater brittleness than large language models (LLMs), showing high sensitivity to perturbations in their output distributions. When the watermark strength δ is excessive, it overly biases nucleotide selection, leading to model collapse (e.g., generating repetitive motifs like AAAAA), which compromises both sequence quality and watermark detectability.

Across all attack conditions, DNAMark and CentralMark consistently outperform KGW baselines in TPR and F1 scores at both 1% and 10% FPR. The detection F1 of DNAMark and CentralMark are all above 0.85. CentralMark (DNA) achieves the highest performance in most cases, followed closely by CentralMark (Protein) and DNAMark. The unique design of CentralMark makes the watermark detectable in both the generated DNA and the translated protein. The robustness of DNAMark and CentralMark is due to their use of embeddings (Evo2, ESM), which capture functional/semantic similarity, making watermarks robust even with attacks. For instance, DNAMark and CentralMark achieve high TPR and F1 scores under synonymous codon substitutions, as these changes preserve amino acid sequences and minimally affect the embeddings.

Comparing different attacks, we observe that Nucleotide Substitutions and Indels are the most strong attacks: Substitutions can lead to non-synonymous codons, and Indels can disrupt sequence patterns critical for watermark integrity. For example, the TRP of CentralMark with Indels drops to around 76%, highlighting the severity of these attacks. Nevertheless, DNAMark and CentralMark outperform all baselines. Future work will focus on enhancing robustness to such challenging attacks.

5.3 Generation Quality and Ablation Studies

It is important to keep the sequence quality when watermarking DNA for practical use. In Figure 2 (a) & (b), we show the Sequence Identity to the ground truth and the Degeneracy Score of the generated DNA sequences by different watermark methods. Compared with KGW, DNAMark and CentralMark shows more alignment with no watermark, indicating higher generation quality. This can be attributed to the sparse watermark adapted to DNA and unique methods such as synonymous codon substitution of DNAMark, minimizing the side-effects on sequence quality. In Figure 2 (c), we

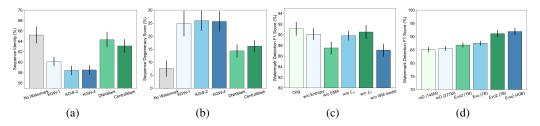


Figure 2: (a) & (b) Generated DNA sequence quality measured by Sequence Identity (the higher the better) and Degeneracy Score (the lower the better). (c) Ablation studies of Entropy Guidance, Adaptive δ with EMA, Alignment and Normalization loss, and the watermark model. We perform 3-time generations for each model and show the standard deviation. (d) Applying DNAMark to different DNA language models and measuring the watermark detection F1 score. mD: megaDNA.

did ablation studies of various components in DNAMark. Generally, Adaptive watermark strength with EMA and the watermark model are most critical to the successful watermark detection.

5.4 Generalization to Different DNA Models and Time Complexity

In Figure 2 (d), we observe that DNAMark demonstrates robust watermark detection across a range of DNA language models. Using models of varying sizes—megaDNA (145M and 277M parameters), Evo2 (1B, 7B, and 40B), and Evo1 (7B)—DNAMark achieves F1 scores from 0.851 to 0.919. Smaller models, such as megaDNA-145M (F1=0.851) and 277M (F1=0.855), deliver respectable detection accuracy, but are limited by reduced generation capability. Larger models like Evo2-7B (F1=0.911) and Evo2-40B (F1=0.919) excel, leveraging high-capacity embeddings to enhance generation quality and watermark detection. We further measure the generation time cost of DNAMark and CentralMark, comparing them to a baseline with no watermark generation. The time complexity increases by approximately 30% (Table 7), attributable to the compact size of the watermark model.

5.5 Case Study of Watermarking CRISPR-Cas9 System

To show the practical application in gene editing, we utilized the Evo model (evo-1-8k-crispr) to generate the CRISPR-Cas9 [11, 12] DNA sequences, embedding a watermark during generation using CentralMark. Following [45], we use Prodigal [31] to extract Cas9 CDS, MinCED [6] to detect CRISPR arrays, and AlphaFold3 (AF3) [2] to predict the structure. Figure 3 visualizes the generated watermarked Cas9 aligned with the wild-type SpCas9 crystal structure (PDB ID: 4008). The generated sequence achieves a TM-score of 0.6802, indicating high structural alignment, and a Z-score of 5.41, confirming strong watermark detectability. These results demonstrate the efficacy of watermarking Evo-generated CRISPR-Cas9 DNA sequences with minimal impact on biological quality.

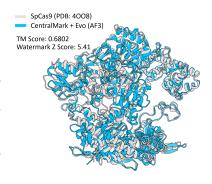


Figure 3: Predicted structure of Evodesinged Cas9 with CentralMark.

6 Conclusions

In this paper, we tackle the pressing biosecurity challenges arising from DNA language models, which hold immense potential for genetic engineering but also pose dual-use risks by enabling the creation of harmful biological agents. To counter these risks, we propose DNAMark, a watermarking method that uses synonymous codon substitutions to embed robust, function-preserving watermarks in DNA sequences, and CentralMark, an advanced technique that generates inheritable watermarks detectable in both DNA and translated proteins. Future work should explore watermark schemes independent of green/red lists to enhance adaptability, investigate their effects on UTRs for regulatory insights, and validate DNAMark and CentralMark through wet lab experiments. These steps are vital to responsibly balance genetic technology innovation with biosecurity.

