
REGLO: Provable Neural Network Repair
for Global Robustness Properties

Feisi Fu1∗, Zhilu Wang2∗, Jiameng Fan1, Yixuan Wang2,
Chao Huang3, Qi Zhu2, Xin Chen4, Wenchao Li1

1Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
Emails: {fufeisi, jmfan, wenchao}@bu.edu

2Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
Emails: {zhilu.wang, yixuanwang2024}@u.northwestern.edu, qzhu@northwestern.edu

3Department of Computer Science, University of Liverpool, Liverpool, UK
Email: chao.huang2@liverpool.ac.uk

4 University of Dayton, Dayton, OH, USA
Email: xchen4@udayton.edu

Abstract

We present REGLO, a novel methodology for repairing neural networks to satisfy
global robustness properties. In contrast to existing works that focus on local
robustness, i.e., robustness of individual inputs, REGLO tackles global robustness,
a strictly stronger notion that requires robustness for all inputs within a region.
Leveraging an observation that any counterexample to a global robustness property
must exhibit a corresponding large gradient, REGLO first identifies violating regions
where the counterexamples reside, then uses verified robustness bounds on these
regions to formulate a robust optimization problem to compute a minimal weight
change in the network that will provably repair the violations. Experimental results
demonstrate the effectiveness of REGLO across a set of benchmarks.

1 Introduction

Motivated by the fragility of deep neural networks (DNNs) to small input perturbations known as
adversarial examples [1], there is a large, growing body of research on measuring, verifying, and
improving the robustness of DNNs against those perturbations [2, 3, 4, 5, 6, 7, 8, 9, 10]. Various
notions of robustness have been considered [11, 12, 13, 14, 15], and can be largely categorized into
two groups: local robustness and global robustness. Local robustness is about the robustness of
individual input points. Intuitively, it means that for an input x, a small change of the input (e.g.,
any p-norm-bounded ∆x) would not result in a significant change in the output (e.g., change of a
classification result). On the other hand, global robustness stipulates robustness on all points within
a given input region X . Global robustness is strictly stronger than local robustness, and has the
advantage of enforcing robustness on unseen inputs within the given input region.

Techniques developed for verifying local robustness [16, 17, 18, 10] are often leveraged as a subrou-
tine when verifying global robustness and probabilistic notion of robustness. For instance, Weng
et al. [18] derives a probabilistic certificate based on the worst-case certificate computed for local
robustness. A standard way to compute global robustness bounds is to first construct a twin-network,
i.e., two copies of the original network side by side, where one input represents x and the other input
represents its adversarial perturbation ∆x, and then apply techniques for computing local robustness

∗The first two authors contributed equally to this paper.

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.

bounds to the twin-network for any x ∈ X and ∆x within some given perturbation set [14, 19].
Global robustness is known to be harder to verify than local robustness, due to encoding two copies
of the network and a larger input domain [14]. Recently, Wang et al. [20, 21] improved the efficiency
of global robustness verification by exploiting the interleaving dependencies in the twin-network
encoding. For ReLU DNNs, it is also possible to exploit their piecewise linearity and enumerate the
activation patterns to search for counterexamples to a global robustness specification [22].

Recognizing the importance of global robustness, various methods have also been proposed to train
networks with improved global robustness. Leino et al. [23] present a method for training and
constructing globally-robust classification networks with an additional output class that labels inputs
as “non-locally-robust”. Chen et al. [13] use a counterexample-guided framework to train classifiers
that satisfy global robustness properties. In addition, the notion of individual fairness (IF), which
requires two inputs that differ only on some sensitive features to have similar outputs, can be viewed
as a global robustness property [24]. Benussi et al. [25] presents an MILP formulation whose solution
can be used to verify IF properties and guide the training process by modifying the training loss.
Existing works also leverage adversarial-training schemes by using a discriminator to force the
classifier to be unbiased towards the sensitive features [26, 27, 28]. In general, verification-in-the-
loop training approaches can be prohibitively expensive given the high cost of global robustness
verification. Moreover, training-based methods cannot guarantee the satisfaction of global robustness
properties.

In this paper, we consider the problem of repairing a trained DNN to satisfy a given global robustness
property. Repair and verification are two sides of the same coin – if a problem warrants (formal)
verification, then any bug discovered during verification should necessitate fixing. Existing DNN
repair methods mainly consist of weight modification [29, 30, 31], either via constraint solving or
fine-tuning, and DNN architecture extension [32, 33, 34]. Compared with training-based approaches,
repair can be applied only once as a post-hoc modification and does not require access to the training
data. A repair method is considered sound if it can guarantee the removal of the discovered violations
or the satisfaction of a given property.

Our contributions: We propose REGLO, the first DNN repair technique with provable guarantees
on satisfying global robustness properties. The key idea of REGLO is to leverage an observation that
any counterexample of a global robustness property would have a large gradient that indicates the
violation, and use verified robustness bounds on the corresponding violating region to formulate a
robust optimization problem to compute a minimal weight change in the last hidden layer of the
network to fix the violation. For piecewise linear DNNs, our approach is both sound and complete –
the resulting network is guaranteed to satisfy the given global robustness property, and a repair is
guaranteed to be found. We detail our approach below, starting with the technical preliminaries.

2 Background

2.1 Deep Neural Networks (DNNs)

An R-layer feed-forward DNN f : X → Y is a composition of linear functions and activation
function σ, where X ⊆ Rm is a bounded input domain and Y ⊆ Rn is the output domain. The
weights and biases of the linear function are parameters of the DNN. We call the first R− 1 layers
hidden layers and the R-th layer the output layer. We use zij to denote the i-th neuron (before
activation) in the j-th hidden layer.

For DNNs that use only the ReLU activation function σ(x) = max(x, 0), we call them ReLU DNNs.
For any neuron zij , we say the neuron is activated for an input if and only if the neuron’s value
σ(zij) = zij . We use a binary variable αi

j to represent the activation status of zij (where αi
j = 1 means

the neuron is activated). The set of activation statuses {αi
j} of all the neurons is called an activation

pattern. It is known that an Rm → R function is representable by a ReLU DNN if and only if it is a
continuous piecewise linear (CPWL) function [35].

2.2 Linear Regions

A linear region is the set of inputs that are subject to the same activation pattern in a ReLU DNN [36].

2

Lemma 1. [37] Consider a ReLU DNN f and an input x ∈ Rm. For every neuron zij , it induces a
feasible set

Ai
j(x) =

{x̄ ∈ Rm|(▽xz

i
j)

T x̄+ zij
−(▽xz

i
j)

Tx ≥ 0} if zij ≥ 0 or αi
j = 1

{x̄ ∈ Rm|(▽xz
i
j)

T x̄+ zij
−(▽xz

i
j)

Tx ≤ 0} if zij < 0 or αi
j = 0

(1)

The intersection A(x) =
⋂

i,j Ai
j(x) is the linear region that includes x. Note that A(x) is essentially

the H-representation of the corresponding convex polytope.

