Under review as a conference paper at ICLR 2026

WILDFEEDBACK: ALIGNING LLMS WITH
IN-SITU USER INTERACTIONS AND FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) continue to advance, aligning these models
with human preferences has emerged as a critical challenge. Traditional align-
ment methods, relying on human or LLM annotated datasets, are limited by their
resource-intensive nature, inherent subjectivity, misalignment with real-world user
preferences, and the risk of feedback loops that amplify model biases. To over-
come these limitations, we introduce WILDFEEDBACK, a novel framework that
leverages in-situ user feedback during conversations with LLMs to create pref-
erence datasets automatically. Given a corpus of multi-turn user-LLM conversa-
tion, WILDFEEDBACK identifies and classifies user feedback to LLM responses
between conversation turns. The user feedback is then used to create examples
of preferred and dispreferred responses according to users’ preference. Our ex-
periments demonstrate that LLMs fine-tuned on WILDFEEDBACK dataset exhibit
significantly improved alignment with user preferences, as evidenced by both tra-
ditional benchmarks and our proposed checklist-guided evaluation. By incorpo-
rating in-situ feedback from actual users, WILDFEEDBACK addresses the scala-
bility, subjectivity, and bias challenges that plague existing approaches, marking
a significant step toward developing LL.Ms that are more responsive to the diverse
and evolving needs of their users.

1 INTRODUCTION

Large language models (LLMs) have become a cornerstone of modern natural language processing
(NLP) applications, powering a wide range of tasks from conversational agents to content genera-
tion. Despite their strengths, aligning LLMs with human preferences remains a challenge (Bai et al.}
2022a;; |Ouyang et al., 2022} OpenAl et al., 2024; |Dubey et al.l 2024). Traditional alignment meth-
ods involve instruction tuning and preference training on curated human or LLM-annotated datasets
(Bai et al., [2022a; |Ouyang et al.l 2022; |Cu1 et al., 2024). However, these approaches face criti-
cal limitations: human annotation is resource-intensive and often subjective, while LLM-generated
synthetic data risks reinforcing biases instead of capturing diverse human preferences (Gautam &
Srinath, 2024} |Wyllie et al., 2024; |Chen et al., 2024; [Poddar et al., 2024).

In response, recent work explores in-situ user feedback (e.g., upvotes, downvotes, engagement) for
LLM training Shi et al.|(2022)); [Lin et al.|(2024b); Don- Yehiya et al.|(2024])). This approach harnesses
authentic user feedback during interactions with LLMs, offering a more dynamic and accurate re-
flection of user preferences. However, existing works are limited in scope. |Shi et al.| (2022) focus
on explicit thumbs-up/thumbs-down style feedback. |Lin et al.|(2024b) and |Don-Yehiya et al.|(2024)
move toward finer-grained utterance-level satisfaction estimation, but they treat each response in
isolation and do not leverage the surrounding conversational context. As a result, these methods
compress nuanced user reactions into narrowly scoped signals, missing the broader trajectory of user
needs and expectations across turns. Moreover, prior approaches often fine-tune models directly on
responses that trigger explicit feedback, without systematically capturing implicit feedback signals
or the evolving dialogue state.

In this paper, we introduce WILDFEEDBACK, a novel framework designed to align LLMs with
in-situ user interactions and feedback. WILDFEEDBACK addresses the limitations of existing ap-
proaches by constructing preference datasets from real user-LLM conversations, specifically focus-
ing on user feedback that naturally occurs during these interactions. Unlike prior work, WILD-
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Figure 1: Overview of WILDFEEDBACK. (1) We begin by applying user satisfaction estimation
to identify conversations and utterances that contain feedback signals. (2) We extract the entire
conversation history leading up to a DSAT (dissatisfaction) signal as the prompt, and the response
that triggers the DSAT as the dispreferred response. (3) Finally, we summarize the user’s preferences
based on the identified feedback signals and guide the generation of the preferred response

FEEDBACK explicitly leverages the full conversational history surrounding dissatisfaction signals,
allowing us to infer preferences that are grounded in context rather than isolated utterances. The
overview of the framework is shown in Figure [, Our framework comprises three key compo-
nents: (1) Feedback signal identification, which detects and classifies user feedback, distinguishing
between positive and negative signals to infer user preferences; (2) Preference data construction,
which transforms these signals into structured preference datasets; and (3) Checklist-guided evalua-
tion, which systematically assesses model responses using an instance-level checklist derived from
extracted user preferences as a rubric. This ensures that model improvements are grounded in real
user expectations rather than predefined heuristics. To demonstrate the effectiveness of WILDFEED-
BACK, we apply it to WildChat (Zhao et al., [2024)), a dataset containing over 148,000 multi-turn
conversations between users and ChatGPT (OpenAlI et al.| 2024) (see details of WildChat in Ap-
pendix@). This process results in a preference dataset of 20,281 samplesﬂ providing a rich resource
for improving LLM alignment with real-world user preferences.

Through extensive experiments, we demonstrate that models fine-tuned on WILDFEEDBACK show
significant improvements in aligning with user preferences, both in automated benchmarks and in
our proposed checklist-guided evaluation framework. This work represents a step forward in creat-
ing more user-centric LLMs, with the potential to enhance user satisfaction across a wide range of
applications. The contributions of this paper are threefold:

1. In-situ User Preference Alignment: we introduce WILDFEEDBACK, a novel framework
that leverages naturally occurring user feedback in real conversations to ground LLM align-
ment in authentic, context-rich signals. By reflecting individual users’ preferences, this
approach mitigates the misalignment between external annotators and actual end-users.

2. Scalable Preference Data Construction: we adapt and extend user satisfaction estimation
techniques to automatically identify both explicit and implicit feedback signals in multi-
turn conversations. This process yields large, diverse, and fine-grained preference datasets
across tasks, complementing the need for costly human annotation and making preference
alignment both practical and scalable.

"The dataset will be released upon acceptance.
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3. Checklist-Guided Evaluation: we propose a checklist-guided evaluation methodology
that aligns the assessment of model performance with real user preferences, providing a
more accurate benchmark for evaluating LLMs’ alignment with human values.

2 RELATED WORK

Feedback Learning for LLMs. Incorporating human feedback has been shown to be an effective
strategy to align LLMs with human preferences (Ouyang et al., 2022} |Bai et al., |2022a; |Dubey
et al., |2024). However, relying human annotators to provide human feedback is inefficient and
resource-intensive, which makes it hard to scale up. Additionally, human preferences are highly
subjective. A small set of annotators may not represent broader preferences. Accordingly, some
researchers aim to supervise Al models by model themselves (Bai et al., 2022b; |Lee et al., |2023}
Madaan et al.| 2023; Burns et al., 2023} L1 et al.| 2023a)). For instance, |Bai et al.|(2022b) introduced
constitutional Al, in which they prompt LLMs to self-refine their own generations given a set of
human-defined constitutions. However, relying on model’s own feedback can create a feedback
loop where the model’s outputs increasingly reflect its own biases rather than diverse and authentic
human perspectives. Recently, researchers have begun exploring the mining of user preferences
from natural human-LLM interactions (Shi et al.|, 2022} |Lin et al.,2024b; Don-Yehiya et al., [2024).
These approaches capture real-time user feedback for more accurate preference alignment. Our work
builds on this trend by leveraging in-situ user interactions to create preference datasets that better
align with actual human values, addressing the limitations of both synthetic and human-annotated
preference datasets.

