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Abstract001

Big trajectory data hold great promise for hu-002
man mobility analysis, but their utility is often003
constrained by the absence of critical traveler004
attributes, particularly sociodemographic infor-005
mation. While prior studies have explored pre-006
dicting such attributes from mobility patterns,007
they often overlooked underlying cognitive008
mechanisms and exhibited low predictive ac-009
curacy. This study introduces SILIC, short for010
Sociodemographic Inference with LLM-guided011
Inverse Reinforcement Learning (IRL) and012
Cognitive Chain Reasoning (CCR), a theoreti-013
cally grounded framework that leverages LLMs014
to infer sociodemographic attributes from ob-015
served mobility patterns by capturing latent016
behavioral intentions and reasoning through017
psychological constructs. Particularly, our ap-018
proach explicitly follows the Theory of Planned019
Behavior (TPB), a foundational behavioral020
framework in transportation research, to model021
individuals’ latent cognitive processes underly-022
ing travel decision-making. The LLMs further023
provide heuristic guidance to improve IRL re-024
ward function initialization and update by ad-025
dressing its ill-posedness and optimization chal-026
lenges arising from the vast and unstructured re-027
ward space. Evaluated in the 2017 Puget Sound028
Regional Council Household Travel Survey,029
our method substantially outperforms state-of-030
the-art baselines and shows great promise for031
enriching big trajectory data to support more be-032
haviorally grounded applications in transporta-033
tion planning and beyond.034

1 Introduction035

Understanding human mobility patterns is critical036

for many fields, such as transportation engineering037

(Luca et al., 2021), marketing (Ghose et al., 2019),038

urban planning (Haraguchi et al., 2022), and emer-039

gency management (Yabe et al., 2016; Zhao et al.,040

2022). In recent years, researchers and practition-041

ers have been leveraging real-world trajectory data042

generated by mobile devices (or synthetic trajec- 043

tories (Zhu et al., 2023; Kim and Jang, 2024)) to 044

analyze and model people’s movements to facil- 045

itate decision-making (Ghose et al., 2019; Zhao 046

et al., 2022). However, these trajectory datasets 047

often lack traveler attributes, particularly sociode- 048

mographic information, limiting their usefulness 049

for important applications such as causal analysis 050

to inform transportation planning and policy (Holz- 051

Rau and Scheiner, 2019), personalized incentives 052

for targeted marketing (Zhong et al., 2015), and tai- 053

lored crisis communication to enhance evacuation 054

compliance (Leykin et al., 2016). 055

Some prior studies have explored inferring so- 056

ciodemographic attributes from people’s travel tra- 057

jectories, e.g., Chen et al. (2024); Zhang et al. 058

(2024a). These studies typically used classical ma- 059

chine learning models (e.g., Support Vector Ma- 060

chines, XGBoost) to predict attributes like gender, 061

age, or income from features extracted from in- 062

dividual trajectories (Zhu et al., 2017; Wu et al., 063

2019; Bakhtiari et al., 2023). While insightful, 064

these approaches often exhibit limited predictive 065

performance, reducing their effectiveness in large- 066

scale real-world applications. 067

A key reason for their poor performance is the 068

oversimplification of the link between sociodemo- 069

graphic attributes and mobility, often ignoring un- 070

derlying cognitive processes. Human mobility is 071

complex and shaped by latent cognitive processes, 072

often modeled using the Theory of Planned Be- 073

havior (TPB) (Ajzen, 1991), as shown in Figure 1 074

(upper section). TPB posits that background fac- 075

tors, such as sociodemographic and contextual at- 076

tributes, inform three core beliefs: attitudes, sub- 077

jective norms, and perceived behavioral control 078

(Ajzen, 2020). These beliefs collectively shape in- 079

dividuals’ intentions, which ultimately drive their 080

observable behaviors (e.g., travel decisions). There- 081

fore, predicting sociodemographic attributes di- 082

rectly from mobility patterns, without accounting 083
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Figure 1: Overview of our proposed framework. We inversely follow the Theory of Planned Behavior (TPB) to
predict sociodemographic attributes from travel trajectories. Our method first uses an LLM-guided IRL model
to infer behavioral intentions, followed by a Cognitive Chain Reasoning strategy that predicts sociodemographic
attributes via intermediate belief constructs.