2.3 Global Robustness Property

We consider a global robustness property P on X ⊆ X .
Definition 1 (Global Robustness). A DNN f satisfies a global robustness property P(X,Ω, ϵ) on an
input set X ⊆ X along with a perturbation set Ω ⊆ Rm if and only if for any x ∈ X and ∆x ∈ Ω,
∥f(x)− f(x+∆x)∥ ≤ ϵ holds.
Definition 2 (Norm-Bounded Global Robustness). A DNN f is (δ, ϵ)-globally robust on an input set
X ⊆ X if and only if for any x ∈ X , we have that ∥∆x∥ ≤ δ ⇒ ∥f(x)− f(x+∆x)∥ ≤ ϵ. 1

This is an instantiation of the global robustness property with Ω = {∆x | ∥∆x∥ ≤ δ}. The
notion of individual fairness [38, 24] can also be viewed as a global robustness property, by taking
Ω = {∆x | ∆xNF = 0} where SF indicates sensitive features and NF indicates the remaining,
non-sensitive features, as follows.
Definition 3 (Individual Fairness). A DNN f is ϵ-fair with respect to some sensitive input features SF
if and only if for any x ∈ X , if xSF = (x+∆x)NF, then ∥f(x)− f(x+∆x)∥ ≤ ϵ.

2.4 Neural Network Repair

We are now ready to define the repair problem.
Definition 4 (Repair for Global Robustness Property). Given a global robustness property P(X,Ω, ϵ)

and a target DNN f ̸|= P(X,Ω, ϵ), the repair problem is to find a modified DNN f̂ such that
f̂ |= P(X,Ω, ϵ). 2

2.5 Verification for Global Robustness Property

A standard way to verify global robustness is to reduce it to verifying local robustness by constructing a
twin-network [39]. ITNE [20, 21] is the state-of-the-art verification technique that uses an interleaving
twin-network encoding approach where two copies of the neural network are encoded side-by-side
with extra interleaving dependencies added between them. Bound propagation techniques [17, 40,
10, 41] can then be applied to compute the output bound for a given input area on the twin-network.
In REGLO, we use global robustness verification to guide the repair process which we will describe in
detail in the next section.

3 The REGLO Approach

We present REGLO’s approach below, starting with an observation that allows us to identify repair
regions that violate a given global robustness property. A preview of the high-level approach in
REGLO is also given in Figure 1.

3.1 Key Observation

A counterexample to a global robustness property P(X,Ω, ϵ) is a pair of inputs (x,∆x) that violates
the property P, i.e., x ∈ X and ∆x ∈ Ω but ∥f(x) − f(x + ∆x)∥ ≥ ϵ. Based on the following

1The norm in this definition can be on any p norm.
2We consider the case where f and f̂ share the same structure, i.e. the same number of layers and the same

number of neurons.

3

1

1

𝟐

𝟑

Target DNN 𝑓 Repair Area 𝒜

𝑥!
(1)

(2)

Global robustness
bound of 𝑓 on 𝒜

(3)
Modified DNN

𝑷(𝑋, Ω, 𝜖)Global robustness property

Iterate

Figure 1: An illustration of REGLO’s verification-guided algorithm: in each iteration, (1) identify
repair areas that violate the global robustness property P, (2) compute the global robustness bound
for each repair area (in green with the light coral area showing the desired bound according to P), and
(3) solve a convex robust optimization problem to modify the last-layer weights of the target DNN so
that the modified DNN is guaranteed to satisfy the global robustness property on those repair areas.

𝑓(𝑥 + Δ𝑥)
𝑓(𝑥)

||
𝜕𝑓
𝜕𝑥 (𝑥

!)|| ≥
||𝑓 𝑥 + Δ𝑥 − 𝑓(𝑥)||

||Δ𝑥||

Any counterexamples indicate points with a large
gradient.

A counterexample pair

Figure 2: The solid green line and the dash green line is the decision boundary for data distribution
and the DNN’s decision boundary respectively. The deviation of DNN’s decision boundary leads
to a violation of the global robustness property. Our key observation is that if (x, x + ∆x) is a
counterexample pair of a global robustness property for a DNN f , then there exists x′ with a large
gradient.

Mean Value Inequality Theorem [42], we can convert the search of a potential violation area (an area
that contains a counterexample pair) for a global robustness property to the search of a single point
with a large gradient, as illustrated in Figure 2.
Theorem 1 (Mean Value Inequality [42]). For a continues function f : [a, b] → Rn, if f is
differentiable on (a, b), then

∥f(b)− f(a)∥ ≤ (b− a) sup
x∈(a,b)

∥f ′(x)∥ (2)

Directly applying the Mean Value Inequality Theorem to a global robustness property on a DNN, we
obtain the following corollary.
Corollary 1 (Gradient Features of Global Robustness Properties). For a DNN f and a global
robustness property P(X,Ω, ϵ), if there is a counterexample (x,∆x) such that ∆x ∈ Ω and ∥f(x+
∆x) − f(x)∥ ≥ ϵ, then there exists a differentiable point x′ between x and x + ∆x, such that
∥x− x′∥ ≤ dia(Ω)

2 and ∥∂f
∂x (x

′)∥ > ϵ
dia(Ω) , where dia(Ω) is the diameter of Ω. 3

Remark: Note that this corollary specifies a necessary but not sufficient condition. In other words,
the presence of a counterexample must exhibit a large corresponding gradient but the reverse is not
necessarily true.

3Here we take the operator norm of a matrix.

4

The Mean Value Inequality Theorem requires differentiability of the function f on (a, b). For
non-differentiable DNNs, the non-differentiability comes from its activation functions, e.g., ReLU,
LeakReLU, Heaviside, or Maxpooling. Since the measure of the non-differentiable area is zero for
those operations, we can still apply the Mean Value Inequality Theorem in a piecewise manner to
obtain the same result.

Remark: For individual fairness, we can define the norm ∥x∥ = ∥x∥F if ∥x∥NF = 0 and else ∥x∥ =

+∞, and only consider the gradient with respect to the sensitive features ∥∂f
∂x (x

′)∥ = ∥ ∂f
∂xSF

(x′)∥.

3.2 Repair Areas

For a ReLU DNN and the L∞ output bound, we can encode the search of the maximal gradient as a
mixed-integer programming (MILP) problem [43, 44]:

max c(x,∆x) =
1

ν
∥zR − z′R∥∞ (3)

zj+1 ≥ 0, zj+1 ≤ Bαj+1

zj+1 ≥ θjzj + bj
zj+1 ≤ θjzj + bj +B(1− αj+1)

z′j+1 ≥ 0, z′j+1 ≤ Bαj+1

z′j+1 ≥ θjz
′
j + bj

z′j+1 ≤ θjz
′
j + bj +B(1− αj+1)

αj = {αi
j}, αi

j ∈ {0, 1}
for 0 ≤ j ≤ R− 1,

x ∈ X,−ν ≤ ∥∆x∥∞ ≤ ν, z0 = x, z′0 = x+∆x,

where B is a big enough number and ν is a small enough number. 4 By solving the MILP problem
(3), we obtain the optimal input x∗, the optimal activation pattern α∗, and the largest gradient norm
c∗.

Our goal is to find all the linear regions with gradients larger5 than ϵ
dia(Ω) . We store the linear region

{x | Ax ≤ b} that contains x∗ which can be obtained from Lemma 1 for c∗ > ϵ
dia(Ω) . Then we

add the following additional constraint to the MILP problem (3), which is used to exclude the same
activation pattern α̂ that we have already found, and solve the MILP problem with the additional
constraint to find a new violating linear region.∑

i,j

[α̂i,jαi,j + (1− α̂i,j)(1− αi,j)− 1] ≤ −1 (4)

Since the number of linear regions on X is finite, we can find all the linear regions with gradient
greater than ϵ

dia(Ω) by iteratively solving MILPs and accumulating the exclusion constraint (4) until
the optimal solution c∗ is smaller than ϵ

dia(Ω) . Note that while the total number of linear regions can
be very large, the number of violating regions is typically much smaller.

