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Abstract
Grokking refers to a delayed generalization fol-
lowing overfitting when optimizing artificial neu-
ral networks with gradient-based methods. In
this work, we demonstrate that grokking can be
induced by regularization, either explicit or im-
plicit. More precisely, we show that when there
exists a model with a property P (e.g., sparse or
low-rank weights) that generalizes on the prob-
lem of interest, gradient descent with a small but
non-zero regularization of P (e.g., ℓ1 or nuclear
norm regularization) results in grokking. This
extends previous work showing that small non-
zero weight decay induces grokking. Moreover,
our analysis shows that over-parameterization by
adding depth makes it possible to grok or ungrok
without explicitly using regularization, which is
impossible in shallow cases. We further show
that the ℓ2 norm is not a reliable proxy for gen-
eralization when the model is regularized toward
a different property P , as the ℓ2 norm grows in
many cases where no weight decay is used, but
the model generalizes anyway. We also show that
grokking can be amplified solely through data
selection, with any other hyperparameter fixed.

1. Introduction
The optimization of machine learning models today relies
entirely on gradient descent (GD). The reasons behind the
ability of such a procedure to converge towards generalizing
solutions are still not fully understood, particularly in over-
parameterized regimes. Power et al. (2022) recently ob-
served an even more surprising feature of this optimization
procedure, grokking: optimization first converges to a solu-
tion that memorizes the training data, but after a sufficiently
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long training time, it suddenly converges to a solution that
generalizes.

Previous work has shown that grokking can be observed by
using a large-scale initialization and a small (but non-zero)
weight decay (Liu et al., 2023a; Lyu et al., 2023). More-
over, some works have shown that the ℓ2 norm of the model
weights can be used during optimization as a progression
measure for generalization since it generally decreases dur-
ing the transition from memorization to generalization (Liu
et al., 2023a; Thilak et al., 2022; Varma et al., 2023). All
these theories have left open the question of whether we
always need an ℓ2 regularization to observe delayed gener-
alization or whether the ℓ2 norm of the parameter is always
a good predictor of grokking. This paper attempts to answer
these questions. We show that the dynamic of grokking goes
beyond the ℓ2 norm, that is: If there exists a model with a
property P (e.g., sparse or low-rank weights) that fits the
data, then GD with a small non-zero regularization of P
(e.g., ℓ1 or nuclear norm regularization) will also result in
grokking, provided the number of training samples is large
enough and the model is complex enough. Additionally, the
regularization of P can be implicit (e.g., model overparame-
terization, the choice of training samples). Moreover, the ℓ2
norm of the parameters is no longer guaranteed to decrease
with generalization when it is not the property sought.

We first establish our main theorem (Theorem 2.1), which
theoretically characterizes the relation between grokking
and regularization. This theorem is a cornerstone of our ar-
gument, demonstrating that the generalization delay scales
like 1/(αβ), where α is the gradient descent step size and
β is the regularization strength of an arbitrary and appro-
priately chosen regularizer that enforces an inductive bias
toward generalization. This theoretical characterization ex-
tends previous observations, which have been mainly fo-
cused on ℓ2 regularization, providing a more general frame-
work for understanding grokking dynamics.

Building upon this theoretical foundation, we validate its im-
plications both theoretically and empirically across various
settings: sparsity (Theorem 3.1) and low-rankness (Theo-
rem 3.4). For sparsity, we focus on a linear teacher-student
setup and show that recovery of sparse vectors using gra-
dient descent and Lasso exhibits a grokking phenomenon,
which is impossible using only ℓ2 regularization, regardless
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of the initialization scale, as advocated by previous art (Lyu
et al., 2023; Liu et al., 2023b). Moreover, with a deeper
over-parameterized model, there is no need for explicit ℓ1
regularization, as gradient descent is implicitly biased to-
ward such sparse solutions. Similarly, we focus on matrix
factorization for the low-rank structure and demonstrate that
nuclear norm regularization (denoted ℓ∗) is necessary for
generalization in the shallow case. This complements prior
work demonstrating that deeper linear networks can factor-
ize low-rank matrices without explicit regularization (Arora
et al., 2018; 2019).

These findings hold beyond shallow and/or linear networks.
We show that ℓ1 or ℓ∗ can replace ℓ2 in a more general
setting and induce grokking. We demonstrate this on a non-
linear teacher-student setup, on the algorithmic data setup
where grokking was first observed (Power et al., 2022), and
on image classification tasks. In settings where ℓ2 regular-
ization is not used, the ℓ2 norm of the model parameters
tends to grow during training and after generalization, yet
optimization still produces a generalizable solution. This
directly challenges the previously held belief that the ℓ2
norm of parameters is always a good indicator of grokking.

Our contributions can be summarized as follows1:

(i) We show that grokking can be induced by the inter-
play between the sparse/low-rank structure of the solu-
tion and the ℓ1/ℓ∗ regularization used during training,
extending previous results on ℓ2 regularization (Lyu
et al., 2023). Our theoretical results extend beyond
these specific regularizations, as we characterize the
relationship between grokking time, regularization
strength, and learning rate in a general setting.

(ii) We show that regularization is necessary to observe
grokking on sparse or low-rank solutions. Moreover,
we empirically show that in deep linear networks, the
sparse/low-rank structure of the data is enough to have
generalization without explicit regularization. Adding
depth makes it possible to grok or ungrok simply from
the implicit regularization of gradient descent.

(iii) Leveraging the notion of coherence, we show that
grokking can be amplified through data selection.

(iv) We show that ℓ1/ℓ∗ can replace ℓ2 in a more general
setting and induce grokking. Moreover, in such a
scenario, and in the shallow sparse/low-rank scenario
mentioned above, the grokking phenomenon can not
be explained by the ℓ2 norm.

(v) We also show that other forms of domain-specific reg-
ularizers strongly impact the grokking delay.

1Code to reproduce our experiments: https://github.
com/Tikquuss/grokking_beyong_l2_norm.

This paper is organized as follows. We begin by present-
ing our main theoretical result on grokking time and reg-
ularization in Section 2. Sections 3 extend our theoretical
framework to concrete sparse recovery and matrix factoriza-
tion settings, establishing additional theoretical results and
providing empirical validation of the two-phase dynamics
predicted by our main theorem. Our findings are extended
to general non-linear models and other domain-specific reg-
ularizations in Section 4. Finally, we discuss and conclude
our work in Section 5.

Throughout this paper, Ω(·), O(·) and Θ(·) follow their
standard asymptotic definitions.

2. Learning Dynamics: Early and Later Bias
In this section, we will illustrate our hypothesis concern-
ing the induction of grokking by regularization. Lyu et al.
(2023) proved that enlarging the initialization scale and/or
reducing the weight decay delays the transition from mem-
orization to generalization, a conclusion already drawn ex-
perimentally by Liu et al. (2023a). As we will see below,
replacing the weight decay with various other regulariza-
tions similarly impacts the generalization delay.
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Figure 1: (Top) Training and test accuracy of a MLP trained
on modular addition with ℓ1 (left), ℓ2 (middle), and ℓ∗
(right) regularization for different values of the regulariza-
tion strength β. Smaller values of β delay generalization.
(Bottom) In the case of ℓ1 (top-left), we show the evolution
of the ℓ1 (left), ℓ2 (middle), and ℓ∗ (right) norm during train-
ing. The ℓ2 norm increases despite generalization.
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Figure 2: Training and test accuracy of a MLP trained on
modular addition with ℓ∗ regularization for different values
of the learning rate α and the ℓ∗ regularization strength β.
When α increases, the generalization delay decreases.

2.1. Motivating Experiment

Consider a binary mathematical operator ◦ on S = Z/pZ
for some prime integer p. We want to predict y∗(x) =

2
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x1 ◦ x2 given x = (x1, x2) ∈ S2. The dataset D =
{(x, y∗(x)) | x ∈ S2} is randomly partitioned into two dis-
joint and non-empty sets Dtrain and Dval, the training and the
validation dataset respectively. Let us consider as a model a
multilayer perceptron (MLP) for which the logits are given
by y(x) = b(2) +W(2)ϕ

(
b(1) +W(1)

(
E⟨x1⟩ ◦E⟨x2⟩

))
,

where ⟨x⟩ stands for the index of the token corresponding
to x ∈ S and ϕ(z) = max(z, 0) is the activation function.
E ∈ Rp×d1 is the embedding matrix for all the symbols in
S . The learnable parameters are E, W(1) ∈ Rd2×d1 , b(1) ∈
Rd2 , W(2) ∈ Rp×d2 , and b(2) ∈ Rp. We train this model on
addition modulo p = 97 with rtrain := |Dtrain|/|D| = 40%.

We can see in Figures 1 and 2 that ℓ1 and ℓ∗ have the same
effect on grokking as ℓ2. For all these regularization tech-
niques, the smaller αβ is, the longer the delay between
memorization and generalization. Figure 1 (bottom) also
shows that in the absence of weight decay, the ℓ2 norm of the
model parameters is not monotonic after memorization, and
even increases without harming generalization performance.

2.2. Theoretical Insights

We now provide high-level theoretical insights on how
the dynamics of regularized gradient descent can induce
grokking. Let g : Rp → [0,∞) be a differentiable function,
h : Rp → [0,∞) be a subdifferentiable function and β > 0.
Typically, g is the loss function of an overparameterized
neural network on the training data, while h serves as the
regularizer. Our goal is to minimize the composite objective
f := g + βh using subgradient descent with a learning rate
α > 0. The update rule for this problem is given by

x(t+1) = x(t) − α
(
G(x(t)) + βH(x(t))

)
∀t ≥ 0 (1)

where G(x) = ∇g(x) is the gradient of g at x and
H(x) ∈ ∂h(x) is any subgradient of h at x. We let
f∗ := infx∈Rp f(x) and Θf := argminx∈Rp f(x) ⊂ Rp.
Similarly, we define g∗ and Θg, and assume g∗ = 0 with-
out loss of generality. Lastly, we define dist(x,Θf ) :=
infy∈Θf

∥x − y∥2. Intuitively, the training dynamics can
be decomposed into two phases under certain conditions
on α and β. The iterates x(t) initially move toward a solu-
tion close to the initialization x(0) that minimizes g (for in-
stance, the kernel solution associated with g). Later in train-
ing, the influence of H(x) dominates the update, driving
f(x(t)) ≈ f∗ and h(x(t)) ≈ h∗g := infx∈Θg

h(x) within an
additional Θ(1/αβ) training steps.

We define the Chatterjee–Łojasiewicz (CL) constant for g
at x ∈ Rp with radius r > 0 as (Chatterjee, 2022):

χ(g,x, r) := inf
y∈B(x,r),g(y) ̸=0

∥∇g(y)∥22/g(y) (2)

where B(x, r) := {y ∈ Rp | ∥x− y∥2 ≤ r}. The function
g is said to satisfy the r-CL inequality at x or to be r-CL

at x if and only if 4g(x) < r2χ(g,x, r). The CL inequality
is a strengthening of the classical Polyak-Łojasiewicz (PL)
inequality (Chatterjee, 2022), which has been shown to hold
for wide overparameterized neural networks in a neighbor-
hood of their initialization (Liu et al., 2021). The advantage
here is that we will require the CL inequality to be satisfied
only at initialization for the theorem to hold, unlike standard
results under PL, which require the function to satisfy the
PL inequality over its entire domain (Karimi et al., 2020).
Theorem 2.1. Take any x(0) ∈ Rp with g(0) := g(x(0)) ̸=
0. Assume that g is r-CL at x(0) for some r > 0, i.e. 4g(0) <
r2χ, χ := χ(g,x(0), r). There exist βmax > 0, αmax > 0
and two constantsC,C ′ > 0 such that for all α ∈ (0, αmax)
and β ∈ (0, βmax), by defining the subgradient descent
update (1) with α and β starting at x(0), the following hold:

• For any ϵ = Ω(βC), there exists a step
t1 ≥ max

{
0,− log

(
ϵ/g(0)

)
/ log (1−Θ(α · χ))

}
such that g(x(t1)) ≤ ϵ, ∥G(x(t1))∥22 = O(ϵ) and
x(t) ∈ B(x(0), r) ∀t ≤ t1.

• For any η > 0, mint1≤t≤t2

(
f(x(t))− f∗

)
≤

0.5 (η + C ′αβ)β if and only if t2 > t1 + ∆t(η, t1),

with ∆t(η, t1) :=
dist2(x(t1),Θf )

αβη . Moreover, assum-
ing Θf ∩ Θg ̸= ∅, mint1≤t≤t2

(
h(x(t))− h∗g

)
=

0.5 (η + C ′αβ) if and only if t2 > t1 +∆t(η, t1).

Proof Sketch. We show that, as long as β∥H(x(k))∥2 ≤
∥G(x(k))∥2 ∀ 0 ≤ k < t, for a certain t ≥ 1, the follow-
ing hold : x(k) ∈ B(x(0), r), g(x(k)) ≤ (1 − δ)kg(x(0))
and ∥∇g(x(k))∥22 ≤ 2Lg(x(k)) for all 0 ≤ k ≤ t, for a
certain δ ∈ (0, 1) and L > 0. Using this result, we find
a constant C > 0 such that for any precision ϵ = Ω(βC),
we can adjust hyperparameters to ensure that g reaches this
precision before β∥H(·)∥2 ≫ ∥G(·)∥2. We then bound
f(x(t))− f∗ and h(x(t))− h∗g by quantities that depend on
t, α, β. Using these bounds, we extract the delay ∆t(η, t1)
that ensures the desired precision η on f(x(t)) − f∗ and
h(x(t)) − h∗g after any step t1. A more formal version of
this Theorem and the corresponding proof can be found in
Section C.1 of the Appendix.