for these mediating constructs, may lead to inaccu-084

rate or incomplete inferences.085

Addressing this limitation requires models ca-086

pable of reasoning over latent cognitive constructs087

that mediate behavior—a capacity demonstrated088

by large language models (LLMs) (Nguyen et al.,089

2024; Lee et al., 2024; Liu et al., 2025b). Un-090

like traditional machine learning models, LLMs091

exhibit strong reasoning and theory-of-mind (ToM)092

abilities (Street, 2024; Zhang et al., 2024b; Bandy-093

opadhyay et al., 2025). However, predicting so-094

ciodemographic attributes from mobility patterns095

requires inversely following the TPB framework.096

Leveraging existing LLMs for this inverse cogni-097

tive modeling still face the following challenges:098

(1) Misalignment with behavioral theory: With-099

out structural guidance (Zhou et al., 2023), LLMs100

often capture only partial reasoning patterns, lead-101

ing to incomplete or theoretically inconsistent in-102

terpretations (Tjuatja et al., 2024); (2) Lack of103

iterative behavioral refinement: Although LLMs104

can perform inverse alignment to infer latent men-105

tal states from behavior, they often generate inten-106

tions in a single pass without feedback refinement107

(Sun et al.; Sun and van der Schaar, 2024); and108

(3) Ambiguity in mapping mental states to iden-109

tity: Similar mental states can arise across different110

sociodemographic groups due to shared external in-111

fluences, making LLMs prone to misclassification112

without contextual input (Chen et al., 2025).113

Based on these challenges, we raise a key ques-114

tion: How can we construct a principled frame-115

work that efficiently leverages LLMs to inversely116

follow the cognitive pathway in the TPB to recover117

sociodemographic attributes?118

To address this research question, we propose119

SILIC, a two-stage framework, as illustrated in Fig-120

ure 1 (bottom section). In the first stage, we pro- 121

pose an LLM-guided Inverse Reinforcement Learn- 122

ing (IRL) approach to infer individualized reward 123

functions (Ng et al., 2000) that reflect intentions 124

(Liang et al., 2025) from travel trajectories (Figure 125

1, dashed box denoted as ①). Our core idea is to 126

address the challenge of limited iterative behavioral 127

refinement in LLMs by integrating IRL. In turn, we 128

leverage structured domain knowledge from LLMs 129

(Wu, 2024) to guide both the initialization and up- 130

date of the IRL reward function (Ma et al., 2023; 131

Kwon et al., 2023; Chu et al., 2023). Such guid- 132

ance is essential for addressing key methodological 133

limitations of IRL, including: (1) Ill-posed nature 134

(Ng et al., 2000; Cao et al., 2021), where, in the 135

context of travel behavior analysis, multiple latent 136

intentions can explain the same observed travel pat- 137

terns; (2) Vast and unstructured reward space, 138

which hinders efficient exploration and increases 139

the risk of converging to behaviorally implausi- 140

ble or non-generalizable solutions (Adams et al., 141

2022); and (3) Suboptimal reward convergence, 142

particularly during the early training stages when 143

lacking heuristic guidance (Wu, 2024). 144

In the second stage, we introduce a Cognitive 145

Chain Reasoning (CCR) strategy to predict the 146

final sociodemographic attributes from inferred 147

intentions (Figure 1, dashed box denoted as ②). 148

Leveraging LLMs’ ToM capacities, This stage is 149

designed to guide the LLM in aligning with the 150

theoretical framework by first inferring belief con- 151

structs, and subsequently mapping them to sociode- 152

mographic attributes.. By incorporating relevant 153

contextual factors (e.g., urbanicity, transit access) 154

in the latter step, the model mitigates the ambi- 155

guity in LLM-based mappings and enables pre- 156

dictions that are both theory-aligned and context- 157
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aware(Tjuatja et al., 2024; Petrov et al., 2024; Chen158

et al., 2025).159

In summary, our major contributions are:160

• We propose a novel methodological framework161

that inversely follows TPB to predict sociodemo-162

graphic attributes from travel trajectories.163

• We leverage LLMs to provide heuristic support164

for IRL reward function initialization and up-165

dates, enabling the inference of individualized166

and well-posed reward solutions.167

• We introduce a CCR strategy that guides the168

LLM to make predictions in full alignment with169

the TPB, by explicitly modeling the mediating170

cognitive constructs.171

• The experiments demonstrate that, compared172

to baselines, our model achieves substantially173

higher accuracy (e.g., a 30.93% improvement174

in gender prediction). By inferring sociodemo-175

graphic attributes from trajectories, we can enrich176

mobile sensing datasets and support the develop-177

ment of more realistic, behaviorally grounded AI178

agents for simulation and decision-making.179

2 Related Work180

Sociodemographic Inference Based on Human181

Mobility Patterns. Recent studies leveraged ma-182

chine learning methods to estimate sociodemo-183

graphic attributes from mobility/activity features184

derived from trajectory data, often incorporating185

contextual signals such as semantic Points of In-186

terest (POIs) (Zhong et al., 2015; Wu et al., 2019)187

or social network information (Zhong et al., 2015;188

Chen et al., 2024). For example, Chen et al. (2024)189

predicted housing prices, used as a proxy for in-190

come, by combining mobility embeddings learned191

via Word2Vec with social network characteristics192

derived from call detail records (CDRs). Others193

have applied models such as XGBoost (Wu et al.,194

2019), Support Vector Machines (SVM) (Zhang195

et al., 2024a), or CatBoost (Bakhtiari et al., 2023)196

to infer attributes like gender, age, or income sta-197

tus from activity-derived or mobility-derived fea-198

tures. Zhu et al. (2017) predicts sociodemographic199

attributes from mobility trajectories by modeling200

variability in individual mobility patterns.201

LLMs for Modeling Cognitive Processes. Re-202

cent works show that LLMs can simulate hu-203

man cognitive processes through Theory-of-Mind204

(ToM) reasoning (Gandhi et al., 2023; Li et al.,205

2023; Amirizaniani et al., 2024; Street, 2024). To206

ensure alignment with human mental states, LLMs207

are most effective when supported by deliberate 208

prompting (Gu et al., 2024) and structured rea- 209

soning frameworks (Zhou et al., 2023). Addi- 210

tionally, LLMs have demonstrated strong potential 211

in inferring latent cognitive constructs (Ali et al., 212

2024; Chen et al., 2025) and predicting sociodemo- 213

graphic attributes from behavioral cues (Orlikowski 214

et al., 2025), laying the foundation for cognitively 215

grounded modeling of human behavior. 216

Inverse Reinforcement Learning. The poten- 217

tial of IRL to uncover latent intentions and inform 218

downstream classification tasks has been demon- 219

strated in Hayes et al. (2011); Dadgostari et al. 220

(2022). It has been increasingly applied to travel 221

behavior analysis to uncover the underlying inten- 222

tions. Methods include feature matching (Liu et al., 223

2022), maximum entropy (Koch and Dugundji, 224

2020; Okubo et al., 2024), and deep/adversarial 225

IRL for high-dimensional settings (Zhao and Liang, 226

2023; Liu et al., 2025a). A recent work also ex- 227

ploreed model interpretability in mobility-focused 228

IRL (Liang et al., 2025). 229

To address IRL’s reward ambiguity (Ng et al., 230

2000), some recent studies shifted from identify- 231

ing a single solution to learning feasible reward 232

sets (Metelli et al., 2021, 2023; Zhao et al., 2023). 233

Domain knowledge has long informed reward ini- 234

tialization (Liu et al., 2013), and more recently, 235

LLMs have been used to guide both initialization 236

and refinement (Ma et al., 2023; Kwon et al., 2023; 237

Chu et al., 2023). 238

3 Methodology 239

Our methodological framework is grounded in the 240

Theory of Planned Behavior (TPB) (see Figure 1). 241

TPB posits that background factors, such as so- 242

ciodemographic and contextual attributes, influ- 243

ence people’s beliefs, which include attitude, sub- 244

jective norm, and perceived behavioral control. At- 245

titude refers to an individual’s evaluation of the 246

behavior, subjective norm reflects perceived so- 247

cial pressure from peers or influential figures, and 248

perceived behavioral control represents one’s per- 249

ceived ability to perform the behavior. These be- 250

liefs collectively inform intentions, and ultimately 251

drive observed behaviors (Ajzen, 1991, 2020). 252

To infer individuals’ sociodemographic at- 253

tributes from their observed mobility patterns, we 254

propose to follow the TPB in reverse, and an 255

overview of the proposed methodology is shown 256

in Figure 2. Specifically, individual trajectories 257
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Figure 2: Methodological Framework.