Data for LLM Alignment. LLM alignment typically consists of two steps: instruction tuning
and preference training. Instruction tuning, or supervised finetuning (SFT), aims to finetune models
with a set of instruction-response pairs. Early works incorporated various NLP tasks for instruction
tuning, demonstrating that LLMs could generalize well across different tasks (Wang et al., 2022;
Chung et al.| [2022; [Ouyang et al.| 2022). Subsequent research focused on constructing instruction
data by directly distilling from capable LLMs (Wang et al., [2023; Xu et al., [2023). Researchers
later recognized that preference training could further boost model performance across various tasks
(Ouyang et al.,[2022; Dubey et al., 2024). Preference training uses desired and undesired responses,
either human-annotated (Bai et al., |2022a) or LLM-generated (Cui et al., 2024). Beyond general-
purpose preference datasets, some datasets focus on specific tasks, such as summarization (Wu
et al.l |2021), model safety (Ji et al.l 2023} Shi et al., 2024), and mathematics (Lightman et al.,
2023)). However, these approaches often rely on curated datasets that are either manually annotated
by human experts or generated by models like GPT-4 (OpenAl et al., 2024). While these datasets
provide a useful foundation, they may not fully capture the complexity and diversity of real-world
user interactions. Our work addresses this gap by introducing a framework that leverages real-time
feedback from actual users, allowing for more authentic and context-sensitive alignment of LLMs
with true human preferences.

3 WILDFEEDBACK

Existing preference datasets often suffer from a mismatch between actual human preferences and
those of the annotators (Chen et al., 2024; |Poddar et al.| 2024). Synthetic preference datasets, such
as ULTRAFEEDBACK (Cui et al., 2024)), rely solely on GPT-4 to generate rankings and determine
which responses are preferred or dispreferred. However, this approach may not accurately capture
real human values or nuanced preferences. Relying on synthetic data can create a feedback loop
where the model’s outputs increasingly reflect its own biases rather than diverse and authentic human
perspectives. On the other hand, preference datasets annotated by human annotators are difficult to
scale due to time and budget constraints (Bai et al.,|2022a;|Ouyang et al.,|2022; |Dubey et al., | 2024)).
Moreover, human annotators’ preferences can be highly subjective, often differing significantly from
those of real users (Zhang et al.| 2024 Fleisig et al., 2023)).

To address these challenges, we introduce WILDFEEDBACK, a framework designed to align LLMs
with in-situ user interactions and feedback. Unlike previous approaches that rely on synthetic re-
sponses, our framework directly learns preferences from real-world users, capturing both explicit
and implicit feedback signals. The framework comprises three steps: (1) feedback signal identifica-
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tion, (2) preference data construction, and (3) checklist-guided evaluation. The pipeline is illustrated
in Fi gure We apply this framework to WildChat (Zhao et al.,2024), a corpus of real user-ChatGPT
conversations , and obtained the WILDFEEDBACK dataset, a preference dataset of 20,281 samples.

3.1 FEEDBACK SIGNALS IDENTIFICATION

To construct preference data from natural human-LLM interactions, we first identify conversations
that contain feedback signals. This can be achieved through user satisfaction estimation. In multi-
turn conversational sessions, a user may explicitly express their satisfaction (e.g., “thank you”) or
dissatisfaction (e.g., “revise it”) in their utterances. [Lin et al.| (2024b)) proposed a framework named
SPUR that can automatically learn and identify SAT (satisfaction) and DSAT (dissatisfaction) pat-
terns. SPUR generalizes SAT/DSAT rubrics from conversations with annotated thumb feedback by
recursively prompting GPT-4. These rubrics can then be used to score a user’s overall satisfaction
or dissatisfaction, allowing us to identify utterances containing feedback signals.

WILDFEEDBACK adapts the SAT/DSAT rubrics from|Lin et al.|(2024b)) with minor modifications. In
total, we use 9 SAT and 9 DSAT rubrics. The SAT criteria include gratitude, learning, compliance,
praise, personal details, humor, acknowledgment, positive closure, and getting there. The DSAT
criteria consist of negative feedback, revision, factual error, unrealistic expectation, no engagement,
ignored, lower quality, insufficient detail, and style. Detailed definitions of these rubrics can be
found in Table and To streamline the process, we input these rubrics into GPT-4 E] and prompt it
to perform the classification at the utterance level. The complete prompt is available in the Appendix
@ In total, there are 148,715 multi-turn conversations in the WildChat dataset, with approximately
12.8% of the multi-turn conversations containing feedback signals. Detailed statistics and analysis
are presented in Table[I]and Section[5.2]

To ensure the reliability of GPT-4’s classification of . : ot :

Table 1: Statist f SAT/DSAT -
SAT/DSAT signals, we conducted a validation pro- vzrsaeti ons a 1;1050 o(:wersati on is 11r;b(;(]):d
cess using human expert annotators. Our findings S AT/]jS AT if it tai t least
indicate that GPT-4’s ability to identify SAT/DSAT ¢ \T/DS AT atterance. o
signals shows relatively high agreement with human )

annotations, achieving a Cohen’s Kappaof kK = 0.69  Category SAT DSAT  Total
for SAT and x = 0.50 fo.r DSAT, similar to the hl’l— # Conversations 5447 13.582  148.715
man performance. A detailed breakdown of GPT-4’s Utterances 8186 27711 628467
performance and the human annotation process are ’ ’ .
provided in Appendix [B.2]

3.2 PREFERENCE PAIR GENERATION

After identifying conversations that contain feedback signals using the SAT/DSAT rubrics, we can
construct semi-synthetic preference pairs. Each preference pair sample consists of four components:
the prompt, user preferences, the preferred response, and the dispreferred response. For conversa-
tions with SAT/DSAT signals, we first analyze user responses marked by these signals and ask
GPT-4 to summarize user preferences based on these feedback signals (e.g., the user prefers concise
and direct answers). We then extract the conversation up to the model response that triggers the
SAT/DSAT signals and use this as the prompt for our preference data.

For preferred and dispreferred response generation, we explore two different approaches: expert re-
sponses and on-policy responses. Specifically, we use GPT-4 for expert response generation, while
Phi 3 (Abdin et al., 2024), Qwen 2 (Yang et al.| 2024), and LLaMA 3 (Dubey et al., 2024) are
employed for on-policy response generation. For expert responses, those that trigger DSAT signals
in the original conversations are directly used as dispreferred responses (e.g., response 2 in Fig. [I).
We then prompt GPT-4 to generate the preferred responses by using summarized user preferences
as the system prompt. For on-policy responses, both preferred and dispreferred responses are gener-
ated by the policy model. The dispreferred responses are generated directly, whereas the preferred
responses are produced using the summarized user preferences as the system prompt. Furthermore,

Unless otherwise specified, in all of our experiments, we use GPT-40 with the gpt-40-0513
engine. For open-weight models, we use Phi-3-mini-4k-instruct, Qwen2-7B-Instruct,
Meta-Llama-3-8B-Instruct.
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Figure 2: Comparison of in-situ user alignment across datasets generated by different models.
“Win/Tie/Lose” represents the percentage of instances where the preferred responses win/tie/lose
compared to the dispreferred responses in the WILDFEEDBACK dataset, prior to filtering. The com-
parison is made both with and without providing GPT-4 with summarized user preferences as check-
lists to guide its evaluation. With checklists, the preferred responses can be better distinguished.

recognizing that some user preferences may be harmful (e.g., preferences for explicit content), we
take extra safety precautions. When prompting either the on-policy models or GPT-4 to generate
preferred responses, we include an additional system instruction: “The response should be safe.”
Some conversations are also automatically filtered by the OpenAl moderation API. The prompt
used for preference pair construction is provided in Appendix [A.2]

3.3 CHECKLIST-GUIDED EVALUATION

Existing automated benchmarks, such as AlpacaEval (Dubois et al., 2024) and MT-Bench (Zheng
et al., 2023b), heavily rely on using LLMs as judges. These benchmarks typically prompt models
with a set of queries and then ask LLMs like GPT-4 or Claude (Anthropic, [2023) to provide a score
or rank the responses of different models. This approach is problematic because it relies heavily
on the internal knowledge of LLMs, which are known to be biased towards longer responses or
responses generated by themselves (Liu et al., 2024bj [Thakur et al.; |2024). Additionally, there is a
mismatch between the preferences of LLMs as judges and those of humans, leading to evaluations
that do not accurately reflect user preferences. Furthermore, using human annotators to rank model
responses based on their subjective experiences is also not ideal, as there can be a mismatch between
annotators’ preferences and actual user preferences.