For non-CPWL DNNs, we can use random sampling to search for input x′ that satisfies the violation
constraint ∥∂f

∂x (x
′)∥ > ϵ

dia(Ω) . If the target DNN f is twice differentiable, we can apply a projected
gradient descent method to improve the sample efficiency. For CPWL DNNs, we can also start
with random sampling and then pivot to the more expensive MILP-based method for better search
efficiency.

Now we can define the repair area A as follows. A = {x | Ax ≤ b} by solving MILP (3) or
A = {x | ∥x− x′∥ ≤ δ

2} via random sampling. We use {Ai}i∈I to denote all the repair areas found
via the aforementioned procedure.

4B is used for encoding a ReLU neural network as an MILP and ν is for computing the gradient.
5Note that the gradients of all the points inside a linear region are the same for a ReLU DNN.

5

3.3 Verification-Guided Constraints

For each repair area Ai, we apply ITNE [21] to estimate ϵ∗i , which is an over-approximation of the
global robustness bound on Ai. ϵ∗i is the optimal value of the following optimization problem.{

max[∆x,∆zi]∈Ω×Zi
∥(θ +∆θ)∆zi∥

Zi = {∆z |Dl
i∆x+ eli ≤ ∆z ≤ Du

i ∆x+ eui }
(5)

where θ is the weight in the last hidden layer of the DNN, Dl
i, e

l
i, D

u
i and eui are parameters for the

linear bounds of ∆z, and ∆z is the neurons value difference of the last hidden layer between x and
x+∆x.

Remark: We consider weight modification in the last hidden layer because it does not change the
activation pattern of any input and in turn preserves the boundaries of the linear regions. Thus, by
repairing the violating linear regions iteratively, we can guarantee satisfaction of the given global
robustness property. In theory, we can also consider modifying the weights of an intermediate layer.
However, the objective function of optimization problem (5) will include the subsequent layers and
the optimization problem will no longer be convex.

3.4 Repair as Robust Optimization

We use ∆θ to denote the weight change to the DNN’s last hidden layer. In order to preserve the
functionality (e.g., accuracy) of the network, we aim to find a minimal weight change ∆θ that can
guarantee the satisfaction of global robustness property on all the repair areas {Ai}i∈I . Formally,
∆θ is the solution to the following optimization problem.

min ∥∆θ∥
max[∆x,∆zi]∈Ω×Zi

∥(θ +∆θ)∆zi∥ ≤ ϵ

where Zi = {∆z |Dl
i∆x+ eli ≤ ∆z ≤ Du

i ∆x+ eui }
(6)

Property 1. Optimization problem (6) is convex and thus any local minimum also achieves the global
minimum.

This minimization problem with inner maximal constraints is a form of robust optimization [45]. For
minimizing the L1 or L∞ norm of ∆θ, such robust optimization problems can be solved by taking the
robust counterpart of the inner constraints and converting it to a linear programming (LP) problem.

3.5 Repair via Barrier Method

For general Lp norm of ∆θ, we apply the barrier method from [46] and formulate it as an uncon-
strained convex optimization problem. We use [∆x∗

i (∆θ),∆z∗i (∆θ)] and ϵ∗i (θ +∆θ) to denote the
optimal solution and the optimal value respectively for optimization problem (5). We have, for a
sufficiently large t, the solution of the following barrier problem converges to the solution of the
optimization problem (6).

min
∆θ

∥∆θ∥ − 1

t

∑
i∈I

log(ϵ− ϵ∗i (θ +∆θ)) (7)

To solve the optimization problem (7), we compute the gradient of ϵ∗i (θ +∆θ) by

∂ϵ∗i (θ +∆θ)

∂∆θ
=

∂∥(θ +∆θ)T∆zi∥
∂∆θ

|∆zi=∆z∗
i (∆θ) (8)

3.6 Iterative Repair

In the previous sections, we enumerate all the repair areas {Ai}i∈I that violate P(X,Ω, ϵ) and repair
these areas via weight modification. However, it is possible that the repair increases the gradient
∥∂f
∂x (x

′)∥ for x′ ∈ X \∪i∈IAi and results in a new violation to P(X,Ω, ϵ). To ensure a sound repair,
we iteratively search for repair areas to repair. When solving the optimization problem, we consider
both the previously repaired areas and the new repair areas.

We call one iteration, including the search of repair areas and the repair itself, a Single Iteration
Repair. The Iterative Repair algorithm is given in Algorithm 1.

6

Algorithm 1 Iterative Repair for ReLU DNN
Input: The target ReLU DNN f and the global robustness property P(X,Ω, ϵ).
Parameter: Maximum iteration T and maximum number of repair areas M .
Output: The repaired DNN.

1: Let t = 0.
2: Let repair areas I = ∅
3: while t < T do
4: while |I| < M do
5: Let c∗ and x∗ be the optimal value and solution of MILP (3), respectively.
6: if c∗ ≤ ϵ

dia(Ω) then
7: Break
8: end if
9: Let Ai be the linear region containing x∗ computed using Lemma 1.

10: I .add(Ai).
11: Add a new exclusion constraint (4) to MILP (3).
12: end while
13: Formulate the constraints on all repair areas I as a robust optimization (6), solve it via

Algorithm 2 (in the Appendix), and obtain an optimal solution ∆θ.
14: Update f ’s last-layer weight θ = θ +∆θ.
15: end while
16: return f with updated last-layer weight.

4 Theoretical Guarantees

In this section, we present the theoretical guarantees that REGLO provides, and point the readers to
proofs of the theorems in the Appendix.

4.1 Completeness Guarantees

Theorem 2 (Completeness Guarantees). We have the following completeness guarantees for REGLO:

1. For a Single Iteration Repair, REGLO can always find a solution to optimization problem (6).

2. For an Iterative Repair on a piecewise linear DNN, REGLO always terminates with no more
repair areas to be found by solving MILP (3).

4.2 Soundness Guarantees

Ideally, if the target DNN is a ReLU DNN, we can enumerate all the linear regions that violate the
global robustness property P(X,Ω, ϵ) by solving multiple MILPs and applying REGLO. By Iterative
Repair, REGLO will terminate when no more repair area can be found. Thus, we have the soundness
guarantee for the resulting DNN.

Specifically, for a Single Iteration Repair, the weight change ∆θ ensures the satisfaction of P(X,Ω, ϵ)
on all the repair areas {Ai}i∈I . As we discussed in the Iterative Repair Section, the repair may
increase the gradient ∥∂f

∂x (x
′)∥ for x′ ∈ X \ ∪i∈IAi and causes it to violate P(X,Ω, ϵ). We call any

such violation in X \ ∪i∈IAi a side effect of our repair. The following theorem shows that we have
guarantees on limiting the side effects of a Single Iteration Repair.
Theorem 3 (Limited Side Effect for Single Iteration Repair). Given a global robustness property
P(X,Ω, ϵ), a target DNN f , and weight change ∆θ from a Single Iteration Repair, we have

1. for any area B ⊂ ∪i∈IAi ⊂ X , f̂ |= P(B,Ω, ϵ);

2. for any area C ⊂ X which is not a subset of ∪i∈IAi, f̂ |= P(C,Ω, ϵ + 2L∥∆θ∥∥X∥),
where L is the Lipschitz constant of f from the input layer to the last hidden layer.

Corollary 2 (Soundness Guarantees for Repairing CPWL DNNs). Given a global robustness property
P(X,Ω, ϵ), a piecewise linear DNN f , and weight change from Iterative Repair, REGLO will terminate
with no more repair areas to be found and the resulting DNN f̂ |= P(X,Ω, ϵ).