are first converted into structured travel diaries that258

record detailed information on daily trips, such as259

activity types and departure times. These diaries260

are then represented as sequential activity patterns261

and modeled within a Markov Decision Process262

(MDP) framework. We subsequently introduce an263

LLM-guided inverse reinforcement learning (IRL)264

framework, in which the LLM provides heuris-265

tic guidance for reward initialization and updates266

to infer individuals’ latent intentions. Building267

on this, we propose a Cognitive Chain Reasoning268

(CCR) strategy that guides the LLM to first in-269

fer belief constructs from learned intentions and270

subsequently predict sociodemographic attributes271

using both these beliefs and external contextual272

variables (e.g., urbanicity, home location popula-273

tion density).274

3.1 MDP Framework275

We begin by modeling travel diaries as a Markov276

Decision Process (MDP), where each agent repre-277

sents an individual making sequential travel deci-278

sions over time. Each dairy captures daily travel279

behavior, including features such as activity type280

and departure time. To enable structured temporal281

reasoning, we discretize the day into 24 hourly in-282

tervals, assuming one action decision is made at283

the start of each hour (Liang et al., 2025). This284

is a reasonable assumption, as according to the285

National Household Travel Survey (NHTS), Amer-286

icans made an average of approximately 3-4 trips287

per person per day (U.S. Department of Transporta-288

tion, 2018).289

An MDP is formally defined as M = 290

{S,A, T,R, γ}, where S denotes the set of states 291

and A the set of possible actions. The transition 292

function T (s, a, s′) specifies the probability of tran- 293

sitioning to state s′ ∈ S after taking action a ∈ A 294

in state s ∈ S. The reward function R(s) assigns a 295

scalar reward to each state s, and the discount factor 296

γ ∈ [0, 1] controls the agent’s preference for imme- 297

diate versus future rewards. Another key concept 298

in the MDP framework is the policy π(a|s), which 299

defines the probability of an individual selecting 300

action a when in state s. 301

The five components of the MDP are specified 302

as follows in the context of mobility modeling: 303

State Space S: Each state s ∈ S is represented 304

as a feature vector s = [h, a, f, n], where h ∈ 305

{0, · · · , 23} denotes the hour of the day, a ∈ A 306

indicates the activity type (i.e., home, work, educa- 307

tion, escort and errand, leisure (Akar et al., 2012)), 308

f ∈ {0, 1} is a binary indicator of whether the 309

activity is the first of the day, and n ∈ R ≥ 0 cap- 310

tures the cumulative number of activities up to the 311

current activity. 312

Action Space A: We define A = {stay, travel}, 313

where stay represents the decision to continue the 314

current activity, and travel indicates a transition to 315

a new activity. 316

Transition Probability Function T : When a = 317

stay, the transition is deterministic: the hour in- 318

crements by one while all other state components 319

remain unchanged, resulting in s′ = [h+1, a, f, n]. 320

In contrast, when a = travel, the transition is 321

4



stochastic and modeled using empirical transition322

frequencies derived from the individual’s observed323

activity sequences. In this case, the hour also ad-324

vanced by one (h′ = h + 1); the first-activity in-325

dicator is updated such that f ′ = 0 if f = 1, and326

remains unchanged otherwise; and the cumulative327

activity count increases by one (n′ = n+1) as the328

activity changes.329

Reward Function R: The reward function R(s)330

is defined as a linear function of the state features.331

Specifically, the reward assigned to a state s is332

computed as:333

R(s) = θ⊤ϕ(s) (1)334

where ϕ(s) denotes the concatenated feature vec-335

tor comprising the one-hot hour indicators, one-hot336

activity type indicators, the binary first-activity in-337

dicator f , and the numerical feature n. The vector338

θ contains the corresponding reward weight asso-339

ciated with each feature dimension.340

3.2 Intention Inference with LLM-guided IRL341

Once the MDP is formulated, IRL aims to infer342

individuals’ underlying intentions from observed343

mobility patterns. Specifically, it estimates reward344

weights such that the resulting policy produces tra-345

jectories, referred to as learner trajectories, that346

closely replicate the expert trajectories, i.e., the347

individuals’ observed state sequences.348

We introduce an IRL framework in which LLMs349

provide guidance for both the initialization and350

iterative update of reward weights.351

Reward Initialization: Inspired by Ma et al.352

(2023), we use an LLM to initialize individual-353

specific reward weights given each individual’s354

multi-day travel diaries. The prompt template is355

provided in Figure 5 (Appendix B). In addition to356

interpreting the input diaries, the LLM leverages357

prior knowledge of human mobility behavior (Liu358

et al., 2024) and inverse alignment capabilities (Sun359

and van der Schaar, 2024) to generate behaviorally360

meaningful and unique initializations. This miti-361

gates the ill-posed nature of IRL (Ng et al., 2000;362

Cao et al., 2021), where multiple reward functions363

can explain the same observed behavior, and helps364

constrain the vast reward space (Adams et al., 2022)365

toward plausible solutions.366

Policy Learning: Once the reward weights are367

initialized or updated, they are used to infer each368

individual’s policy πi(a|s). To account for the in-369

herent variability and bounded rationality in hu-370

man decision-making, we adopt a stochastic policy 371

framework rather than assuming deterministic ac- 372

tion selection. Individuals’ behavior is modeled us- 373

ing the maximum entropy principle (Ziebart et al., 374

2008), wherein actions with higher expected value 375

are assigned higher probabilities. Specifically, the 376

value of a state s is iteratively updated according 377

to: 378

Vi(s) = Ri(s) + log
∑
a∈A

exp(γ
∑
s′

Ti(s′|s, a)Vi(s′)) (2) 379

The updates proceed iteratively until the change 380
in Vi(s) across iterations falls below a predefined 381
threshold ϵ. Upon convergence of Vi(s), the cor- 382
responding stochastic policy πi(a|s) is computed 383
as: 384