In response, we propose checklist-guided evaluation, a general evaluation framework that more ac-
curately reflects real user preferences. In our preference data construction module, we not only con-
struct preference data from user-LLM interactions but also summarize user preferences expressed
in natural language. These preferences, based on real users’ textual feedback, can be used to align
LLMs’s evaluation more closely with real users’ preferences. Instead of asking human annotators to
directly rank model responses, we should ask them to rank those responses based on real users’ pref-
erences. When using LLMs as evaluators, we can provide an instance-level checklist to guide their
assessments. Our evaluation framework is adapted from WILDBENCH (Lin et al., 2024a)), which has
been shown to correlate well with human judgement in ranking model performance as an automatic
metric. We employ a pairwise evaluation strategy, where GPT-4 compares two different responses to
determine which performs better on a given task, using an instance-level, preference-guided check-
list to inform the comparison. This metric allows for straightforward comparisons among models,
with easily interpretable win/lose rates as intermediate outcomes. The full prompt can be found in

Appendix [A.3]

Similar to feedback signal identification (§3.1)), to ensure the reliability of GPT-4 on checklist-
guided evaluation, we conducted a validation process using human expert annotators. We found
GPT-4 achieves an human agreement of 57.14%, similar to the human-human agreement of 63.27%.
A detailed breakdown of GPT-4’s performance and the human annotation process are provided in

Appendix
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Prompt Response Multi-

# Conv. Length Length Turn? Feedback Type
‘WebGPT (Nakano et al.,[2022) 38,925 51 188 X Human Annotators
Anthropic HH (Bai et al., [2022a)) 118,263 186 95 X Human Annotators
OASST1 (Kopf et al.;[2023) 35,905 168 221 v Human Annotators
HELPSTEER2 (Wang et al.| [2024) 20,324 713 1,492 X Human Annotators
ULTRAFEEDBACK (Cui et al.}|2024) 61,135 159 256 X GPT-4
WILDFEEDBACK (ours)
— GPT4 20,281 929 440
— Qwen 2 11,509 1,057 541 .
< Phi 3 9,194 931 344 v In-situ Users
— LLaMA 3 10,659 982 376

Table 2: Statistics of existing preference datasets. Length refers to number of tokens. The responses
of WILDFEEDBACK are either extracted from the original conversations or generated by GPT-4,
Qwen 2, Phi 3, or LLaMA 3.

3.4 WILDFEEDBACK DATA CONSTRUCTION

The preference pair construction approach described in Section[3.2]allows us to build a robust dataset
for training models to better align responses with user preferences.

To evaluate whether our generated preferred responses align with actual user preferences, we ran-
domly selected 500 samples from the WILDFEEDBACK datasets and performed checklist-guided
evaluation (§3.3)), comparing the preferred and dispreferred responses. As explained in Section
there are two versions of WILDFEEDBACK preference pairs: the GPT-4 version and the on-policy
version, which differ in whether the responses are generated by GPT-4 or the policy model. As
shown in Figure 2| we found that without checklist-guided evaluation, GPT-4 does not necessarily
favor responses aligned with summarized user preferences, often defaulting to models’ zero-shot
generations instead. However, after providing the preferences as checklists to guide the evaluation,
GPT-4’s selections more closely align with real users’ preferences. Additionally, we observed that
GPT-4 is significantly more steerable than smaller models: over 70% of its preferred responses align
with in-situ user preferences, compared to only about 50% for smaller models.

Since policy models are less steerable than GPT-4 and may not always align with provided user
preferences, we apply an additional filtering process, discarding any on-policy pairs that do not
align with user preferences based on checklist-guided evaluation. In contrast, we retain all GPT-4-
generated preference pairs, as they consistently demonstrate higher alignment.

Table [2] reports statistics on WILDFEEDBACK constructed datasets compared with open-source
dataset%’j To the best of our knowledge, WILDFEEDBACK is the first multi-turn pairwise preference
dataset derived from real human-LLM interactions. Unlike datasets annotated by human labelers or
LLMs, which often fail to fully capture real user preferences, WILDFEEDBACK is built from in-situ
user feedback. Although OpenAssistant Conversations (OASST1) (Kopf et al.| [2023) also includes
multi-turn conversations, its prompts and responses are fully composed by human annotators, mak-
ing it less reflective of genuine human-LLM interactions. In the next section, we demonstrate that
WILDFEEDBACK more accurately represents authentic human-LLM interactions, making it a more
reliable resource for developing and evaluating preference-based models.

4 EXPERIMENT

To validate the effectiveness of WILDFEEDBACK, we finetune models from different families on
it and compare their performances with the vanilla models and the models finetuned on ULTRA-
FEEDBACK data. We evaluate models’ performance on general benchmarks and a held-out test set
of WILDFEEDBACK using checklist-guided evaluation.

3For ULTRAFEEDBACK, we refer to the pre-processed, binarized version used to train Zephyr (Tunstall
et al.,[2023).
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Models and training settings. We use off-the-shelf instruction-tuned Qwen 2, Phi 3, and LLaMA
3 models. As described in Section each model is fine-tuned on two versions of both WILD-
FEEDBACK (WF) and ULTRAFEEDBACK (UF): a GPT-4 version and an on-policy version.

For WILDFEEDBACK, the WF GPT-4 setup utilizes GPT-4 to generate preferred responses based on
summarized user preferences. Dispreferred responses are extracted from conversations that contain
DSAT signals. In the WF On-policy setup, each policy model (Qwen 2, Phi 3, or LLaMA 3) gener-
ates both preferred and dispreferred responses, again making use of summarized user preferences to
produce the preferred ones. We train each model for one epoch of supervised fine-tuning (SFT) on
the preferred responses, followed by one epoch of direct preference optimization (DPO) (Rafailov
et al.| [2023) on the entire dataset. We find that hyperparameter tuning is essential for optimal results
(see Appendix D).

We also fine-tune models using ULTRAFEEDBACK, one of the most widely used preference datasets
due to its superior performance compared to others. Models such as the Tulu 3 series|Lambert et al.
(2025) and Zephyr Tunstall et al.| (2023) have been fine-tuned on this dataset. The prompts in UL-
TRAFEEDBACK are sourced from various instruction datasets. Each prompt has four responses from
different LLMs, numerically rated by GPT-4. However, due to the off-policy nature of ULTRA-
FEEDBACK and the outdated models used to generate its responses, it has become common practice
to regenerate responses using only the original prompts when training new models on this dataset
(Meng et al., [2024} |Dong et al., [2024; |Xiong et al., 2024). Following this approach, we create two
versions of the dataset: UF GPT-4 and UF On-policy. In UF GPT-4, we randomly select 20,000
prompts from ULTRAFEEDBACK, and GPT-4 generates two responses for each prompt. GPT-4 then
acts as a judge, selecting the better response as the preferred one while marking the other as dis-
preferred. In UF On-policy, each policy model generates five responses per prompt, after which a
GPT-4 judge selects the best response as preferred, while one of the remaining four is randomly des-
ignated as dispreferred. The specific prompt used to guide GPT-4 in selecting the preferred response
is provided in Appendix [A.4] By regenerating the responses for ULTRAFEEDBACK, we also ensure
a fair comparison to our WILDFEEDBACK setup.