7

For DNNs that are not piecewise linear, we have the following weaker soundness guarantee.

Corollary 3 (Soundness Guarantee for Repairing General DNNs). Given a global robustness property
P(X,Ω, ϵ), a DNN f , and weight change ∆θ from Iterative Repair, REGLO returns a DNN f̂ |=
P(C,Ω, ϵ+ 2L∥∆θ∥∥X∥) for any repair area C.

5 Experiments

Our prototype tool is implemented in Python. We use Gurobi [47] to solve MILP (3) and use
CVXPY [48] to solve optimization problem (5). The global robustness bounds used in (5) are
derived by ITNE [21] with a bound propagation technique similar to β-CROWN [41] (without bound
refinements for efficiency). The verification bounds (VBs) in the experiments are evaluated using
ITNE with bound refinements for tighter estimations.

5.1 Baseline Methods

To the best of our knowledge, REGLO is the first study on DNN repair to satisfy a global robustness
property. We consider the following five baseline methods for comparison with REGLO.

• ST: standard training.

• AT: adversarial training using PGD [3] on the training data.

• AT-G: adversarial training with counterexamples that violate the global robustness property
(AT-G). The counterexamples are generated by applying PGD on randomly sampled points
in X .

• ST+AT-G: standard training followed by an adversarial fine-tuning for the global robustness
property. Fine-tuning is to fine-tune (train with a smaller learning rate) a pre-trained DNN
with additional counterexamples generated similarly to those in AT-G.

• AT+AT-G: adversarial training followed by an adversarial fine-tuning for the global robust-
ness property.

For REGLO, we consider two settings where the repair is applied after standard training and after
adversarial training respectively.

• ST+REGLO: standard training followed by REGLO.

• AT+REGLO: adversarial training followed by REGLO.

5.2 Evaluation Metrics

Given that there is no efficient method for exact verification of a global robustness property, we use
ITNE [20] to compute an upper-bound of the true global robustness ϵ∗. In addition, we use PGD to
evaluate the empirical robustness of randomly sampled inputs in X , as a lower-bound of ϵ∗. We also
report accuracy on testing data and runtime.

• VB: the verification bound given by ITNE for the global robustness property.

• PGD-B: the maximum norm difference on outputs between input pairs (x, x+∆x) computed
by PGD;

• PGD-R: the ratio of input pairs computed by PGD that violate the global robustness property.

• ERR: the mean absolute error on prediction for testing data (for regression problems);

• ACC: the accuracy on testing data (for classification problems).

• T(s): runtime in seconds.

Remark: Note that PGD-B ≤ ϵ∗ ≤ VB, where ϵ∗ is the unknown, true global robustness of the target
DNN for X and Ω.

8

5.3 Benchmark Evaluations

We perform three benchmark evaluations, including individual fairness in a classification problem,
as well as norm-bounded global robustness in a regression problem and a classification problem.
All experiments were run on machines with CPUs similar to ten-core 2.6 GHz Intel Xeon E5-
2660v3 without GPU. Details of the experimental setup such as DNN architectures and training
hyperparameters can be found in the Appendix.

German Credit (classification): repair for individual fairness. We train a ReLU DNN on the

ST AT AT-G ST+AT-G AT+AT-G ST+REGLO AT+REGLO

All age

VB 12.5 4.69 7.28 9.0 4.52 0.29 0.26
PGD-B 1.31 0.135 0.35 0.7 0.11 0.028 0.008
PGD-R 75.5% 26.9% 45.7% 57.4% 1.5% 0.0% 0.0%
ACC 76.6% 69% 76% 68.3% 69% 76% 69%
T(s) 25.5 38.3 26.5 25.5+18.4 38.3+17.9 25.5+51.8 38.3+50.3

Age below 24

VB 1.11 0.42 0.68 1.04 0.4 0.08 0.12
PGD-B 0.15 0.015 0.068 0.058 0.008 0.009 0.006
PGD-R 7.8% 0.5% 2.4% 0.3% 0.0% 0.0% 0.0%
ACC 76.6% 69% 75.7% 68.3% 69% 76.3% 69%
T(s) 25.5 38.3 31.2 25.5+18.1 38.3+17.6 25.5+71.3 38.3+80.1

Age from 25 to 54

VB 6.46 2.43 4.89 6.04 2.34 0.039 0.045
PGD-B 0.68 0.084 0.43 0.28 0.044 0.0053 0.0015
PGD-R 58% 3.3% 45.8% 39.1% 0.0% 0% 0.0%
ACC 76.6% 69% 76.3% 69.7% 69% 69.3% 69%
T(s) 25.5 38.3 34.2 25.5+17.3 38.3+18.2 25.5+55.5 38.3+47.9

Age from 55 to 64

VB 2 0.75 1.13 1.88 0.73 0.057 0.11
PGD-B 0.24 0.0265 0.093 0.11 0.016 0.0065 0.004
PGD-R 23.4% 0% 6.5% 5.2% 0.0% 0.0% 0.0%
ACC 76.6% 69% 76.3% 71.7% 69% 75.7% 69%
T(s) 25.5 38.3 30.9 25.5+18.5 38.3+17.6 25.5+47.9 38.3+39.4

Age above 65

VB 2.23 0.84 1.19 2.1 0.81 0.065 0.094
PGD-B 0.33 0.029 0.147 0.144 0.0192 0.0101 0.0033
PGD-R 33.6% 0.0% 15.8% 7.4% 0.0% 0.0% 0.0%
ACC 76.6% 69% 75.6% 72.7% 69% 75.67% 69%
T(s) 25.5 38.3 31.3 25.5+18.6 38.3+18.3 25.5+55.4 38.3+45.2

Table 1: Individual Fairness repair on German Credit for different age groups. It can be observed
that after REGLO’s repair, global robustness-related metrics including VB, PGD-B, and PGD-R are
significantly reduced with little or no accuracy drop.

German Credit dataset [49] to predict the credit risks (good or bad) for a person based on input
features. An ideal DNN predictor should be fair with respect to the sensitive input feature ‘age’, that
is the resulting DNN should satisfy P(X,Ω, ϵ) for Ω = {∆x |∆xSF = 0} with ϵ = 0.01, where SF
are all input features other than ‘age’. We consider the individual fairness properties on input domain
X as well as regions based on age groups: X0 = {x | xage ≤ 24}, X1 = {x | 25 ≤ xage ≤ 54},
X2 = {x | 55 ≤ xage ≤ 64}, or X3 = {x | 65 ≤ xage} according to [50]. For REGLO, we search
for repair areas by random sampling on X and choose 30 areas to repair. The results are shown in
Table 1.

Auto MPG (regression): sound repair for norm-bounded global robustness. We train a ReLU
DNN on the Auto MPG dataset [49] to predict the fuel efficiency (mile per gallon) of a car. We
consider a norm-bounded global robustness property P(X,Ω, ϵ), where Ω = {∆x | ∥∆x∥ ≤ δ},
ϵ = 1.5, δ = 0.05 and X is the smallest hyper-rectangle that contains all the training inputs. For
REGLO, we use MILP (3) to search for repair areas and apply an Iterative Repair (Algorithm 1).
REGLO terminates after 2 iterations of repair and in total, 4 repair regions with different ReLU
activation patterns were found during the repair. The results are shown in Table 2. 6

MNIST (classification): repair for norm-bounded global robustness. We train a convolutional
DNN with ReLU units on the MNIST dataset [51]. We consider a norm-bounded global robustness
property P(X,Ω, ϵ), where Ω = {∆x | ∥∆x∥ ≤ δ}, δ = 0.3, and ϵ = 0.3.