Theorem 2.1 highlights a dichotomy between memorization
and regularization and formalizes a two-phase dynamic in
the training process, under the CL assumption on the loss
function g at initialization. The first phase, described in
the first bullet point of the theorem, shows that for a suf-
ficiently small regularization strength β, the iterates x(t)

remain close to initialization and quickly minimize g up to
any precision ϵ = Ω(βC). This corresponds to memoriza-
tion of the training data, as the model fits the loss g while
staying in a local region where regularization does not dom-
inate. By choosing β too large, we may never minimize g,
hence the lower bound βC on ϵ, which vanishes as β → 0.
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In the second phase, captured in the second bullet point,
when g and its gradient are already small, the regularization
term βh(x) gradually drives the iterates toward low values
of f and h, until reaching f(x(t)) ≈ f∗ and h(x(t)) ≈ h∗g
up to an error of order O(αβ2) and O(αβ) respectively,
within ∆t = Θ(1/αβ) additional steps. If this late-phase
bias induced by h is aligned with generalization, then the
grokking time is proportional to 1/αβ. This conclusion is
consistent with previous findings for h(x) = ∥x∥22, where
grokking time scales as 1/β (Lyu et al., 2023). The learning
rate α does not appear in that result because Lyu et al. (2023)
analyze the continuous-time gradient flow setting.

We also establish that under some assumptions on h and
g, if g is r-CL at x ∈ Rp, then for all ε ∈ (0, 1), there
exists βmax = βmax(ε,x, r) > 0 such that for all β <
βmax, the function f = g + βh is also εr-CL at x, i.e.,
4f(x) < ε2r2 ·χ(f,x, εr). As a consequence, the first point
of Theorem 2.1 applies to f − f∗ when β ≤ βmax. More
specifically, we have x(t) ∈ B(x(0), εr) for all t, and as
t → ∞, x(t) converges to a point x∗ ∈ B(x(0), εr) where
f(x∗) = f∗. Moreover, for each t ≥ 0, ∥x(t) − x∗∥22 ≤
(1− δ)tε2r2 and f(x(t))− f∗ ≤ (1− δ)t

(
f(x(0))− f∗

)
with δ = min{1,Θ

(
χ(f,x(0), εr) · α

)
}. The proof of this

fact can be found in Section C.3 of the Appendix. The
result required that ∀x ∈ Rp, 0 ∈ ∂h(x) =⇒ h(x) = 0.
A function h : Rp → R satisfies this if, for example, it
is convex and there exists x∗ ∈ Rp such that h(x∗) =
infx h(x) > −∞. This is the case of ℓ1/2/∗ norm.

3. Beyond Weight Decay
In this section, we will illustrate examples in which late
phase bias associated with generalization is not driven by ℓ2,
namely, sparse recovery and low rank matrix factorization.
Indeed, we will see that the use of weight decay alone
causes an abrupt transition in the generalization error, as
predicted by previous works, but that this transition does
not correspond to generalization. We will also show that
for a fixed training data size, the depth of the model used or
an appropriate choice of training samples can significantly
reduce the grokking delay.

We consider the operator Fa(M) = Ma ∈ RN that take
N measurement vectors {Mi ∈ Rn}i and return the mea-
sures {M⊤

i a}i of a ∈ Rn. For a matrix A ∈ Rm×n, the
operator vec(A) ∈ Rmn stacks the column of A in a vector;
σmax /min /i(A) is the maximum/minimum/ith singular val-
ues of A; ∥A∥∗ :=

∑
i σi(A) and ∥A∥2→2 := σmax(A).

3.1. Sparse Recovery

Consider a sparse vector a∗ ∈ Rn, i.e. s = ∥a∗∥0 ≪
n, where ∥a∗∥0 is the number of non-zero components
of a∗. Given y∗ = Xa∗ + ξ with X ∈ RN×n a design

matrix and ξ ∈ RN a noise vector, we want to minimize
f(a) = g(a)+βh(a) using gradient descent with a learning
rate α > 0, where g(a) = 1

2∥Xa − y∗∥22 and h(a) =

∥a∥1. Like in Theorem 2.1, the update a(t) first moves near
the least square solution â :=

(
X⊤X

)†
X⊤y∗ leading to

memorization, with g(â) ≤ 1
2∥ξ∥

2
2. Later in training, ∂h(a)

dominates the update, leading to ∥a(t)∥1−∥a∗∥1 = O(αβ)
in the order of 1/(αβ) more training steps. When αβ is
small, this causes a non-trivial delay between memorization
and generalization (i.e., grokking), for a suitable X.

Theorem 3.1. Assume the learning rate, regularization
coefficient and the noise term satisfy 0 < ασmax(X

⊤X) <
2, 0 < β

√
n < σmax(X

⊤X) and ∥X⊤ξ∥2 ≤
√
Cαβ, C >

0. Let ρ2 := σmax

(
In − αX⊤X

)
. There exist t1 < ∞

and C ′ > 0 such that ∥a(t) − â∥2 ≤ 2αβn1/2

1−ρ2
∀t ≥ t1, and

mint1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ η+(C+C′)αβ

2 ⇐⇒ t2 ≥
t1 +∆t(η, t1) for any η > 0, ∆t(η, t1) :=

∥a(t1)−a∗∥2
2

αβη .

Proof. See the proof in Section C.4 of the Appendix.

Now let illustrate why Xa(t) = y∗ (memorization) and
∥a(t)∥1 = ∥a∗∥1 are enough to conclude a(t) = a∗ (gener-
alization) when N is large enough with a specific class
of design matrices X commonly used in practice (Fou-
cart & Rauhut, 2013). For that, let us consider the prob-
lem in a more general context, where we have a measure-
ment matrix M ∈ RN×n and a list of noisy measurements
y∗ = Fb∗(M) + ξ ∈ RN of an unknown signal b∗ ∈ Rn

assumed sparse in a know basis Φ ∈ Rn×n, i.e. b∗ =∑n
i=1 a

∗
iΦ:,i = Φa∗ with ∥a∗∥0 ≪ n. The aim is to find

a∗ by minimizing ∥a∥0 subject to ∥FΦa(M) − y∗∥2 ≤ ϵ,
where ϵ an upper bound on the size of the error term ξ,
∥ξ∥2 ≤ ϵ. Since this is NP-hard (Natarajan, 1995; Donoho,
2006a), ∥a∥0 is often relaxed to its tightest convex re-
laxation, ∥a∥1 (Foucart & Rauhut, 2013; Chandrasekaran
et al., 2012), leading to the convex problem of minimizing
∥a∥1 subject to ∥Xa − y∗∥2 ≤ ϵ, with X = MΦ. This
is equivalent to the problem of minimizing f(a) presented
above, for a suitable choice of β (Rockafellar, 1970; Boyd
& Vandenberghe, 2004; Candes et al., 2006).

While classical sparse recovery assumes that the true signal
is exactly sparse and the measurements are noise-free, in
practice, it is common to design the measurement matrix M
for stable and robust recovery. Stability refers to the ability
of a reconstruction method to recover an approximation a of
a signal a∗ whose energy is concentrated on a few compo-
nents (i.e., approximately sparse), with reconstruction error
controlled by the sparsity defect inf∥a∥0≤s ∥a∗ − a∥, the
distance from a∗ to the set of exactly s-sparse vectors. Ro-
bustness, on the other hand, means that the reconstruction
is resilient to measurement noise, i.e., small perturbations
in the observed measurements y∗ = Fb∗(M) + ξ lead to
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small deviations in the reconstructed signal a, with the error
scaling with the noise level ϵ ≥ ∥ξ∥2.

Definition 3.2 (Robust Null Space Property). A matrix
A ∈ Rm×n is said to satisfy the robust null space property
with constant ρ ∈ (0, 1) and τ > 0 relative to a set S ⊂ [n]
if ∥uS∥1 < ρ∥u[n]\S∥1 + τ∥Au∥2 for all u ∈ Rn; where
uS = [ui]i∈S ∈ R|S|. It is said to satisfy the robust null
space property of order s ∈ N∗ if it satisfies the robust null
space property relative to any set S ⊂ [n] with |S| ≤ s.

Theorem 3.3. Assume the matrix X ∈ RN×n satisfies the
robust null space property with constant ρ ∈ (0, 1) and
τ > 0 relative to the support of a∗. Then, under the same
condition as in Theorem 3.1 on α, β and ξ, there exist
C1, C2, C3 > 0 such that mint1≤t≤t2 ∥a(t)−a∗∥1 ≤ C1η+
C2αβ +C3∥ξ∥2 if and only if t2 ≥ t1 +∆t(η, t1), ∀η > 0.

Proof. Proof in Section C.5 of the Appendix.

It is worth noting that we should instead quantify the train-
ing error 1

2

∑N
i=1 (y(Xi)− y∗(Xi))

2
= g(a) and the gen-

eralization error E(a) = Ex,ε (y(x)− y∗ε (x))
2, as is com-

mon in the context of grokking, with y(x) = x⊤a and
y∗ε (x) = x⊤a∗+ε in our case. Assuming Eε = 0, and using
Σ = E[xx⊤], we get E(a) = (a− a∗)

⊤
Σ (a− a∗) + Eε2.

Random matrices with independent entries, notably Gaus-
sian and Bernoulli matrices, allow for the lowest restricted
isometry constant and, thus, better recovery of sparse vec-
tors (Rauhut, 2010). Under this independent and identically
distributed (iid) assumption, we have Σ = σ2In for a cer-
tain σ > 0, which implies E(a) = σ2∥a− a∗∥22 + Eε2. So
∥a − a∗∥22 captures well the notion of test (or validation)
error commonly used in the context of grokking, while Eε2

captures the irreducible part of that error.

Memorization When the initialization a(1) is close to
â, it takes less time to memorize since t1 decreases with
∥a(1)−â∥∞. Another alternative for reducing the term αβ

1−ρ2

and guaranteeing perfect memorization earlier is to reduce
β. But this increases the generalization delay ∆t. Low
signal-to-noise ratio ∥a∗∥22/E∥ξ∥22 and over-regularization
(large β) also make perfect memorization difficult.

Generalization After memorization, when ∥a(t)∥1 −
∥a∗∥1 becomes too small, we have ∥a(t) − a∗∥1 ≈ 0 (Fig-
ure 3) since for the problem of interest, the sparse solution
a∗ is the minimum ℓ1 solution to ∥Xa−y∗∥2 ≤ ϵ under the
sparsity constraint s = ∥a∗∥0 ≪ n and certain assumptions
on X (as illustrated above). The additional number of steps
it takes to reach this minimum ℓ1-norm solution is inversely
proportional to αβ, so that the smaller αβ is, the longer it
takes to recover a∗ (grokking), and the smaller is the error
∥a(t) − a∗∥1 when t→ ∞ (Figure 4).
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Figure 3: Relative errors, gradient ratio, norm of ∥a(t)∥1,
and components of a(t) as a function of t. G(a(t)) dom-
inates βH(a(t)) until memorization at t1, g(a(t1)) ≈ 0.
From memorization βH(a(t)) dominates and make ∥a(t)∥1
converge to ∥a∗∥1 at t2 = t1 +∆t, and so a(t2) = a∗.

Validation Experiments Using (n, s,N, α, β) =
(102, 5, 30, 10−1, 10−5), we observe a grokking-like pat-
tern, where the training error ∥Xa(t) − y∗∥2 first decreases
to 10−6, then after a long training time, the recovery error
∥a(t) − a∗∥2 decreases and matches the training error
(Figure 3). The generalization results from the interplay
between the sparsity level s = ∥a∗∥0, the number of
measures N , the ℓ1 regularization β and the learning rate α.
Small s requires small N for generalization. Generalization
occurs mainly for small (but non-zero) β (Figure 4). Large
β pushes the recovery error to plateau at a suboptimal
value early in training (causing complete memorization) or
oscillations (causing no memorization). However, small
values require longer training time to plateau and generally
do so at a lower value of recovery error (grokking). We
provided more experiments in Section H.1 of the Appendix.

Other Iterative Method for ℓ1 Minimization The above
results hold for the projected subgradient method, for which
the update writes a(t+1) = Π

(
a(t) − αβH(a(t))

)
with
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Figure 4: Generalization step t2 (smaller t such that ∥a(t) −
a∗∥2/∥a∗∥2 ≤ 10−4) and recovery error ∥a(t2) − a∗∥1 as
a function of αβ. We can see that t2 ∝ ∥â− a∗∥∞/αβ and
∥a(t2) − a∗∥1 ∝ αβ, i.e. small αβ require longer time to
converge, but do so at a lower generalization error.

Π the projection on the set {a | Xa = y∗}; and for
the proximal gradient descent method; for which the up-
date writes a(t+1) = Sαβ

(
a(t) − αG(a(t))

)
with Sγ(a) =

sign(a) ⊙ max(|a| − γ, 0) the soft-thresholding operator.
Note the dichotomy between these two methods. Each uses
one of the terms of f(a) as the objective to be minimized
and the other as a constraint. After every gradient descent
update with the gradient of the objective, the iterate is pro-
jected onto the feasible set of the constraint. Still, they all
exhibit a grokking behavior (more details in Section D.1 of
the Appendix). One training step is enough for the projected
subgradient to get zero training error. This further shows
that generalization here is primarily driven by h.

3.2. Matrix Factorization

In this section, we study grokking for matrix factorization
and extend the results of the previous section on sparse re-
covery. Given a low rank matrix A∗ ∈ Rn1×n2 of rank r
and a measurement matrix X ∈ RN×n1n2 ; we aim to min-
imize rank(A) s.t. ∥Fa (X) − y∗∥2 ≤ ϵ for A ∈ Rn1×n2

and a = vec(A) ∈ Rn1n2 ; where y∗ = Fvec(A∗) (X) + ξ
are the measures and ξ ∈ RN the error term with ∥ξ∥2 ≤ ϵ.
This is NP-hard (Vandenberghe & Boyd, 1996; Fazel et al.,
2004). The usual convex approach for matrix factorization is
to minimize ∥A∥∗ s.t. ∥Fa (X)−y∗∥2 ≤ ϵ since the trace
norm is the tightest convex relaxation of the rank (Fazel
et al., 2001; Recht et al., 2010; Candes & Recht, 2012).

