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Abstract

DNA language models have revolutionized our ability to understand and design
DNA sequences—the fundamental language of life—with unprecedented precision,
enabling transformative applications in therapeutics, synthetic biology, and gene-
editing. However, this capability also poses substantial dual-use risks, including
the potential for creating pathogens, viruses, even bioweapons. To address these
biosecurity challenges, we introduce two innovative watermarking techniques to
reliably track the designed DNA: DNAMark and CentralMark. DNAMark employs
synonymous codon substitutions to embed watermarks in DNA sequences while
preserving the original function. CentralMark further advances this by creating
inheritable watermarks that transfer from DNA to translated proteins, leveraging
protein embeddings to ensure detection across the central dogma. Both methods
utilize semantic embeddings to generate watermark logits, enhancing robustness
against natural mutations, synthesis errors, and adversarial attacks. Evaluated on
our therapeutic DNA benchmark, DNAMark and CentralMark achieve F1 detection
scores above (.85 under various conditions, while maintaining over 60% sequence
similarity to ground truth and degeneracy scores below 15%. A case study on the
CRISPR-Cas9 system underscores CentralMark’s utility in real-world settings. This
work establishes a vital framework for securing DNA language models, balancing
innovation with accountability to mitigate biosecurity risks.

1 Introduction

DNA serves as the cornerstone of the central dogma [13]], orchestrating the flow of genetic infor-
mation from DNA to RNA to proteins. Within this paradigm, DNA encodes the genetic blueprint,
RNA acts as a dynamic messenger, and proteins execute a vast array of cellular functions (Figure
a). Recent advances in DNA language models have transformed our ability to understand and design
DNA sequences with unprecedented precision [43} 8} 73146, 70, 41]. These models leverage compu-
tational frameworks to decode complex sequence patterns, enabling groundbreaking applications in
therapeutics, synthetic biology, gene-editing, and beyond.

However, the remarkable capabilities of DNA language models also introduce significant dual-use
risks [7,I51115]]. For example, these models could lower the barrier to the creation of harmful biological
agents, such as pathogens, viruses, or bioweapons. State-of-the-art DNA models excel in predicting
and generating sequences with missense mutations or pathogenic properties [45. |8, [70l 41}, [18]],
amplifying biosecurity concerns. The Al and scientific communities have recognized the emerging
risks of DNA language models and are advocating robust guardrails and comprehensive oversight
mechanisms [|69, 162, 15 151 148]].

Recently, watermarking has emerged as an effective strategy to counter the misuse of large language
models (LLMs), enabling the traceability of generated content to ensure accountability and mitigate
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risks such as misinformation or malicious output [16, 33]]. However, the application of watermarking
to DNA language models presents unique and underexplored challenges. Unlike LLMs, which
operate on expansive vocabularies, DNA language models are constrained by a small alphabet of
only four nucleotides, complicating the design of robust watermarking strategies, such as green/red
list approaches. Moreover, DNA is susceptible to natural mutations [61|], synthesis errors, and
sequencing inaccuracies [57|], which can obscure or degrade watermarks. Additional complexities
arise from biological constraints to preserve the functional integrity of encoded sequences to maintain
their utility in applications like protein engineering. These challenges necessitate new watermarking
frameworks tailored to the biological and computational intricacies of DNA sequence design.

To tackle these challenges, we propose a function-invariant watermark DNAMark using synonymous
codon substitutions and CentralMark that builds an inheritable watermark transferable from designed
DNA to translated protein. DNAMark and CentralMark address the challenges with the following
innovations: (1) To achieve robust watermark resistant to natural mutations and potential attacks,
DNAMark and CentralMark utilize the generated DNA or translated protein embeddings (Evo2 [§]]
or ESM [36])) to predict watermark logits with trained watermark models. The watermark logits
are then added to the original logits from DNA models to bias the next nucleotide selection for
watermarking. The intuition is that DNA and protein embeddings are inherently robust to minor
mutations, preserving semantic and functional integrity during watermark logit prediction. During
training, the watermark model is optimized to prioritize semantic preservation and maintain an
unbiased distribution, enhancing watermark robustness and performance. (2) To minimize disruption
to DNA sequence quality and encoded protein function, DNAMark employs a sparse watermarking
scheme with synonymous codon substitutions, selectively modifying only the third base of specific
codons to ensure the resulting codon encodes the same amino acid as the unmarked sequence (Figure
[[]d). (3) To ensure inheritable watermark in both DNA and translated protein, CentralMark predicts
watermark logits from protein embeddings and applies the watermark to the second base of each
codon, enabling near non-overlapping separation of amino acids into green/red lists, facilitating
reliable watermark detection across the central dogma (Figure|l|e).

Using our curated therapeutic DNA benchmark (Figure[Ip), DNAMark and CentralMark achieve
robust F1 detection scores (>0.85) under various attacks, including nucleotide substitution, insertion,
and deletion attacks. Meanwhile, DNA sequence qualities are preserved, with over 60% sequence
similarity to ground truth and degeneracy scores below 15%. Case studies on watermarking a
CRISPR-Cas9 system [11} [12]] designed by Evo model [45] (Figure ) demonstrate CentralMark’s
potential for practical applications in real-world synthetic biology and gene-editing.