References

363

- [1] Common mechanism ibbis. https://ibbis.bio/our-work/common-mechanism/. Accessed: 2025-04-27.
- Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.
- [3] L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell. Recognition of double-stranded
 RNA and activation of NF-κb by Toll-like receptor 3. *Nature*, 413(6857):732–738, 2001.
- Ziga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska, Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley.
 Effective gene expression prediction from sequence by integrating long-range interactions.
 Nature methods, 18(10):1196–1203, 2021.
- 5] David Baker and George Church. Protein design meets biosecurity, 2024.
- [6] Charles Bland, Teresa L Ramsey, Fareedah Sabree, Micheal Lowe, Kyndall Brown, Nikos C
 Kyrpides, and Philip Hugenholtz. Crispr recognition tool (crt): a tool for automatic detection of
 clustered regularly interspaced palindromic repeats. BMC bioinformatics, 8:1–8, 2007.
- [7] Doni Bloomfield, Jaspreet Pannu, Alex W Zhu, Madelena Y Ng, Ashley Lewis, Eran Bendavid, Steven M Asch, Tina Hernandez-Boussard, Anita Cicero, and Tom Inglesby. Ai and biosecurity: The need for governance. *Science*, 385(6711):831–833, 2024.
- [8] Garyk Brixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,
 Gabriel A Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling
 and design across all domains of life with evo 2. *bioRxiv*, pages 2025–02, 2025.
- Yanshuo Chen, Zhengmian Hu, Yihan Wu, Ruibo Chen, Yongrui Jin, Marcus Zhan, Chengjin
 Xie, Wei Chen, and Heng Huang. Enhancing privacy in biosecurity with watermarked protein
 design. *Bioinformatics*, page btaf141, 2025.
- 188 [10] George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information storage in dna. Science, 337(6102):1628–1628, 2012.
- [11] Le Cong, F Ann Ran, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib, Patrick D
 Hsu, Xuebing Wu, Wenyan Jiang, Luciano A Marraffini, et al. Multiplex genome engineering
 using crispr/cas systems. *Science*, 339(6121):819–823, 2013.
- [12] Le Cong and Feng Zhang. Genome engineering using crispr-cas9 system. In *Chromosomal mutagenesis*, pages 197–217. Springer, 2014.
- ³⁹⁵ [13] Francis Crick. Central dogma of molecular biology. *Nature*, 227(5258):561–563, 1970.
- Francis H. C. Crick. Codon–anticodon pairing: the wobble hypothesis. *Journal of Molecular Biology*, 19(2):548–555, 1966.
- Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. *Nature Methods*, 22(2):287–297, 2025.
- In Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl, Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable watermarking for identifying large language model outputs. *Nature*, 634(8035):818–823, 2024.
- H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin,
 M. J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes,
 J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper,
 R. Wilson, H. Jayatilake, B. A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard Jones, N. Maitland, G. Chenevix-Trench, G. J. Riggins, D. D. Bigner, G. Palmieri, A. Cossu,

- A. Flanagan, A. Nicholson, J. W. C. Ho, S. Y. Leung, S. T. Yuen, B. L. Weber, H. F. Seigler, T. L. Darrow, H. Paterson, R. Marais, C. J. Marshall, R. Wooster, M. R. Stratton, and P. A. Futreal. Mutations of the BRAF gene in human cancer. *Nature*, 417(6892):949–954, 2002.
- 413 [18] Sajib Acharjee Dip, Uddip Acharjee Shuvo, Tran Chau, Haoqiu Song, Petra Choi, Xuan Wang, and Liqing Zhang. Patholm: Identifying pathogenicity from the dna sequence through the genome foundation model. *arXiv preprint arXiv:2406.13133*, 2024.
- 416 [19] H. Dong, G. Zhu, K. Tamada, and L. Chen. B7-h1, a third member of the b7 family, co-417 stimulates t-cell proliferation and interleukin-10 secretion. *Nature Medicine*, 5(12):1365–1369, 418 1999.
- ⁴¹⁹ [20] John W. Drake, Brian Charlesworth, Deborah Charlesworth, and James F. Crow. Rates of spontaneous mutation. *Genetics*, 148(4):1667–1686, 1998.
- 421 [21] Andy Extance. How dna could store all the world's data. *Nature*, 537(7618), 2016.
- [22] Jaiden Fairoze, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, and
 Mingyuan Wang. Publicly-detectable watermarking for language models. arXiv preprint
 arXiv:2310.18491, 2023.
- [23] Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien Chappelier, and Teddy Furon. Three
 bricks to consolidate watermarks for large language models. In 2023 IEEE International
 Workshop on Information Forensics and Security (WIFS), pages 1–6. IEEE, 2023.
- Yu Fu, Deyi Xiong, and Yue Dong. Watermarking conditional text generation for ai detection:
 Unveiling challenges and a semantic-aware watermark remedy. In *Proceedings of the AAAI* Conference on Artificial Intelligence, volume 38, pages 18003–18011, 2024.
- [25] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeProust, Botond
 Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance information storage
 in synthesized dna. *nature*, 494(7435):77–80, 2013.
- 434 [26] H. Gregory. Isolation and structure of urogastrone and its relationship to epidermal growth factor. *Nature*, 257(5524):325–327, 1975.
- [27] Batu Guan, Yao Wan, Zhangqian Bi, Zheng Wang, Hongyu Zhang, Pan Zhou, and Lichao Sun.
 Codeip: A grammar-guided multi-bit watermark for large language models of code. arXiv
 preprint arXiv:2404.15639, 2024.
- [28] David Haynes, Steven Corns, and Ganesh Kumar Venayagamoorthy. An exponential moving average algorithm. In 2012 IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2012.
- [29] Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang.
 Unbiased watermark for large language models. arXiv preprint arXiv:2310.10669, 2023.
- 444 [30] Ryan C Hunt, Vijaya L Simhadri, Matthew Iandoli, Zuben E Sauna, and Chava Kimchi-Sarfaty. Exposing synonymous mutations. *Trends in Genetics*, 30(7):308–321, 2014.
- [31] Doug Hyatt, Gwo-Liang Chen, Philip F LoCascio, Miriam L Land, Frank W Larimer, and
 Loren J Hauser. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC bioinformatics*, 11:1–11, 2010.
- Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
 encoder representations from transformers model for dna-language in genome. *Bioinformatics*,
 37(15):2112–2120, 2021.
- John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A watermark for large language models. In *International Conference on Machine Learning*, pages 17061–17084. PMLR, 2023.
- 455 [34] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, 456 Kasun Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of 457 watermarks for large language models. *arXiv preprint arXiv:2306.04634*, 2023.