Let n = n1n2 and A∗ = U∗Σ∗V∗⊤ be the full SVD
of A∗. We are dealing with a compressed sensing prob-
lem with the signal vector a∗ = vec(A∗) = Φvec(Σ∗);
where vec(Σ∗) ∈ Rn is sparse since ∥Σ∗∥0 = r ≤
min(n1, n2) ≪ n; and Φ = V∗ ⊗ U∗ ∈ Rn×n (Kro-

necker product) has orthonormal column since Φ⊤Φ =(
V∗⊤V∗) ⊗ (U∗⊤U∗) = In. This framework encom-

passes several matrix factorization problems. Matrix sensing
seeks the matrix A∗ from N measurement matrices {Xi ∈
Rn1×n2}i∈[N ] and measures y∗ =

(
tr(X⊤

i A
∗)
)
i∈[N ]

. In

this case X = [vec(Xi)]i∈[N ] ∈ RN×n since y∗
i =

Fa∗(vec(Xi)). For a matrix completion task, we have N
measurement vectors2

(
X

(1)
i ,X

(2)
i

)
∈ Rn1 ×Rn2 and mea-

sures y∗
i = X

(1)⊤
i A∗X

(2)
i = Fa∗

(
X

(2)
i ⊗X

(1)
i

)
, that is

y∗ = Fa∗ (X) with X = X(2) • X(1) ∈ RN×n (face-
splitting product).

We now analyze grokking when minimizing f(A) =
1
2∥X vec(A) − y∗∥22 + β∥A∥∗ via subgradient descent
with learning rate α. Like in sparse recovery, under some
condition on α and β, the training dynamics can be de-
composed in two phases; the memorization phase where
update A(t) first moves near the least square solution
vec(Â) :=

(
X⊤X

)†
X⊤y∗, and a generalization phase

where A(t) converge to the minimum ℓ∗ solution.

Theorem 3.4. Assume the learning rate, the regularization
coefficient and the noise satisfy 0 < ασmax(X

⊤X) < 2,
0 < β

√
min(n1, n2) < σmax(X

⊤X) and ∥X⊤ξ∥2 ≤√
Cαβ, C > 0. Let ρ2 := σmax

(
In − αX⊤X

)
. There

exist t1 < ∞ and C ′ > 0 such that ∥ vec(A(t) − Â)∥2 ≤
2αβn1/2

1−ρ2
∀t ≥ t1, and mint1≤t≤t2

(
∥A(t)∥∗ − ∥A∗∥∗

)
≤

η+(C+C′)αβ
2 ⇐⇒ t2 ≥ t1 +∆t(η, t1) for any η > 0, with

∆t(η, t1) :=
∥A(t1)−A∗∥2

F
αβη .

Proof. See the proof in Section C.6 of the Appendix.

For a suitable X, X vec(A(t)) = y∗ (memorization) and
∥A(t)∥∗ = ∥A∗∥∗ are enough to conclude A(t) = A∗.

Theorem 3.5. Assume the linear measurement map F·(X)
satisfies the robust rank null space property of order
r with constants ρ ∈ (0, 1) and τ > 0, i.e for all
A ∈ Rn1×n2 ,

∑r
ℓ=1 σℓ(A) ≤ ρ

∑min{n1,n2}
ℓ=r+1 σℓ(A) +

τ∥Fvec(A)(X)∥2. Then, under the same condition as in
Theorem 3.4 on α, β and ξ, there exist C1, C2, C3 > 0 such
that mint1≤t≤t2 ∥A(t) −A∗∥∗ ≤ C1η + C2αβ + C3∥ξ∥2
if and only if t2 ≥ t1 +∆t(η, t1), for any η > 0.

Proof. Section C.7 of the Appendix.

Despite the similarity between this result and the one ob-
tained on sparse recovery, this similarity is trivial only
in the early phases of training. In fact, in sparse re-
covery problems, we take into account only the iterate

2For standard matrix completion, each X
(1)
i (resp. X(2)

i ) rep-
resents a row ℓ ∈ [n1] (resp. a column c ∈ [n2]) of A∗ (one-hot
encoded in dimensions n1 and n2 respectively), giving y∗

i = A∗
ℓc.
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a(t), whereas, in matrix factorization, we take into ac-
count not only the singular value matrix Σ(t) of the iterate
A(t), but also its matrix of singular vectors U(t) (left) and
V(t) (right). We used the Wedin’s sinΘ bound (Wedin,
1972) to quantify the variations of singular vectors after
the memorization phase, and the result shows that they
change by at most O (αβ/(γ − 1)) at each iteration, with
γ = σmin

(
A(t1)

)
/σmax(A

∗). Also, if we take a matrix
factorization problem and optimize it with only ℓ1, there is
no grokking unless the matrix is extremely sparse so that
the notion of sparsity prevails over the notion of rank, which
shows the point of studying ℓ∗ separately. Finally, neural
networks trained with ℓ1, ℓ2, and ℓ∗ have very different
properties.

Generalization When G(A) become negligible compare
to βH(A), the singular values start involving approximately
as σi

(
A(t+1) −A∗) = |σi

(
A(t) −A∗) − αβ| up to and

error of order αβ/(γ − 1). This leads to a generalization
through a multiscale singular value decay phenomenon
(Figure 5). The small singular value after memorization
converges to 0, followed by the next smaller one until
∥A(t)∥∗ ≈ ∥A∗∥∗. This process requires Θ(1/αβ) steps.

Validation Experiments We set (n1, n2, r,N, α, β) =
(10, 10, 2, 70, 10−1, 10−4), and optimize the noiseless ma-
trix completion problem using subgradient descent. We
observe a grokking-like pattern, where the training error
∥X vecA(t) − y∗∥2 first decreases to 10−4, then after a
long training time, the recovery error ∥A(t) − A∗∥F de-
creases and matches the training error (Figures 5 and 6).

Other Iterative Method for ℓ∗ Minimization The above
results hold for the projected subgradient method, for which
the update writes A(t+1) = Π

(
A(t) − αβH(A(t))

)
with

Π the projection on the set {A,X vecA = y∗}; and
for the proximal gradient descent method; for which the
update writes A(t+1) = Sαβ

(
A(t) − αG(A(t))

)
with

Sγ(A) = Umax(Σ−γ, 0)V⊤ the soft-thresholding opera-
tor for A = UΣV⊤ under SVD, where max(Σ−γ, 0)ij =
δij max(Σij − γ, 0). More details in Section D.2.

3.3. Grokking Without Understanding

Contrary to prior studies (Lyu et al., 2023; Liu et al., 2023a),
we find that in the over-parameterized regime (N < n),
large-scale initialization and non-zero weight decay do not
necessarily lead to grokking (Figure 7). In fact, by using
only the ℓ2 regularization under large-scale initialization,
there is an abrupt transition in the generalization error dur-
ing training, driven by changes in the ℓ2-norm of the model
parameters. This transition, however, does not result in
convergence to an optimal solution and can arise even in
cases where the problem has no optimal solution due to

101 103 105 107
10 6

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2

t

0.0

0.5

1.0

1.5

2.0

Gr
ad

ie
nt

s R
at

io

||Xvec(A(t)) y * ||2 / ||y * ||2
||A(t) A * ||F / ||A * ||F
|| H(A(t))||F / ||G(A(t))||F

101 103 105 107
10 6

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

t1 t2

t

0

5

10

15

||A
|| *

||A(t)|| *

||A * || *

101 103 105 107

Steps (t)

0

100

Si
ng

ul
ar

 v
al

ue
s

t1 t2
1

2

3

4

5

6

7

8

9

10

Di
m

en
sio

ns
 ~

 m
in

(n
1,

n 2
)

Figure 5: Relative errors, gradient ratio, the norm ∥A(t)∥∗,
and evolution of singular values. G(A(t)) dominates
βH(A(t)) until memorization (t ≤ t1). From memoriza-
tion βH(A(t)) dominates and make ∥A(t)∥∗ converge to
∥A∗∥∗ at t2 = t1 +∆t, and so A(t2) = A∗.

insufficient training samples (such as sparse recovery or
matrix completion using a number of samples far below the
theoretical limit required for optimal recovery). We call
this phenomenon “grokking without understanding” like
Levi et al. (2024) who illustrated it in the case of linear
classification, and we attribute it to the fact that the assump-
tions underlying prior theoretical predictions, particularly
Assumption 3.2 of Lyu et al. (2023), are violated in our
setting (more details in the Section E of the Appendix).

For the problems above (sparse recovery and matrix fac-
torization), by replacing h(a) in f(a) = g(a) + βh(a) by
h(a) = 1

2∥a∥
2
2, the model converge to the least square solu-

tion â :=
(
X⊤X+ βIn

)†
X⊤y∗, but this solution can not

give rise to generalization when N < n.

Theorem 3.6. Define ρ2 :=
∥∥In − α

(
X⊤X+ βIn

)∥∥
2→2

.
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as a function of αβ. We can see that t2 ∝ ∥Â −
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insufficient training.
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Assume the learning rate satisfies 0 < α < 2
σmax(X⊤X)+β

.

Then ∥a(t) − â∥2 ≤ ρt−1
2 ∥a(1) − â∥2 ∀t ≥ 1.

On the other hand, for N < n, ∥â − a∗∥22 ≥
∥
(
In −X⊤(XX⊤)†X

)
a∗∥22. In particular, if a∗ has a

nonzero component orthogonal to the column space of X,
then â cannot perfectly generalize to a∗.

Proof. Section C.8 of the Appendix.

Even when ℓ1 is present, if the weight decay β is choose
such that ∥â∥∞ ≪ αβ, then a(t) will get stuck near â, and
there will be no generalization. So, a bad choice of β can be
detrimental to generalization (it is better not to use ℓ2 on that
problem unless the initialization scale is nontrivial). Since
the minimum ℓ2 norm solution only gives memorization,
the ℓ2 norm cannot be used as an indicator of grokking.

3.4. Amplifying Grokking through Data Selection

The analysis of recovery guarantees for matrix factoriza-
tion hinges on local coherence of the target matrix A∗ =
U∗Σ∗V∗⊤ (compact SVD). The local coherence measures

µi = n1

r ∥U∗⊤e
(n1)
i ∥2 and νj = n2

r ∥V∗⊤e
(n2)
j ∥2 (for

(i, j) ∈ [n1]× [n2]) quantify how strongly individual rows
and columns align with the top singular vectors, where e(ni)

i

be the ith vector of the canonical basis of Rni . These quanti-
ties, also known as leverage scores, indicate the “influence”
of each row i or column j on the low-rank structure. A row/-
column with a high leverage score projects strongly onto the
span of the singular vectors, meaning that a relatively small
number of its entries capture much of the matrix’s structure.
Uniformly low coherence (µi and νi close to 1) implies that
the matrix’s information is well-distributed across rows and
columns, thereby reducing the number of samples needed
for exact recovery. The significance of local coherence
extends to sampling strategies and recovery bounds. For ma-
trix completion, given N ≤ n1n2 and τ ∈ [0, 1], we select
the first τN entries (i, j) with the highest values of µi + νj ,
and the remaining (1− τ)N entries uniformly among the
rest. As τ → 1, performance improves, and the number of
examples required to generalize decreases exponentially, as
does the time it takes the models to do so (Figure 8).
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Figure 8: Training and
recovery error as a func-
tion of data size and co-
herence τ .

Unlike matrix factorization,
large values of coherence are
detrimental to generalization
for compressed sensing. The
incoherence between the mea-
surement vectors (rows of M)
and the sparse basis (columns
of Φ) is crucial for successfully
recovering b∗ = Φa∗ from the
measures y∗ = Mb∗ + ξ. If
M is incoherent with Φ, each measurement captures a dis-
tinct “view” of b∗, reducing redundancy. This diversity of
information allows for the successful reconstruction of a∗

even with fewer measurements (e.g., below the Nyquist rate
for signals). We also observed that higher coherence in-
creases the number of samples required for recovery and de-
lays generalization, while lower coherence results in faster
generalization and better recovery. While grokking has
been studied extensively, the impact of data selection on
grokking remains largely unexplored, making this one of
the first works to address this critical aspect. We provide
more details in Section G of the Appendix.

3.5. Implicit Bias of the Depth
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Figure 9: Recovery
error as a function of
depth and data size.

We explore the role of overpa-
rameterization in sparse recovery
using a linear network parame-
terized as a = ⊙L

k=1Ak, where
the depth L ≥ 2 introduces over-
parameterization without altering
the linearity of the function class.
Our findings reveal that depth can
replace ℓ1-regularization for generalization when initializa-
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tion is small, as the gradient updates introduce a precondi-
tioning effect that promotes sparsity and enables signal re-
covery. Unlike the shallow case (L = 1), where sparsity can-
not be enforced without ℓ1-regularization, depth provides
an implicit mechanism that biases updates toward sparsity,
resulting in better generalization with fewer measurements
(Figure 9). Additionally, depth reduces the generalization
delay, with abrupt phase transitions and a staircase-like loss
curve during training. The generalization error decreases
with increasing depth L, showing that depth effectively com-
pensates for fewer measurements and facilitates recovery,
albeit at the cost of longer training times. For L ≥ 2,
large-scale initialization combined with small non-zero ℓ2-
regularization results in grokking, unlike the shallow case
where the phenomenon of “grokking without understanding”
is observed. More details in Section F.1 of the Appendix.

We discuss deep matrix factorization in Section F.2 of the
Appendix, as it is already well-known that overparametriza-
tion by adding depth makes it possible to recover low-rank
matrices without any explicit regularization (Gunasekar
et al., 2017; Arora et al., 2019; Gidel et al., 2019; Gissin
et al., 2019; Razin & Cohen, 2020; Li et al., 2020).

4. General Setting
In this section, we show that ℓ1, ℓ∗, and other domain-
specific regularizers can replace ℓ2 in a more general setting
and induce or control grokking.

Non linear Teacher-Student We consider a teacher
y∗(x) = B∗ϕ(A∗x) from Rd to Rc with r hidden neu-
rons; where ϕ(z) = max(z, 0). We independently sample
N inputs output pair Dtrain = {(xi,y

∗(xi))}Ni=1 and op-
timize the parameters θ = {A,B} of a student yθ(x) =
Bϕ(Ax) on them with the square loss function g(θ) =
1

2N

∑N
i=1 ∥yθ(xi) − y∗(xi)∥22 and different regularizer

h(θ), ℓp for p ∈ {1, 2, ∗}. For all of these regularizer, the
smaller is αβ, the longer is the delay between memorization
and generalization (see Figures 10 for the training curve
with ℓ1, and 31, 32, 33 for more results with ℓ∗/2).
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Figure 10: Training and test error two layers ReLU teacher-
student with ℓ1 regularization, for different values of the
learning rate α and the ℓ1 coefficient β.