πi(a|s) =
exp(Ri(s) + γ

∑
s′ Ti(s′|s, a)Vi(s′))∑

a′ exp(Ri(s) + γ
∑

s′ Ti(s′|s, a′)Vi(s′))
(3) 385

Mismatch Scoring: To iteratively refine reward 386

weights, we compute a mismatch score as the dis- 387

crepancy between learner and expert state visita- 388

tion distributions. The expert state visitation dis- 389

tribution for individual i, denoted as De,i(s), is 390

estimated by counting the frequency of state visits 391

across the individual’s trajectories and normalizing 392

the counts to obtain a probability distribution. The 393

corresponding learner state visitation distribution, 394

Dl,i(s) is computed by simulating expected state 395

occupancies under the learned policy πi(a|s) over 396

a planning horizon of T (T = 24) steps. The initial 397

state visitation distribution is defined by the empir- 398

ical distribution of starting activities from expert 399

trajectories. The learner’s state visitation distribu- 400

tion is then iteratively updated by propagating state 401

occupancies according to the policy πi(a|s) and the 402

transition dynamics Ti(s′|s, a). At each time step 403

t, the visitation distribution is updated as follows: 404

Dl,i,t+1(s′) =
∑
s

∑
a

Dl,i,t(s) · πi(a|s) · Ti(s′|s, a) (4) 405

The top K states exhibiting the largest absolute 406

mismatch score |De,i(s)−Dl,i(s)| between expert 407

and learner visitation frequencies are identified to 408

use as inputs for the LLM-guided reward update 409

procedure within the iterative learning process. 410

LLM-guided Reward Updates: In the early 411

stages of training, the convergence of reward 412

weights may be suboptimal, particularly given the 413

bias introduced by traditional Maximum Entropy 414

gradient ascent methods when applied to sparse 415
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expert trajectories, such as multi-day activity se-416

quences. To address this issue, an LLM is incor-417

porated to provide heuristic reward weight adjust-418

ments during updates. Leveraging the LLM’s prior419

knowledge of activity behavior patterns further mit-420

igates the challenges posed by data sparsity and421

improves the robustness of the learning process.422

Specifically, the reward weight vector θi for indi-423

vidual i is iteratively updated according to:424

∇θi =
1

ni

ni∑
j=1

∑
s∈τi,j

ϕ(s)− 1

T

T −1∑
t=0

∑
s

Dl,i,t(s) ·ϕ(s) (5)425

∆θi = α · ∇θi + λLLM · gLLMi (6)426

θi = θi +∆θi (7)427

Here, ∇θi denotes the Maximum Entropy IRL gra-428

dient, ni is the number of expert trajectories for429

individual i, and τi,j represents the j-th expert tra-430

jectory of individual i. The parameter α is the431

learning rate, λLLM is a tunable blending weight,432

and gLLM denotes the LLM-based update direction.433

For LLM-guided reward updates, the top-K434

states with the highest absolute mismatch scores435

are provided as input to the LLM. The LLM then436

suggests an update direction for each of the reward437

weights. The LLM’s output for each weight is re-438

stricted to one of three discrete values: -1, 0, 1,439

corresponding to a decrease, no change, or an in-440

crease. The complete prompt template used for441

this process is presented in Figure 6 in Appendix442

B. The updates continue iteratively until conver-443

gence, which is determined by either the change444

in θi or the KL divergence between the expert and445

learner state visitation distributions dropping be-446

low a predefined threshold ϵ′. The KL divergence447

formulation is detailed in Appendix A.5.448

3.3 Sociodemographic Attribute Prediction449

with Cognitive Chain Reasoning450

After inferring individual-specific reward weights451

that represent latent intentions, we leverage these452

to predict individual-level sociodemographic at-453

tributes. Grounded in the TPB, sociodemographic454

and contextual attributes act as background vari-455

ables that indirectly shape intentions through their456

influence on beliefs. Accordingly, we first infer457

latent beliefs from the learned reward weights and458

then predict sociodemographic attributes by inte-459

grating these beliefs with external contextual fea-460

tures.461

To implement this approach, we design a CCR 462

prompting template that guides the LLM to sequen- 463

tially reason through three beliefs before making 464

a prediction. This structure aligns the model’s rea- 465

soning process with the TPB to enhance its theoret- 466

ical consistency. Furthermore, the CCR framework 467

capitalizes on the LLM’s strengths in multi-step 468

reasoning capabilities that are particularly impor- 469

tant for mapping abstract reward weights into psy- 470

chologically meaningful beliefs and, ultimately, in- 471

dividuals’ sociodemographic profiles. Contextual 472

attributes are also incorporated to aid sociodemo- 473

graphic prediction following belief inference, as 474

they jointly influence belief formation alongside 475

sociodemographic attributes. This accounts for the 476

fact that similar belief patterns may correspond to 477

different sociodemographic groups under varying 478

contextual conditions. The CCR prompting tem- 479

plate is provided in Figure 7 (Appendix B). 480

4 Experiment 481

4.1 Experiment Setup 482

Implementation Details. Please find the imple- 483

mentation details in Appendix A.1. 484

Baselines. We evaluate our proposed model against 485

a set of baseline models for predicting sociodemo- 486

graphic attributes from mobility data, including 487

SVM, XGBoost, CatBoost, and GPT-4o. The first 488

three models are selected based on their demon- 489

strated effectiveness in prior work (Zhu et al., 2017; 490

Wu et al., 2019; Bakhtiari et al., 2023). In addition, 491

we include GPT-4o as a baseline to explore the 492

emerging capability of LLMs to infer sociodemo- 493

graphic attributes directly from mobility patterns 494

in a zero-shot setting. 495

We evaluate the models using either extracted 496

mobility features or direct travel diary data, both 497

combined with contextual attributes. Specifically, 498

extracted features, selected based on prior literature, 499

capture key aspects of individual mobility behavior, 500

such as averages and variations in departure times, 501

activity types, trip distances, travel times, and trip 502

frequencies. The extracted features are detailed 503

in Table 5 in Appendix C.1. To reduce overfit- 504

ting and ensure fair evaluation, feature selection 505

is performed on the training set (Appendix A.3). 506

The same set of selected features is also provided 507

as input to GPT-4o to infer sociodemographic at- 508

tributes from the test set. Direct travel diary data, 509

containing multiple-day trip records, along with 510

the contextual data, are converted into semanti- 511
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cally descriptive inputs for GPT-4o. This setup is512