- 458 [35] D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara. Vascular endothelial growth factor is a secreted angiogenic mitogen. *Science*, 246(4935):1306–1039, 1989.
- Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.
- 463 [37] Aiwei Liu, Leyi Pan, Xuming Hu, Shuang Li, Lijie Wen, Irwin King, and S Yu Philip. An unforgeable publicly verifiable watermark for large language models. In *The Twelfth International* 465 *Conference on Learning Representations*, 2023.
- [38] Aiwei Liu, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. A semantic invariant robust
 watermark for large language models. In *The Twelfth International Conference on Learning Representations*, 2024.
- 469 [39] Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Irwin King. An entropy-based text water-470 marking detection method. *arXiv preprint arXiv:2403.13485*, 2024.
- [40] G. Matlashewski, P. Lamb, D. Pim, J. Peacock, L. Crawford, and S. Benchimol. Isolation and characterization of a human p53 cdna clone: expression of the human p53 gene. *The EMBO Journal*, 3(13):3257–3262, 1984.
- 474 [41] Aditi T Merchant, Samuel H King, Eric Nguyen, and Brian L Hie. Semantic mining of functional de novo genes from a genomic language model. *bioRxiv*, pages 2024–12, 2024.
- 476 [42] Ryan E. Mills, Charles T. Luttig, Christine E. Larkins, Ashley Beauchamp, Cissy Tsui,
 477 W. Stephen Pittard, and Scott E. Devine. An initial map of insertion and deletion (indel)
 478 variation in the human genome. *Genome Research*, 16(9):1182–1190, 2006.
- 479 [43] J. M. Mullaney, R. E. Mills, W. S. Pittard, and S. E. Devine. Small insertions and deletions (indels) in human genomes. *Human Molecular Genetics*, 19(R2):R131–R136, 2010.
- [44] S. Nagata, H. Taira, A. Hall, L. Johnsrud, M. Streuli, J. Ecsödi, W. Boll, K. Cantell, and
 C. Weissmann. Synthesis in e. coli of a polypeptide with human leukocyte interferon activity.
 Nature, 284(5754):316–320, 1980.
- [45] Eric Nguyen, Michael Poli, Matthew G Durrant, Brian Kang, Dhruva Katrekar, David B Li,
 Liam J Bartie, Armin W Thomas, Samuel H King, Garyk Brixi, et al. Sequence modeling and
 design from molecular to genome scale with evo. *Science*, 386(6723):eado9336, 2024.
- [46] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna:
 Long-range genomic sequence modeling at single nucleotide resolution. Advances in neural
 information processing systems, 36:43177–43201, 2023.
- [47] M. W. Nirenberg, P. Leder, M. Bernfield, R. Brimacombe, J. Trupin, F. Rottman, and C. O'Neal.
 RNA Codewords and Protein Synthesis, VII. On the General Nature of the RNA Code. *Proceedings of the National Academy of Sciences of the United States of America*, 53(5):1161–1168,
 1964.
- [48] Nuclear Threat Initiative. Developing guardrails for ai biodesign tools. Online report, November
 2024. Accessed: 2025-05-12.
- [49] N. A. O'Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh, B. Rajput, 497 B. Robbertse, B. Smith-White, D. Ako-Adjei, A. Astashyn, A. Badretdin, Y. Bao, O. Blinkova, 498 B. Brover, K. Chetvernin, J. Choi, E. Cox, O. Ermolaeva, C. M. Farrell, T. Goldfarb, T. Gupta, 499 D. Haft, E. Hatcher, K. Hlavina, V. S. Joardar, V. K. Kodali, W. Li, D. Maglott, P. Masterson, 500 K. M. McGarvey, M. R. Murphy, K. O'Neill, S. Pujar, L. O. Rangwala, D. Rausch, L. D. 501 Riddick, C. Schoch, K. Shkeda, S. S. Storz, H. Sun, F. Thibaud-Nissen, I. Tolstoy, R. E. 502 Tully, A. R. Vatsan, C. Wallin, D. Webb, W. Wu, M. J. Landrum, A. Kimchi, T. Tatusova, 503 M. DiCuccio, P. Kitts, K. D. Pruitt, and J. Ostell. Reference sequence (RefSeq) database at 504 NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Research*, 505

506 44(D1):D733–D745, January 2016.