2 Related Works

2.1 Watermark for Language Models

Driven by the need to identify machine-generated text and mitigate potential misuse, the field of
watermarking large language models (LLMs) has seen rapid development. Early and influential
approaches, such as the one proposed by Kirchenbauer et al. [33], often referred to as KGW,
introduced a method of biasing token generation towards a "green list" determined by a pseudorandom
function seeded by preceding tokens. This creates a statistical watermark detectable with high
accuracy (More details in Section [3). Subsequent works have aimed to improve detectability 23] 39|
34], text quality [29, 24} 27, [71], capacity [23} 168 [72]], robustness [38}152]], and public verifiability
[22, 137]. For Example, to enhance watermark detectability, EWD [39] assigns weights to tokens
based on their entropy during detection, enhancing sensitivity by emphasizing high-entropy tokens
in z-score calculations. To mitigate the logits bias brought by KGW applying a uniform § to green
list tokens, Hu et al. [29] introduced two unbiased reweighting methods to preserve the original
text distribution. Aiming at increasing the watermark capacity to convey additional information
like timestamps, identifiers, or copyright. Fernandez et al. [23] expand binary vocabulary partition
to multi-color partition. To further improve watermark robustness against removal attacks such as
paraphrasing, semantic-invariant watermark methods [38 [52] are proposed to ensure that similar
text semantics result in similar partition outcomes, which are robust to attacks. To achieve publicly
verifiable watermarks, Fairoze et al. [22] have utilized a digital signature technology from the field of
cryptography, involving generating watermarks using a private key and verifying them with a public
key. Recently, Chen et al. [9] applies watermarks on protein language models, while it is unknown
whether a watermark scheme can be designed for DNA language models and the central dogma.
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Figure 1: Watemark DNA language models with DNAMark and CentralMark. (a). DNA plays a
key role in the central dogma; (b). A therapeutic DNA benchmark is constructed to evaluate DNA
watermarks; (c) Our watermark methods successfully watermarks CRISPR-Cas9 generated by Evo;
(d) DNAMark leverages watermark models and synonymous codon substitutions for DNA watermark;
(e) CentralMark uses ESM-based watermark model to achieve an inheritable watermark. Watermark
can be detected in both the DNA and the translated protein sequence generated with CentralMark.

2.2 DNA Language Models

Driven by advances in LLMs, DNA Language Models (DNA LMs) have also experienced rapid
progress in recent years. Early DNA LMs primarily focused on DNA sequence interpretation and
property prediction [32, (75,154} 4]]. For instance, Enformer combined convolutional down-sampling
with transformer layers to enable accurate gene-expression prediction [4], while the Nucleotide
Transformer, trained on multi-species corpora, markedly improved variant-effect prediction [15]].
More recently, DNA LMs with advanced sequence generation capabilities have emerged [58l, [73|
46\, [70, 41, 145, 18]. For example, HyenaDNA leveraged implicit long-range convolutions to scale
context to one million tokens [46]. GENERATOR, a 1.2B transformer decoder trained on 386 billion
base pairs of eukaryotic DNA, excels in generating viable protein-coding sequences [/0]. Evo, a 7B
model trained on billions of prokaryotic and viral base pairs, demonstrated advanced capabilities
in designing CRISPR-Cas complexes [435]. Its successor, Evo2, was scaled using 9.3 trillion DNA
base pairs with one-million-token context windows, yielding autoregressive models with 7B and 40B
parameters. Evo2 enables genome-wide prediction and de novo synthesis of DNA sequences across
all domains of life [8]. Evo2 excels in generating chromosome-scale sequences, including similar
sequences to human mitochondrial, M. genitalium, and S. cerevisiae genomes.

The advanced capabilities of DNA language models simultaneously raise significant biosafety and
biosecurity concerns [69,162]]. Current countermeasures, such as sequence screening [1]] and regulatory
policies [3], are often suboptimal, as they may fail to detect Al-generated sequences or adapt to
evolving model capabilities [48]. Robust watermarking techniques tailored for DNA could enable
reliable tracing and detection of Al-generated DNA sequences, addressing these gaps.

3 Preliminaries

Autoregressive language models, such as transformer-based architectures, generate text by modeling
the conditional probability of a token given its preceding context. Formally, for a sequence of tokens
x = (x1,x2,...,xT), an autoregressive model predicts the next token x; based on the probability
distribution p(x¢|z1.4—1;6), where 6 denotes the model parameters. The joint probability of the
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sequence is expressed as:
T
p(x;0) = [ [ p(xila14-156). (0
t=1

These models excel at producing coherent and contextually relevant text, but their widespread use
raises concerns about content authenticity, ownership, and traceability.

To address these challenges, watermarking techniques embed imperceptible identifiers into the
outputs of language models. A watermark is a subtle, structured modification to the generated text,
designed to be robust against post-processing (e.g., paraphrasing) while remaining inconspicuous to
human readers. For example, the KGW watermarking scheme [33]] modifies the token probability
distribution during generation. Specifically, for a vocabulary VV, KGW partitions tokens into a “green”
list G C V and a complementary “red” list R = V' \ G based on a cryptographic hash of the context.
The probability of selecting a token x; € G is boosted by an additive term 9, altering the sampling
distribution as:

Pum(Ze]|T1:4-1:0) X p(@e|x1:4-150) + 6 - I(2 € G), (2

where I(+) is the indicator function, and the modified distribution is normalized. This ensures the
watermark is embedded without significantly degrading text quality.

Watermark detection involves identifying the presence of these embedded identifiers in a suspect text.
In the KGW scheme, detection leverages a statistical hypothesis test based on the z-score, which
quantifies the likelihood that a given text x was generated by a watermarked model. Specifically,

the detector counts the number of tokens in the green list, denoted r = 3", I(z; € G), over the
sequence of length 7". Under the null hypothesis (no watermark), tokens are sampled uniformly from
V, and the expected proportion of green tokens is v = |G|/|V|. The z-score is computed as:

_ r — E[r] _ r=T-y
VVvalr] /Ty (1=7)

where E[r] =T - % and Var[r] = Ty (1 — ) assume a binomial distribution for r. A high z-score

(e.g., z > 7 for a threshold 7) indicates the presence of the watermark, as the observed green token
count significantly exceeds the expected count under the null hypothesis.

z

(€)

4 Methods

4.1 DNAMark: Function-invariant Watermark for DNA Models

To achieve resistance to natural mutations and function preservation for synthetic biology, we first
build DNAMark (Figure[T](d)), a robust, and function-invariant watermark scheme for DNA language
models in this section. Inspired by previous works on semantic-invariant watermarks for LLMs
[38L152]], DNAMark utilizes a specialized trained watermark model to generate watermark logits
for robustness. For watermarking in the coding region, we use synonymous codon substitutions
to keep the coded amino acid unchanged. Moreover, adaptive watermark strength and entropy-
guided watermark strategy are applied to balance sequence quality and detection accuracy.