designed to evaluate GPT-4o’s ability to directly513

infer sociodemographic attributes from mobility514

data without relying on feature engineering.515

Datasets. To obtain both individuals’ travel tra-516

jectories and their sociodemographic profiles, we517

use the 2017 Puget Sound Regional Council House-518

hold Travel Survey (National Renewable Energy519

Laboratory, 2025). It comprises data from 6,254520

participants, covering a total of 52,492 trips. It in-521

cludes two mobility components: a one-day house-522

hold travel diary and a seven-day smartphone-based523

GPS diary. In our study, we only used the GPS di-524

aries for analysis as they are derived from passive525

collected multi-day trajectories that better reflect526

naturalistic behavior. The GPS diaries provide de-527

tailed individual-level trip and activity information,528

such as travel day, departure and arrival times, ac-529

tivity type, and trip distance, which can be readily530

inferred from any raw GPS trajectory data.531

To ensure data quality and analytical relevance,532

we applied a series of filtering criteria to the GPS533

diary data (Appendix A.4). After applying the534

filtering criteria, the final dataset consists of 617535

qualified individuals, contributing a total of 11,964536

trips for analysis. Additionally, to support contex-537

tualized reasoning in prediction, we incorporated538

contextual variables as auxiliary inputs. Details of539

contextual attributes are provided Appendix C.2.540

Evaluation Metrics. We use KL divergence and541

L1 distance to quantify the discrepancy between542

expert and learner policies. To evaluate predic-543

tion performance, we reporte class-level Precision,544

Recall, and F1 score, as well as overall Accuracy545

and Weighted F1 score. Metric definitions are in546

Appendix A.5 and A.6.547

4.2 Main Results548

We evaluate our model on gender and age pre-549

diction (see Appendix D for income and employ-550

ment), comparing it with baselines to assess the551

effectiveness of incorporating psychological the-552

ory and LLM prior knowledge without relying on553

additional training data.554

As shown in Table 1, GPT-4o slightly outper-555

forms traditional machine learning models using556

the same input features, demonstrating its ability557

to distinguish behavioral patterns through prior do-558

main knowledge. Moreover, its comparable per-559

formance with direct travel diaries suggests that it560

can operate effectively without relying on explicit561

feature engineering. Our proposed model further562

Table 1: Model comparison for gender prediction. The
proposed model outperforms all baselines in both over-
all and class-level performance.

Method Class Precision Recall F1-score Accuracy Weighted F1

SVM
Male 0.603 0.633 0.618

0.621 0.621
Female 0.639 0.609 0.624

XGBoost
Male 0.597 0.667 0.630

0.621 0.620
Female 0.649 0.578 0.612

CatBoost
Male 0.683 0.642 0.662

0.645 0.646
Female 0.607 0.649 0.627

GPT-4o
Male 0.627 0.700 0.661

0.653 0.653
Female 0.684 0.609 0.645

GPT-4o
(Diaries)

Male 0.625 0.667 0.645
0.645 0.645

Female 0.667 0.625 0.645

SILIC
Male 0.920 0.767 0.836

0.855 0.853
Female 0.811 0.938 0.870

advances GPT-4o’s inference from observed mo- 563

bility data, yielding over a 30% improvement in 564

overall accuracy. It also achieves more balanced 565

performance across classes, as evidenced by higher 566

weighted and class-specific F1 scores. 567

Table 2: Model comparison for age prediction. The pro-
posed model outperforms all baselines in both overall
and class-level performance, and effectively identifies
age groups that baseline models struggle to classify.

Method Class Precision Recall F1-score Accuracy Weighted F1

SVM

18–44 0.752 0.989 0.854

0.742 0.64445–64 0.000 0.000 0.000

65+ 0.333 0.200 0.250

XGBoost

18–44 0.767 0.859 0.810

0.677 0.65045–64 0.250 0.148 0.186

65+ 0.200 0.200 0.200

CatBoost

18–44 0.792 0.870 0.829

0.718 0.70045–64 0.421 0.296 0.348

65+ 0.250 0.200 0.222

GPT-4o

18–44 0.870 0.870 0.870

0.710 0.73245–64 0.615 0.296 0.400

65+ 0.000 0.000 0.000

GPT-4o
(Diaries)

18–44 0.863 0.891 0.877

0.734 0.74045–64 0.571 0.296 0.390

65+ 0.067 0.200 0.100

SILIC

18–44 0.887 0.989 0.935

0.863 0.84445–64 0.900 0.375 0.529

65+ 0.500 0.800 0.615

Table 2 presents the age prediction results for a 568

multi-class task. While baseline models achieve 569

decent overall accuracy, they struggle to identify 570

individuals over the age of 45, particularly those 571

over 65, as evidenced by their low class-level F1 572
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scores. For machine learning models, this perfor-573