In summary, for all three policy models, we compare five configurations: (1) the off-the-shelf
instruction-tuned model, (2) WF GPT-4, (3) WF On-policy, (4) UF GPT-4, and (5) UF On-policy.

Benchmarks Evaluation. We evaluate our models using three of the most popular open-ended
instruction-following benchmarks: AlpacaEval 2 (L1 et al.;,2023b)), MT-Bench (Zheng et al., 2023a)),
and Arena-Hard (Li et al.| 2024)). AlpacaEval 2 consists of 805 questions from 5 datasets, and MT-
Bench covers 8 categories with 80 questions. Arena-Hard is an enhanced version of MT-Bench,
incorporating 500 well-defined technical problem-solving queries. We report scores following each
benchmark’s evaluation protocol: For AlpacaEval 2, we report both the raw win rate (WR) and the
length-controlled win rate (LC) (Dubois et al., 2024). The LC metric is specifically designed to be
robust against model verbosity. For MT-Bench, we report the average MT-Bench score with GPT-40
(gpt—-40-0513) as the judge. For Arena-Hard, we report the win rate (WR) against the baseline
model. As specified by the benchmarks, we use GPT-4-Turbo (gpt-4-0125) as the judge for
both AlpacaEval 2 and Arena-Hard. We use the same, default decoding strategy specified by each
evaluation benchmark respectively.

WILDFEEDBACK Evaluation. In addition to publicly available benchmarks, we constructed our
own evaluation benchmark from the held-out test set in WILDFEEDBACK and evaluated models us-
ing checklist-guided evaluation (§3.3). We ensured that all test samples came from conversations and
users that were never included in the training set. Constructing an evaluation dataset for checklist-
guided evaluation is non-trivial, as we can no longer randomly or stratifiedly select test samples
from different domains. In checklist-guided evaluation, we always provide a user-inspired checklist
for GPT-4 to guide its evaluation, making it more aligned with real users’ preferences. However,
individual user preferences can be highly subjective and specific. The goal of WILDFEEDBACK is
not to align language models with the preferences of a specific individual but to learn the broader
mode of all individuals’ preferences. Therefore, we must ensure that the preferences reflected in
the test samples represent the majority view. Additionally, since the user preferences we extracted
are often particular to specific tasks, we also need to ensure that the tasks in the test set are at least
somewhat similar to those in the training set.
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To achieve this, we utilized FAISS (Douze et al.,[2024) to cluster user prompts and their summarized
preferences. We grouped all user prompts into 70 clusters. Within each cluster, we selected 10
samples where the preferences were most similar to the other preferences in the same group. We
then applied similar data curation techniques as described in WILDBENCH (Lin et al., [2024a) to
perform deduplication and remove nonsensical tasks, resulting in a final test set of 540 samples. By
doing so, we aim to provide a more reliable and comprehensive evaluation that reflects the majority’s
preferences without overfitting to specific, idiosyncratic cases.

For WILDFEEDBACK evaluation, we report the win, tie, lose percentage against the instruct models
and the models trained on ULTRAFEEDBACK with GPT-4 as the judge. We employ the WILD-
BENCH prompt (Lin et al., 2024a)) to perform the evaluation, which has been shown to correlate
well with human judgement in ranking model performance. We report the results evaluated with or
without the user preferences provided as a checklist.

5 RESULTS AND DISCUSSIONS

5.1 MODEL PERFORMANCE

Training models on WILDFEEDBACK significantly and consistently enhances performance
across all benchmarks. As shown in Table [3] models trained on either version of WILDFEED-
BACK achieve higher performance across AlpacaEval 2, Arena-Hard, and MT-Bench. For example,
after training on the GPT-4 version of WILDFEEDBACK (WF GPT-4), Phi 3’s length-controlled win
rate on AlpacaEval 2 increases from 24.3% to 34.9%, while its win rate on Arena-Hard improves
from 15.4% to 32.4%. Similarly, its performance on MT-Bench rises from a score of 7.32 to 7.75.
Models trained on WILDFEEDBACK also consistently outperform those on ULTRAFEEDBACK.

WILDFEEDBACK  significantly en-
hances model alignment with in-situ
user feedback. As detailed in Section
§4 the WILDFEEDBACK test set is
sourced from real human-ChatGPT con-

Table 3: AlpacaEval 2, Arena-Hard, and MT-
Bench results under the four settings. LC and
WR denote length-controlled and raw win rate.
WEF/UF On-policy/GPT-4 refers to the model trained
on the on-policy/GPT-4 version of WILDFEED-

versations yvherfi users explicitly eXpress  pack/ULTRAFEEDBACK.
dissatisfaction, implicitly suggesting that
the models are poorly aligned with real Models AlpacaEval 2 Arena-Hard MT-Bench
user preferences on these tasks. As shown LC (%) WR (%) WR (%) Score
in Figure E], models trained on either ver- pp;3 24.3 17.4 15.4 732
sion of WILDFEEDBACK exhibit stronger < WF On-Policy ~ 29.0 27.1 30.1 7.42
alignment with real user preferences. For =~ UF On-Policy 272 259 287 7:40
. K — WF GPT-4 349 36.6 324 7.75
1nstance, LLaMA 3 tralned on WF GPT—4 <3 UF GPT4 325 38.4 30.5 7.68
outperforms the LLaMA 3 model tramed LLaMA 3 229 76 206 710
on ULTRAFEEDBACK 45.5% of the time, <, WFOn-Policy ~ 30.1 29.6 22.1 7.15
while losing only 38.8% of the time when < UF On-Policy =~ 28.8 34.1 20.2 7.04
. . — WF GPT-4 34.2 42.8 329 7.57
evaluated without a chegkhst. When r'eal < UF GPTA 32 432 36 719
user preferences are provided as checklists
to guide GPT-4’s evaluation, the win rate "2 287 260 249 755
guide » the win 1 < WF On-Policy ~ 42.6 344 36.1 8.02
further increases to 50.8%, highlighting < UFOn-Policy 383 342 292 7.72
that models trained on WILDFEEDBACK  — WFGPT-4 39.4 33.5 27.9 7.60
< UF GPT-4 40.6 325 27.6 7.66

better align with actual user preferences
compared to the off-the-shelf models and
those trained on ULTRAFEEDBACK.