4.1.1 Watermark Model based on Evo2 Embeddings

To embed a robust watermark in generated DNA sequences, DNAMark processes the sequence
preceding the current token through the Evo2 [8] model to obtain functional embeddings, which are
then transformed into watermark logits and combined with the original token logits. Leveraging
DNA’s inherent robustness as an information carrier [10} 25, [21], where small mutations typically
preserve encoded biological functions, DNAMark is designed to provide a durable watermark for
DNA language models, resisting both natural mutations and adversarial modifications. Specifically,
the watermark model in DNAMark satisfies two critical properties: semantic preservation, ensuring
the watermark maintains the sequence’s biological semantics (e.g., protein coding or regulatory roles)
by aligning logit similarities with Evo2 embedding similarities. Moreover, the logits should be varied
sufficiently to enhance complexity and security. Otherwise, if the watermark logits are monotonous,
the green list is more static and might be revealed by counting the token frequency. This compromises
the watermark protection and leads to the risk of being cracked. The second property, unbiased
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distribution, ensures that watermark logits exhibit no systematic preference for any nucleotide or
codon and maintain a balanced distribution of positive and negative values, enhancing security against
statistical attacks and ensuring robust, detectable watermarks for DNA sequences.

To realize these properties, we trained the watermark model [38] (Appendix. [G)), comprising multiple
fully connected layers and layer norm, with two main loss functions: an alignment loss and a
normalization loss. The alignment loss aligns the watermark logit similarity with the Evo2 embedding
similarity: we normalize the embedding similarities by subtracting their mean and applying the
hyperbolic tangent function. The alignment loss L, is defined as:

- e 1 .
Lo= Y | —tanh | e - e ST e L@
[will2[[w;ll2 leill2llejll [N* 4= llexll2llerl

where e; is the Evo2 embedding for sequence i, w; is the watermark logit vector produced by the
watermark model, | V| is the number of sequences, k is a hyperparameter controlling the similarity
range, and || - || denotes the Euclidean norm. This loss ensures watermark logits reflect DNA
functional relationships while enhancing separability.

Following [38]], the normalization loss enforces unbiased token preference and balanced scores. It
constrains the mean of the watermark logits to zero across tokens and sequences and ensures uniform
absolute values for stability. The normalization loss £,, is defined as:

[N VI VI | IV IN| V]

L= w4+ W A Y R W

i=1 |j=1 Jj=1|i=1 i=1 j=1

; &)

where ng ) denotes the j-th value in the watermark logit; R is a hyperparameter specifying the target
absolute value for each logit component, and A is a weighting factor. This loss ensures the watermark
is statistically neutral and detectable. The total loss combines the above two objectives. During
watermarked generation, the watermark logits, scaled by a watermark strength factor §, are added to
the original logits to bias the sampling of the next nucleotide.

4.1.2 Synonymous Codon Substitutions

To design a function-invariant watermark for DNA language models, DNAMark employs synonymous
codon substitution (SCS) within the coding DNA sequence (CDS), targeting the third base of codons
to embed identifiers that preserve the encoded amino acid, critical for synthetic biology applications.
For a codon with fixed first two bases (e.g., CA) and an intended amino acid (e.g., Histidine for
CAT), DNAMark defines green and red lists within the synonymous codon set (e.g., CAC as red
list and CAT as green list), to keep the encoded protein unchanged (i.e., no matter red or green list
is chosen, the same amino acid type). This approach is motivated by several considerations: First,
synonymous codons produce identical amino acids, thereby maintaining the protein’s structure and
function critical for applications in synthetic biology. Second, targeting the third base leverages the
degeneracy of the genetic code, where mutations at this position are often silent [30]], minimizing
the influence of watermarking on DNA sequences. Third, by watermarking only the third base,
DNAMark achieves a sparse watermark that balances robust detectability with high DNA sequence
quality, minimizing disruptions to codon usage and sequence optimality. Following previous works
[33L 23], we explicitly define the green and red lists for watermark. Considering different cases of
synonymous codons (more details in Table B)), the green and red lists (G, R) are constructed as:

{bg}, S\ {bg} if|S|=2(e.g., T, C for CAT, CAC; Histidine),

{bg}, S\ {bg} if|S|=3(e.g.,T,C, A for ATT, ATC, ATA; Isoleucine),
{bg}, S\ {bg} if|S|=4(eg.,T,C,A,Gfor GCT/C/ A/ G; Alanine),
0,0 if |S| =1 (e.g., G for ATG; Methionine),

where S = {b3 € {T,C, A, G} | translate(by, ba, b3) = a} is the set of third bases yielding the
same amino acid a, and |S| is the set size; by, by are the first two bases, translate maps codons to
amino acids; {b,} € S is the green base list, selected as the base type with the highest watermark
logits in S. For |S| = 2 (e.g., b1=C, be=A, a=Histidine), one base is green (e.g., T for CAT) and one
red (e.g., C for CAC); for |S| = 3 (e.g., b1=A, by=T, a=Isoleucine), one is green (e.g., C) and two red
(e.g., T, A); for |S| = 4 (e.g., b1=G, by=C, a=Alanine), one is green and three red; and for |S| = 1
(e.g., bi=A, bo=T, a=Methionine), watermarking is skipped as no synonymous alternatives exist.