mance gap may be attributed to data imbalance, as574

individuals aged 45 and above, particularly those575

over 65, are underrepresented in the training set.576

Consequently, they are biased toward the major-577

ity class, resulting in diminished predictive perfor-578

mance for those age groups. The GPT 4o inference579

model, despite its general reasoning capabilities,580

may have difficulty distinguishing age-specific be-581

havioral patterns in mobility without access to the582

underlying cognitive patterns. In contrast, our pro-583

posed model achieves superior performance com-584

pared to all baseline methods, with significantly585

higher overall prediction accuracy and weighted F1586

score, while also demonstrating improved ability to587

distinguish adults across different age groups. This588

improvement is particularly important for down-589

stream applications that rely on accurately identify-590

ing targeted sociodemographic groups.591

Overall, the proposed model consistently592

achieves strong performance in both total predic-593

tion accuracy and class-level identification across594

all sociodemographic attributes. These results high-595

light the effectiveness of inversely following the596

well-established behavioral theory by capturing me-597

diating cognitive processes for inferring sociode-598

mographic characteristics from mobility patterns.599

4.3 Ablation Study600

We conducted ablation experiments using the GPT-601

4o model to evaluate the effectiveness of (1) LLM-602

guided reward weight initialization and updates and603

(2) the CCR strategy.604

First, we compare the KL divergence and L1605

distance (definitions in Appendix A.5) between ex-606

pert and learner behaviors under different settings607

to evaluate whether the policy derived from the608

final reward weights effectively replicates expert609

trajectories. As shown in Table 3, removing both610

LLM-guided initialization and updates results in611

over a 41% increase in KL divergence and over a612

10% increase in L1 distance, confirming their con-613

tribution. When only the LLM-guided updates are614

replaced with standard gradient ascent, the increase615

is less pronounced, highlighting the importance616

of LLM-guided initialization in constraining the617

reward space effectively. Furthermore, retaining618

only the LLM-guided reward weight updates still619

achieves better performance than removing both620

the initialization and update steps, indicating the ef-621

fectiveness of LLM-provided heuristics in guiding622

optimization toward behaviorally plausible reward623

structures. 624

Table 3: Ablation Study of LLM-guided IRL. It demon-
strates the effectiveness of both LLM-based reward ini-
tialization and iterative update guidance.

KL Divergence L1 Distance

Random Initialization + Gradient Ascent 0.594 0.722
LLM-guided Initialization + Gradient Ascent 0.447 0.696
Random Initialization + LLM-guided updates 0.543 0.704
LLM-guided Initialization + updates 0.419 0.654

Second, we compare the Accuracy and Weighted 625

F1 of our proposed model against two variants that 626

substitute the CCR module with either pure GPT-4o 627

inference or Chain-of-Thought (CoT) inference, in 628

order to assess the effectiveness of the CCR module. 629

As shown in Table 4, the CoT strategy outperforms 630

pure inference by leveraging the structured reason- 631

ing capabilities of the LLM. By further guiding the 632

reasoning process with the well-established behav- 633

ioral theory, the CCR module aligns more closely 634

with human cognitive processes, leading to the best 635

performance among all compared methods. 636

Table 4: Ablation study of CCR on gender and age
prediction. CCR outperforms both pure inference and
CoT.

Method
Gender Age

Accuracy Weighted F1 Accuracy Weighted F1

IRL + Inference 0.718 0.708 0.815 0.797
IRL + CoT 0.766 0.766 0.823 0.812
IRL + CCR 0.855 0.853 0.863 0.844

5 Conclusion 637

This study proposes SILIC, a novel IRL+CCR 638

framework to predict sociodemographic attributes 639

from mobility patterns by inversely aligning with 640

the TPB. We leverage IRL to infer individual- 641

specific latent intentions, while addressing its key 642

methodological challenges through heuristic guid- 643

ance provided by LLMs. Building on inferred in- 644

tentions, the CCR module guides LLM reasoning to 645

sequentially infer belief constructs and predict so- 646

ciodemographic attributes. Contextual features are 647

incorporated to support informed predictions, as 648

sociodemographic and contextual factors jointly in- 649

fluence behavioral beliefs. Extensive experiments 650

across multiple prediction tasks demonstrate that 651

our framework not only significantly outperforms 652

established baselines, but also offers a solution for 653

enriching large-scale real-world or synthetic trajec- 654

tory datasets, with implications for various applica- 655

tions involving human behavior modeling. 656
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Limitations657

Although the proposed model shows strong po-658

tential for inferring sociodemographic attributes659

from trajectories, several limitations remain. First,660

while the model infers latent intentions and be-661

lief constructs from observed behavior, these in-662

ternal variables lack ground truth for direct vali-663

dation. Any misalignment in these inferred repre-664

sentations may propagate to downstream sociode-665

mographic predictions. Second, the IRL compo-666

nent depends on heuristic support from LLMs,667

whose guidance—partially derived from general668

domain knowledge—may fail to fully capture be-669

havioral nuances specific to certain geographic re-670

gions. Third, the current state space design may671

omit relevant mobility-related features (e.g., trip672

distance), limiting its capacity to fully represent673

human decision-making dynamics. Future work674

should address these challenges. For example,675

leveraging survey data that include cognitive or at-676

titudinal variables to assess the validity of inferred677

intentions and beliefs, and incorporating human-678

in-the-loop calibration to refine LLM-generated679

reward priors or updates to better reflect regional680

characteristics.681
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A Implementation Details977

A.1 Implementation Details978

We implement our full framework using GPT-4o as979

the backbone for both the LLM-guided IRL module980

and the CCR module. The data is split into 80%981

training and 20% testing. Evaluation is performed982

on the held-out test set. We set the hyperparameters983

as follows: K = 30, α = 2, λLLM = 0.002, and984

convergence thresholds ϵ = ϵ′ = 10−4.985

A.2 Activity Mapping986

To reduce the state space, we group activities into987

five high-level categories according to the follow-988

ing mapping scheme:989

• Home: Home990

• Work: Work, Work-related991

• Education: School992

• Escort and Errand: Personal Business / Er-993

rand / Appointment, Escort, Change Model994

• Leisure: Social / Recreational, Shopping,995

Meal, Other996

A.3 Feature Selection997

We compute ANOVA F-scores (Shakeela et al.,998

2021) to assess the statistical association between999

each feature and the target variable in the training1000

set, rank the features accordingly, and retain only1001

those within the top 40%, corresponding to scores1002

above the 60th percentile threshold. This selection1003

aims to optimize the performance of baseline ma-1004

chine learning models, ensuring a fair comparison1005

with our proposed approach. This filtering process1006

is applied to the combined set of extracted and con-1007

textual attributes. Figures 3 and 4 present line plots1008

illustrating how F1 scores vary with different fea-1009

ture selection thresholds across the three baseline1010

machine learning models for gender and age predic-1011

tion, respectively, using five-fold cross-validation.1012

A.4 Data Selection1013

We applied data selection procedures to ensure both1014

the quality and relevance of the dataset for our anal-1015

ysis. First, we retained only the household represen-1016

tatives (defined as the primary survey respondent1017

(National Renewable Energy Laboratory, 2025)),1018

as they typically provide the most complete and1019

reliable information within each household. Next,1020

we excluded individuals who did not complete the1021

Figure 3: F1 score variation across feature selection
thresholds for gender prediction using SVM, XGBoost,
and CatBoost.