5.2 A DEEPER DIVE INTO USER’S FEEDBACK TYPES

In addition to improving model performance, WILDFEEDBACK also provides a lens to diagnose and
interpret user feedback, unlike previous benchmarks that only offer a scalar score. To better under-
stand how different types of user feedback surface in practice, we also instruct expert annotators to
provide justification to binary SAT/DSAT annotation based on our rubrics (see Table 4] and Table
[). The resulting distributions are summarized in Figure 4] Dissatisfaction was most often linked
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Figure 3: Preference evaluation on the WILDFEEDBACK test set, with or without the checklist. All
numbers are the percentages of win/tie/lose. WF/UF On-policy/GPT-4 refers to the model trained
on the on-policy/GPT-4 version of WILDFEEDBACK/ULTRAFEEDBACK. Base models here refers
to the off-the-shelf instruct models. Models trained on WILDFEEDBACK consistently outperformed
all the baselines.
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(a) DSAT Rubric Distribution. (b) SAT Rubric Distribution.
Figure 4: Comparison of rubric distributions for DSAT and SAT categories.

to revision needs or factual inaccuracies, while more subtle signals such as style appeared less fre-
quently. By contrast, satisfaction was expressed across a more diverse set of categories, including
praise, gratitude, and acknowledgment of progress. Overall, these findings suggest that dissatis-
faction is dominated by concrete issues of factuality and revision, whereas satisfaction arises from
a broader set of positive responses such as praise, gratitude, and recognition of progress. A more
detailed breakdown of annotation procedures and additional analysis of category-level differences
are provided in Appendix [B.2]

6 CONCLUSION

In this work, we propose a framework for constructing preference data and evaluating conversational
Al models based on natural human-LLM interactions. By using SAT/DSAT rubrics to identify user
satisfaction and dissatisfaction in conversations, we create a preference dataset that includes user
prompts, preferences, and both preferred and dispreferred responses. This enables models to better
align with user expectations. Additionally, we introduce a checklist-guided evaluation framework
that addresses biases in existing benchmarks by using real user feedback to guide LLM evaluations,
ensuring a more accurate reflection of user preferences. Our method aligns LLMs with diverse
human values, enhancing user satisfaction.
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A  PROMPTS

A.1 PROMPT FOR FEEDBACK SIGNALS IDENTIFICATION

The following is the full prompt we used for dialogue state tracking and SAT/DSAT classification.
In addition, we also prompt GPT-4 to do domain and intent classification. The prompt is adapted
from Das et al.| (2023)) and [Lin et al.| (2024Db)).

## LABEL DEFINITION ##

{

"valid preceding_topical_-relation_labels":|

{

"label": "YES",

"definition": "The current turn has **some or anyxx

topical/subtopical relation to the preceding conversation
context."

"label": "NO"’

"definition": "The current turn has =xxabsolutely noxx
topical/subtopical relation to the preceding conversation context
OR is the first turn in the conversation, marking the beginning of
a new dialogue segment."

}

1,

"valid_domain_labels": [

"AI MACHINE LEARNING AND DATA SCIENCE",
"ASTROLOGY",

"BIOLOGY AND LIFE SCIENCE",

"BUSINESS AND MARKETING",

"CAREER AND JOB APPLICATION",

"CLOTHING AND FASHION",

"COOKING FOOD AND DRINKS",

"CRAFTS",

"CULTURE AND HISTORY",

"CYBERSECURITY",

"DATING FRIENDSHIPS AND RELATIONSHIPS",
"DESIGN",

"EDUCATION",

"ENTERTAINMENT",

"ENVIRONMENT AGRICULTURE AND ENERGY",
"FAMILY PARENTING AND WEDDINGS",
"FINANCE AND ECONOMICS",

"GAMES",

"GEOGRAPHY AND GEOLOGY",

"HEALTH AND MEDICINE",

"HOUSING AND HOMES",

"HUMOR AND SARCASM",

"LANGUAGE™",

"LAW AND POLITICS",

"LITERATURE AND POETRY",

"MANUFACTURING AND MATERIALS",

"MATH LOGIC AND STATISTICS",

"MUSIC AND AUDIO",

"NEWS",

"PETS AND ANIMALS",

"PHILOSOPHY",

"PHYSICS CHEMISTRY AND ASTRONOMY",
"PRODUCTIVITY",
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"PSYCHOLOGY AND EMOTIONS",

"RELIGION AND MYTHOLOGY",

"SHIPPING AND DELIVERY",

"SHOPPING AND GIFTS",

"SMALL TALK",

"SOCIAL MEDIA",

"SOFTWARE AND WEB DEVELOPMENT",
"SPORTS AND FITNESS",

"TAXATION",

"TECHNOLOGY",

"TIME AND DATES",

"TRANSPORTATION AUTOMOTIVE AND AEROSPACE",
"TRAVEL",

"VISUAL ARTS AND PHOTOGRAPHY",
"WEATHER",

"WRITING JOURNALISM AND PUBLISHING",
"OTHER"

1,

"valid_intent_labels": [

{

"label": "INTENT:1-INFORMATION_SEEKING",
"definition": "The user wants to find factual information or
answers to specific questions."

b

{

"label": "INTENT:2-ANALYSIS",

"definition": "The user asks analytical or conceptual questions
about a complex topic or problem. The user’s questions require
some degree of reasoning, interpretation, argumentation,
comparison, and/or data processing."

3

{

"label": "INTENT:3-CREATION",

"definition": "The user asks the agent to either generate original
content or translate existing content into new content based on
specified criteria or constraints.”

3

{

"label": "INTENT:4-OPEN-ENDED_DISCOVERY",

"definition": "The user wants to casually chat or play with the
agent out of curiosity, boredom, or humor, OR the user’s intent

is so unclear/underspecified that it’s impossible to categorize

in any of the other intent classes. The user mainly treats the
agent as a conversation or chitchat partner, and none of the other
intent categories can be assigned.”

}

15

"valid_satisfaction_labels": [

"label": "Gratitude",

"definition": "The user thanks or compliments the AI agent for its
responses"”

"label": "Learning",

"definition": "The user learns something new or useful by
indicating curiosity and satisfaction with the information
provided"

b
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{

"label": "Compliance",
"definition": "The user follows the AI agent’s suggestions or
instructions when applicable"

"label": "Praise",

"definition": "The user uses positive feedback words (e.qg.,
excellent, amazing) or emojis, indicating enthusiasm and enjoyment
of the conversation"

I3

{

"label": "Personal_Details",

"definition": "The user shares more personal details or opinions
with the AI agent when satisfied with its responses”

3

{

"label": "Humor",

"definition": "The user jokes with or challenges the AI agent in a
friendly manner when suitable"

)
{

"label": "Acknowledgment"

"definition": "The user acknowledges or confirms that they
understood or agreed with the AI agent’s explanations when
relevant"

1

{

"label": "Positive_Closure",

"definition": "The user ends the conversation on a positive note
without asking for more information or assistance"

"label": "Getting_There",

"definition": "The user acknowledges that the model’s response
is getting better or has merit but is not fully satisfied.
Appropriate dissatisfaction criteria may need to be checked as
well when Getting.There presents"

ilabel":"N/A"

"definition": "The user utterance of the turn does NOT match the
definition of any other wvalid satisfaction labels"

]7

"valid_dissatisfaction_labels": |

"label": "Negative_Feedback",

"definition": "The user explicitly expresses dissatisfaction,
frustration, annoyance, or anger with the AI agent’s response or
behavior"

"label": "Revision",
"definition": "The user explicitly asks the AI agent to revise its
previous response or repeatedly asks similar questions”

"label": "Factual Error",
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"definition": "The user points out the AI agent’s factual mistakes,
inaccuracies, or self-contradiction in its information or output"

)
{

"label": "Unrealistic_Expectation",

"definition": "The user has unrealistic expectations of what the AI
agent can do and does not accept its limitations or alternatives"
"label": "No_Engagement",

"definition": "The user does not respond to the AI agent’s
questions, suggestions, feedback requests, etc."

"label": "Ignored",

"definition": "The user implies that their query was ignored
completely or that the response did not address their intent/goal
at all"

"label": "Lower Quality",

"definition": "The user perceives a decline in quality of service
compared to previous experience with other agents/tools, etc."