Domain Specific Regularization Physics-Informed Neu-
ral Networks (Raissi et al., 2019) leverage prior knowledge
from differential equations by incorporating their residu-
als into the loss function, ensuring that solutions remain

consistent with physical laws. Sobolev training (Czarnecki
et al., 2017) generalizes this idea by incorporating not only
input-output pairs but also derivatives of the target func-
tion. We optimizer the student from the previous paragraph
by adding on the objective function the first order Sobolev

penalty β
N

∑N
i=1

∥∥∥∂yθ

∂x (xi)− ∂y∗

∂x (xi)
∥∥∥2

F
, where the hyper-

parameter β ensures that the model not only fits the data
but also respects known smoothness constraints or differen-
tial structure, which is crucial in physics-based applications.
Large αβ values lead to faster grokking ( Figures 11 and 34).
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Figure 11: Training and test error two layers ReLU teacher-
student with Sobolev training, for different values of the
learning rate α and the Sobolev coefficient β.

Classification On the algorithmic dataset (Power et al.,
2022), ℓ1 and ℓ∗ have the same effect on grokking as ℓ2, i.e.,
smaller regularization coefficient (and learning rate) delay
generalization (see Figure 2 for ℓ∗, and 30 for ℓ1 and ℓ2).
We observe a similar phenomenon on a two-layer ReLU
MLP trained on MNIST (Section H.3.4).

5. Discussion and Conclusion
This work extends the understanding of grokking, show-
ing that the transition from memorization to generalization
can be induced not just by ℓ2 regularization but also by
sparsity or low-rank structure regularization (e.g., ℓ1 and
nuclear norm regularization) or domain-specific regulariza-
tion. These findings are particularly relevant in practice,
where large-scale initialization is not always feasible, yet
grokking still occurs. Sparse and low-rank-based models
with good generalization performance are very useful in
machine learning today, not only because they consume less
memory during training and inference but also because they
are more interpretable than their dense and full-rank coun-
terparts. The sparsity and low-rank assumptions are also
central to techniques such as Low-Rank Adaptation of larger
deep learning models (Hu et al., 2021) and model pruning
(Han et al., 2015) in resource-efficient deep learning; sparse
autoencoders in mechanistic interpretability (Cunningham
et al., 2023; Bricken et al., 2023) for AI safety (Bereska &
Gavves, 2024); to name a few.

Our results highlight that in deep models, gradient descent
implicitly drives the model towards solutions with sparse or
low-rank properties, effectively mitigating overfitting (Arora
et al., 2018). We also study the impact of data selection on
grokking and demonstrate that it can be mitigated solely
through data selection.
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A. Related Works
A.1. Grokking

Universality Liu et al. (2023a) took the first step in demonstrating the universality of grokking by inducing it on non-
algorithmic data, notably on image classification, sentiment analysis, and molecule property prediction. On the same line,
Gromov (2023); vZunkovivc & Ilievski (2024); Levi et al. (2024) show that grokking can occur for (analytically solvable
toy) models. Barak et al. (2022) observed grokking on the binary sparse parity problem, Charton (2024) on greatest common
divisor (with Transformer), Doshi et al. (2024b) on modular polynomials, Lyu et al. (2023) on matrix completion and sparse
linear predictors, Beck et al. (2024) and Levi et al. (2024) on binary logistic classification, Xu et al. (2023) on XOR-cluster
training data. Miller et al. (2024b) show that grokking occurs beyond neural networks—in models like Gaussian process
(regression and classification), linear regression, and Bayesian neural networks—driven by a trade-off between model
complexity and error, not just feature learning or weight decay. Wang et al. (2024) and Abramov et al. (2025) show that
grokking enables Transformers to develop reasoning abilities, emerging only after extended training, whether on synthetic
comparison/composition tasks or real-world multi-hop reasoning augmented with inferred facts. Li (2024) observe that both
binary and ternary Transformer exhibit grokking on modular addition under weight decay regularization, and do not do so
without weight decay. Mallinar et al. (2024) show that grokking occurs beyond neural networks and gradient descent, as
kernel-based Recursive Feature Machines trained with Average Gradient Outer Product also exhibit delayed generalization
through emergent structured features. Kumar et al. (2024) find that mice show grokking-like behavior, i.e., even after
behavioral performance plateaus, neural representations in sensory cortex continue evolving, improving generalization
through margin maximization. Mustafa & Burkholz (2024) investigate grokking-like phenomena in Graph Neural Networks,
particularly focusing on tasks involving heterophilic and homophilic graphs.

Interpretability and Explainability Since the concept of “grokking” emerged, numerous theories have been proposed to
explain the phenomenon. Liu et al. (2023b) present representation learning as the main underlying factor of the existence of
generalizing solutions, supporting Power et al. (2022)’s preliminary observations. Exploring the direction that separates
generalization from memorization solutions (i.e., progressions measures for generalization), recent studies shed light on
various factors, such as neuron activity (Nanda et al., 2023), weight norm of the model parameters (Liu et al., 2023a),
sparsity (Merrill et al., 2023), time scales of pattern formation (Davies et al., 2023), Fourier gap (Barak et al., 2022), last
layer norm (Thilak et al., 2022), fast vs low-frequency components (Zhou et al., 2024), mutual information ratio of neural
representation (Song et al., 2024), phase transition (Clauw et al., 2024; Rubin et al., 2024), rank minimization (Yunis et al.,
2024), rise and fall in model complexity (DeMoss et al., 2024; Humayun et al., 2024), etc. Also, weight decay and weight
norm decrease (Liu et al., 2023a; Varma et al., 2023), a gradual process facilitated by optimization (Nanda et al., 2023;
Merrill et al., 2023; Barak et al., 2022; Davies et al., 2023; Notsawo et al., 2023), the instability induced by the Adam
optimizer (Thilak et al., 2022), are among the factors that has been use to explain why the transition from memorization
to generalization. According to Varma et al. (2023), grokking arises from a generalizing circuit being favored over a
memorizing circuit. Miller et al. (2024a) introduce a method to quantify the sharpness of the grokking transition in neural
networks. Doshi et al. (2024a) show that in the presence of label corruption, grokking can still occur, with networks first
generalizing before later unlearning memorized noise, highlighting a separation between generalization and memorization
phases. Zhu et al. (2024) show that grokking in language models emerges when training data exceeds a critical size, with
larger models requiring more data to generalize beyond memorization. Huang et al. (2024) propose a unified framework
explaining grokking, double descent, and emergent abilities through the lens of competition between memorization and
generalization circuits. Chughtai et al. (2023) and Stander et al. (2024) reverse engineer (small) neural networks learning
finite group composition via mathematical representation theory. Golechha (2024) show that ℓ2 norm alone can not explain
grokking, as it occurs even outside the typical “goldilocks zone”(Liu et al., 2023a), and propose alternative measures like
activation sparsity and weight entropy that better track generalization dynamics. Prieto et al. (2025) explain grokking as a
result of Softmax Collapse—numerical instability from floating-point errors that halts learning after memorization.

Predictability To the question of whether grokking can be predicted, Notsawo et al. (2023) answered in the affirmative,
proposing as a predictable measure the spectral signature of the training loss in the early optimization phases of the model
training. Hu et al. (2024) models neural network training as a Hidden Markov Model (HMM) over weight statistics to
uncover discrete training phases. Applied to grokking tasks, this reveals distinct latent states corresponding to memorization
and generalization, with “detour” states explaining delayed generalization. The approach offers a structured way to analyze
and predict grokking by linking it to transitions between these latent training states. Murty et al. (2023) explore how vanilla
Transformers eventually grok hierarchical rules after extended training, and find that weight norm and attention sparsity
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are inconsistent and often unreliable for forecasting generalization. They introduce a “tree-structuredness” (Murty et al.,
2022) metric that significantly outperforms weight norm in predicting whether and when a model will grok. Miller et al.
(2024b) argue that grokking may be possible in any model where the solution search is guided by complexity and error. This
notion of complexity is related to what we refer to as regularization in our work. Fan et al. (2024) show that deeper MLPs
on MNIST grok more often and in stages, and that weight norm poorly predicts generalization compared to internal feature
rank dynamics.

Stochasticity Our work also contradicts the hypothesis put forward when grokking was first observed, namely that
grokking may be due to stochasticity or an anomaly in the optimization (Power et al., 2022; Thilak et al., 2022). For sparse
recovery and matrix factorization, the optimization algorithms we use are all deterministic (up to initialization).

Feature Learning Kumar et al. (2023) show that grokking can emerge without weight decay, as a result of a delayed
transition from lazy (fixed-feature) to rich (feature-learning) dynamics during training. In contrast, Lyu et al. (2023) explain
grokking through implicit bias, showing that large initialization and small weight decay induce a shift from kernel-like to
margin-maximizing behavior, highlighting different but complementary mechanisms behind grokking. Xu et al. (2023)
provide a theoretical example of grokking in ReLU networks by analyzing the feature learning process under GD, and show
that test generalization can emerge well after perfect (and initially non-generalizing) memorization of noisy XOR-cluster
training data. Morwani et al. (2024) demonstrate that neural networks trained on tasks like modular addition and sparse
parity naturally converge to solutions based on Fourier features and group-theoretic representations (Nanda et al., 2023;
Chughtai et al., 2023). This behavior arises from the principle of margin maximization, even without explicit regularization,
providing a theoretical explanation for grokking as a delayed transition from memorization to structured feature learning.

Large Initialization and ℓ2 Regularization A direct work related to ours on grokking is Lyu et al. (2023), which analyzes
the emergence of grokking under ℓ2 regularization and large-scale initialization in homogeneous models. Their results
show that under such conditions, grokking can occur as a delayed generalization phenomenon. However, their analysis is
limited to ℓ2 weight decay and does not generalize to other regularization schemes. In contrast, our work extends beyond ℓ2,
demonstrating that grokking also arises under ℓ1 and nuclear norm (ℓ∗) regularization, even without large-scale initialization.
In the theoretical settings we study—such as sparse recovery and low-rank matrix factorization—ℓ2 regularization alone
fails to induce grokking. Instead, it produces a sharp drop in generalization error during training that does not correspond to
true generalization. We refer to this failure mode as grokking without understanding, which we attribute to the violation
of key assumptions in Lyu et al. (2023) (notably Assumption 3.2). Our results further show that grokking may even be
necessary in practice: for instance, when targeting low-rank solutions via ℓ∗ regularization, it is preferable to use the smallest
feasible regularization strength and train well beyond the point of overfitting to achieve generalization. Levi et al. (2024)
work on classification settings and show that the sharp increase in generalization accuracy may not imply a transition from
“memorization” to “understanding” but can be an artifact of the accuracy measure. This aligns with the “grokking without
understanding” problem we observe in sparse recovery and low-rank matrix factorization.

Accelerating Grokking Park et al. (2024) accelerate grokking by using data augmentation for commutative operations and
transfer learning across model components aligned with the Kolmogorov-Arnold representation. Lee et al. (2024) accelerate
grokking by amplifying slow gradient components, reducing training time across tasks. Xu et al. (2025) accelerate grokking
by initializing larger models with embeddings from smaller trained models, eliminating delayed generalization. Minegishi
et al. (2025) show that grokking can be accelerated by identifying “grokking tickets”—sparse subnetworks that emerge after
generalization—and retraining them, which leads to much faster generalization than the original dense model. (Prieto et al.,
2025) accelerate grokking using a stable softmax variant and a gradient projection method to prevent collapse and enable
faster generalization without regularization.

Sparsity and Low-Rankness Barak et al. (2022) observed grokking on the binary sparse parity problem, and Merrill
et al. (2023) shows that two subnetworks compete during training on such a task: a dense (memorization) subnetwork and a
sparse (generalization) subnetwork. Since a very sparse network that generalizes the sparse parity data can be built (Merrill
et al., 2023), we conjecture that it is this sparsity that gives the models trained on this task their grokking nature, as well as
the algorithmic dataset (Power et al., 2022), but leave further investigation for future work. To the best of our knowledge,
we are the first to formally study grokking in the context of sparse recovery and low-rank matrix factorization (the shallow
case). Lyu et al. (2023) show that low-rank matrix completion problems exhibit grokking with large initialization. But we
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prove that even on such a simple model, we do not need way decay and large initialization to observe grokking, but just ℓ1/∗
regularization.

A.2. Model Distillation, Sparse Dictionary Learning, Sparse Auto-Encoder, and Coreset Selection

Note that the parameterization b = Φa gives Fa(x) = a⊤Φ⊤x, i.e. Fa(X) = XΦa; which is a two-layer linear neural
network with the weights of the first layer given by Φ⊤ ∈ Rm×n (fixed) and those of the second layer given by a ∈ Rm, to
be optimized. Compressed sensing thus corresponds somehow to a model distillation (teacher-student), where we aimed to
find a sparse version of model parameters using fewer data points. This could be strengthened by assuming that we have
only the measures y∗ of the sparse representation a∗ of the signal and the measurement matrix M, but not the basis in which
it is sparse, and the problem is to find both Φ and a∗, i.e. minimize ∥a∥1 subject to ∥FΦa(M) − y∗∥2 ≤ ϵ and Φ ∈ C.
This is the case for matrix factorization, where the sparse basis (singular vector space) is jointly optimized along with the
sought sparse coordinates a∗ (singular values). Here, C can be the set of orthonormal matrix (Φ⊤Φ = In), unit column norm
matrix ( Φ⊤

:,iΦ:,i = 1), etc. It can be interesting to see if ℓ1 allows us to recover the parameters with fewer samples than the
most used ℓ2 in deep learning. Looking for a sparse a mean, we assume that only a few components of the representation
h(x) = Φ⊤x ∈ Rn contribute to the output y(x) = a⊤h(x). This kind of method (sparse auto-encoder) is used a lot in
mechanistic interpretability today to separate and interpret the features a pre-trained model has learned (Cunningham et al.,
2023; Bricken et al., 2023), a promising direction for AI safety (Bereska & Gavves, 2024). Compressed sensing theory
gives us an idea of how to select data to extract important features with the fewest possible examples: we need to select the
samples that are most “incoherent” with the feature extractor (assumed fixed).