Figure 4: F1 score variation across feature selection
thresholds for age prediction using SVM, XGBoost, and
CatBoost.

survey to ensure the completeness of sociodemo- 1022

graphic labels and mobility records. We focused 1023

on weekday trips to capture routine mobility be- 1024

havior, which is more informative for modeling 1025

stable mobility patterns. Finally, we retained only 1026

individuals with at least two days of GPS trajectory 1027

data to ensure sufficient behavioral observations 1028

for effective IRL model training. 1029

A.5 Evaluation Metrics for IRL 1030

To quantify the discrepancy between expert and 1031

learner policies, we adopt both KL divergence and 1032

L1 distance. For each individual i, KL divergence 1033

captures how much the learned policy πl,i devi- 1034

ates from the expert policy πe,i, weighted by the 1035

empirical state visitation distribution. L1 distance 1036

computes the average absolute difference between 1037

πl,i and πe,i across states. The formal definitions 1038

of KL divergence and L1 distance are presented as 1039

follows: 1040

KL(πe,i||πl,i) =
∑
s

De,i(s)
∑
a

πe,i(a|s) log(
πe,i(a|s)
πl,i(a|s)

)

(8) 1041

L1(πe,i, πl,i) =
1

|S|
∑
s∈S

∑
a

|πe,i(a|s)− πl,i(a|s)| (9) 1042
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A.6 Evaluation Metrics for Classification1043

Tasks1044

To assess the effectiveness of the proposed model1045

in predicting sociodemographic attributes from ob-1046

served mobility patterns, we evaluate its perfor-1047

mance against ground truth labels using standard1048

classification metrics: class-level Precision, Re-1049

call and F1-score, and total-level Accuracy and1050

Weighted F1-score.1051

Specifically, for each class c ∈ C, let TPc, TNc,1052

FPc, and FNc represent the number of true posi-1053

tives, true negatives, false positives, and false nega-1054

tives, respectively. Let Nc denote the total number1055

of instances belonging to class c (i.e., the support),1056

and let N denote the total number of instances1057

across all classes. Based on these definitions, the1058

evaluation metrics are defined as follows:1059

Precisionc =
TPc

TPc + FPc
(10)1060

1061

Recallc =
TPc

TPc + FNc
(11)1062

1063

F1c =
2 · Precisionc ·Recallc
Previsionc +Recallc

(12)1064

1065

Accuracy =

∑
c∈C TPc + TNc∑

c∈C TPc + TNc + FPc + FNc

(13)10661067

Weighted F1 =
∑
c∈C

Nc

N
· F1c (14)1068
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B Prompt Design1069

Prompt Template for Reward Initialization

Task Description
You are an expert in travel behavior modeling and inverse reinforcement learning (IRL). You are provided
with an individual’s multi-day weekday travel diaries, presented as a chronological sequence of activities
and their corresponding departure times.

Input:

• Travel Diaries: [Travel Diaries]

• State Features: ϕ(s), a feature vector encoding relevant state attributes.

Objective
Estimate an initial reward weight vector θ for an IRL model, where the reward function is defined as:

R(s) = θ⊤ · ϕ(s)

Instructions:

• Analyze the provided travel diaries to identify patterns in the individual’s observed activity behavior.

• Apply general travel behavior knowledge (e.g., typical preferences for activity types and times of
day).

• Assign meaningful weights to the corresponding features in ϕ(s).

• For features with insufficient or ambiguous evidence, assign values near zero.

Output Format
Return the 31-dimensional vector θ as a valid Python list of 31 float values. Each value must be between
−2 and 2. No additional explanation or formatting should be included.

Figure 5: Prompt used to initialize reward weights for IRL
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Prompt Template for Reward Weight Update

Task Description
You are assisting in tuning the reward weight vector θ for a maximum entropy inverse reinforcement
learning (IRL) model. The objective is to adjust θ to better align the learner’s state visitation distribution
with that of the expert.

Input:

• Current Reward Weights: θ = [current θ values]

• State Mismatches: A list of the top 30 state mismatches, where each state is represented as a
4-tuple (hour, activity_type, is_first_trip, activity_segment_count), along with the expert and learner
visitation frequencies for each state.

Reward Function
The reward function is defined as:

R(s) = θ⊤ · ϕ(s)

where ϕ(s) is a 31-dimensional feature vector:

• 5 one-hot indicators for activity type: [Home, Work, School, Errand and Escort, Leisure]

• 24 hour-of-day indicators: [hour_0 to hour_23]

• 1 binary indicator: is_first_trip

• 1 normalized numeric feature: activity_segment_count

Objective
Based on the provided state mismatches and your prior domain knowledge, suggest an update direction
for each of the 31 reward weights to reduce the discrepancies between the expert and learner state visitation
distributions.

Instructions:

• Analyze the provided state mismatches and determine whether each feature weight in θ should be
increased, decreased, or left unchanged.

• For each of the 31 reward weights, output an update direction constrained to {-1, 0, 1}, where -1
indicates decrease, 0 indicates no change, and 1 indicates increase.

Output Format
Return a Python list of 31 integers, each being -1, 0, or 1. No additional text or explanation should be
included.

Figure 6: Prompt template used to generate reward update directions from the LLM.
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Prompt Template for Sociodemographic Attribute Prediction with CCR

Task Description
You are an expert in travel behavior modeling. In this task, you will apply the Theory of Planned Behavior
(TPB) in reverse to infer [age / gender / income level / employment status] from the individual’s intention,
as captured by the learned reward weights, and environmental context.

Input:

• Reward Weights: θ, a 31-dimensional vector representing the individual’s inferred preferences over
activities, time-of-day, and trip structure.

• Environmental Context: External attributes such as urban/rural, population density, distance to
transit, and housing characteristics.

Objective
Predict the individual’s [age / gender / income level / employment status] by interpreting the beliefs
encoded in θ, supported by the environmental context.

Instructions:

1. Step 1: Belief Inference
Analyze the reward weights to identify the individual’s underlying attitude, subjective norm, and
perceived behavioral control.

2. Step 2: Sociodemographic Prediction
Combine the inferred beliefs with the provided environmental context to predict the individual’s [age
/ gender / income level / employment status].

Follow the above two steps in order when generating your prediction.