"label": "Insufficient Detail",
"definition": "The user wants more specific/useful information than
what is provided by the AI agent"

"label": "Style",

"definition": "The user feels that there is a mismatch between
their preferred style (e.g. Dbullet point vs paragraph, formal

vs casual, short vs long, etc.) and what is provided by the AI
agent"

)
{

"label": "N/A"
"definition": "The user utterance of the turn does NOT match the
definition of any other valid dissatisfaction labels"

]7
"valid_state_labels": [

"label": "FEEDBACK",
"definition": "The user utterance of the turn contains a comment or
evaluation or judgement of the previous turn’s agent response"

"label": "REFINEMENT",

"definition": "The user utterance of the turn is a repetition or
refinement of unclear/underspecified instruction given in the
previous turn’s user utterance"

1

{

"label": "NEWTOPIC",

"definition": "The user utterance of the turn is either the first
turn of the conversation or is not related in terms of topic or
task to its previous turn, introducing a new topic or task"
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"label": "CONTINUATION",

"definition": "The user utterance of the turn is a topical or
logical continuation of the previous turn"

]

}

## TASK ##

You are given a dialogue between a user and an agent comprised of turns starting with T. For each
turn, solely based on the turn’s User utterance, you must carefully analyze the conversation and
answer the following questions by replacing $instruction$ with correct answers in JSON format. -
Summarize the user utterance in < 3 sentences

- Analyze the user utterance’s relation with the previous turn and output an appropriate label from
the “valid_preceding_topical relation_labels” list.

- Analyze the user utterance’s domain and output an appropriate label from the
“valid_domain_labels” list. If preceding_topical_relation is YES, the domain label must be
consistent with the preceding turn’s domain label.

- Analyze the user utterance’s intent and output an appropriate label from the ”valid_intent_labels”
list.

- Analyze the user utterance’s satisfaction with respect to the previous turn’s Al response and output
all applicable labels from the “valid_satisfaction_labels” list.

- Analyze the user utterance’s dissatisfaction with respect to the previous turn’s Al response and
output all applicable labels from the “valid_dissatisfaction_labels” list.

- Analyze the user utterance’s state and output an appropriate label from the “valid_state_labels” list.

## OUTPUT FORMAT ##

The length and turn order of the output list must match the length and turn order of the input list.
The sample output format is given as follow: [ {

"T-$turn number$": {

"summary": "$Sturn summary in <3 sentences$",

"preceding_ topical_ relation": "San appropriate valid preceding
topical relation labels$",

"domain": "$an appropriate valid domain label$",

"intent": "INTENT:$an appropriate valid intent label$",
"satisfaction": [$a comma separated string list of applicable valid
satisfaction label(s) $1],

"dissatisfaction": [$Sa comma separated string list of applicable
valid dissatisfaction label (s)$],

"state": "$San appropriate valid state label$"

}
3

## INPUT ##
#D1#

## OUTPUT ##

A.2 PROMPT FOR PREFERENCE PAIR CONSTRUCTION
The following is the prompt for constructing preference data.
# Conversation between User and Al

<|begin_of_history|>

history
<|end_of history|>
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# Instruction

What are the user’s query and preferences? The query should be the user’s first attempt before
providing any feedbacks to the model. Only output the turn id. The preference should always be
based on user’s feedbacks and in complete sentences. Generate your answer in json format like

[{

"query": turn id,

"preferences": [preference 1, preference 2, ...]
H

A.3 PROMPT FOR CHECKLIST-GUIDED EVALUATION

The following is the prompt for checklist-guided evaluation. We borrow the WB-Reward prompt
from WILDBENCH (Lin et al., 2024a)).

# Instruction

You are an expert evaluator. Your task is to evaluate the quality of the responses generated by two
Al models. We will provide you with the user query and a pair of Al-generated responses (Response
A and B). You should first read the user query and the conversation history carefully for analyzing
the task, and then evaluate the quality of the responses based on and rules provided below.

# Conversation between User and Al

## History

<|begin_of history|>

{history}

<|end_of_history|>

## Current User Query

<|begin_of_query|>

{query}

<|end_of_query|>

## Response A

<|begin_of_response_A|>

{response_a}

<|end_of_response_A|>

## Response B

< |begin_of response_B|>

{response_b}

<|end_of_response_B|>

# Evaluation

## Checklist

<|begin_of_checklist|>

{checklist}

<|end_of_checklist|>

Please use this checklist to guide your evaluation, but do not limit your assessment to the checklist.
## Rules

You should compare the above two responses based on your analysis of the user queries and the
conversation history. You should first write down your analysis and the checklist that you used
for the evaluation, and then provide your assessment according to the checklist. There are five
choices to give your final assessment: [“A++”, “A+”, “A=B”, “B+”, “B++"], which correspond to
the following meanings:

- ‘A++’: Response A is much better than Response B.

- ‘A+’: Response A is only slightly better than Response B.

- ‘A=B’: Response A and B are of the same quality. Please use this choice sparingly.

- ‘B+’: Response B is only slightly better than Response A.

- ‘B++’: Response B is much better than Response A.

## Output Format

First, please output your analysis for each model response, and then summarize your assessment to
three aspects: “reason A=B”, “reason A > B”, and “reason B > A”, and finally make your choice
for the final assessment. Please provide your evaluation results in the following json format by
filling in the placeholders in []:
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{

"analysis of A": "[analysis of Response A]",
"analysis of B": "[analysis of Response B]",

"reason of A>RB": " [where Response A is better than Response B]",
"reason of B>A": "[where Response B is better than Response A]",
"choice": "[A++ or A+ or A=B or B+ or B++]"

}

[
[
"reason of A=B": "[where Response A and B perform equally well]l",
[
[

A.4 PROMPT FOR DATASET EVALUATION

The following is the prompt for constructing the on-policy version of the ULTRAFEEDBACK
dataset. The prompt is adapted from the WB-Reward prompt (Lin et al., 2024a)).

# Instruction

You are an expert evaluator. Your task is to evaluate the quality of the responses generated by two
Al models. We will provide you with the user query and a set of Al-generated responses (Response
A, Response B, Response C, Response D, Response E). You should first read the user query and the
conversation history carefully for analyzing the task, and then evaluate the quality of the responses
based on the rules provided below.

# Conversation between User and Al

## History

<|begin_of history|>

{history}

<|end_of_history|>

## Current User Query

<|begin_of_query|>

{query}

<|end_of_query|>

## Response A

<|begin_of_response_A|>

{response_a}

<|end_of_response_A|>

## Response B

< |begin_of response_B|>

{response_b}

<|end_of_response_B|>

## Response C

<|begin_of response_C|>

{response_c}

<|end_of response_C|>

## Response D

<|begin_of response_D|>

{response_d}

<|end_of_response_D|>

## Response E

<|begin_of response_E|>

{response_e}

<|end_of_response_E|>

# Evaluation

## Checklist

<|begin_of_checklist|>

{checklist}

<|end_of_checklist|>

Please use this checklist to guide your evaluation, but do not limit your assessment to the checklist.
## Rules

You should compare the above five responses based on your analysis of the user queries and the
conversation history. You should first write down your analysis and the checklist that you used for
the evaluation, and then provide your assessment according to the checklist.
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There are six choices to give your final assessment: [“A”, “B”, “C”, “D”, “E”, “A=B=C=D=E"],
which correspond to the following meanings:

- ‘A’: Response A is much better than the other responses.

- ‘B’: Response B is much better than the other responses.

- ‘C’: Response C is much better than the other responses.

- ‘D’: Response D is much better than the other responses.

- ‘E’: Response E is much better than the other responses.

- ‘A=B=C=D=E’: Response A, B, C, D, E are of the same quality. No response particularly stood
out. Please use this choice sparingly.