G,R= (©)
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4.1.3 Adaptive Watermark Strength and Entropy-guided Watermark

Given the small vocabulary of DNA sequences (A, C, T, G) and the instability of autoregressive DNA
language models, where excessive watermarking may produce invalid sequences such as repeated
motifs or model corruption, DNAMark employs optimization strategies to balance detectability and
sequence quality. Specifically, we introduce two optimization strategies: Adaptive Watermark Strength
and Entropy-guided Watermarking. The Adaptive Watermark Strength strategy dynamically
adjusts the watermark logit strength, J, using an Exponential Moving Average (EMA) [28] based on
the current z-score, z;, which measures the statistical significance of the watermark signal (i.e., green
base frequency in green/red lists [33]). The strength is smoothly updated as a weighted average of
the current strength within a target range [2min, Zmax|- The adjustment is defined as:

Zmin — 2t 1f 2 < Zmin,
adj(2t, Zmins Zmax) = { 0 if 2min < 2¢ < Zmax, (N
Zmax — 2¢  1f 2t > Zmax,
and ¢ is smoothly updated as a weighted average of the current strength and a target adjustment:
5t+1 = (1 - ﬁ)(st + 3 - max (6min7 min (6maXa 0 + kK - adj (zt> Zmin; Zmax))) ’ (8)
where §, is the strength at step ¢, 8 € (0, 1) controls the update speed, dmin, dmax are bounds, and x
scales the adjustment. If z; < 2z, 0 increases to enhance detectability; if z; > zyax, 0 decreases to

preserve sequence quality; and if z: € [Zmin, Zmax), 0 Temains stable. During generation, watermark
logits, scaled by d;, are added to the original logits.

The Entropy-guided Watermarking strategy skips watermarking in low-entropy subsequences to
avoid disrupting critical sequence patterns, such as regulatory motifs in UTRs. The entropy H of a
subsequence s (e.g., a window of nucleotides) is computed as:

H(s)=— Y. p(b)logp(b), )

be{T,C,A,G}

where p(b) is the frequency of base b in s. If H(s) < Hipreshold» Watermarking is skipped for that
subsequence, ensuring minimal impact on functional elements like ribosome binding sites or structural
motifs. These strategies together enhance DNAMark’s watermark, preserving sequence quality while
maintaining robust detectability against mutations and adversarial edits.

4.2 CentralMark: Inheritable Watermarks from DNA to Proteins

Recent DNA language models not only learns DNA sequences but also captures the central dogma
[L3]’s flow of genetic information from DNA to RNA to protein [8| 45]]. To extend the traceability
of our DNA watermark beyond the nucleotide sequence, we introduce an inheritable watermark
(CentralMark) detectable in both generated DNA and the translated protein sequence, a critical
feature to ensure biosecurity and ownership verification in synthetic biology applications where
proteins are the functional output (Figure[I] (e)). Unlike DNAMark introduced above, which uses
synonymous codon substitutions to preserve protein function, the inheritable watermark deliberately
alters amino acids by targeting the second base of codons in the coding DNA sequence (CDS),
leveraging ESM [36]] embeddings of the translated protein instead of Evo2 embeddings of DNA
for both watermark generation and detection. We target the second base of each codon because
it predominantly determines the encoded amino acid’s identity or chemical properties, facilitating
precise amino acid substitutions, and enables near-nonoverlapping green and red lists for amino acids
based on second-base patterns (see Table . Specifically, for a codon ¢ = (b1, ba, b3) € Veps, where
by € {A,C,G, T}, we define a green/red list for the protein sequence by indexing the amino acid
a = translate(c) to the second base by:

G, = {a | translate(by, bo,b3) = a,bs € Gy}, Ry = {a | translate(by, bo,b3) = a,b2 € Ry},
(10)
where G, and Ry, are the green and red sets of second bases (e.g., G, = {C, G}), and translate
maps codons to amino acids (e.g, G, = {Leu, Pro, His, Gln, Arg, Val, Ala, Asp, Glu, Gly}). During
watermarking, we bias the selection of codons with by € G, to embed the signature, which propagates
to the protein as a biased distribution of amino acids in G,. In CentralMark, the green sets of second
bases are chosen by selecting the bases with the top-2 highest watermark logits. By embedding
watermarks in DNA sequences based on their translated protein sequences, we enable subsequent
detection of the protein sequences independently, without requiring additional DNA information.
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4.3 Watermark Detection

The watermark detection of DNAMark and CentralMark follows KGW’s calculating z score (Equation.
[3). We need to note that the expected proportion of green tokens, ~y, may not be 0.5 in DNAMark
and CentralMark due to the unique design, such as synonymous codon substitutions. Under the
assumption of uniform codon usage, v is set to 0.3559, 0.5, and 0.55 for DNAMark, CentralMark
(DNA), and CentralMark (Protein) respectively. The details are included in the Appendix.

S Experiments

5.1 Experiment Settings

BenchMark Construction To construct a biologically grounded benchmark for evaluating DNA
watermarks, we curated a set of therapeutically important protein-coding genes from Homo sapi-
ens (Human) and existing drug modalities. These genes were selected based on their established
relevance in clinical and pharmaceutical contexts, encompassing categories such as cytokines (e.g.,
IL2 [60], TNF [50]), growth factors (e.g., VEGFA [35], EGF [26]), immune checkpoint proteins
(e.g., PDCD1 [59], CD274 [[19]), apoptosis regulators (e.g., TP53 [40], BCL2 [64]), oncogenes (e.g.,
KRAS [56], BRAF [17]), antiviral effectors (e.g., [IFNAT1 [44], TLR3 [3]), coagulation factors (e.g.,
F8 [63]], F2 [67]), and other categories relevant to disease and therapy. For each gene, we queried
the NCBI RefSeq database [49] to retrieve validated coding DNA sequences (CDS) with canonical
start and stop codons. We integrated secondary structure annotations (helix, S-strand, loop) from
UniProt [65] to ensure structural context. Monomeric proteins with varied secondary structures were
selected, constructing a benchmark with 400 DNA sequences (More details in Appendix. [C)). In Case
Study, we explored watermarking CRISPR-Cas9 with both coding and non-coding regions.