Output Format
Return only the predicted label (e.g., 0, 1, or 2) corresponding to the target category. No explanation or
additional formatting should be included.

Figure 7: CCR prompt for predicting sociodemographic attributes from IRL reward weights and contextual attributes
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C Contextual and Extracted Features1070

C.1 Extracted Features1071

Table 5: Extracted Features and Definitions.

Extracted Feature Definition

Trip Distance Average distance per trip (in miles)
Std Trip Distance Standard deviation of trip distance (in miles)
Num Trips per Day Average number of trips taken daily
Std Num Trips per Day Standard deviation of daily trip counts
Destination Entropy Diversity of unique destination locations visited
% Work Trips Percentage of trips for work or work-related purposes
% School Trips Percentage of trips for school or educational purposes
% Shopping Trips Percentage of trips for shopping activities
% Social/Recreation Trips Percentage of trips for social or recreational purposes
% Errand Trips Percentage of trips for business, errands, or appointments
% Escort Trips Percentage of escort-related trips
Travel Time Average travel time per trip (in minutes)
Std Travel Time Standard deviation of trip travel times
First Departure Time Hour of the first activity’s departure
Last Departure Time Hour of the last activity’s departure
Home Time Average daily duration spent at home
Work Time Average daily duration spent at work
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C.2 Contextual Features1072

The contextual attributes include: urban/rural in-1073

dicator, population and housing density from the1074

U.S. Census Bureau (U.S. Census Bureau, 2017,1075

2025), housing type and residential area propor-1076

tion from the Washington State Geospatial Open1077

Data Portal (Washington State Geospatial Open1078

Data Portal, 2025), and both transit accessibility1079

and network density from the EPA Smart Location1080

Mapping dataset (U.S. Environmental Protection1081

Agency, 2025).1082
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Table 6: Contextual Features, Definitions, and Summary Statistics

Feature Definition Summary Statistics

Urban Indicator Binary variable indicating urban (1) or rural (0) 1: 0.987, 0: 0.013

Population Density People per square mile Mean: 16047.36
Std: 14835.13

Distance to Transit Distance to nearest public transit stop (m) Mean: 270.48
Std: 191.10

Network Density Road length (km) per km2 of area Mean: 29.03
Std: 10.51

Housing Density Housing units per square mile Mean: 9771.24
Std: 11253.57

Residential Proportion Residential land share in home census block group Mean: 0.346
Std: 0.194

Commercial Proportion Commercial land share in home census block group Mean: 0.130
Std: 0.114

Educational Proportion Educational land share in home census block group Mean: 0.055
Std: 0.073

Recreational Proportion Recreational land share in home census block group Mean: 0.054
Std: 0.094

Housing Type Type of residence structure Residential Condominium: 0.235
Single Family Unit: 0.334
Multi-Unit (2–4): 0.059
Multi-Unit (>5): 0.372
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D Additional Prediction Results1083

D.1 Employment Status Prediction1084

Similar to age prediction, employment status pre-1085

diction is framed as a three-class classification task.1086

As shown in Table 7, while baseline models achieve1087

reasonable overall accuracy, they struggle to accu-1088

rately identify underrepresented groups (e.g., re-1089

tired and employed populations) in the dataset.1090

In contrast, our model not only achieves superior1091

overall accuracy and weighted F1 score but also1092

demonstrates more balanced performance across1093

all classes.1094

D.2 Income Prediction1095

The prediction results for household income are1096

presented in Table 8. It is important to note that the1097

Puget Sound Regional Survey provides household-1098

level income rather than individual income. Al-1099

though we selected household representatives for1100

analysis, their characteristics may not fully reflect1101

household income levels due to unobserved intra-1102

household factors such as household size. As1103

a result, the overall prediction performance may1104

be somewhat constrained by this limitation. De-1105

spite this limitation, our proposed model still sig-1106

nificantly outperforms the baseline models, and1107

demonstrates reasonable prediction performance,1108

indicated by overall accuracy, weighted F1 score,1109

and class-level F1 scores.1110
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Table 7: Model comparison for employment status prediction. The proposed model achieves the highest overall
performance and demonstrates balanced classification across categories.

Method Class Precision Recall F1-score Total Accuracy Weighted F1

SVM
unemployed 0.167 0.125 0.143

0.887 0.879
employed 0.930 0.955 0.943

retired 0.667 0.500 0.571

XGBoost
unemployed 0.250 0.375 0.300

0.879 0.885
employed 0.955 0.938 0.946

retired 0.500 0.250 0.333

CatBoost
unemployed 0.250 0.250 0.250

0.887 0.886
employed 0.938 0.946 0.942

retired 0.667 0.500 0.571

GPT-4o
unemployed 0.276 1.000 0.432

0.831 0.870
employed 1.000 0.821 0.902

retired 1.000 0.750 0.857

GPT-4o
(Diaries)

unemployed 0.600 0.375 0.462
0.911 0.890

employed 0.924 0.982 0.952

retired 0.000 0.000 0.000

SILIC
employed 1.000 0.375 0.545

0.952 0.943
unemployed 1.000 0.750 0.857

retired 0.619 0.796 0.696
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Table 8: Model comparison for household income prediction. The proposed model achieves the best overall and
class-level performance.

Method Class Precision Recall F1-score Total Accuracy Weighted F1

SVM
<50k 0.636 0.259 0.368

0.452 0.418
50–100k 0.560 0.255 0.350

100k+ 0.398 0.833 0.538

XGBoost
<50k 0.419 0.481 0.448

0.435 0.431
50–100k 0.529 0.327 0.404

100k+ 0.390 0.548 0.455

CatBoost
<50k 0.367 0.407 0.386

0.403 0.393
50–100k 0.455 0.273 0.341

100k+ 0.393 0.571 0.466

GPT-4o
<50k 0.333 0.667 0.444

0.524 0.533
50–100k 0.646 0.562 0.602

100k+ 0.727 0.381 0.500

GPT-4o
(Diaries)

<50k 0.714 0.185 0.294
0.540 0.487

50–100k 0.521 0.909 0.662

100k+ 0.571 0.286 0.381

SILIC
<50k 0.909 0.588 0.714

0.677 0.678
50–100k 0.641 0.610 0.625

100k+ 0.619 0.796 0.696
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