This formulation is also related to:

• The coreset selection problem (Tsang et al., 2005; Huggins et al., 2017; Lucic et al., 2018), which consists of selecting
a small subset comprised of most informative training samples such that training on this subset can achieve comparable
or even better performance with that on the full dataset (Zhou et al., 2022).

• The sparse dictionary learning problem (Olshausen & Field, 1996; Aharon et al., 2006; Mairal et al., 2010; 2014), where
we have a collection B ∈ Rd×N of N point in Rd and aim to write each of them as a combination of a few numbers of
atoms of a dictionary Φ ∈ Rd×n, that is B:,i = ΦA:,i∀i ∈ [N ], with ∥A:,i∥0 small. Let C = {C ∈ Rd×n, ∥C:,i∥2 ≤
1 ∀i ∈ [n]}. We want Φ̂ = argminΦ∈C

1
N

∑N
i=1 l(B:,i,Φ) with l(b,Φ) = mina∈Rn ∥b− Φa∥22 + λ∥a∥1. That is

Φ̂, Â = argmin
Φ∈C,A∈Rn×N

1

N
∥B− ΦA∥2F + λ

N∑
i=1

∥A:,i∥1

The generalization error is E(Φ) = Ebl(b,Φ). The sparse coding problem l(b,Φ) = mina∈Rn ∥b−Φa∥22 + λ∥a∥1 is
just the problem we study above.

We leave these points as a future direction for this work.

A.3. Finite Field

Compressed Sensing In compressed sensing and sparse recovery in Fp = Z/pZ (for a prime integer p), incoherence
between the measurement matrix M and the sparse basis Φ remains important but requires modular arithmetic. Recovery
of a sparse signal b∗ from the measurements y∗ = MΦb∗ is possible, provided that M and Φ are chosen to ensure low
coherence in the modular structure. However, recovery algorithms are more complex due to the finite nature of the field and
may involve different mathematical tools (e.g., algebraic techniques from coding theory) instead of standard optimization
methods.

Matrix Factorization We can see A∗ ∈ Fn1×n2
p as representing a binary operation over Fp, and the aim is to learn this

operation from a proportion of sample3. This is the vanilla setup where grokking was first observed (Power et al., 2022).
Large-scale initialization can not explain the grokking phenomenon in such a setup since it is often observed with standard
initialization. Many works also use mechanistic interpretability to find the algorithm deep neural networks use to generalize

3For example, A∗ = uu⊤ with u = [0, . . . , p− 1] for the multiplication operation.
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in such a setup and propose a progression measure for generalization (Nanda et al., 2023; Gromov, 2023). Still, none explain
what makes such data particular. Liu et al. (2023b) propose the representation learning hypothesis but uses a loss function
that encourages such representation to emerge for standard deep neural networks (MLP and Transformer). Mohamadi
et al. (2024) explain grokking in modular addition as a transition from a kernel regime, where generalization fails, to a rich
regime that captures the task’s global algebraic structure—making grokking especially pronounced in modular arithmetic.
Investigating how our work can effectively answer why grokking is naturally observed in such a setup is a future direction
for this work.

B. Notations
Our notation is standard.

• We use the notation iid for “independently and identically distributed”. For A ∈ Rm×n, the notation A
iid∼ N

(
µ, σ2

)
means the entries of A are independently sampled from the normal distribution with mean µ and standard deviation σ.
This notation is valid for any other distribution used in this paper.

• For two functions ϕ, ψ : R≥0 → R, we write ϕ(z) = O(ψ(z)) if there exist constants C > 0 and z0 ∈ R≥0 such
that |ϕ(z)| ≤ C ψ(z) for all z ≥ z0; ϕ(z) = Ω(ψ(z)) if ϕ(z) ≥ C ψ(z) for all z ≥ z0; and ϕ(z) = Θ(ψ(z)) if both
ϕ(z) = O(ψ(z)) and ϕ(z) = Ω(ψ(z)).

• We let e(n)k = [In]:,k be the kth vector of the canonical basis of Rn, e(n)kl = δkl∀l. The subscript (n) will be omitted
when the context is clear.

• σmax /min(A) is the maximum (resp. minimum) singular value of a matrix A, with λmax /min(A) the corresponding
eigenvalue

• For a vector x ∈ Rn, ∥x∥0 = |{i ∈ [n],xi ̸= 0}|, ∥x∥p = (
∑n

i=1 |xi|p)
1
p ∀p ∈ (0,∞) and ∥x∥∞ = maxi∈[n] |xi|.

• For a matrix A ∈ Rm×n, the schatten p-norm of A is ∥A∥p = (
∑

i σi(A)p)
1/p, where {σi(A)}i is the set of

singular value of A. For p = 1, this gives the trace/nuclear norm ∥A∥∗ =
∑

i σi(A) = tr
(√

A⊤A
)

. The induced

p → q norm of A is ∥A∥p→q = supx ̸=0
∥Ax∥q

∥x∥p
= sup∥x∥p=1 ∥Ax∥q. We have ∥A∥1→1 = maxj∈[n]

∑m
i=1 |Aij |

(maximum absolute column sum), ∥A∥2→2 = ∥A∥2 = σmax(A) (operator norm, spectral norm, induced 2-norm) and
∥A∥∞→∞ = maxi∈[m]

∑n
j=1 |Aij | (maximum absolute row sum).

• ⊙ is Hadamard product. For A ∈ Rm×n and B ∈ Rm×n, (A⊙B)i,j = Ai,jBi,j (0 ≤ i < m, 0 ≤ j < p).

• ⊗ is the Kronecker product. For A ∈ Rm×n and B ∈ Rp×q , (A⊗B)pr+v,qs+w = ArsBvw (0 ≤ r < m, 0 ≤ v < p,
0 ≤ s < n and 0 ≤ w < q).

• For A ∈ Rm×n and B ∈ Rp×n, the Khatri-Rao product A ⋆B ∈ Rmp×n contains in each column i ∈ [n] the matrix
A:,i ⊗B:,i. We have the formula A ⋆B = (A⊗ 1p)⊙ (1m ⊗B).

• For A ∈ Rm×n and B ∈ Rm×p, the face-splitting product A • B ∈ Rm×np contains in each row i ∈ [m] the
matrix Ai,: ⊗ Bi,:. It can be seen as the row-wise Khatri-Rao product, and we have (A • B) = (A⊤ ⋆ B⊤)⊤ =(
A⊗ 1⊤p

)
⊙ (1⊤n ⊗B).

C. Proofs
C.1. Proof of Theorem 2.1

Let g : Rp → [0,∞) be a differentiable function, h : Rp → [0,∞) be a subdifferentiable (often convex) function and β > 0.
We want to minimize f := g + βh using gradient descent with a learning rate α > 0. The subgradient update rule for this
problem is given by

x(t+1) = x(t) − αF (x(t)) = x(t) − α
(
G(x(t)) + βH(x(t))

)
∀t ≥ 0 (3)
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where F (x) ∈ ∂f(x) = G(x) + β∂h(x), with G(x) = ∇g(x) the gradient of g at x and H(x) ∈ ∂h(x) any subgradient
of h(x) at x. We want to show that, under certain conditions on α and β, this procedure will first converge to a solution x̂
that minimize g after t1 <∞ training steps, then take additional ∆t = Θ( 1

αβ ) training steps to converge to a solution x∗

that minimizes both f and h. Subdifferentiability, convexity, and smoothness are defined below for completeness.

Definition C.1 (Subdifferentiability). A function φ : Rp → R is said to be subdifferentiable at x ∈ Rp if and only if there
exists z ∈ Rp, φ(y) ≥ φ(x) + (y − x)⊤z ∀y ∈ Rp. The set of all such z at is called the subdifferential of φ at x and is
denoted ∂φ(x). When ∂φ(x) is the singleton set, we say that φ is differentiable at x : ∂φ(x) = {∇φ(x)}.

Definition C.2 (Convexity). A function φ : Rp → R is said to be convex if and only if φ (tx+ (1− t)y) ≤ tφ(x) + (1−
t)φ(y) ∀x,y ∈ Rp, ∀t ∈ (0, 1). Ifφ is subdifferentiable, this impliesφ(y) ≥ φ(x)+(y−x)⊤z ∀x,y ∈ Rp, ∀z ∈ ∂φ(x).
If φ is twice-differentiable, this implies λmin

(
∇2φ(x)

)
≥ 0 ∀x ∈ Rp.

Definition C.3 (Smoothness). Let φ : Rp → R be a differentiable function and L > 0. We say that φ is L-smooth if and
only if ∇φ is L-Lipschitz continuous, i.e. ∥∇φ(y)−∇φ(x)∥2 ≤ L∥y − x∥2 ∀x,y ∈ Rp.

Lemma C.4. If a function φ : Rp → R is L-smooth, then

• φ(y) ≤ φ(x) + (y− x)⊤∇φ(x) + L
2 ∥y− x∥22 ∀x,y ∈ Rp. The converse is false in general, and true for a convex φ.

• ∥∇φ(x)∥22 ≤ 2Lφ(x) ∀x ∈ Rp for a non-negative φ. The converse is false.

• λ(∇2φ(x)) ∈ [−L,L] ∀x ∈ Rp for a twice-differentiable φ. The converse is true.

• ∇φ is 1/L-cocoercive for a convex φ, i.e. (∇φ(y)−∇φ(x))⊤ (x− y) ≥ 1
L∥∇φ(y) − ∇φ(x)∥22 ∀x,y ∈ Rp

(Baillon–Haddad inequality). The converse is true.

We use the following notations. For a non empty set Θ ⊂ Rp and a vector x ∈ Rp, we let dist(x,Θ) := infy∈Θ ∥x− y∥2.
We define f∗ := infx∈Rp f(x) and Θf := argminx∈Rp f(x). Similarly we define g∗ and Θg, h∗ and Θh. We finally set
h∗g := infx∈Θg h(x), i.e. h∗g = infx∈Rp h(x) s.t. x ∈ Θg , and Θg

h := argminx∈Θg
h(x).

In general, f∗ ̸= g∗ + βh∗. In fact, we have f∗ ≥ g∗ + βh∗. This implies

f∗ ≥ g∗ + βh∗ ⇐⇒ −f∗ ≤ −g∗ − βh∗

=⇒ 0 ≤ f(x)− f∗ ≤ f(x)− g∗ − βh∗ = g(x)− g∗ + β(h(x)− h∗)

=⇒ |f(x)− f∗| ≤ |g(x)− g∗ + β(h(x)− h∗)| ≤ |g(x)− g∗|+ β|h(x)− h∗|
(4)

So g(x) → g∗ and h(x) → h∗ implies f(x) → f∗. But in general, it will not be possible to jointly have g(x(t)) → g∗ and
h(x(t)) → h∗ by gradient descent. We will show that we first have g(x(t)) → g∗, then h(x(t)) → h∗g .

Assumption C.5. Θf ∩Θg ̸= ∅.

This assumption assumes too little noise compared to the signal. Even if initially g(x(t)) → g∗ (i.e., memorization of
training data with associated noise), as soon as generalization occurs, |g(x(t))− g∗| becomes proportional to the noise in
the data. But under this assumption, when memorization is achieved, we can not have f(x(t)) → f∗ without h(x(t)) → h∗g .

Lemma C.6. If assumption C.5 holds, then f∗ = g∗ + βh∗g; and hence β(h(x) − h∗g) ≤ g(x) − g∗ + β(h(x) − h∗g) ≤
f(x)− f∗ ∀x ∈ Rp.

Proof. Assume Θf ∩ Θg ̸= ∅. Then there exists x∗
f ∈ Θf such that g(x∗

f ) = g∗. This implies x∗
f ∈ Θg. Under this

assumption, f∗ = g(x∗
f ) + βh(x∗

f ) = g∗ + βh(x∗
f ). Since x∗

f ∈ Θg, h(x∗
f ) ≥ h∗g, so f∗ ≥ g∗ + βh∗g. Conversely,

we have g∗ + βh∗g = g(x) + βh(x) = f(x) ≥ f∗ for any x ∈ Θg
h ⊂ Θg. Therefore, f∗ = g∗ + βh∗g. This implies

f(x)− f∗ = g(x)− g∗ + β(h(x)− h∗g) ≥ β(h(x)− h∗g) since g(x)− g∗ ≥ 0.

Assumption C.7. Since Θg = argminx∈Rp(g(x)− g∗), we assume without loss of generality g∗ = 0.

If g is the loss function of an overparameterized neural network, then for β = 0, f = g converges to a solution x∗ close to
the initialization x(0) such that g(x∗) = 0, under certain conditions on α and g (see, for example, Theorems C.25 and C.15).
We will extend this result to the case β > 0.

Assumption C.8. We assume there exists x ∈ Rp such that g(x) = g∗.
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We define the Chatterjee–Łojasiewicz (CL) constant of a subdifferentiable function φ : Rp → [0,∞) at x∈ Rp with radius
r > 0, and with respect to another function ϕ : Rp → [0,∞) as:

χ(φ,x, r, ϕ) :=

 ∞ if ϕ(y) = 0 ∀y ∈ B(x, r)

infy∈B(x,r)
ϕ(y)̸=0

infz∈∂φ(y) ∥z∥2
2

ϕ(y) otherwise.