Attacks To evaluate the robustness of our proposed watermarking scheme, we subjected the
watermarked DNA sequences to a series of simulated genetic alterations, mimicking common
evolutionary and mutational processes. These in silico attacks comprised three distinct types of
modifications: (1) Synonymous Codon Substitutions replace codons with alternatives that encode
the same amino acid [14} 47] (2) Nucleotide Substitutions means changing randomly seleted
nucleotides to other types in DNA [53}166], which can lead to either synonymous or non-synonymous
codon changes; and (3) Insertions and deletions (Indels), are structural variants that add or remove
nucleotides. Here we consider add or remove codons [42} |43]]. These attacks are performed at a
frequency of 5% across the sequence to simulate a harsh test for the watermark’s detectability and
robustness (natural mutation frequency 102 — 108 [55} 20]).

Evaluations For each DNA sequence, we use the first half as a prompt to the DNA language
models and generate the rest for 5 times. Inspired by previous works on LLM watermark (38l [74]],
we report the detection True positive rates at different false positive rates (1% and 10%) to avoid the
impact of detection thresholds (7). To assess the quality of generated DNA sequences, we compute
the Sequence Identity to the ground truth, where higher values indicate better alignment, and the
Degeneracy Score, defined as the percentage of a sequence covered by repetitive substrings longer
than four nucleotides, where lower values are preferable, following Evo [45].

DNA Language Models and Baselines We evaluate DNAMark and CentralMark on the latest
and largest DNA language models, Evo [45] and Evo2 (7B, and 40B) [8]]. Our methods can also
be applied to other DNA models. Hyperparameters are set to k = 20, A = 10,k = 0.1, 0min =
0.5, dmax = 3.5, Zmin = 2.5, Zmax = 4.0, Hihreshola = 2.0, and the Adam optimizer (Ir=1e-3) is used
for training (Selected Hyperparamter analysis in Figure ). We adapt KGW with 1, 2, and 4 codon
window sizes to DNA as a baseline. All experiments are conducted on 4 Tesla H100 GPUs.

5.2 Results and Robustness Analysis

In Table[T} we compare the performance of DNAMark and CentralMark, detected using DNA and pro-
tein sequences, against KGW-1, KGW-2, and KGW-4 under various attack scenarios. Watermarking
and detecting DNA sequences is notably more challenging than in natural language models, where
methods like KGW achieve near-100% TPR for texts [33], compared to only 70-80% TPR for DNA.
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Table 1: We compared the performance of our watermarking methods, DNAMark and CentralMark
(DNA/Protein), with baselines, including KGW-k [33]], with DNA language model Evo2-7B [8]]. Tests
evaluated watermark detection accuracy under no attack, synonymous codon substitution, Nucleotide
Substitutions, and insertion-deletion (Indels) attacks.

No attack Synonymous Codon Substitution
Method 1% FPR 10% FPR 1% FPR 10% FPR
TPR F1 TPR F1 TPR F1 TPR F1
KGW-1 0.765 0.862 0.805 0.845 0.580 0.729 0.756 0.815
KGW-2 0.770 0.865 0.820 0.854 0.545 0.701 0.740 0.805
KGW-4 0.774 0.868 0.817 0.852 0.371 0.537 0.520 0.642
DNAMark 0.845 0911 0915 0908 0.820 0.896 0.896 0.898

CentralMark (DNA) 0.875 0.928 0920 0911 0.854 0916 0.910 0.905
CentralMark (Protein) 0.868 0.924 0.922 0.912 0.860 0.920 0.904 0.902

Nucleotide Substitutions Indels
Method 1% FPR 10% FPR 1% FPR 10% FPR
TPR F1 TPR F1 TPR F1 TPR F1
KGW-1 0.520 0.680 0.710 0.785 0.515 0.675 0.723 0.794
KGW-2 0.505 0.667 0.658 0.749 0477 0.642 0.645 0.739
KGW-4 0.330 0.493 0.551 0.668 0.339 0.503 0.497 0.623
DNAMark 0.808 0.902 0.886 0.892 0.795 0.878 0.860 0.877

CentralMark (DNA) 0.840 0.908 0.890 0.894 0.765 0.862 0.850 0.872
CentralMark (Protein) 0.825 0.900 0.885 0.892 0.759 0.858 0.832 0.861

We identify two primary reasons for this disparity: (1) DNA’s limited vocabulary of four nucleotides
(A, C, G, T), versus tens of thousands of tokens in natural language models, severely constrains
green/red list assignments, reducing the watermark’s statistical distinctiveness. (2) DNA language
models exhibit greater brittleness than large language models (LLMs), showing high sensitivity to
perturbations in their output distributions. When the watermark strength ¢ is excessive, it overly biases
nucleotide selection, leading to model collapse (e.g., generating repetitive motifs like AAAAA),
which compromises both sequence quality and watermark detectability.

Across all attack conditions, DNAMark and CentralMark consistently outperform KGW baselines in
TPR and F1 scores at both 1% and 10% FPR. The detection F1 of DNAMark and CentralMark are all
above 0.85. CentralMark (DNA) achieves the highest performance in most cases, followed closely
by CentralMark (Protein) and DNAMark. The unique design of CentralMark makes the watermark
detectable in both the generated DNA and the translated protein. The robustness of DNAMark and
CentralMark is due to their use of embeddings (Evo2, ESM), which capture functional/semantic
similarity, making watermarks robust even with attacks. For instance, DNAMark and CentralMark
achieve high TPR and F1 scores under synonymous codon substitutions, as these changes preserve
amino acid sequences and minimally affect the embeddings.

Comparing different attacks, we observe that Nucleotide Substitutions and Indels are the most strong
attacks: Substitutions can lead to non-synonymous codons, and Indels can disrupt sequence patterns
critical for watermark integrity. For example, the TRP of CentralMark with Indels drops to around
76%, highlighting the severity of these attacks. Nevertheless, DNAMark and CentralMark outperform
all baselines. Future work will focus on enhancing robustness to such challenging attacks.