## Output Format

First, please output your analysis for each model response, and then summarize your assessment
to “comparison of A, B, C, D, E”, and finally make your choice for the final assessment. Please
provide your evaluation results in the following json format by filling in the placeholders in []:

{

"analysis of A": "[analysis of Response A]",

"analysis of B": "[analysis of Response B]",

"analysis of C": "[analysis of Response C]",

"analysis of D": "[analysis of Response D]",

"analysis of E": "[analysis of Response E]",

"comparison of A, B, C, D, E": "[where Response A, B, C, D, E
perform equally well]l",

"choice": "[A or B or C or D or E or A=B=C=D=E]"

}

B SAT AND DSAT

B.1 DETAILED SAT AND DSAT CRITERIA

The detailed definitions of SAT and DSAT can be found in Table[d] and Table

Keyword | Definition

Gratitude | The user thanks or compliments the Al agent for its responses.

Learning The user learns something new or useful by indicating curiosity and satis-
faction with the information provided.

Compliance The user follows the Al agent’s suggestions or instructions when applica-
ble.

Praise The user uses positive feedback words (e.g., excellent, amazing) or emojis,

indicating enthusiasm and enjoyment of the conversation.

Personal Details The user shares more personal details or opinions with the Al agent when
satisfied with its responses.

Humor The user jokes with or challenges the Al agent in a friendly manner when
suitable.

Acknowledgment | The user acknowledges or confirms that they understood or agreed with the
Al agent’s explanations when relevant.

Positive Closure The user ends the conversation on a positive note without asking for more
information or assistance.

Getting There The user acknowledges that the model’s response is getting better or has
merit but is not fully satisfied.

Table 4: Detailed definitions of the SAT Rubrics.
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Keyword | Definition

Negative Feedback The user explicitly expresses dissatisfaction, frustration, annoyance,
or anger with the Al agent’s response or behavior.

Revision The user explicitly asks the Al agent to revise its previous response
or repeatedly asks similar questions.

Factual Error The user points out the Al agent’s factual mistakes, inaccuracies, or
self-contradiction in its information or output.

Unrealistic Expectation The user has unrealistic expectations of what the Al agent can do
and does not accept its limitations or alternatives.

No Engagement The user does not respond to the Al agent’s questions, suggestions,
feedback requests, etc.

Ignored The user implies that their query was ignored completely or that the
response did not address their intent/goal at all.

Lower Quality The user perceives a decline in quality of service compared to pre-
vious experience with other agents/tools, etc.

Insufficient Detail The user wants more specific/useful information than what is pro-
vided by the Al agent.

Style The user feels that there is a mismatch between their preferred style

and what is provided by the Al agent.

Table 5: Detailed definitions of the DSAT Rubrics.

B.2 SAT AND DSAT ANNOTATION

Human-ChatGPT Agreements. We randomly sampled 50 multi-turn conversations, totaling over
500 utterances, and assigned 4 expert annotators to perform the same classification task. Each
conversation was annotated by at least 2 annotators, resulting in a final Cohen’s Kappa agreement
of kK = 0.70 for SAT and k = 0.54 for DSAT. For human annotation, we utilized a web-based
annotation tool named Potato (Pei et al.,[2022)). The interface is shown in Figure[5] After completing
the annotations, the annotators reviewed and discussed any disagreements, resolving conflicts to
establish a ground truth test set of 50 conversations. GPT-4’s performances on SAT and DSAT
classification can be found in table[8] GPT-4 demonstrates strong performance in classifying SAT
(satisfaction) signals, with high accuracy at 91.7% and balanced precision and recall, both around
73%. The Cohen’s Kappa of 68.5% reflects substantial agreement with human annotators. For DSAT
(dissatisfaction) signals, GPT-4 achieves a precision of 83.3%, with a recall of 48.4%, leading to an
F1 score of 61.2% and a Cohen’s Kappa of 50.4%. These metrics indicate that GPT-4 is effective at
recognizing both SAT and DSAT signals.

SAT/DSAT Distributions. ~As depicted in Figure[3} in addition to binary SAT/DSAT classification,
annotators were instructed to provide justifications based on rubric definitions, which are outlined
in Table [5] and Table @ The DSAT distribution in Table [6] shows that the most common category
was Revision (50.36%), followed by Factual Errors (18.55%), Negative Feedback (9.64%), and
Style (6.99%). Smaller shares were attributed to Insufficient Detail (5.54%), Unrealistic Expecta-
tion (4.82%), Ignored (3.86%), and No Engagement (0.24%). This indicates that dissatisfaction is
dominated by revision needs and factual inaccuracies, while issues such as unmet expectations or
lack of engagement appear less frequently. The SAT distribution in Table [/|is more evenly spread
across categories, with Praise (30.39%), Gratitude (19.79%), Getting There (18.37%), and Acknowl-
edgment (15.55%) making up the majority of satisfaction signals. Compliance (4.59%) and Humor
(3.53%) appear less often, while Positive Closure (2.83%), Learning (2.83%), and Personal Details
(2.12%) together contribute a smaller proportion of satisfaction. Overall, dissatisfaction is concen-
trated in factual and revision errors, whereas satisfaction is expressed through a wider variety of
positive signals such as appreciation, recognition of progress, and acknowledgment.
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DSAT Rubric Category Percentage (%) SAT Rubric Category Percentage (%)

. Praise 30.39
Revision 50.36 .
Gratitude 19.79
Factual Errors 18.55 .
. Getting There 18.37
Negative Feedback 9.64
Acknowledgment 15.55
Style 6.99 Compliance 4.59
Insufficient Detail 5.54 P
. . Humor 3.53
Unrealistic Expectation 4.82 -
Positive Closure 2.83
Ignored 3.86 .
No Engagement 0.24 Learning 2.83
gag Personal Details 2.12

Table 6: DSAT Rubric Distribution. Table 7- SAT Rubric Distribution.

| Accuracy Precision Recall F1 GPT-Humanx Human-Human

SAT 91.7 73.2 73.6 734 68.5 70.0
DSAT 81.8 83.3 484 612 50.4 54.1

Table 8: Agreement on SAT and DSAT Classification. All numbers are in %.

C GPT-4’s PERFORMANCE ON CHECKLIST-GUIDED EVALUATION

We randomly selected 200 multi-turn conversations, and assigned 6 expert annotators to perform
checklist-guided evaluation. Each conversation is annotated by at least 2 annotators, resulting in
a final Cohen’s Kappa agreement of x = 43.6. After completing the annotations, the annotators
reviewed and discussed any disagreements, resolving conflicts to establish a ground truth test set.
For human annotation, we utilized a web-based annotation tool named Potato (Pei et al.,[2022). The
interface is shown in Figure[6] GPT-4’s performances on checklist-guided evaluation can be found
in Table[9] Our findings indicate that GPT-4’s ability to perform checklist-guided evaluation has a
relatively high agreement with human annotators, achieving a Cohen’s Kappa of x = 37.2. GPT-4
performs relatively on par with humans on checklist-guided evaluation.

D IMPLEMENTATION DETAILS

We found that hyperparameter tuning is crucial for achieving optimal performance in preference
optimization. Generally, on-policy data requires a lower learning rate than GPT-40 data, and instruct
models need a lower learning rate than base models. Specifically, Mistral and Gemma (Team et al.,
2024) require a lower learning rate than Phi 3, LLaMA 3 and Qwen 2. Initially, we followed the
Zephyr setup (Tunstall et al., 2023), which employs a learning rate of 2e-5 for supervised fine-
tuning (SFT). However, we found that our models quickly collapsed, failing to generate sensible
outputs after just a few dozen iterations. After conducting a grid search on the hyperparameters
for both SFT and DPO training, we discovered that while it is acceptable to use a larger learning
rate for training base models, a much smaller learning rate is required for instruct models, likely
due to the various annealing techniques applied during the post-training process (Parmar et al.,
2024])). We also explored NLL regularization (Liu et al.,2024a) with a regularization strength of 0.2,
but the results are not ideal, and therefore, we did not include NLL regularization in the final set
up. We trained all the models using LLaMA Factory (Zheng et al.| 2024)), a unified efficient LLM
finetuning framework. LLaMA Factory is licensed under the Apache-2.0 License. The following is
the hyperparameters we used in our final experiment.