- 507 [50] D. Pennica, G. E. Nedwin, J. S. Hayflick, P. H. Seeburg, R. Derynck, M. A. Palladino, W. J. Kohr, B. B. Aggarwal, and D. V. Goeddel. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. *Nature*, 312(5996):724–729, 1984.
- 510 [51] Rami Puzis, Dor Farbiash, Oleg Brodt, Yuval Elovici, and Dov Greenbaum. Increased cyber-511 biosecurity for dna synthesis. *Nature Biotechnology*, 38(12):1379–1381, 2020.
- [52] Jie Ren, Han Xu, Yiding Liu, Yingqian Cui, Shuaiqiang Wang, Dawei Yin, and Jiliang Tang.
 A robust semantics-based watermark for large language model against paraphrasing. arXiv preprint arXiv:2311.08721, 2023.
- [53] Ravi Sachidanandam, Dror Weissman, S. C. Schmidt, J. M. Kakol, L. D. Stein, G. Marth,
 S. Sherry, J. C. Mullikin, B. J. Mortimore, D. L. Willey, S. E. Hunt, C. G. Cole, P. C. Coggill,
 C. M. Rice, Z. Ning, J. Rogers, D. R. Bentley, P.-Y. Kwok, E. R. Mardis, R.-F. Yeh, B. Schultz,
 L. Cook, R. Davenport, M. Dante, L. Fulton, L. Hillier, R. H. Waterston, J. D. McPherson,
 B. Gilman, S. Schaffner, W. J. Van Etten, D. Reich, J. Higgins, M. J. Daly, S. Gnerre, E. S.
 Lander, and D. for The International SNP Map Working Group Altshuler. A map of human
 genome sequence variation containing 1.42 million single nucleotide polymorphisms. *Nature*,
 409(6822):928–933, 2001.
- 523 [54] Melissa Sanabria, Jonas Hirsch, Pierre M Joubert, and Anna R Poetsch. Dna language model 524 grover learns sequence context in the human genome. *Nature Machine Intelligence*, 6(8):911– 525 923, 2024.
- [55] Rafael Sanjuán, Miguel R. Nebot, Nicola Chirico, Louis M. Mansky, and Robert Belshaw. Viral
 mutation rates. *Journal of Virology*, 84(19):9733–9748, 2010.
- E. Santos, S. R. Tronick, S. A. Aaronson, S. Pulciani, and M. Barbacid. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of balb- and harvey-msv transforming genes. *Nature*, 298(5872):343–347, 1982.
- 531 [57] Michael Schwarz, Marius Welzel, Tolganay Kabdullayeva, Anke Becker, Bernd Freisleben, and
 532 Dominik Heider. Mesa: automated assessment of synthetic dna fragments and simulation of
 533 dna synthesis, storage, sequencing and pcr errors. *Bioinformatics*, 36(11):3322–3326, 2020.
- 534 [58] Bin Shao and Jiawei Yan. A long-context language model for deciphering and generating bacteriophage genomes. *Nature Communications*, 15(1):9392, 2024.
- 536 [59] T. Shinohara, M. Taniwaki, Y. Ishida, M. Kawaichi, and T. Honjo. Structure and chromosomal localization of the human pd-1 gene (pdcd1). *Genomics*, 23(3):704–706, 1994.
- 538 [60] T. Taniguchi, H. Matsui, T. Fujita, C. Takaoka, N. Kashima, R. Yoshimoto, and J. Hamuro.
 539 Structure and expression of a cloned cdna for human interleukin-2. *Nature*, 302(5906):305–310,
 540 1983.
- [61] Robert W Taylor and Doug M Turnbull. Mitochondrial dna mutations in human disease. *Nature Reviews Genetics*, 6(5):389–402, 2005.
- [62] Kristel Tjandra. Built-in safeguards might stop ai from designing bioweapons, April 2025.
 Accessed: 2025-05-05.
- [63] J. J. Toole, J. L. Knopf, J. M. Wozney, L. A. Sultzman, J. L. Buecker, D. D. Pittman, R. J.
 Kaufman, E. Brown, C. Shoemaker, E. C. Orr, G. W. Amphlett, W. B. Foster, M. L. Coe,
 G. J. Knutson, D. N. Fass, and R. M. Hewick. Molecular cloning of a cDNA encoding human
 antihaemophilic factor. *Nature*, 312(5992):342–347, 1984.
- 549 [64] Y. Tsujimoto, J. Cossman, E. Jaffe, and C. M. Croce. Involvement of the bcl-2 gene in human follicular lymphoma. *Science*, 228(4706):1440–1443, 1985.
- [65] UniProt Consortium. Uniprot: the universal protein knowledgebase in 2023. *Nucleic Acids Research*, 51(D1):D523–D531, January 2023.
- 553 [66] Alain Vignal, Denis Milan, Magali SanCristobal, and André Eggen. A review on snp and other 554 types of molecular markers for animal genetics. *Genetics Selection Evolution*, 34(3):275–305, 555 2002.