5.3 Generation Quality and Ablation Studies

It is important to keep the sequence quality when watermarking DNA for practical use. In Figure
(a) & (b), we show the Sequence Identity to the ground truth and the Degeneracy Score of the
generated DNA sequences by different watermark methods. Compared with KGW, DNAMark and
CentralMark shows more alignment with no watermark, indicating higher generation quality. This
can be attributed to the sparse watermark adapted to DNA and unique methods such as synonymous
codon substitution of DNAMark, minimizing the side-effects on sequence quality. In Figure|2|(c), we
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Figure 2: (a) & (b) Generated DNA sequence quality measured by Sequence Identity (the higher
the better) and Degeneracy Score (the lower the better). (c) Ablation studies of Entropy Guidance,
Adaptive § with EMA, Alignment and Normalization loss, and the watermark model. We perform
3-time generations for each model and show the standard deviation. (d) Applying DNAMark to
different DNA language models and measuring the watermark detection F1 score. mD: megaDNA.

did ablation studies of various components in DNAMark. Generally, Adaptive watermark strength
with EMA and the watermark model are most critical to the successful watermark detection.

5.4 Generalization to Different DNA Models and Time Complexity

In Figure 2] (d), we observe that DNAMark demonstrates robust watermark detection across a range
of DNA language models. Using models of varying sizes—megaDNA (145M and 277M parameters),
Evo2 (1B, 7B, and 40B), and Evol (7B)—DNAMark achieves F1 scores from 0.851 to 0.919. Smaller
models, such as megaDNA-145M (F1=0.851) and 277M (F1=0.855), deliver respectable detection
accuracy, but are limited by reduced generation capability. Larger models like Evo2-7B (F1=0.911)
and Evo2-40B (F1=0.919) excel, leveraging high-capacity embeddings to enhance generation quality
and watermark detection. We further measure the generation time cost of DNAMark and CentralMark,
comparing them to a baseline with no watermark generation. The time complexity increases by
approximately 30% (Table[7)), attributable to the compact size of the watermark model.

SpCas9 (PDB: 4008)

5.5 Case Study of Watermarking CRISPR-Cas9 System = centralMark + tvo (4F3) g

TM Score: 0.6802
Watermark Z Score: 5. 41 A
q &

To show the practical application in gene editing, we utilized
the Evo model (evo-1-8k-crispr) to generate the CRISPR-Cas9
[11112]) DNA sequences, embedding a watermark during gen-
eration using CentralMark. Following [43]], we use Prodigal
to extract Cas9 CDS, MinCED [6]] to detect CRISPR ar-
rays, and AlphaFold3 (AF3) [2] to predict the structure. Figure
[] visualizes the generated watermarked Cas9 aligned with the
wild-type SpCas9 crystal structure (PDB ID: 4008). The gen-
erated sequence achieves a TM-score of 0.6802, indicating
high structural alignment, and a Z-score of 5.41, confirming
strong watermark detectability. These results demonstrate the Figure 3: Predicted structure of Evo-
efficacy of watermarking Evo-generated CRISPR-Cas9 DNA desinged Cas9 with CentralMark.
sequences with minimal impact on biological quality.

6 Conclusions

In this paper, we tackle the pressing biosecurity challenges arising from DNA language models,
which hold immense potential for genetic engineering but also pose dual-use risks by enabling the
creation of harmful biological agents. To counter these risks, we propose DNAMark, a watermarking
method that uses synonymous codon substitutions to embed robust, function-preserving watermarks
in DNA sequences, and CentralMark, an advanced technique that generates inheritable watermarks
detectable in both DNA and translated proteins. Future work should explore watermark schemes
independent of green/red lists to enhance adaptability, investigate their effects on UTRs for regulatory
insights, and validate DNAMark and CentralMark through wet lab experiments. These steps are vital
to responsibly balance genetic technology innovation with biosecurity.
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A Broad Impacts

The societal implications of DNAMark and CentralMark are profound and multifaceted. On the
positive side, these watermarking techniques mitigate biosecurity threats by enabling researchers,
regulators, and biosafety organizations to track and verify the origins of synthetic DNA, deterring
malicious applications such as the engineering of pathogens. This traceability fosters trust in syn-
thetic biology, supporting advancements in therapeutics, agriculture, and environmental solutions.
Moreover, by establishing a framework for responsible innovation, these methods could encourage
international collaboration on biosecurity standards, strengthening global oversight of genetic tech-
nologies. However, negative consequences must also be considered. The watermarking methods
may not be entirely impervious to circumvention by sophisticated adversaries who could exploit
vulnerabilities, such as reverse-engineering watermarks or introducing mutations to obscure them.
This limitation risks fostering a false sense of security among stakeholders, potentially undermining
trust in regulatory frameworks if breaches occur. Additionally, the computational and expertise barri-
ers to implementing these watermarks could disproportionately burden smaller research institutions
or developing nations, exacerbating inequities in access to cutting-edge genetic technologies. In
the future, we will further refine our watermark methods and establish a community to advance
watermarking research and reduce the potential negative impacts.
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B Codon-to-Amino-Acid Table

15t/2nd U C A G
UUU Phe UCU Ser UAU Tyr UGU Cys
U UUC Phe UCC Ser UAC Tyr UGC Cys
UUA Leu UCA Ser UAA Stop UGA Stop
UUG Leu UCG Ser UAG Stop UGG Trp
CUU Leu CCU Pro CAU His CGU Arg
C CUC Leu CCC Pro CAC His CGC Arg
CUA Leu CCA Pro CAA GIn CGA Arg
CUG Leu CCG Pro CAG GIn CGG Arg
AUU Ile ACU Thr AAU Asn AGU Ser
A AUC Ile ACC Thr AAC Asn AGC Ser
AUA Ile ACA Thr AAA Lys AGA Arg
AUG Met ACG Thr AAG Lys AGG Arg
GUU Val GCU Ala GAU Asp GGU Gly
G GUC Val GCC Ala GAC Asp GGC Gly
GUA Val GCA Ala GAA Glu GGA Gly
GUG Val GCG Ala GAG Glu GGG Gly

Table 2: Standard RNA codon table organized by the first two nucleotides. Each cell shows four

codons sharing the same first two bases.