6Since Auto MPG is a dataset for regression and there is no adversarial example defined for such a dataset,
adversarial training (AT) cannot be applied.

9

ST AT-G ST+AT-G ST+REGLO
VB 2.52 2.44 2.42 1.48

PGD-B 2.10 2.15 1.68 1.34
PGD-R 0.75% 0.85% 0.40% 0.0%

ERR 1.83 1.89 1.79 8.35
T(s) 10 280 157 22

Table 2: Sound Repair on Auto MPG. Runtime includes both training and repair. The global
robustness bound is ϵ = 1.5. REGLO significantly reduces VB, PGD-B, and PGD-R compared with
ST. Moreover, only ST+REGLO guarantees satisfaction of the global robustness property (VB < ϵ).
For the three baseline methods, their VBs all exceed the required bound as the non-zero PGD-Rs also
indicate the detection of counterexamples. Given that REGLO does not have access to the training data
and Auto MPG is a dataset for regression (any deviation of the output will increase the ERR), it is
reasonable that the ERR for ST+REGLO is not as good as the rest three methods.

ST ST+AT-G ST+REGLO

X = X3

VB 5.3125 5.219 0.906
PGD-B 0.983 0.679 0.188
PGD-R 94.30% 93.87% 0.0%
ACC 96.35% 91.09% 96.11%

T 57.58 57.58+6 57.58+56.78

X = X6

VB 4.726 4.453 1.004
PGD-B 0.925 0.521 0.201
PGD-R 89.60% 72.69% 0.0%
ACC 96.35% 91.91% 96.15%

T 57.58 57.58+6 57.58+46.69

X = X9

VB 4.698 4.637 0.994
PGD-B 0.875 0.636 0.181
PGD-R 87.68% 66.29% 0.0%
ACC 96.35% 91.27% 96.27%
T(s) 57.58 57.58+6 57.58+47.85

Table 3: Comparing ST + REGLO with ST and ST+AT-G on MNIST. REGLO significantly reduces
VB, PGD-B, and PGD-R with negligible accuracy drops. In comparison, fine-tuning (using AT-G)
does not provide much reduction to any of the three global robustness-related metrics and results in a
much larger drop in accuracy.

We consider X to be a class rectangle (the hyper-rectangle that contains all the training inputs with
the same class label). For example, Xk = {x | xlk ≤ x ≤ xuk}, where xlk

i = minx∈Xk
xi and

xuk
i = maxx∈Xk

xi for every dimension i of the input space and a fixed class k.

For REGLO, we search repair areas by random sampling on X and choose 30 areas to repair. A subset
of the results is shown in Table 3 and Table 4. The full set of results can be found in the Appendix.

5.4 Sound Repair with Stronger Constraints

To address the issue of soundness due to sampling and repairing only a subset of the violating linear
regions when the input dimension or the number of linear regions is large, we consider imposing a
stronger constraint during repair to recover the guarantee on satisfying the global robustness property.
Figure 3 illustrates the results of using a smaller bound ϵ̄ ≤ ϵ for the max constraint in the optimization
problem (6). We fix the repair regions to the ones sampled with ϵ̄ = 0.3 to eliminate the effect of
random sampling for the repair regions (using a smaller ϵ̄ does not affect the overall set of repair
regions since the repair regions are still identified using ϵ). At ϵ̄ = 0.1, we have a VB less than the
required ϵ of 0.3 and the accuracy drop is less than 5%. It is possible to guarantee global robustness
over X by repairing only a subset of the violating regions in X because repairs on those regions can
generalize to the other regions.

10

AT AT+AT-G AT+REGLO

X = X3

VB 3.084 3.062 1.815
PGD-B 0.429 0.386 0.249
PGD-R 4.17% 2.0799% 0.0%
ACC 95.68% 95.56% 95.54%
T(s) 665 665+6 665+25.59

X = X6

VB 3.034 3.008 1.798
PGD-B 0.355 0.396 0.277
PGD-R 1.31% 0.51% 0.0%
ACC 95.68% 95.58% 89.24%

T 665 665+6 665+33.64

X = X9

VB 2.981 2.972 1.583
PGD-B 0.353 0.333 0.247
PGD-R 2.420% 0.85% 0.0%
ACC 95.68% 95.55% 91.19%

T 665 665+6 665+39.99
Table 4: Comparing AT+REGLO with AT and AT+AT-G on MNIST. Both PGD-B and PGD-R are
already very small for a DNN trained with AT and REGLO further reduces VB, PGD-B, and PGD-R
with a small accuracy drop. In comparison, fine-tuning (using AT-G) is not able to improve the
robustness for the given property especially on VB.

Figure 3: Global robustness repair by REGLO on MNIST with X = X0 (the hyper-rectangle that
contains all the training inputs labeled as class 0) and ϵ = 0.3. We use an ϵ̄ ≤ ϵ in place of ϵ in the
optimization problem (6) to impose a stronger constraint. The figure shows that as we decrease ϵ̄
from 0.3 to 0.1, we can satisfy the ϵ bound in the specification with only a small drop in accuracy.

6 Concluding Remarks

REGLO is the first work that enables provable repair of neural networks for global robustness proper-
ties. Experimental results demonstrate the effectiveness of the approach against multiple baselines.
Achieving such deterministic guarantees, however, can be challenging when we apply the technique
to larger networks. Compared to local robustness, global robustness is a strictly stronger condition
that requires robustness for all infinitely many inputs within a region. As a result, verifying whether a
network satisfies a given global robustness property is fundamentally more challenging than local
robustness verification. ITNE [20], which REGLO uses as a subroutine as necessitated by the need
for deterministic guarantees, is the current state-of-the-art technique for verifying global robustness
properties. However, it can still take hours for ITNE to compute a global robustness bound for a
network with around 10k neurons on the CIFAR-10 dataset. Another challenge to scalability lies in
finding the violating linear regions. As the size of the network increases, solving the MILP problem
in Eq. (3) can become very expensive. In addition, the number of linear regions of a ReLU network
grows exponentially in the number of layers and polynomially in the number of neurons (or layer
width) [52]. Thus, while in theory REGLO can provide completeness guarantees as stated in Theorem 2,

11

for large ReLU DNNs (and non-CPWL DNNs) we have to resort to random sampling for finding
the violating regions as described in Section 3.2. Future works include improving the efficiencies of
identifying repair areas and computing tight verified global robustness bounds. Another direction
is to consider statistical techniques to sidestep the inherent complexity of aiming for deterministic
guarantees for global robustness properties.

Acknowledgements. We gratefully acknowledge the support from the National Science Foundation
awards CCF-1646497, CCF-1834324, CNS-1834701, CNS-1839511, IIS-1724341, CNS-2038853,
ONR grant N00014-19-1-2496, the Intelligence Advanced Research Projects Agency (IARPA) under
the contract W911NF20C0038, and the US Air Force Research Laboratory (AFRL) under contract
number FA8650-16-C-2642.

References
[1] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-

ial examples. arXiv preprint arXiv:1412.6572, 2014.

[2] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

[3] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[4] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! Advances
in Neural Information Processing Systems, 32, 2019.

[5] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. In International Conference on Machine
Learning, pages 6586–6595, 2019.

[6] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial
training. International Conferences on Learning Representations, 2020.