- [67] D. A. Walz, D. Hewett-Emmett, and W. H. Seegers. Amino acid sequence of human prothrombin
 fragments 1 and 2. Proceedings of the National Academy of Sciences of the United States of
 America, 74(5):1969–1972, 1977.
- [68] Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou, Yankai Lin, Fandong Meng, Jie Zhou, and
 Xu Sun. Towards codable watermarking for injecting multi-bits information to llms. arXiv
 preprint arXiv:2307.15992, 2023.
- [69] Mengdi Wang, Zaixi Zhang, Amrit Singh Bedi, Alvaro Velasquez, Stephanie Guerra, Sheng
 Lin-Gibson, Le Cong, Yuanhao Qu, Souradip Chakraborty, Megan Blewett, et al. A call for
 built-in biosecurity safeguards for generative ai tools. *Nature Biotechnology*, pages 1–3, 2025.
- [70] Wei Wu, Qiuyi Li, Mingyang Li, Kun Fu, Fuli Feng, Jieping Ye, Hui Xiong, and Zheng
 Wang. Generator: A long-context generative genomic foundation model. arXiv preprint
 arXiv:2502.07272, 2025.
- 568 [71] Yihan Wu, Zhengmian Hu, Hongyang Zhang, and Heng Huang. Dipmark: A stealthy, efficient and resilient watermark for large language models. 2023.
- 570 [72] KiYoon Yoo, Wonhyuk Ahn, and Nojun Kwak. Advancing beyond identification: Multi-bit watermark for language models. *arXiv preprint arXiv:2308.00221*, 2023.
- [73] Daoan Zhang, Weitong Zhang, Yu Zhao, Jianguo Zhang, Bing He, Chenchen Qin, and Jianhua
 Yao. Dnagpt: a generalized pre-trained tool for versatile dna sequence analysis tasks. arXiv
 preprint arXiv:2307.05628, 2023.
- 575 [74] Xuandong Zhao, Prabhanjan Ananth, Lei Li, and Yu-Xiang Wang. Provable robust watermarking for ai-generated text. *arXiv preprint arXiv:2306.17439*, 2023.
- [75] Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert 2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
 arXiv:2306.15006, 2023.

580 A Broad Impacts

581

582

583

584

585

586

587

589

590

591

592

593

594

595

The societal implications of DNAMark and CentralMark are profound and multifaceted. On the positive side, these watermarking techniques mitigate biosecurity threats by enabling researchers, regulators, and biosafety organizations to track and verify the origins of synthetic DNA, deterring malicious applications such as the engineering of pathogens. This traceability fosters trust in synthetic biology, supporting advancements in therapeutics, agriculture, and environmental solutions. Moreover, by establishing a framework for responsible innovation, these methods could encourage international collaboration on biosecurity standards, strengthening global oversight of genetic technologies. However, negative consequences must also be considered. The watermarking methods may not be entirely impervious to circumvention by sophisticated adversaries who could exploit vulnerabilities, such as reverse-engineering watermarks or introducing mutations to obscure them. This limitation risks fostering a false sense of security among stakeholders, potentially undermining trust in regulatory frameworks if breaches occur. Additionally, the computational and expertise barriers to implementing these watermarks could disproportionately burden smaller research institutions or developing nations, exacerbating inequities in access to cutting-edge genetic technologies. In the future, we will further refine our watermark methods and establish a community to advance watermarking research and reduce the potential negative impacts.

B Codon-to-Amino-Acid Table

598

1 st /2 nd	U	С	A	G
	UUU Phe	UCU Ser	UAU Tyr	UGU Cys
U	UUC Phe	UCC Ser	UAC Tyr	UGC Cys
	UUA Leu	UCA Ser	UAA Stop	UGA Stop
	UUG Leu	UCG Ser	UAG Stop	UGG Trp
	CUU Leu	CCU Pro	CAU His	CGU Arg
\mathbf{C}	CUC Leu	CCC Pro	CAC His	CGC Arg
	CUA Leu	CCA Pro	CAA Gln	CGA Arg
	CUG Leu	CCG Pro	CAG Gln	CGG Arg
	AUU Ile	ACU Thr	AAU Asn	AGU Ser
A	AUC Ile	ACC Thr	AAC Asn	AGC Ser
A	AUA Ile	ACA Thr	AAA Lys	AGA Arg
	AUG Met	ACG Thr	AAG Lys	AGG Arg
	GUU Val	GCU Ala	GAU Asp	GGU Gly
G	GUC Val	GCC Ala	GAC Asp	GGC Gly
G	GUA Val	GCA Ala	GAA Glu	GGA Gly
	GUG Val	GCG Ala	GAG Glu	GGG Gly

Table 2: Standard RNA codon table organized by the first two nucleotides. Each cell shows four codons sharing the same first two bases.

Second Base	Amino Acids
A	Isoleucine (Ile), Methionine (Met), Threonine (Thr), Asparagine (Asn), Lysine (Lys), Serine (Ser), Arginine (Arg)
C	Leucine (Leu), Proline (Pro), Histidine (His), Glutamine (Gln), Arginine (Arg)
G	Valine (Val), Alanine (Ala), Aspartic Acid (Asp), Glutamic Acid (Glu), Glycine (Gly)
T	Phenylalanine (Phe), Leucine (Leu), Serine (Ser), Tyrosine (Tyr), Cysteine (Cys), Tryptophan (Trp), Stop

Table 3: Second base to amino acid mapping for the standard genetic code. This table lists the amino acids corresponding to each possible second base (A, C, G, T) in codons of the coding DNA sequence (CDS), used for CentralMark's inheritable watermark, where the second base is modified to embed a detectable signature in the translated protein.

3-Letter	1-Letter	3-Letter	1-Letter	3-Letter	1-Letter
Ala	A	Gly	G	Pro	P
Arg	R	His	Н	Ser	S
Asn	N	Ile	I	Thr	T
Asp	D	Leu	L	Trp	\mathbf{W}
Cys	C	Lys	K	Tyr	Y
Glu	E	Met	M	Val	V
Gln	Q	Phe	F		

Table 4: Amino Acid Three-Letter to One-Letter Code Mapping

599 C Therapeutic DNA Benchmark

Table 5: Statistics of CDS sequences in each therapeutic category.