Second Base Amino Acids

sQa»

Isoleucine (Ile), Methionine (Met), Threonine (Thr), Asparagine (Asn), Lysine (Lys), Serine (Ser), Arginine (Arg)
Leucine (Leu), Proline (Pro), Histidine (His), Glutamine (Gln), Arginine (Arg)

Valine (Val), Alanine (Ala), Aspartic Acid (Asp), Glutamic Acid (Glu), Glycine (Gly)
Phenylalanine (Phe), Leucine (Leu), Serine (Ser), Tyrosine (Tyr), Cysteine (Cys), Tryptophan (Trp), Stop

Table 3: Second base to amino acid mapping for the standard genetic code. This table lists the amino
acids corresponding to each possible second base (A, C, G, T) in codons of the coding DNA sequence
(CDS), used for CentralMark’s inheritable watermark, where the second base is modified to embed a

detectable signature in the translated protein.

3-Letter | 1-Letter || 3-Letter | 1-Letter || 3-Letter | 1-Letter

Ala A Gly G Pro P
Arg R His H Ser S
Asn N Ile 1 Thr T
Asp D Leu L Trp W
Cys C Lys K Tyr Y
Glu E Met M Val A%
Gln Q Phe F

Table 4: Amino Acid Three-Letter to One-Letter Code Mapping
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s99. C Therapeutic DNA Benchmark

Table 5: Statistics of CDS sequences in each therapeutic category.

Category Count Avg Length Min Length Max Length
Cytokines 15 556.20 282 759
GrowthFactors 77 665.88 180 3501
ImmuneCheckpoints 14 816.21 525 1578
Hormones 18 431.67 333 654
Apoptosis 58 848.90 471 1182
Enzymes 31 4101.10 912 7650
Coagulation 9 2630.33 651 7056
Transporters 7 3706.71 1479 4443
Oncogenes 31 1735.35 567 2424
Antiviral 3 2000.00 570 2715
Neurotrophins 28 1052.68 726 2391
Uncategorized 112 1784.22 255 5028

Table 6: Representative therapeutic genes by category.

Category Genes

Cytokines 1L2, IL6, IL10, TNF, IFNG
GrowthFactors EGF, FGF1, VEGFA, PDGFA, TGFB1
ImmuneCheckpoints PDCDI1, CD274, CTLA4, LAG3
Hormones INS, LEP, GH1, PTH

Apoptosis BCL2, CASP3, TP53

Enzymes JAK1, CDK4, MAPK1, MTOR
Coagulation F8, F9, F2

Transporters ABCBI, CFTR, SLC2A1
Oncogenes KRAS, BRAF, MYC

Antiviral IFNA1, IFNB1, TLR3
Neurotrophins NGF, BDNF, NTRK1

sco D More Results of DNAMark and CentralMark

Watermarking Method Evo(7B) Evo(40B)

No Watermark 9.7 30.5
DNAMark 12.4 37.2
CentralMark 13.2 40.5

Table 7: Generation times (in seconds) for producing a 128-nucleotide DNA sequence using No
Watermark, DNAMark, and CentralMark on Evo(7B) and Evo(40B) models. DNAMark and Central-
Mark incur computational overhead due to obtaining embedding and watermark model computations.
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E Calculation Details of v

E.1 Calculation of Expected Green Token Proportion () for DNAMark

In the DNAMark watermarking scheme, v represents the expected proportion of green tokens (third
bases in the green list G) under the null hypothesis of no watermark, where the first two bases of
codons are uniformly distributed. This calculation is performed for watermarkable positions, i.e.,
codons with synonymous third bases |S| > 2, as defined in Equation (6)) and detailed in Appendix
The process is summarized as follows:

1. Identify watermarkable codons: For each codon prefix (by, b2), uniformly distributed
over 16 possibilities (probability 7-), the synonymous set S = {b3 € {T,C, A, G} |
translate(by, bo, bs) = a} determines the number of third bases encoding the intended
amino acid a. Excluding stop codons, the 61 sense codons yield 59 watermarkable codons:
32 with |S| = 4 (e.g., Alanine: GCT, GCC, GCA, GCG), 3 with |S| = 3 (e.g., Isoleucine:
ATT, ATC, ATA), and 24 with |S| = 2 (e.g., Histidine: CAT, CAC).

2. Assign green list probability: For each watermarkable codon, the green list G = {b,}
contains one base from S, selected as the base with the highest watermark logits. Under the
null hypothesis, the third base is chosen uniformly from &, so the probability of selecting
the green base is ﬁ

1

5] over all watermark-

3. Compute «: The expected proportion -y is the weighted average of
able codons, weighted by their counts:

B Zi:z (number of codons with |S| = k) x +
N total watermarkable codons
Calculating contributions: 32 x ; = 8 for |S| = 4,3 x 3 = 1for [S| = 3,and 24 x § = 12

for |S| = 2. Total =8 + 1 + 12 = 21. With 59 watermarkable codons, v = 2§ ~ 0.3559.

gl

This « value serves as the baseline for watermark detection, enabling the z-score calculation to
identify the presence of a watermark by comparing observed green base frequencies against this
expected proportion.

E.2 Calculation of Expected Green Amino Acid Proportion () for CentralMark

In the CentralMark watermarking scheme,  represents the expected proportion of green amino
acids in the translated protein sequence under the null hypothesis, assuming a uniform distribution
over the 20 standard amino acids. The watermark targets the second base of codons, with the green
set G, comprising the two bases with the top-2 watermark logits from {A, C, G, T'}, as defined in
Equation (I0) and detailed in Table 3] Since G, is not fixed, we average -y over all possible pairs
G, € {{A,C}HA{A,G}{A, T}HA{C, G}, {C,T},{G,T}}. The process is summarized as follows:

1. Identify green amino acids: For each G, the green amino acids G, = {a |
translate(by, be,bs) = a,bs € G} are the union of amino acids associated with the
two second bases, per Table(e.g., Gy, = {A, C} yields 11 amino acids).

Number of unique amino acids in G,

2. Compute per-pair : For each G, 7 = 20 , reflecting the uniform
probability 2% per amino acid. Values range from % (e.g., {C,GHto ;—(2) (e.g., {A,G}.