[7] Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for
provably robust neural networks. In International Conference on Machine Learning, pages
3578–3586, 2018.

[8] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui Hsieh. Towards
stable and efficient training of verifiably robust neural networks. International Conference on
Learning Representations, 2020.

[9] Jiameng Fan and Wenchao Li. Adversarial training and provable robustness: A tale of two
objectives. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35-8,
pages 7367–7376, 2021.

[10] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. Divide and slide: Layer-wise
refinement for output range analysis of deep neural networks. In International Conference on
Embedded Software (EMSOFT), 2020.

[11] Marco Casadio, Ekaterina Komendantskaya, Matthew L Daggitt, Wen Kokke, Guy Katz, Guy
Amir, and Idan Refaeli. Neural network robustness as a verification property: A principled case
study. In International Conference on Computer Aided Verification, pages 219–231. Springer,
2022.

[12] Sanjit A Seshia, Ankush Desai, Tommaso Dreossi, Daniel J Fremont, Shromona Ghosh, Edward
Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xiangyu Yue. Formal specification
for deep neural networks. In International Symposium on Automated Technology for Verification
and Analysis, pages 20–34. Springer, 2018.

12

[13] Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David Wagner. Learning
security classifiers with verified global robustness properties. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 477–494, 2021.

[14] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Rupak Majumdar and Viktor Kunčak,
editors, Computer Aided Verification, pages 97–117, Cham, 2017. Springer International Pub-
lishing. ISBN 978-3-319-63387-9.

[15] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. arXiv preprint arXiv:1902.06705, 2019.

[16] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2018.

[17] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Advances in neural
information processing systems, pages 4939–4948, 2018.

[18] Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets,
and Luca Daniel. Proven: Verifying robustness of neural networks with a probabilistic approach.
In International Conference on Machine Learning, pages 6727–6736. PMLR, 2019.

[19] Ravi Mangal, Aditya V Nori, and Alessandro Orso. Robustness of neural networks: A proba-
bilistic and practical approach. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), pages 93–96. IEEE, 2019.

[20] Zhilu Wang, Chao Huang, and Qi Zhu. Efficient global robustness certification of neural
networks via interleaving twin-network encoding. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1087–1092. IEEE, 2022.

[21] Zhilu Wang, Yixuan Wang, Feisi Fu, Ruochen Jiao, Chao Huang, Wenchao Li, and Qi Zhu.
A tool for neural network global robustness certification and training. arXiv preprint
arXiv:2208.07289, 2022.

[22] Weidi Sun, Yuteng Lu, Xiyue Zhang, Zhanxing Zhu, and Meng Sun. Global robustness
verification networks. arXiv preprint arXiv:2006.04403, 2020.

[23] Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In International
Conference on Machine Learning, pages 6212–6222. PMLR, 2021.

[24] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Verifying individual fairness
in machine learning models. CoRR, abs/2006.11737, 2020. URL https://arxiv.org/abs/
2006.11737.

[25] Elias Benussi, Andrea Patane, Matthew Wicker, Luca Laurenti, and Marta Kwiatkowska.
Individual fairness guarantees for neural networks. arXiv preprint arXiv:2205.05763, 2022.

[26] Christina Wadsworth, Francesca Vera, and Chris Piech. Achieving fairness through adversarial
learning: an application to recidivism prediction. arXiv preprint arXiv:1807.00199, 2018.

[27] L Elisa Celis and Vijay Keswani. Improved adversarial learning for fair classification. arXiv
preprint arXiv:1901.10443, 2019.

[28] Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller. One-network adversarial
fairness. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
2412–2420, 2019.

[29] Guoliang Dong, Jun Sun, Jingyi Wang, Xinyu Wang, and Ting Dai. Towards repairing neural
networks correctly. arXiv preprint arXiv:2012.01872, 2020.

[30] Ben Goldberger, Guy Katz, Yossi Adi, and Joseph Keshet. Minimal modifications of deep
neural networks using verification. In LPAR, volume 2020, page 23rd, 2020.

13

https://arxiv.org/abs/2006.11737
https://arxiv.org/abs/2006.11737

[31] Zhuotong Chen, Qianxiao Li, and Zheng Zhang. Self-healing robust neural networks via
closed-loop control. arXiv preprint arXiv:2206.12963, 2022.

[32] Matthew Sotoudeh and Aditya V Thakur. Provable repair of deep neural networks. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pages 588–603, 2021.

[33] Feisi Fu and Wenchao Li. Sound and complete neural network repair with minimality and
locality guarantees. In International Conference on Learning Representations, 2021.

[34] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale. CoRR, abs/2110.11309, 2021. URL https://arxiv.org/abs/2110.
11309.

[35] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep
neural networks with rectified linear units. CoRR, abs/1611.01491, 2016. URL http://arxiv.
org/abs/1611.01491.

[36] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting
linear regions of deep neural networks. CoRR, abs/1711.02114, 2017. URL http://arxiv.
org/abs/1711.02114.

[37] Guang-He Lee, David Alvarez-Melis, and Tommi S Jaakkola. Towards robust, locally linear
deep networks. arXiv preprint arXiv:1907.03207, 2019.

[38] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS’12, pages 214—-226, New York, NY, USA, 2012. Association for Computing
Machinery. ISBN 9781450311151. doi: 10.1145/2090236.2090255. URL https://doi.org/
10.1145/2090236.2090255.

[39] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):
1–30, 2019.

[40] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security
analysis of neural networks using symbolic intervals. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1599–1614, 2018.

[41] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In Advances in Neural Information Processing Systems, volume 34,
2021.

[42] Lars Hörmander. The analysis of linear partial differential operators I: Distribution theory and
Fourier analysis. Springer, 2015.

[43] Matteo Fischetti and Jason Jo. Deep neural networks as 0-1 mixed integer linear programs: A
feasibility study. arXiv preprint arXiv:1712.06174, 2017.

[44] Davor Runje and Sharath M Shankaranarayana. Constrained monotonic neural networks. arXiv
preprint arXiv:2205.11775, 2022.

[45] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28.
Princeton university press, 2009.

[46] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[47] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

[48] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

14

https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2110.11309
http://arxiv.org/abs/1611.01491
http://arxiv.org/abs/1611.01491
http://arxiv.org/abs/1711.02114
http://arxiv.org/abs/1711.02114
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://www.gurobi.com
https://www.gurobi.com

[49] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[50] Wikipedia contributors. Demographic profile — Wikipedia, the free encyclope-
dia, 2022. URL https://en.wikipedia.org/w/index.php?title=Demographic_
profile&oldid=1100452289. [Online; accessed 10-August-2022].

[51] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[52] Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of
linear regions of deep neural networks. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2, pages 2924—-2932, Cambridge, MA, USA,
2014. MIT Press.

15

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://en.wikipedia.org/w/index.php?title=Demographic_profile&oldid=1100452289
https://en.wikipedia.org/w/index.php?title=Demographic_profile&oldid=1100452289

7 Appendix

7.1 Proofs of Theorems

Corollary 1 (Gradient Features of Global Robustness Properties). For a DNN f and a global
robustness property P(X,Ω, ϵ), if there is a counterexample (x,∆x) such that ∆x ∈ Ω and ∥f(x+
∆x) − f(x)∥ ≥ ϵ, then there exists a differentiable point x′ between x and x + ∆x such that
∥x− x′∥ ≤ dia(Ω)

2 and ∥∂f
∂x (x

′)∥ > ϵ
dia(Ω) , where dia(Ω) is the diameter of Ω.