Category	Count	Avg Length	Min Length	Max Length
Cytokines	15	556.20	282	759
GrowthFactors	77	665.88	180	3501
ImmuneCheckpoints	14	816.21	525	1578
Hormones	18	431.67	333	654
Apoptosis	58	848.90	471	1182
Enzymes	31	4101.10	912	7650
Coagulation	9	2630.33	651	7056
Transporters	7	3706.71	1479	4443
Oncogenes	31	1735.35	567	2424
Antiviral	3	2000.00	570	2715
Neurotrophins	28	1052.68	726	2391
Uncategorized	112	1784.22	255	5028

Table 6: Representative therapeutic genes by category.

Category	Genes
Cytokines	IL2, IL6, IL10, TNF, IFNG
GrowthFactors	EGF, FGF1, VEGFA, PDGFA, TGFB1
ImmuneCheckpoints	PDCD1, CD274, CTLA4, LAG3
Hormones	INS, LEP, GH1, PTH
Apoptosis	BCL2, CASP3, TP53
Enzymes	JAK1, CDK4, MAPK1, MTOR
Coagulation	F8, F9, F2
Transporters	ABCB1, CFTR, SLC2A1
Oncogenes	KRAS, BRAF, MYC
Antiviral	IFNA1, IFNB1, TLR3
Neurotrophins	NGF, BDNF, NTRK1

D More Results of DNAMark and CentralMark

Watermarking Method	Evo(7B)	Evo(40B)
No Watermark	9.7	30.5
DNAMark	12.4	37.2
CentralMark	13.2	40.5

Table 7: Generation times (in seconds) for producing a 128-nucleotide DNA sequence using No Watermark, DNAMark, and CentralMark on Evo(7B) and Evo(40B) models. DNAMark and CentralMark incur computational overhead due to obtaining embedding and watermark model computations.

E Calculation Details of γ

E.1 Calculation of Expected Green Token Proportion (γ) for DNAMark

In the DNAMark watermarking scheme, γ represents the expected proportion of green tokens (third bases in the green list \mathcal{G}) under the null hypothesis of no watermark, where the first two bases of codons are uniformly distributed. This calculation is performed for watermarkable positions, i.e., codons with synonymous third bases $|\mathcal{S}| \geq 2$, as defined in Equation (6) and detailed in Appendix B. The process is summarized as follows:

- 1. **Identify watermarkable codons**: For each codon prefix (b_1,b_2) , uniformly distributed over 16 possibilities (probability $\frac{1}{16}$), the synonymous set $\mathcal{S} = \{b_3 \in \{T,C,A,G\} \mid \texttt{translate}(b_1,b_2,b_3) = a\}$ determines the number of third bases encoding the intended amino acid a. Excluding stop codons, the 61 sense codons yield 59 watermarkable codons: 32 with $|\mathcal{S}| = 4$ (e.g., Alanine: GCT, GCC, GCA, GCG), 3 with $|\mathcal{S}| = 3$ (e.g., Isoleucine: ATT, ATC, ATA), and 24 with $|\mathcal{S}| = 2$ (e.g., Histidine: CAT, CAC).
- 2. Assign green list probability: For each watermarkable codon, the green list $\mathcal{G} = \{b_g\}$ contains one base from \mathcal{S} , selected as the base with the highest watermark logits. Under the null hypothesis, the third base is chosen uniformly from \mathcal{S} , so the probability of selecting the green base is $\frac{1}{|\mathcal{S}|}$.
- 3. Compute γ : The expected proportion γ is the weighted average of $\frac{1}{|S|}$ over all watermarkable codons, weighted by their counts:

$$\gamma = \frac{\sum_{k=2}^4 (\text{number of codons with } |\mathcal{S}| = k) \times \frac{1}{k}}{\text{total watermarkable codons}}.$$

Calculating contributions: $32 \times \frac{1}{4} = 8$ for $|\mathcal{S}| = 4$, $3 \times \frac{1}{3} = 1$ for $|\mathcal{S}| = 3$, and $24 \times \frac{1}{2} = 12$ for $|\mathcal{S}| = 2$. Total = 8 + 1 + 12 = 21. With 59 watermarkable codons, $\gamma = \frac{21}{59} \approx 0.3559$.

This γ value serves as the baseline for watermark detection, enabling the z-score calculation to identify the presence of a watermark by comparing observed green base frequencies against this expected proportion.

E.2 Calculation of Expected Green Amino Acid Proportion (γ) for CentralMark

In the CentralMark watermarking scheme, γ represents the expected proportion of green amino acids in the translated protein sequence under the null hypothesis, assuming a uniform distribution over the 20 standard amino acids. The watermark targets the second base of codons, with the green set \mathcal{G}_b comprising the two bases with the top-2 watermark logits from $\{A, C, G, T\}$, as defined in Equation (10) and detailed in Table 3. Since \mathcal{G}_b is not fixed, we average γ over all possible pairs $\mathcal{G}_b \in \{\{A, C\}, \{A, G\}, \{A, T\}, \{C, G\}, \{C, T\}, \{G, T\}\}$. The process is summarized as follows:

- 1. **Identify green amino acids**: For each \mathcal{G}_b , the green amino acids $\mathcal{G}_a = \{a \mid \text{translate}(b_1,b_2,b_3) = a,b_2 \in \mathcal{G}_b\}$ are the union of amino acids associated with the two second bases, per Table 3 (e.g., $\mathcal{G}_b = \{A,C\}$ yields 11 amino acids).
- 2. Compute per-pair γ : For each \mathcal{G}_b , $\gamma = \frac{\text{Number of unique amino acids in } \mathcal{G}_a}{20}$, reflecting the uniform probability $\frac{1}{20}$ per amino acid. Values range from $\frac{10}{20}$ (e.g., $\{C,G\}$) to $\frac{12}{20}$ (e.g., $\{A,G\}$).
- 3. **Average** γ : Assuming equal likelihood for each \mathcal{G}_b , the average is:

$$\gamma = \frac{1}{6} \left(\frac{11}{20} + \frac{12}{20} + \frac{12}{20} + \frac{10}{20} + \frac{10}{20} + \frac{11}{20} \right) = \frac{11}{20} = 0.55.$$

This γ serves as the baseline for detecting the CentralMark watermark in protein sequences, enabling z-score calculations to identify biased amino acid distributions.

Influence of Hyperparameter Selection

641

646

647

648

649

650

651

652

653

654

655

In Figure. 4, we show the influence of δ_{max} on the watermark detection F1 and sequence degeneracy score of DNAMark. We observe that too large δ_{max} may lead to worse sequence quality measured 642 by degeneracy, and δ_{max} in a suitable range maximizes detection F1. In experiments, we choose 643 $\delta_{max} = 3.5$ as the default setting. 644

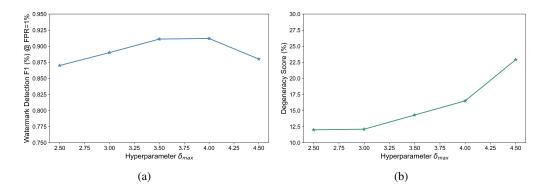


Figure 4: Hyperparamter analysis of δ_{max}

G **Details of Watermark Model** 645

Our watermark model adopts an architecture similar to SIR [38], consisting of a series of residual blocks with ReLU activation, as detailed in the code. However, our implementation incorporates additional LayerNorm layers after each residual block to stabilize training and improve convergence. Notably, the input embeddings for our model are derived from Evo2 (7B) and ESM2 (35M), leveraging their robust representations to enhance the model's ability to capture the biological semantics of DNA/protein sequences. To train the watermark model, we crawl 1000 random human coding sequences (CDS) from RefGen, subsample them to extract 20-length codons/amino acid embeddings with the Evo/Evo2 and ESM2 as input, and fine-tune the model for 200 epochs using the combination of alignment and normalization loss (Equation. 4 and 5). More details of code are included at https://anonymous.4open.science/r/DNA_Watermark-1687/README.md.

```
class ResidualBlock(nn.Module):
        def __init__(self, dim):
658
             super(ResidualBlock, self).__init__()
659
             self.fc = nn.Linear(dim, dim)
660
             self.relu = nn.ReLU()
661
662
        def forward(self, x):
663
            out = self.fc(x)
664
             out = self.relu(out)
665
             out = out + x
666
                                                                                   10
            return out
667
                                                                                   11
668
                                                                                   12
    class WatermarkModel(nn.Module):
669
                                                                                   13
        def __init__(self, num_layers=4, input_dim=1024, hidden_dim=500,
670
            output_dim=4):
671
            super(TransformModel, self).__init__()
                                                                                  15
672
673
             self.layers = nn.ModuleList()
                                                                                  16
             self.norms = nn.ModuleList()
                                                                                   17
674
             self.layers.append(nn.Linear(input_dim, hidden_dim))
675
                                                                                  18
             self.norms.append(nn.LayerNorm(hidden_dim))
                                                                                   19
676
             for _ in range(num_layers - 2):
                                                                                  20
677
678
                 self.layers.append(ResidualBlock(hidden_dim))
                                                                                  21
                 self.norms.append(nn.LayerNorm(hidden_dim))
679
                                                                                  22
             self.layers.append(nn.Linear(hidden_dim, output_dim))
                                                                                  23
680
             self.norms.append(nn.LayerNorm(output_dim))
                                                                                  24
681
                                                                                  25
682
        def forward(self, x):
683
                                                                                  26
            for i in range(len(self.layers)):
684
                                                                                  27
                 x = self.layers[i](x)
                                                                                  28
685
                 x = self.norms[i](x)
686
                                                                                  29
688
             return x
                                                                                   30
```

689 H Case Study of CRISPR-Cas9 Design with CentralMark

Here, we show the designed Cas9 sequence with CentralMark + Evo, aligned with the wild type. The total DNA similarity is 67.3%.