=

 ∞ if ϕ(y) = 0 ∀y ∈ B(x, r)

infy∈B(x,r)
ϕ(y)̸=0

∥∇φ(y)∥2
2

ϕ(y) otherwise. if φ is differentiable

(5)

and
χ(φ,x, r) := χ(φ,x, r, φ) (6)

where B(x, r) := {y ∈ Rp | ∥x− y∥2 ≤ r} denote the closed Euclidean ball of radius r centered at x.
Definition C.9 (Chatterjee–Łojasiewicz inequality). For r > 0, a nonnegative subdifferentiable function φ : Rp → [0,∞)
is said to satisfy the r-CL inequality at x ∈ Rp if and only if 4φ(x) < r2χ(φ,x, r).
Theorem C.10. Take any x(0) ∈ Rp with g(0) := g(x(0)) ̸= 0. Assume that g satisfy the r-CL inequality at x(0) for some
r > 0, i.e. 4g(0) < r2χ(g,x(0), r). There exist βmax > 0, αmax > 0 and three constants C,C ′, C ′′ > 0 such that for
all α ∈ (0, αmax) and β ∈ (0, βmax), by defining the subgradient descent update (3) with α and β starting at x(0), the
following hold:

• Fo any ϵg = Ω(βC), there exists a step t1 ≥ max
{
0,− log

(
ϵg/g

(0)
)
/ log

(
1−Θ(χ(g,x(0), r) · α)

)}
such that

g(x(t1)) ≤ ϵg , ∥∇g(x(t1))∥22 ≤ C ′′g(x(t1)) ≤ C ′′ϵg , and {x(t)}0≤t≤t1 ⊂ B(x(0), r).

• For any η > 0, mint1≤t≤t2

(
f(x(t))− f∗

)
≤ (η+C′αβ)β

2 if and only if t2 > t1 + ∆t(η, t1), with ∆t(η, t1) :=
dist2(x(t1),Θf )

αβη . Moreover, assuming Assumptions C.5 holds, we have f(x(t))− f∗ = g(x(t))− g∗ + β(h(x(t))− h∗g)

and so mint1≤t≤t2

(
h(x(t))− h∗g

)
= η+C′αβ

2 if and only if t2 > t1 +∆t(η, t1).

Proof. Set χ := χ(g,x(0), r). Since 4g(0) < r2χ, there exist ϵ ∈ (0, 1) and γ ∈ (0, ϵ) such that 4g(0) <
(

1−ϵ
1+γ

)2
r2χ

(see Lemma C.11). Let L1 := supx∈B(x(0),r) ∥∇g(x)∥∞ < ∞, L2 := supx∈B(x(0),2r) ∥ vec
(
∇2g(x)

)
∥∞ < ∞,

L :=
√
pL2, and Lh := supx∈B(x(0),r) supH∈∂h(x) ∥H∥∞ < ∞. We choose any β ∈ (0, βmax) with βmax > 0 and

βmax supH∈∂h(x(0)) ∥H∥2 ≤ γ∥G(x(0))∥2, and any step size α ∈ (0, αmax) such that

αmax = min

{
r

(L1 + βmaxLh)
√
p
,
2(ϵ− γ)

L2p
,

1

(1 + γ)L

}
(7)

Let δ = (1 − ϵ) · χ · α ∈ (0, 1) (Lemma C.20) and τ = 1 − (1 + γ)αL ∈ (0, 1). From Theorem C.14, when
γ∥∇g(x(0))∥2/βLh ≥ τ−t, we have x(k) ⊂ B(x(0), r), g(x(k)) ≤ (1 − δ)kg(0) and ∥∇g(x(k))∥22 ≤ 2Lg(x(k)) ≤
2L(1− δ)kg(0) for all 0 ≤ k ≤ t. Setting (1− δ)tg(0) ≤ ϵg gives

t := t(ϵg) ≥ max

{
0,

log(ϵg/g
(0))

log(1− δ)

}
=

{
0 if ϵg > g(0)

log(ϵg/g
(0))

log(1−(1−ϵ)·χ(g,x(0),r)·α)
≈ − log(ϵg/g

(0))

(1−ϵ)·χ(g,x(0),r)·α = − 1
Θ(α·χ(g,x(0),r))

log
(

ϵg
g(0)

)
otherwise

(8)

From γ∥∇g(x(0))∥2/βLh ≥ τ−t, we have t ≤ log(βLh/∥∇g(x(0))∥2)/ log(τ). So for t(ϵg) to be well define, we need
log(ϵg/g

(0))
log(1−δ) ≤ log(βLh/∥∇g(x(0))∥2)

log(τ) when ϵg ≤ g(0). This is equivalent to ϵg > ζg(0) = DβC , with

ζ =

(
βLh

γ∥∇g(x(0))∥2

) log(1−δ)
log τ

∈ (0, 1) since βLh < γ∥∇g(x(0))∥2

C =
log(1− δ)

log τ
> 0 since 1− δ ∈ (0, 1) and τ ∈ (0, 1)

D = g(0)
(

Lh

γ∥∇g(x(0))∥2

)C

(9)
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Let F (x) ∈ ∂f(x) = ∇g(x) + β∂h(x). From Lemma C.12, we have

min
t1≤t≤t2

(
f(x(t))− f∗

)
≤ dist2(x(t1),Θf ) + (t2 − t1)α

2 maxt1≤t≤t2 ∥F (x(t))∥22
2(t2 − t1)α

−→
t2→∞

α

2
max
t1≤t

∥F (x(t))∥22 (10)

Since ∥F (x(t))∥22 = O(β2) for all t ≥ t1 when ∥G(x(t))∥2 ≪ βH(x(t)) (the second phase of training is driven by
βH(x(t)), see Theorem C.16), we obtain from Theorem C.13 that there exists C ′ > 0,

min
t1≤t≤t2

(
f(x(t))− f∗

)
≤ (η + C ′αβ)β

2
⇐⇒ t2 ≥ t1 +

dist2(x(t1),Θf )

αβη
(11)

And if Θf ∩Θg ̸= ∅,

min
t1≤t≤t2

(
h(x(t))− h∗g

)
≤ η + C ′αβ

2
⇐⇒ t2 ≥ t1 +

dist2(x(t1),Θf )

αβη
(12)

Lemma C.11. For all a, b ∈ R with 0 < a < b. (1) There exists ϵ ∈ (0, 1) such that a < (1− ϵ)
2
b. (2) There exist

ϵ ∈ (0, 1) and γ ∈ (0, ϵ) such that a <
(

1−ϵ
1+γ

)2
b. (3) There exist ϵ ∈ (0, 1) and γ ∈ (0, 1− ϵ) such that a <

(
1−(ϵ+γ)

1+γ

)2
b.

Proof. Set ρ = a
b ∈ (0, 1) and τ =

√
ρ ∈ (0, 1). (1) Take any ϵ ∈ (0, 1 − τ) ⇐⇒ ρ < (1 − ϵ)2 < 1. (2) Pick

γ = 1−τ
2τ ∈

(
0, 1−τ

τ

)
and ϵ ∈

(
0, 1+τ

2

)
. (3) Pick γ = 1−τ

2(1+τ) ∈
(
0, 1−τ

1+τ

)
and ϵ ∈

(
0, 1−τ

2

)
.

Lemma C.12. For all t1 and t2 with t1 ≤ t2, we have

min
t1≤t≤t2

(
f(x(t))− f∗

)
≤ dist2(x(t1),Θf ) + (t2 − t1)α

2 maxt1≤t≤t2 ∥F (x(t))∥22
2(t2 − t1)α

−→
t2→∞

αmax
t1≤t

∥F (x(t))∥22 (13)

and

min
t1≤t≤t2

[
sup
x∈Θg

(
x(t) − x

)⊤
G(x(t)) + β

(
h(x(t))− h∗g

)]
≤ min

t1≤t≤t2

[(
g(x(t))− g∗

)
+ β

(
h(x(t))− h∗g

)]
≤ dist2(x(t1),Θg) + (t2 − t1)α

2 maxt1≤t≤t2 ∥F (x(t))∥22
2(t2 − t1)α

(14)

Moreover, if Assumptions C.5 holds, then

β min
t1≤t≤t2

(
h(x(t))− h∗g

)
≤ min

t1≤t≤t2

(
f(x(t))− f∗

)
≤ dist2(x(t1),Θf ) + (t2 − t1)α

2 maxt1≤t≤t2 ∥F (x(t))∥22
2(t2 − t1)α

(15)

Proof. By the definition of the subgradient F (x(t2)) of f at x(t2), we have
(
x− x(t2)

)⊤
F (x(t2)) ≤ f(x) −

f(x(t2)) ∀x ⇐⇒ −
(
x(t2) − x

)⊤
F (x(t2)) ≤ −(f(x(t2))− f(x)) ∀x. So, for all x, we have

∥x(t2+1) − x∥22 = ∥x(t2) − αF (x(t2))− x∥22

= ∥x(t2) − x∥22 − 2α
(
x(t2) − x

)⊤
F (x(t2)) + α2∥F (x(t2))∥22

≤ ∥x(t2) − x∥22 − 2α
(
f(x(t2))− f(x)

)
+ α2∥F (x(t2))∥22

≤ ∥x(t1) − x∥22 − 2α

t2∑
t=t1

(
f(x(t))− f(x)

)
+ α2

t2∑
t=t1

∥F (x(t))∥22

(16)
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This implies

0 ≤ inf
x∈Θf

∥x(t2+1) − x∥22 ≤ inf
x∈Θf

∥x(t1) − x∥22 − 2α sup
x∈Θf

t2∑
t=t1

(
f(x(t))− f(x)

)
+ α2

t2∑
t=t1

∥F (x(t))∥22

=⇒ 2α sup
x∈Θf

t2∑
t=t1

(
f(x(t))− f(x)

)
≤ dist2(x(t1),Θf ) + α2

t2∑
t=t1

∥F (x(t))∥22

=⇒ 2α(t2 − t1) sup
x∈Θf

min
t1≤t≤t2

(
f(x(t))− f(x)

)
≤ dist2(x(t1),Θf ) + (t2 − t1)α

2 max
t1≤t≤t2

∥F (x(t))∥22

⇐⇒ min
t1≤t≤t2

(
f(x(t))− inf

x∈Θf

f(x)

)
≤ dist2(x(t1),Θf ) + (t2 − t1)α

2 maxt1≤t≤t2 ∥F (x(t))∥22
2(t2 − t1)α

(17)

This proves the first inequality. We also have, for all x, −
(
x(t2) − x

)⊤
H(x(t2)) ≤ −(h(x(t2)) − h(x)) and

−
(
x(t2) − x

)⊤
G(x(t2)) ≤ −(g(x(t2))− g(x)). So

∥x(t2+1) − x∥22 = ∥x(t2) − αF (x(t2))− x∥22

= ∥x(t2) − x∥22 − 2α
(
x(t2) − x

)⊤
F (x(t2)) + α2∥F (x(t2))∥22

= ∥x(t2) − x∥22 − 2α
(
x(t2) − x

)⊤
G(x(t2))− 2αβ

(
x(t2) − x

)⊤
H(x(t2)) + α2∥F (x(t2))∥22

≤ ∥x(t2) − x∥22 − 2α
(
g(x(t2))− g(x)

)
− 2αβ

(
h(x(t2))− h(x)

)
+ α2∥F (x(t2))∥22

≤ ∥x(t1) − x∥22 − 2α

t2∑
t=t1

(
g(x(t))− g(x)

)
− 2αβ

t2∑
t=t1

(
h(x(t))− h(x)

)
+ α2

t2∑
t=t1

∥F (x(t))∥22

(18)

This implies

2α

[
sup
x∈Θg

t2∑
t=t1

(
g(x(t))− g(x)

)
+ β sup

x∈Θg

t2∑
t=t1

(
h(x(t))− h(x)

)]
≤ dist2(x(t1),Θg) + α2

t2∑
t=t1

∥F (x(t))∥22

⇐⇒ min
t1≤t≤t2

[(
g(x(t))− g∗

)
+ β

(
h(x(t))− h∗g

)]
≤ dist2(x(t1),Θg) + (t2 − t1)α

2 maxt1≤t≤t2 ∥F (x(t))∥22
2(t2 − t1)α

(19)

If Θf ∩Θg , then f(x)− f∗ ≥ β(h(x)− h∗g) (Lemma C.6), and so

β min
t1≤t≤t2

(
h(x(t))− h∗g

)
≤ min

t1≤t≤t2

(
f(x(t))− f∗

)
= min

t1≤t≤t2

(
f(x(t))− inf

x∈Θf

f(x)

)
(20)

Theorem C.13. Let t1 > 0. Define R := dist(x(t1),Θf ) and L := maxt1≤t ∥F (x(t))∥22. Assume there exists a constant
C > 0, L ≤ Cβ2. Then, for any η > 0, mint1≤t≤t2

(
f(x(t))− f∗

)
≤ (η+Cαβ)β

2 if and only if t2 ≥ t1 +
R2

αβη . Moreover, if

Assumptions C.5 holds, then mint1≤t≤t2

(
h(x(t))− h∗g

)
≤ η+Cαβ

2 if and only if t2 ≥ t1 +
R2

αβη .