Proof. Consider g : [0, 1] → Rn defined as g(t) = f(x+ t∆x) and g is piecewise differentiable on
[0, 1]. Since ϵ < ∥g(1)− g(0)∥, there must exist a differentiable interval (ti, ti+1), such that

(ti+1 − ti)ϵ < ∥g(ti+1)− g(ti)∥

Then by Theorem 1, we have,

(ti+1 − ti)ϵ < ∥g(ti+1)− g(ti)∥
≤ (ti+1 − ti) sup

t∈(ti,ti+1)

∥g′(t)∥

= (ti+1 − ti) sup
t∈(0,1)

∥∂f
∂x

(x+ t∆x)∆x∥

Thus, there exists a x′ = x + t′∆x, ∥x − x′∥ ≤ dia(Ω)
2 (we can simply switch x and x + ∆x if

∥x− x′∥ > dia(Ω)
2), and

∥∂f
∂x

(x′)∆x∥ > ϵ ⇒ ∥∂f
∂x

(x′)∥ >
ϵ

dia(Ω)

Property 1. Optimization problem (6) is convex and thus any local minimum also achieves the global
minimum.

Proof. By the definition of a norm, we have any norm ∥.∥ is a convex function.

For any ∆θ1, ∆θ2, λ ∈ [0, 1] and any ∆zi, we have

max
[∆x,∆zi]

∥(θ + λ∆θ1 + (1− λ)∆θ2)∆zi∥

= max
[∆x,∆zi]

∥λ(θ +∆θ1)∆zi + (1− λ)(θ +∆θ2)∆zi∥

≤ max
[∆x,∆zi]

[∥λ(θ +∆θ1)∆zi∥+ ∥(1− λ)(θ +∆θ2)∆zi∥]

≤ max
[∆x,∆zi]

∥λ(θ +∆θ1)∆zi∥

+ max
[∆x,∆zi]

∥(1− λ)(θ +∆θ2)∆zi∥

≤λϵ+ (1− λ)ϵ = ϵ

Both the objective and the constraints are convex. Therefore, we have that optimization programming
(6) is convex. Thus, any local minimum achieves the global minimum.

Theorem 2 (Completeness Guarantees). We have the following completeness guarantees for REGLO:

1. For a Single Iteration Repair, REGLO can always find a solution to the optimization problem
(6).

2. For an Iterative Repair on a piecewise linear DNN, REGLO always terminates with no more
repair areas to be found by solving MILP (3).

16

Proof. For a Single Iteration Repair, the optimization problem (6) is convex over a close domain.
Since ∆θ = −θ is a feasible solution, the domain where ∆θ is in is always feasible. Therefore,
optimization problem (6) has an optimal solution. Since the optimization problem is convex, the
optimal solution is unique and REGLO can always find the optimal solution to the optimization problem
(6).

For an Iterative Repair on a CPWL DNN, REGLO can always find an optimal solution for every Single
Iteration Repair. Given that the number of linear regions for a CPWL DNN is finite, REGLO always
terminates with no more repair areas to be found by solving the MILP.

Theorem 3 (Limited Side Effect for Single Iteration Repair). Given a global robustness property
P(X,Ω, ϵ), a target DNN f , and weight change ∆θ from a Single Iteration Repair, we have

1. for any area B ⊂ ∪i∈IAi ⊂ X , f̂ |= P(B,Ω, ϵ);

2. for any area C ⊂ X which is not a subset of ∪i∈IAi, f̂ |= P(C,Ω, ϵ + 2L∥∆θ∥∥X∥),
where L is the Lipschitz constant of f from the input layer to the last hidden layer.

Proof. The constraints of optimization problem (6) ask the resulting DNN must satisfy the global
robustness property on B ⊂ ∪i∈IAi ⊂ X , a subset of the repair areas.

The difference between the resulting DNN f̂ and the target DNN f on any input x can be bounded
by the norm of ∆θ: ∥f̂(x) − f(x)∥ = ∥(θ + ∆θ)fn−1(x) − θfn−1(x)∥ = ∥∆θfn−1(x)∥ ≤
∥∆θ∥ · ∥fn−1∥ · ∥x∥ = L∥∆θ∥ · ∥x∥, where fn−1 is the DNN function from the input layer to the
last hidden layer.

For any x ∈ C ⊂ X , which is not in a subset of ∪i∈IAi, and any ∆x ∈ Ω:

∥f̂(x+∆x)− f̂(x)∥

=∥f̂(x+∆x)− f(x+∆x)

+f(x+∆x)− f(x) + f(x)− f̂(x)∥

≤∥f̂(x+∆x)− f(x+∆x)∥+ ∥f(x+∆x)− f(x)∥

+∥f(x)− f̂(x)∥
≤L∥∆θ∥ · ∥x+∆x∥+ ϵ+ L∥∆θ∥ · ∥x∥
≤ϵ+ 2L∥∆θ∥∥X∥

Corollary 2 (Soundness Guarantees for Repairing CPWL DNNs). Given a global robustness property
P(X,Ω, ϵ), a piecewise linear DNN f , and weight change ∆θ from Iterative Repair, REGLO will
terminate with no more repair areas to be found and the resulting DNN f̂ |= P(X,Ω, ϵ).

Proof. For Iterative Repair on a CPWL DNN f , by Theorem 2, REGLO will terminate with no more
repair areas to be found. Therefore, the resulting DNN satisfies P(X,Ω, ϵ) outside the repair areas.
In addition, by Theorem 3, we have that the resulting DNN satisfies P(C,Ω, ϵ) for any C ⊂ X .
Combining these results, we have that REGLO will terminate with no more repair areas to be found
and the resulting DNN f̂ |= P(X,Ω, ϵ).

Corollary 3 (Soundness Guarantee for Repairing General DNNs). Given a global robustness property
P(X,Ω, ϵ), a DNN f , and weight change ∆θ from Iterative Repair, REGLO returns a DNN f̂ |=
P(C,Ω, ϵ+ 2L∥∆θ∥∥X∥) for any repair area C.

Proof. Since Iterative Repair collects both the previously repaired areas and the new repair areas
found at one iteration, the last Single Iteration Repair will repair all those collected repair areas.
Therefore, by Theorem 3, the last Single Iteration Repair will return a DNN f̂ that satisfies P(C,Ω, ϵ+
2L∥∆θ∥∥X∥).

17

Algorithm 2 Repair via Barrier Method
Input: Current last-layer weight θ, repair areas {Ai}i∈I , and Ω.
Parameter: Initial step size α, initial weight of barrier function t, an early stop threshold δ, and
maximal steps K.
Output: ∆θ

1: Let k = 0.
2: Let ∆θ = −θ (start from a feasible solution).
3: while k < K do
4: Let ϵ∗i and ∆z∗i be the optimal value and optimal solution of optimization problem (5),

respectively.
5: Compute the gradient g =

∂ϵ∗i (θ+∆θ)
∂∆θ according to Equation (8).

6: if ∥g∥ < δ then
7: Break
8: end if
9: Update ∆θ = ∆θ − α · g

10: Update α and t.
11: end while
12: return ∆θ.

8 Additional Experiment Details

8.1 DNN Architectures and Training/Repair Hyperparameters

German Credit: The DNN is a multi-layer perceptron with ReLU activation functions. It has an input
layer with 20 neurons, 2 hidden layers with 200 neurons in each layer, and a final output layer with 1
neuron.

Auto MPG: The DNN is a multi-layer perceptron with ReLU activation functions. It has an input
layer with 3 neurons, 2 hidden layers with 20 neurons in each layer, and a final output layer with 1
neuron.