Figure 5: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.

```
CentralMark: 491
              A F I H R M T N N D F Y L P E E K V L P K H S L I Y E K F T V Y N E L T K V R Y K N E - Q G E T Y F F D S N I K Q E I F D G V F K E H R K V 560
              Cas9 Ref :
              SFIERM TN FD KN L PN EK V L PK H S L L Y EY FT V Y N EL TK V K Y V T E G M R K P A F L S G E O K K A I V D L L F K T N R K V
CentralMark: 561
              SKKKLLDFLAKEYEEFRIVDVIGLDKENKAFNASLGTYHDLEKIL - DKDFLDNPDNESILEDIVQTLTLF 630
              TVKQLKEDYFKKIECFDSVEISGVEDR---FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLF
CentralMark: 631
              EDREMIKKRLENYKDLFTESQLKKLYRRHYTGWGRLSAKLINGIRDKESQKTILDYLIDDGRSNRNFMQL 700
              E D K E M I E E R L K K Y A H L F D D K V M K Q L K R R Y T G W G R L S R K L I N G I R D K Q S G K T I L D F L K S D G F A N R N F M Q L
Cas9 Ref :
              INDDGLSFKSIISKAOAGSHSDNLKEVVGELAGSPAIKKGILOSLKIVDELVKVMG-YEPEOIVVEMARE 770
CentralMark: 701
              THOUSI TEKEDTOKAOVSGOGDSI HEHTANI AGSPATKKGTI OTVKVVDEI VKVMGRHKPENTVTEMARE
Cas9 Ref ·
CentralMark: 771
              NOTTN Q G R R N S R Q R Y K L L D D G V K N L A S D L N G N I L K E Y P T D N Q A L Q N E R L F L Y Y L Q N G R D M Y T G E A L D I D N 840
              N Q T T Q K G Q K N S R E R M K R I E E G I K E L G S D - - - - I L K E Y P V E N T Q L Q N E K L Y L Y Y L Q N G R D M Y V D Q E L D I N R
Cas9 Ref :
CentralMark: 841
              LSQYDIDHIIPQAFIKDDSIDNRVLVSSAKNRGKSDDVPSLEIVKDCKVFWKKLLDAKLMSQRKYDNLTK 910
              L S D Y D V D H I V P Q S F L K D D S I D N K V L T R S D K N R G K S D N V P S E E V V K K M K N Y W K Q L L N A K L I T Q R K F D N L T K
CentralMark: 911
              A ERGGLTSDDKARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIRKV-IVTLKSNLVSNFRKEFGF 980
              A ERGGLS ELDKAGFIKRQL VETRQITKH VAQILD SRMN TKYD EN DKLIR EVRVITLKSKL VSD FRKD FQF
Cas9 Ref :
```

Figure 6: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.

```
YKIREVNNYHHAHDAYLNAVVAKAILTKYPQLEPEFVYGDYPKYNSYKT-RKS-----ATEKLFFYSNI 1050
CentralMark: 981
              Y K V R E I N N Y H H A H D A Y L N A V V G T A L I K K Y P K L E S E F V Y G D Y K V Y D V R K M I A K S E Q E I G K A T A K Y F F Y S N I
Cas9 Ref :
              MNFFKTKVTLADGTVVVKDDIEVNNDTGEIVWDKKKHFATVRKVLSYPONNIVKKTEIOTGGFSKESILA 1120
CentralMark: 1051
              M N F F K T E I T L A N G E I R K R P L I E T N G E T G E I V W D K G R D F A T V R K V L S M P Q V N I V K K T E V Q T G G F S K E S I L P
Cas9 Ref :
CentralMark: 1121
              H G N S D K L I P R K T K D I Y L D P K K Y G G F D S P I V A - Y S V L V V A D I K K G K A Q K L K T V T E L L G I T I M E R S R F E K N P 1190
              Cas9 Ref :
              KRNSDKLIARK-KD--WDPKKYGGFDSPTVALYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNP
CentralMark: 1191
              S A F L E S K G Y L N I R A D K L I I L P K Y S L F E L E N G R R R L L A S A G E L Q K G N E L A L P T Q F M K F L Y L A S R Y N E S K G K 1260
              IDFLEAKGYKEVRKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGS
              PEEIEKKQEFVNQHVSYFDDILQLINDFSKRVILADANLEKINKLYQDNKENISVDELANNIINLFTFTS 1330
CentralMark: 1261
              PEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK - PIREQAENIIHLFTLTN
Cas9 Ref :
              LGAPAA-FKFFDKIVDRKRYTSTKEVLNSTLIHQSITGLYETRIDLGKLGED 1382
CentralMark: 1331
              LGAPAAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD
Cas9 Ref :
```

Figure 7: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introductions clearly summaries the contributions of this paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The authors discussed the limitations and potential future works in experiments and discussions.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

744 Answer: [NA] 745 Guidelines: 746 • The answ 747 • All the th

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if
 they appear in the supplemental material, the authors are encouraged to provide a short
 proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the experimental settings are clearly described in the paper.

Guidelines

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

798 Answer: [Yes]

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

825

826

827

828

829

830

831

833

834

835

836

837

838

839

840

841

842

843

846

848

849

Justification: The paper provides data, code, and sufficient instructions to reproduce the main results (https://anonymous.4open.science/r/DNA_Watermark-1687/README.md).

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The training and test details are specified in the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the error bars are provided in figures.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878 879

880

881

882

883

884

885

886 887

888

889

890

891

892

893

894

895

896

897

898

Justification: The information on computer resources is provided in experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform the NeurIPS code of ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the broad impacts in the introduction and conclusions.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All the related assets used in the paper are well credited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

952

953

954

955

956

957

958

959

960

961

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979 980

981

982

983

984

985

986

987

988

989

990

992

993

994

995

996

997

998

999

1000

1001

1002

1003

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The benchmark datasets will be release after further screening and the related documentation with be provided.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

1004	Answer: [NA]
1005	Justification: The paper does not use LLMs as a component of the core method.
1006	Guidelines:
1007	• The answer NA means that the core method development in this research does not
1008	involve LLMs as any important, original, or non-standard components.
1009	• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1010	for what should or should not be described.