Proof. Using maxt1≤t≤t2 ∥F (x(t))∥22 ≤ maxt1≤t ∥F (x(t))∥22 = L ≤ Cβ2, we derive the following from Lemma C.12 :

min
t1≤t≤t2

(
f(x(t))− f∗

)
≤ R2 + C(t2 − t1)α

2β2

2(t2 − t1)α
≤ (η + Cαβ)β

2
⇐⇒ R2

2α(t2 − t1)
≤ ηβ

2
⇐⇒ t2 − t1 ≥ R2

αβη
(21)

and

min
t1≤t≤t2

(
h(x(t))− h∗g

)
≤ 1

β

R2 + C(t2 − t1)α
2β2

2(t2 − t1)α
≤ η + Cαβ

2
⇐⇒ R2

2βα(t2 − t1)
≤ η

2
⇐⇒ t2 − t1 ≥ R2

αβη
(22)
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Theorem C.14 (Time of Memorization of fixed-step gradient descent under CL condition and a subdifferentiable regu-
larization). Let g : Rp → [0,∞) be a nonnegative C2 function and h : Rp → [0,∞) be a nonnegative subdifferentiable
function. Take any x(0) ∈ Rp with g(x(0)) ̸= 0. Assume that g is r-CL at x(0) ∈ Rp for some r > 0. Choose

ϵ ∈ (0, 1) and γ ∈ (0, ϵ) such that 4g(x(0)) <
(

1−ϵ
1+γ

)2
r2χ(g,x(0), r), which is possible since 4g(x(0)) < r2χ(g,x(0), r)

(Lemma C.11). Let L1 := supx∈B(x(0),r) ∥∇g(x)∥∞ < ∞, L2 := supx∈B(x(0),2r) ∥ vec
(
∇2g(x)

)
∥∞ < ∞ and

Lh := supx∈B(x(0),r) supH∈∂h(x) ∥H∥∞ < ∞. Define G(x) := ∇g(x) and choose β ≤ βmax with βmax > 0 and
βmax supH∈∂h(x(0)) ∥H∥2 ≤ γ∥G(x(0))∥2. Choose any step size α > 0 such that

α < min

{
r

(L1 + βmaxLh)
√
p
,
2(ϵ− γ)

L2p
,

1

(1 + γ)L

}
with L =

√
pL2 (23)

Set χ := χ(g,x(0), r) and define δ := min{1, (1 − ϵ)χα}. Iteratively define x(k+1) = x(k) −
α
(
G(x(k)) + βH(x(k))

)
∀ H(x(k)) ∈ ∂h(x(k)) for each k ≥ 0. Let τ := 1 − (1 + γ)αL ∈ (0, 1) and assume

γ∥G(x(0))∥2 ≥ βLh

τk for some k > 0. Then

γ∥G(x(j))∥2 ≥ βLh

τk−j
and β sup

H∈∂h(x(j))

∥H∥2 ≤ γ∥G(x(j))∥2 ∀ 0 ≤ j ≤ k (24)

and
∥G(x(k+1))∥2 ≥ τβLh with τβLh < βLh (25)

As a consequence,

• x(1), . . . ,x(k) ∈ B(x(0), r)

• g(x(j)) ≤ (1− δ)jg(x(0)) and ∥∇g(x(j))∥22 ≤ 2Lg(x(j)) ≤ 2L(1− δ)jg(x(0)) for all 0 ≤ j ≤ k

• ∥x(k) − x(j)∥22 ≤ (1− δ)jr2 for all 0 ≤ j < k

Proof. γ∥G(x(0))∥2 ≥ βLh

τk ≥ βLh ≥ βH(x(0)) since x(0) ∈ B(x(0), r). So x(1) ∈ B(x(0), r) (Lemma C.17), and hence
supH∈∂h(x(1)) ∥H∥2 ≤ Lh. Since g is C2, ∇2g(x) is symmetric for all x ∈ Rp, and we thus have σmax(∇2g(x)) ≤
√
pmaxij

∣∣∣[∇2g(x)
]
ij

∣∣∣ ≤ √
pL2 = L for all x ∈ B(x(0), r) ⊂ B(x(0), 2r). So g is L-smooth on B(x(0), r) by

Lemma C.4, i.e.

∥G(x(1))−G(x(0))∥2 ≤ L∥x(1) − x(0)∥2
= αL∥G(x(0)) + βH(x(0))∥2

≤ αL
(
∥G(x(0))∥2 + β∥H(x(0))∥2

)
(Triangle inequality)

≤ (1 + γ)αL∥G(x(0))∥2 since β∥H(x(0))∥2 ≤ γ∥G(x(0))∥2

(26)

So

∥G(x(1))∥2 ≥ ∥G(x(0))∥2 − ∥G(x(1))−G(x(0))∥2 (Triangle inequality)

≥ ∥G(x(0))∥2 − (1 + γ)αL∥G(x(0))∥2 (Equation (26))

= τ∥G(x(0))∥2 since τ = 1− (1 + γ)αL

≥ βLh

γτk−1
since γ∥G(x(0))∥2 ≥ βLh

τk

(27)

We thus have γ∥G(x(1))∥2 ≥ βLh ≥ βH(x(1)). So x(2) ∈ B(x(0), r) (Lemma C.17), and hence supH∈∂h(x(2)) ∥H∥2 ≤
Lh. And so on, we prove that ∥G(x(j))∥2 ≥ βLh

γτk−j and β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 ∀ j ≤ k. We have
∥G(x(k+1))∥2 ≥ τβLh with τβLh < βLh. So either ∥G(x(k+1))∥2 ≥ βLh (and we can proceed to the next iteration), or
βLh ≥ ∥G(x(k+1))∥2 ≥ τβLh (we do not have control after k). The last part of the Theorem follows from Theorem C.16.
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The following Theorem is an extension of the result obtained by Chatterjee (2022), where we add an additional bound on
the gradient. We extend it below to handle the case β ̸= 0 in Theorem C.16.
Theorem C.15 (Convergence of fixed-step gradient descent under CL condition). Let g : Rp → [0,∞) be a non-
negative C2 function. Take any x(0) ∈ Rp with g(x(0)) ̸= 0. Assume that g is r-CL at x(0) ∈ Rp for some
r > 0, i.e. 4g(x(0)) < r2χ(g,x(0), r). Choose ϵ ∈ (0, 1) such that 4g(x(0)) < (1 − ϵ)2r2χ(g,x(0), r) which
is possible since 4g(x(0)) < r2χ(g,x(0), r) (Lemma C.11). Let L1 := supx∈B(x(0),r) ∥∇g(x)∥∞ < ∞ and L2 :=

supx∈B(x(0),2r) ∥ vec
(
∇2g(x)

)
∥∞ < ∞. Choose any step size α > 0 such that α < min

{
r

L1
√
p ,

2ϵ
L2p

}
and iteratively

define x(k+1) = x(k) − α∇g(x(k)) for each k ≥ 0. Then,

• x(k) ∈ B(x(0), r) for all k, and as k → ∞, x(k) converges to a point x∗ ∈ B(x(0), r) where g(x∗) = 0 and
∥∇g(x∗)∥2 = 0.

• Moreover, for each k ≥ 0, ∥x(k) − x∗∥22 ≤ (1− δ)kr2, g(x(k)) ≤ (1− δ)kg(x(0)) and ∥∇g(x(k))∥22 ≤ 2Lg(x(k)) ≤
2L(1− δ)kg(x(0)) with δ := min{1, (1− ϵ) · χ(g,x(0), r) · α} and L =

√
pL2.

Proof. This is a special case of Theorem C.16. The proof sketch is the following. Since ∥x(k) − x(j)∥2 ≤
∑k−1

l=j ∥x(l+1) −
x(l)∥2 =

∑k−1
l=j α∥∇g(x(l))∥2, Lemma C.17 use the fact that, if for some k ≥ 1, x(1), . . . ,x(k−1) ∈ B(x(0), r) (this is

need to prove Lemma C.17 by induction), then
∑k−1

l=j α∥∇g(x(l))∥2 ≤ (1− δ)j/2
√

4g(x(0))
χ(g,x(0),r)·(1−ϵ)2

for all 0 ≤ j ≤ k− 1

(Lemma C.22); so that ∥x(k) − x(0)∥2 < r since 4g(x(0)) < (1− ϵ)2r2 · χ(g,x(0), r), i.e x(k) ∈ B(x(0), r). Lemma C.22

on its turn uses α∥∇g(x(l))∥22 ≤ g(x(l))−g(x(l+1))
1−ϵ (Lemma C.21) and g(x(j+1)) ≤ (1− δ) g(x(j)) (Lemma C.20). Both

Lemmas C.21 and C.20 use |Rj | ≤ ϵα∥∇g(x(j))∥22 (Lemma C.19) with Rj = g(x(j+1))− g(x(j)) + α∥∇g(x(j))∥22.

Theorem C.16 (Convergence of fixed-step gradient descent under CL condition and a subdifferentiable regularization). Let
g : Rp → [0,∞) be a nonnegative C2 function and h : Rp → [0,∞) be a nonnegative subdifferentiable function. Take any
x(0) ∈ Rp with g(x(0)) ̸= 0. Assume that g is r-CL at x(0) ∈ Rp for some r > 0, i.e.

4g(x(0)) < r2χ(g,x(0), r) (28)

Choose ϵ ∈ (0, 1) and :

(1) γ ∈ (0, ϵ) such that

4g(x(0)) <

(
1− ϵ

1 + γ

)2

r2χ(g,x(0), r) (29)

(2) γ ∈ (0, 1− ϵ) such that

4g(x(0)) <

(
1− (ϵ+ γ)

1 + γ

)2

r2χ(g,x(0), r) (30)

The two choices are possible since Equation (28) holds (Lemma C.11). Let

• L1 := supx∈B(x(0),r) ∥∇g(x)∥∞ <∞ be a uniform upper bound on the magnitudes of the first-order derivatives of g
in B(x(0), r)

• L2 := supx∈B(x(0),2r) ∥ vec
(
∇2g(x)

)
∥∞ < ∞ be a uniform upper bound on the magnitudes of the second-order

derivatives of g in B(x(0), 2r)

• and Lh := supx∈B(x(0),r) supH∈∂h(x) ∥H∥∞ < ∞ be a uniform upper bound on the magnitudes of the first-order
subderivatives of h in B(x(0), r)

Define G(x) := ∇g(x) and choose β ≤ βmax with βmax > 0 and βmax supH∈∂h(x(0)) ∥H∥2 ≤ γ∥G(x(0))∥2. Choose any
step size α ∈ (0, αmax) with

αmax :=

 min
{

r
(L1+βmaxLh)

√
p ,

2(ϵ−γ)
L2p

}
(1)

min
{

r
(L1+βmaxLh)

√
p ,

2ϵ
L2p

}
(2)

(31)
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Set χ := χ(g,x(0), r) and define

δ :=

{
min{1, (1− ϵ)χα} (1)
min{1, (1− (ϵ+ γ))χα} (2) (32)

Iteratively define x(k+1) = x(k) − α
(
G(x(k)) + βH(x(k))

)
∀ H(x(k)) ∈ ∂h(x(k)) for each k ≥ 0. For all k such that

β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 ∀ 0 ≤ j < k, the following hold :

• x(1), . . . ,x(k) ∈ B(x(0), r)

• g(x(j)) ≤ (1− δ)jg(x(0)) for all 0 ≤ j ≤ k

• ∥∇g(x(j))∥22 ≤ 2Lg(x(j)) ≤ 2L(1− δ)jg(x(0)) for all 0 ≤ j ≤ k, with L =
√
pL2.

• ∥x(k) − x(j)∥ ≤ (1− δ)j/2r for all 0 ≤ j < k

• The sequence {x(j)}0≤j<k is Cauchy.

Moreover, if β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 ∀ j ≥ 0 (e.g β = 0), then {x(k)}k≥0 converges to a limit x∗ ∈
B(x(0), r) where g(x∗) = 0 and ∥∇g(x∗)∥2 = 0, and we have ∥x(k) − x∗∥2 ≤ r(1− δ)k/2 for all k ≥ 0.

Proof. Let k ≥ 1 such that β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 ∀ 0 ≤ j < k. We prove in Lemma C.17 that
x(1), . . . ,x(k) ∈ B(x(0), r). We also prove in Lemma C.20 that g(x(j)) ≤ (1−δ)jg(x(0)) for all 0 ≤ j ≤ k. Since g is C2,
∇2g(x) is symmetric for all x ∈ Rp. So we have for all x ∈ B(x(0), r) ⊂ B(x(0), 2r), λmax(∇2g(x)) = σmax(∇2g(x)) ≤
√
pmaxij

∣∣∣[∇2g(x)
]
ij

∣∣∣ ≤ √
pL2. So g is L-smooth on B(x(0), r) by Lemma C.4. This implies ∥∇g(x)∥22 ≤ 2Lg(x) for

all x ∈ B(x(0), r) by the same lemma. So ∥∇g(x(j))∥22 ≤ 2Lg(x(j)) ≤ 2L(1− δ)jg(x(0)) for all 0 ≤ j ≤ k.

For all j ≤ k − 1, we have

∥x(k) − x(j)∥2 ≤
k−1∑
l=j

∥x(l+1) − x(l)∥2

=

k−1∑
l=j

α∥G(x(l)) + βH(x(l))∥2

≤

 (1− δ)j/2
√

4(1+γ)2g(x(0))
χ(1−ϵ)2 if α ≤ 2(ϵ− γ)/L2p

(1− δ)j/2
√

4(1+γ)2g(x(0))

χ(1−(ϵ+γ))2
if α ≤ 2ϵ/L2p

(Lemma C.22)

< r(1− δ)j/2 (Equations (29) and (30))

(33)

with

δ :=

{
(1− ϵ)χα if α ≤ 2(ϵ− γ)/L2p
(1− (ϵ+ γ))χα if α ≤ 2ϵ/L2p

∈ (0, 1] (Lemma C.20) (34)

For all ε > 0, if we pick any

K(ε) ≥

{
1 if δ = 1

max
{
1, 2 log(ε/r)

log(1−δ)

}
otherwise =

{
1 if δ = 1 or ϵ ≤ r
2 log(ε/r)
log(1−δ) otherwise (35)

then we have ∥x(k) − x(j)∥ ≤ ε for all j, k > K(ε). So the sequence {x(j)}0≤j<k is Cauchy.

If β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 ∀ j ≥ 0 (e.g β = 0), then {x(k)}k≥0 is Cauchy, and as a Cauchy sequence in
the closed subset B(x(0), r) of Rp, it converges to a limit x∗ ∈ B(x(0), r) that also satisfy ∥x∗ − x(j)∥2 ≤ r(1− δ)j/2 for
all j ≥ 1. Finally, taking k → ∞ in Lemma C.20, we get g(x(j)) ≤ (1− δ)jg(x(0)) for all j ≥ 0. This achieves the proof
of the Theorem.

Lemma C.17 (Iterates stay inside the ball). For all k ≥ 0 such that β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 ∀ 0 ≤ j < k,
we have x(1), . . . ,x(k) ∈ B(x(0), r).
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Proof. We prove that x(k) ∈ B(x(0), r) for all k ≥ 0 such that β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 ∀ 0 ≤ j < k by
induction on k. The base case k = 0 is obvious since β supH∈∂h(x(0)) ∥H∥2 ≤ βmax supH∈∂h(x(0)) ∥H∥2 ≤ γ∥G(x(0))∥2.
Let k ≥ 1. Assume x(j) ∈ B(x(0), r) and β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥22 for all 0 ≤ j ≤ k − 1. Then
x(k) ∈ B(x(0), r) since

∥x(k) − x(0)∥2 ≤
k−1∑
l=0

α∥G(x(l)) + βH(x(l))∥2

≤


√

4(1+γ)2g(x(0))
χ(1−ϵ)2 if α ≤ 2(ϵ− γ)/L2p√

4(1+γ)2g(x(0))

χ(1−(ϵ+γ))2
if α ≤ 2ϵ/L2p

(Lemma C.22 with j = 0)

<

 r if α ≤ 2(ϵ− γ)/L2p since 4g(x(0)) <
(

1−ϵ
1+γ

)2
r2χ (Equation (29))

r if α ≤ 2ϵ/L2p since 4g(x(0)) <
(

1−(ϵ+γ)
1+γ

)2
r2χ (Equation (30))

(36)

Lemma C.18 (Second-order Taylor formula with integral remainder). Let g : Rp → R be a C2 function. For every base
point x∈ Rp and step h∈ Rp, g(x+ h) = g(x) +∇g(x)⊤h+

∫ 1

0
(1− t)h⊤∇2g(x+ th)hdt.