MNIST: The DNN is a convolutional neural network with ReLU activation functions. It has two
convolutional layers and one dense layer. The two convolutional layers have 16 and 32 channels,
respectively. The dense layer has 16 neurons.

We set the learning rate to 10−3 in all the training experiments. For fine-tuning, we set a learning rate
of 5 ∗ 10−4 on the German Credit experiment, 2 ∗ 10−4 on the Auto MPG experiment, and 2 ∗ 10−4

on the MNIST experiment. The number of epochs for training is 20 and the batch size is 256.

For AT-G, the number of points that we sampled in each iteration is 100.

The step size we used for PGD-B and PGD-R is 0.01 and the number of steps is 200. The step size
we used for AT and AT-G is 0.01 and the number of steps is 10.

8.2 Full Results for Norm-bounded Global Robustness Repair on MNIST

Table 5 shows the full set of results for norm-bounded global robustness repair on MNIST. Overall,
ST+REGLO achieves the best (smallest) VB and AT-G achieves the best (smallest) PGD-B, while both
methods have very small PGD-R (0.0% or close to 0.0%) and do not have any significant drop in
accuracy. Compared with AT-G, ST+REGLO has the following advantages: (1) repair using REGLO
does not require access to the training data (which may not be available due to privacy reasons for
instance), (2) it can be applied to a trained network as a post-hoc modification especially when the
global robustness property is only given after training, and (3) a much smaller runtime as REGLO does
not require adversarial training. In addition, AT-G is not able to reduce VB which is required by the
specification. On the other hand, we can use a ϵ̄ < ϵ in REGLO to satisfy the specification even if we
are only sampling and repairing a subset of the violating linear regions, as shown at the beginning of
the Appendix.

18

ST AT AT-G ST+AT-G AT+AT-G ST+REGLO AT+REGLO

X = X0

VB 5.577 3.08 4.459 5.237 3.0472 0.7053 1.608
PGD-B 0.9367 0.3641 0.0701 0.6179 0.3786 0.1764 0.2514
PGD-R 94.30% 3.37% 0.0% 78.779% 1.659% 0.0% 0.0%
ACC 96.35% 95.68% 96.38% 91.1% 95.57% 93.86% 89.86%

T 57.58 665 1171 57.58+6 665+6 57.58+38.83 665+33.99

X = X1

VB 5.548 3.019 5.799 4.379 3.183 0.807 1.831
PGD-B 0.9279 0.360 0.0686 0.6243 0.3569 0.1538 0.3057
PGD-R 93.73% 2.84% 0.0% 92.11% 1.439% 0.0% 0.030%
ACC 96.35% 95.68% 96.81% 91.36% 95.57% 93.79% 86.20%

T 57.58 665 1165 57.58+6 665+6 57.58+48.98 665+35.02

X = X2

VB 4.860 3.2468 4.515 4.479 3.063 0.8838 1.963
PGD-B 1.0158 0.4111 0.0907 0.6516 0.3912 0.1815 0.3057
PGD-R 95.92% 4.36% 0.0% 90.79% 2.410% 0.0% 0.02%
ACC 96.35% 95.68% 95.96% 91.49% 95.54% 96.17% 86.23%

T 57.58 665 1188 57.58+6 665+6 57.58+45.98 665+39.08

X = X3

VB 5.3125 3.084 5.159 5.219 3.0624 0.9064 1.815
PGD-B 0.9832 0.4295 0.0962 0.6791 0.3867 0.1881 0.2497
PGD-R 94.30% 4.17% 0.0% 93.87% 2.0799% 0.0% 0.0%
ACC 96.35% 95.68% 95.97% 91.09% 95.56% 96.11% 95.54%

T 57.58 665 1174 57.58+6 665+6 57.58+56.78 665+25.59

X = X4

VB 5.143 3.277 5.6209 4.363 3.188 0.8457 1.689
PGD-B 0.9692 0.3763 0.0980 0.6818 0.3962 0.1722 0.2206
PGD-R 94.61% 4.41% 0.0% 87.23% 2.25% 0.0% 0.0%
ACC 96.35% 95.68% 96.27% 91.39% 95.55% 96.03% 95.09%

T 57.58 665 1097 57.58+6 665+6 57.58+53.81 665+29.05

X = X5

VB 4.786 3.094 5.627 4.748 3.1461 0.8528 1.747
PGD-B 1.0001 0.3866 0.0754 0.6771 0.3680 0.1708 0.3285
PGD-R 93.56% 5.11% 0.0% 81.72% 2.370% 0.0% 1.46%
ACC 96.35% 95.68% 96.51% 91.00% 95.54% 95.98% 86.2%

T 57.58 665 1143 57.58+6 665+6 57.58+39.47 665+26.70

X = X6

VB 4.726 3.034 4.767 4.453 3.008 1.004 1.798
PGD-B 0.9255 0.3557 0.0561 0.5215 0.3964 0.2011 0.2772
PGD-R 89.60% 1.31% 0.0% 72.69% 0.519% 0.0% 0.0%
ACC 96.35% 95.68% 96.5% 91.91% 95.58% 96.15% 89.24%

T 57.58 665 1157 57.58+6 665+6 57.58+46.69 665+33.64

X = X7

VB 4.668 3.033 4.787 4.810 3.0184 0.9147 1.715
PGD-B 0.8889 0.3690 0.0962 0.6691 0.3672 0.1695 0.3025
PGD-R 85.90% 2.44% 0.0% 82.23% 1.070% 0.0% 0.01%
ACC 96.35% 95.68% 95.93% 91.18% 95.53% 96.21% 86.21%

T 57.58 665 1184 57.58+6 665+6 57.58+54.13 665+27.74

X = X8

VB 4.728 3.030 5.875 5.127 3.078 1.032 1.741
PGD-B 0.927 0.3933 0.1111 0.6179 0.3441 0.2057 0.2976
PGD-R 91.47% 4.40% 0.0% 75.12% 1.920% 0.0% 0.0%
ACC 96.35% 95.68% 96.58% 90.87% 95.52% 96.16% 86.2%

T 57.58 665 1155 57.58+6 665+6 57.58+42.92 665+30.79

X = X9

VB 4.698 2.981 5.797 4.637 2.972 0.9949 1.583
PGD-B 0.875 0.3531 0.0656 0.6362 0.3333 0.1810 0.2478
PGD-R 87.68% 2.420% 0.0% 66.29% 0.85% 0.0% 0.0%
ACC 96.35% 95.68% 96.96% 91.27% 95.55% 96.27% 91.19%

T 57.58 665 1179 57.58+6 665+6 57.58+47.85 665+39.99

Table 5: Global robustness repair on MNIST for different class rectangles.

19

	Introduction
	Background
	Deep Neural Networks (DNNs)
	Linear Regions
	Global Robustness Property
	Neural Network Repair
	Verification for Global Robustness Property

	The REGLO Approach
	Key Observation
	Repair Areas
	Verification-Guided Constraints
	Repair as Robust Optimization
	Repair via Barrier Method
	Iterative Repair

	Theoretical Guarantees
	Completeness Guarantees
	Soundness Guarantees

	Experiments
	Baseline Methods
	Evaluation Metrics
	Benchmark Evaluations
	Sound Repair with Stronger Constraints

	Concluding Remarks
	Appendix
	Proofs of Theorems

	Additional Experiment Details
	DNN Architectures and Training/Repair Hyperparameters
	Full Results for Norm-bounded Global Robustness Repair on MNIST