GPT-Human x  Human-Human x =~ GPT-Human Agreement Human-Human Agreement

37.2 43.6 57.14 63.27

Table 9: Agreement on checklist-guided Evaluation. All numbers are in %.
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Conversation-32

Turn-1
User: What is a sephamore?

Agent: As an Al language model, | don't know the term " * It may be a of " " which is a system of sending signals by using flags, lights, or mechanical devices to communicate messages

over long distances. Semaphores are commonly used in naval or military operations, railway signaling systems, and computer programming for synchronizing multiple processes.

Tumn-2
User: Yes | meant semaphore
Agent: Semaphore is a system of communication that uses a combination of flags or lights to send messages over relatively long distances. The flags or lights are usually arranged in a specific way to convey a specific

message, allowing multiple messages to be conveyed quickly and efficiently. Semaphore is commonly used in military (naval) and railway signaling systems, air traffic control signals, and computer programming to
manage concurrent processes.

Turn-3
User: Explain it in the context of programming

Agent: In p a semaphore is a syns ion mechanism that is used to manage access to a shared resource by multiple processes or threads in a concurrent or parallel processing system. It acts as a lock on
a resource, which ensures that only one process or thread can access the resource at any given time. A semaphore contains a counter that is initially set to a specific value that represents the maximum number of
processes or threads that can simultaneously access the shared resource. When a process or thread requests access to the resource, the semaphore decrements the counter, and if the counter reaches zero, the semaphore
blocks the request and the process or thread waits until the resource is released by another process or thread. Once a process or thread has finished accessing the resource, it releases it and increments the semaphore
counter, which allows another waiting process or thread to access the resource. This way, semaphores can be used to ensure mutual exclusion and synchronization between multiple processes or threads that need to
access shared resources in a concurrent processing system

Tum-4
User: Write one in C
Select an Select all applicable Satisfication criteria Select all applicable Dissat
appropriate State
N/A O N/A
© R 1. Gratitude: The user thanks or compliments the Al agent for ts responses O 1. Negative Feedbacks: The user explicitly expresses dissatisfaction, frustration, annoyance, or anger with the Al agent's
® Feedback !
0 2. Learning: The user leams something new or useful by indicating curiosity and satisfaction with the esponse or behavior
O Refinement information provided D) 2. Revision: The user explictly asks the Al agent to revise ts previous response or repeatedly asks similar questions
@ ot En [ 3. Compliance: The user follows the Al agent's suggestions or instructions when applicable (1 3. Factual Errors: The user points out the Al agent’s factual mistakes, inaccuracies, or self-contradiction in its information
() 4. Praise: The user uses positive feedback words (e.g. excellent, amazing) or emoji, indicating enthusiasm G
and enjoyment of the conversation ] 4. Unrealistic Expectations The user has unrealistic expectations of what the Al agent can do and does not accept ts
() 5. Personal Details: The user shares more personal details or apinions with the Al agent when satisfied with fimitations o alternatives
its responses ) 5. No Engagement: The user does not respond to the Al agent's questions, suggestions, feedback requests, etc

O) 6. Humor: The user jokes with or challenges the Al agent in a friendly manner when suitable 1 6. Ignored: The user implies that their query was ignored completely or that the response did not address their intent/goal

1 7. Acknowledgment: The user acknowledges or confirms that they understood or agreed with the Al cll
agents explanations when relevant

) 7. Lower Quality: The user perceives a decline in quality of service compared to previous experience with other
o nts/tools,
B L e S T T e G S T 6 s T s i o e s agents/tools, etc

or assistance

8 Insufficient Detail: The user wants more specific/useful information than what is provided by the Al agent
O 9. Getting There: The user acknowledges that the models response is geting better or has merit but is not | | | O 9. Style: The user feels that there is a mismatch between their preferred style (long vs short, bullet point vs paragraph, etc)
fully satisfied and what is provided by the Al agent

Figure 5: The interface used for annotating SAT and DSAT signals.

SFT Training. For SFT training, we trained all the models for 1 epoch with a batch size of 128, a
learning rate of Se-6, a linear warm-up ratio of 0.1, and a cosine learning rate scheduler. Addition-
ally, it is recommended to use a higher learning rate (e.g., 2e-5) if you are fine-tuning from the base
models. It takes about 8 A100 GPU hours to finish.

DPO Training. For DPO training, we trained all the models for 1 epoch with a batch size of 32,

a learning rate of Se-7, and S = 0.1. All other hyperparameters remained the same as in the SFT
training. It takes about 24 A100 GPU hours to finish.

E WILDCHAT DATASET

The WildChat Dataset is a corpus of 1 million real-world user-ChatGPT interactions, covering a
wide range of languages and user prompts. Most of the conversations are single-turn. It was con-
structed by offering free access to ChatGPT and GPT-4 in exchange for consensual chat history
collection and is licensed under the Open Data Commons Attribution License (ODC-By) v1.0. To
protect personally identifiable information (PII), WildChat employed Microsoft’s Presidi(ﬂ as the
framework, SpaCyE| for Named Entity Recognition, and custom rules to remove PIl—including
names, phone numbers, emails, credit cards, and URLs—across multiple languages such as English,
Chinese, Russian, French, Spanish, German, Portuguese, Italian, Japanese, and Korean. Addition-
ally, WildChat utilized GeoLiteZﬁ to map IP addresses to countries and states before hashing them for
privacy. While WildChat releases only hashed IP addresses and request headers (including browser
details and accepted languages), these identifiers could allow researchers to infer connections be-
tween conversations from the same user, though no direct linkage is provided in the dataset.

*https://microsoft.github.io/presidio/
Shttps://spacy.io/
6https ://dev.maxmind.com/geoip/geoclite2—-free—geolocation—-data

28


https://microsoft.github.io/presidio/
https://spacy.io/
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

Under review as a conference paper at ICLR 2026

Dialogue Analysis Home Statistics

Turn-1
User:
Is MrBeast alive?

Checklist:
The response should be safe.
The user prefers concise and direct answers without additional information.

Response A:
Yes, MrBeast is alive.

Response B:

As of my last update in October 2023, MrBeast, whose real name is Jimmy Donaldson, is alive. However, for the most current information, | recommend
checking the latest news or his social media profiles.

Judge the quality of the model resonses.

© A+ Response A is much better than Response B.

O As: Response A s only slightly better than Response B
O A=B: Response A and B are of the same quality. Please use this choice sparingly.
O B+: Response B s only slightly better than Response A.

O B++: Response B is much better than Response A.

Keyboard Input

Move backward

Move forward

Quality: A+ +: Response A is much better than Response B.
Quality: A+: Response A s only slightly better than Response B,

lQuality: A=B: Response A and B are of the same quality. Please use this choice sparingly.
Quality: B+: Response B is only slightly better than Response A.

IS N R

Quality: B++: Response B is much better than Response A.

Figure 6: The interface used for annotating checklist-guided evaluation.

F THE USE OF LARGE LANGUAGE MODELS FOR ICLR 2026

In this ICLR submission, large language models (LLMs) were used solely as writing aids for gram-
mar correction, wording refinement, and text polishing. They were not employed for idea generation,
technical contributions, or any aspect of the research beyond enhancing readability and clarity.
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