3. Average ~: Assuming equal likelihood for each G, the average is:

1 (11 12 12 10 10 11) 11

_ il 1212 E I
7= 2072020 2020 20) T 20

This ~ serves as the baseline for detecting the CentralMark watermark in protein sequences, enabling
z-score calculations to identify biased amino acid distributions.
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F Influence of Hyperparameter Selection

In Figure. [4] we show the influence of d,,,,, on the watermark detection F1 and sequence degeneracy
score of DNAMark. We observe that too large d,,,, may lead to worse sequence quality measured

by degeneracy, and d,,,. in a suitable range maximizes detection F1. In experiments, we choose
Omaz = 3.5 as the default setting.
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Figure 4: Hyperparamter analysis of 6,44

G Details of Watermark Model

Our watermark model adopts an architecture similar to SIR [38]], consisting of a series of residual
blocks with ReLU activation, as detailed in the code. However, our implementation incorporates
additional LayerNorm layers after each residual block to stabilize training and improve convergence.
Notably, the input embeddings for our model are derived from Evo2 (7B) and ESM2 (35M), leveraging
their robust representations to enhance the model’s ability to capture the biological semantics of
DNA/protein sequences. To train the watermark model, we crawl 1000 random human coding
sequences (CDS) from RefGen, subsample them to extract 20-length codons/amino acid embeddings
with the Evo/Evo2 and ESM2 as input, and fine-tune the model for 200 epochs using the combination
of alignment and normalization loss (Equation. [ and [5). More details of code are included at
https://anonymous.4open.science/r/DNA_Watermark-1687/README.md| .
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class ResidualBlock (nn.Module):

def

def

__init__(self, dim):

super (ResidualBlock, self).__init__()
self .fc = nn.Linear (dim, dim)
self.relu = nn.ReLU()

forward (self, x):
out = self.fc(x)

out = self.relu(out)
out = out + x

return out

class WatermarkModel (nn.Module):

def

def

output_dim=4) :

super (TransformModel, self).__

self.layers = nn.Modulelist ()

self .norms = nn.ModulelList ()

self.layers.append(nn.Linear (input_dim, hidden_dim))

self .norms.append(nn.LayerNorm(hidden_dim))

for _ in range(num_layers - 2):
self.layers.append(ResidualBlock (hidden_dim))
self .norms.append (nn.LayerNorm(hidden_dim))

self.layers.append(nn.Linear (hidden_dim, output_dim))

self .norms.append (nn.LayerNorm(output_dim))

init__(Q)

forward (self, x):

for i in range(len(self.layers)):
x = self.layers[i](x)
x = self.norms[i](x)

return x

init__(self, num_layers=4, input_dim=1024, hidden_dim=500,
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ss0 H Case Study of CRISPR-Cas9 Design with CentralMark

690 Here, we show the designed Cas9 sequence with CentralMark + Evo, aligned with the wild type. The
total DNA similarity is 67.3%.

CentralMark: 1 MNKPYSIGLDIGTNSVGWSIITDDYKVPAKKMRYVLGNTDKEYIKKNLIGALLFDGGNTAADRRLKRTARR 70
A N e e e N e N RN NN
Cas9 Ref : MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARR
CentralMark: 71 RYTRRRNRILYLQEIFAEEMSKVDDSFFHRLEDSFLVEEDKRGSKYPIFATLQEEKDYHEKFSTIYHLRK 140
L e 2 i 2 I I R A B B I A N N N |
Cas9 Ref : RYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK
CentralMark: 141 ELADKKEKADLRLIYIALAHIIKFRGHFLIEDDSFDVRNTDISKQYQDFLEIFNTTFENNDLLSQNVDVE 210
E T T T O O e I O A I P R A AR I I
Cas9 Ref  : KLADSTDKADLRLIYLALAHMIKFRGHFLIEGD LNPDNSDVDKLFIQLVQTYNQLFEENPINASRVDAK
CentralMark: 211 AILTDKISKSAKKDRILAQYPNQKSTGIFAEFLKLIVGNQADFKKYFNLEDKTPLQFAKDSYDEDLENLL 280
R P I I I I F I A B P S N DS R S N R RN
Cas9 Ref : AILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALLLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLL
CentralMark: 281 GQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKASLPEKYQE 350
P T T T e I O e P I I
Cas9 Ref : AQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKE
CentralMark: 351 TFADSSKDGYAGYIEGKTNQEAFYKYLSKLLTKQEDSENFLEKIKNEDFLRKQRTFDNGSIPHQVHLTEL 420
[ e T I O e B e B Y B B B e B e R e N N |
Cas9 Ref : IFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLAKLNREDLLRKQRTFDNGSIPHQIHLGEL
CentralMark: 421 KAITIRRQSEYYPFLKENQDRIEKILTFRIPYYIGPLAREKSDFAWMTRKTDDSIRPWNFEDLVDKEKSAE 49
P T T e T I I AR I B
Cas9 Ref : HAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQ

Figure 5: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.
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Figure 6: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.
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Figure 7: Aligning CentralMark + Evo designed Cas9 to the wild type Cas9 protein sequence.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introductions clearly summaries the contributions of this
paper.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The authors discussed the limitations and potential future works in experiments
and discussions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

24



744

745

746

747
748

749

750
751
752

753
754

755

756

757
758
759

760

761

762

764

774

784

Answer: [NA]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All the experimental settings are clearly described in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The paper provides data, code, and sufficient instructions to reproduce
the main results (https://anonymous.4open.science/r/DNA_Watermark-1687/
README . md).

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and test details are specified in the experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, the error bars are provided in figures.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information on computer resources is provided in experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conducted in the paper conform the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper discusses the broad impacts in the introduction and conclusions.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the related assets used in the paper are well credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

» The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13.

14.

15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The benchmark datasets will be release after further screening and the related
documentation with be provided.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: The paper does not use LLMs as a component of the core method.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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