Lemma C.19 (Second-order remainder control). For each j ≥ 0 set Rj := g(x(j+1))− g(x(j)) + α∥G(x(j))∥22. Suppose
that x(j) ∈ B(x(0), r) and β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 for all 0 ≤ j ≤ k − 1, for some k ≥ 1. Then for all
0 ≤ j ≤ k − 1,

|Rj | ≤
{
ϵα∥∇g(x(j))∥22 if α ≤ 2(ϵ− γ)/L2p
(ϵ+ γ)α∥∇g(x(j))∥22 if α ≤ 2ϵ/L2p

(37)

Proof. Let Sj := g(x(j+1))− g(x(j)) + αG(x(j))⊤(G(x(j)) + βH(x(j))) = Rj + αβG(x(j))⊤H(x(j)). Fix j ≤ k − 1
and let x(t) := x(j) − tα

(
G(x(j)) + βH(x(j))

)
with t ∈ [0, 1]. Apply the second-order Taylor formula with integral

remainder (Lemma C.18):

g(x(j+1)) = g
(
x(j) − α(G(x(j)) + βH(x(j)))

)
= g(x(j))− αG(x(j))⊤(G(x(j)) + βH(x(j))) + α2

∫ 1

0

∇g(x(j))⊤∇2g (x(t))∇g(x(j))(1− t)dt
(38)

Hence

Sj = α2

∫ 1

0

∇g(x(j))⊤∇2g(x(t))∇g(x(j))(1− t)dt (39)

Along the segment x(t) with t ∈ [0, 1] we have x(0) = x(j), x(1) = x(j+1). So all points x(t) lie in the line segment joining
x(j) and x(j+1). Because ∥x(j+1)−x(j)∥2 ≤ √

p∥x(j+1)−x(j)∥∞ = α
√
p∥G(x(j))+βH(x(j))∥∞ = α

√
p(L1+βLh) ≤

r, that segment stays inside B(x(0), 2r); thus every entry of ∇2g(x(t)) is bounded by L2. Therefore, for every t,∣∣∣∇g(x(j))⊤∇2g(x(t))∇g(x(j))
∣∣∣ = ∣∣∣∣∣

p∑
i=1

p∑
i′=1

[∇g(x(j))]i[∇2g(x(t))∇g(x(j))]i,i′ [∇g(x(j))]i′

∣∣∣∣∣
≤ L2

p∑
i=1

p∑
i′=1

∣∣∣[∇g(x(j))]i

∣∣∣ ∣∣∣g(x(j))]i′
∣∣∣ = L2∥∇g(x(j))∥21 ≤ L2p∥∇g(x(j))∥22

(40)

So

|Sj | ≤ α2

∫ 1

0

∣∣∣∇g(x(j))⊤∇2g(x(t))∇g(x(j))
∣∣∣ |1− t| dt

≤ α2L2p∥∇g(x(j))∥22
∫ 1

0

(1− t)dt

=
α2

2
L2p∥∇g(x(j))∥22 ≤

{
(ϵ− γ)α∥G(x(j))∥22 if α ≤ 2(ϵ− γ)/L2p
ϵα∥G(x(j))∥22 if α ≤ 2ϵ/L2p

(41)
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This implies

|Rj | = |Sj − αβG(x(j))⊤H(x(j))| ≤ |Sj |+ αβ∥G(x(j))∥2∥H(x(j))∥2

≤ |Sj |+ αγ∥G(x(j))∥22 ≤
{

(ϵ− γ)α∥G(x(j))∥22 + αγ∥G(x(j))∥22 if α ≤ 2(ϵ− γ)/L2p
ϵα∥G(x(j))∥22 + αγ∥G(x(j))∥22 if α ≤ 2ϵ/L2p

(42)

Lemma C.20 (Geometric decay of the objective). Let

δ :=

{
(1− ϵ)χα if α ≤ 2(ϵ− γ)/L2p
(1− (ϵ+ γ))χα if α ≤ 2ϵ/L2p

(43)

We have δ ≤ 1, and if x(j) ∈ B(x(0), r) and β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 for all 0 ≤ j ≤ k− 1, for some k ≥ 1;
then

g(x(j)) ≤ (1− δ)jg(x(0)) ∀0 ≤ j ≤ k (44)

Proof. By the definition of χ := χ(g,x(0), r), we have χg(x) ≤ ∥∇g(x)∥22 for all x ∈ B(x(0), r). Since x(j) ∈ B(x(0), r)
for all 0 ≤ j ≤ k − 1, ∥∇g(x(j))∥22 ≥ χg(x(j)) for all 0 ≤ j ≤ k − 1. So, for all 0 ≤ j ≤ k − 1,

g(x(j+1)) = g(x(j))− α∥∇g(x(j))∥22 +Rj by the definition of Rj

≤
{
g(x(j))− α∥∇g(x(j))∥22 + ϵα∥∇g(x(j))∥22 if α ≤ 2(ϵ− γ)/L2p
g(x(j))− α∥∇g(x(j))∥22 + (ϵ+ γ)α∥∇g(x(j))∥22 if α ≤ 2ϵ/L2p

(Lemma C.19)

=

{
g(x(j))− (1− ϵ)α∥∇g(x(j))∥22 if α ≤ 2(ϵ− γ)/L2p
g(x(j))− (1− (ϵ+ γ))α∥∇g(x(j))∥22 if α ≤ 2ϵ/L2p

≤
{
g(x(j))− (1− ϵ)αχg(x(j)) if α ≤ 2(ϵ− γ)/L2p
g(x(j))− (1− (ϵ+ γ))αχg(x(j)) if α ≤ 2ϵ/L2p

= (1− δ) g(x(j))

(45)

Moreover, taking j = 0 gives g(x(1)) ≤ (1− δ) g(x(0)) =⇒ 1− δ ≥ g(x(1))/g(x(0)) ≥ 0 =⇒ δ ≤ 1.

Lemma C.21 (One-step descent bound). Suppose that x(j) ∈ B(x(0), r) and β supH∈∂h(x(j)) ∥H∥2 ≤ γ∥G(x(j))∥2 for
all 0 ≤ j ≤ k − 1, for some k ≥ 1. Then for all 0 ≤ j ≤ k − 1,

g(x(j))− g(x(j+1)) ≥
{

(1− ϵ)α∥∇g(x(j))∥22 if α ≤ 2(ϵ− γ)/L2p
(1− (ϵ+ γ))α∥∇g(x(j))∥22 if α ≤ 2ϵ/L2p

=
δ

χ
∥∇g(x(j))∥22 (46)

Proof. For all 0 ≤ j ≤ k − 1,

g(x(j))− g(x(j+1)) = α∥∇g(x(j))∥22 −Rj by the definition of Rj

≥
{
α∥∇g(x(j))∥22 − ϵα∥∇g(x(j))∥22 if α ≤ 2(ϵ− γ)/L2p
α∥∇g(x(j))∥22 − (ϵ+ γ)α∥∇g(x(j))∥22 if α ≤ 2ϵ/L2p

(Lemma C.19)
(47)

Lemma C.22 (Bounding cumulative step lengths). Suppose that x(j) ∈ B(x(0), r) and β supH∈∂h(x(j)) ∥H∥2 ≤
γ∥G(x(j))∥2 for all 0 ≤ j ≤ k − 1, for some k ≥ 1. Then for all 0 ≤ j ≤ k − 1,

k−1∑
l=j

α∥G(x(l)) + βH(x(l))∥2 =

 (1− δ)j/2
√

4(1+γ)2g(x(0))
χ(1−ϵ)2 if α ≤ 2(ϵ− γ)/L2p

(1− δ)j/2
√

4(1+γ)2g(x(0))

χ(1−(ϵ+γ))2
if α ≤ 2ϵ/L2p

(48)
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Proof. We have

k−1∑
l=j

α∥G(x(l)) + βH(x(l))∥2

≤
k−1∑
l=j

α
(
∥G(x(l))∥2 + β∥H(x(l))∥2

)

≤
k−1∑
l=j

α(1 + γ)∥G(x(l))∥2 since β∥H(x(l))∥2 ≤ γ∥G(x(l))∥2

=

k−1∑
l=j

√
α2(1 + γ)2∥∇g(x(l))∥22

≤
k−1∑
l=j

√
α2(1 + γ)2χ

δ
(g(x(l))− g(x(l+1))) (Lemma C.21)

=

√
α2(1 + γ)2χ

δ

k−1∑
l=j

(√
g(x(l))−

√
g(x(l+1))

) 1
2
(√

g(x(l)) +
√
g(x(l+1))

) 1
2

≤
√
α2(1 + γ)2χ

δ

k−1∑
l=j

(√
g(x(l))−

√
g(x(l+1))

) k−1∑
l=j

(√
g(x(l)) +

√
g(x(l+1))

) 1
2

(Cauchy–Schwarz)

=

√
α2(1 + γ)2χ

δ

(√g(x(j))−
√
g(x(k))

) k−1∑
l=j

(√
g(x(l)) +

√
g(x(l+1))

) 1
2

(Telescoping the first sum)

≤
√
α2(1 + γ)2χ

δ

√g(x(j))

k−1∑
l=j

(
2
√
g(x(l))

) 1
2

since g(x(l+1)) ≤ g(x(l)) ∀l ≤ k − 1 (Lemma C.21)

≤
√

2α2(1 + γ)2χ

δ

g(x(0))
√

(1− δ)j
k−1∑
l=j

√
(1− δ)l

 1
2

since g(x(j)) ≤ (1− δ)jg(x(0)) ∀j ≤ k (C.20)

= (1− δ)j/4
√

2α2(1 + γ)2χg(x(0))

δ

k−1∑
l=j

(1− δ)l/2

 1
2

= (1− δ)j/4
√

2α2(1 + γ)2χg(x(0))

δ

(
(1− δ)j/2

k−j−1∑
l=0

(1− δ)l/2

) 1
2

≤ (1− δ)j/4+j/4

√
2α2(1 + γ)2χg(x(0))

δ

(
k−j−1∑
l=0

(1− δ/2)l

) 1
2

since
√
1− δ ≤ 1− δ/2

= (1− δ)j/2
√

2α2(1 + γ)2χg(x(0))

δ

[
2

δ

(
1− (1− δ/2)k−j

)] 1
2

≤ (1− δ)j/2
√

2α2(1 + γ)2χg(x(0))

δ

√
2

δ

=

 (1− δ)j/2
√

4(1+γ)2g(x(0))
χ(1−ϵ)2 for δ = (1− ϵ)χα

(1− δ)j/2
√

4(1+γ)2g(x(0))

χ(1−(ϵ+γ))2
for δ = (1− (ϵ+ γ))χα

(49)
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C.2. Main Theorem under Polyak-Łojasiewicz Inequality

In this section, we prove the geometric convergence for g under the classical Polyak-Łojasiewicz (PL) inequality.
Definition C.23 (Generalized Polyak-Łojasiewicz inequality). Let φ : Rp → R be a sub-differentiable function such that
argminx∈Rp φ(x) ̸= ∅ and φ∗ := minx∈Rp φ(x) > −∞. For µ > 0, φ is said to satisfy the µ-PL inequality if and only if

φ(x)− φ∗ ≤ 1

2µ
inf

z∈∂φ(x)
∥z∥22 ∀x ∈ Rp (50)

The PL inequality is typically stated for differentiable functions. This version allows φ to be subdifferentiable, which is a
generalization, and thus is not always equivalent to properties known for the smooth case. The CL inequality can be seen as
a strengthening of the PL inequality and is related to the classical Kurdyka–Łojasiewicz inequality (Chatterjee, 2022).
Theorem C.24. Let φ : Rp → [0,∞) be a subdifferentiable function such that argminx∈Rp φ(x) ̸= ∅. Assume φ∗ :=
minx∈Rp φ(x) = 0. If φ is µ-PL for some µ > 0, then for all x ∈ Rp, φ is r-CL at x whatever r2 ≥ 2φ(x)/µ.
Theorem C.25 (Convergence of fixed-step gradient descent under PL condition). Let g : Rp → [0,∞) be a nonnegative
C2, L-smooth and µ-PL function such that Θg := argminx∈Rp g(x) ̸= ∅, and h : Rp → [0,∞) be a nonnegative
subdifferentiable function. Let g∗ := minx∈Rp g(x). Take any x(0) ∈ Rp, choose any step size α ∈ (0, 2/L) and any β ≥ 0.
Iteratively define x(t+1) = x(t) − α

(
G(x(t)) + βH(x(t))

)
for each t ≥ 0, with G(·) = ∇g(·) and H(·) ∈ ∂h(·). For any

γ ∈ [0, 1) such that κ(γ) := (2− αL)(1− γ)− αLγ2 ∈ [0, 2/µα], and for any t ≥ 0, we have :

β∥H(x(t))∥2 ≤ γ∥G(x(t))∥2 =⇒ g(x(t+1))− g∗ ≤ (1− µ · α · κ(γ))
(
g(x(t))− g∗

)
(51)

β∥H(x(k))∥2 ≤ γ∥G(x(k))∥2 ∀k < t =⇒
∣∣∣g(x(k))− g∗

∣∣∣ ≤ |1− µ · α · κ(γ)|k
(
g(x0)− g∗

)
∀k ≤ t (52)

As a consequence, if Equation (52) holds for some γ ∈ [0, 1) with κ(γ) ∈ [0, 2/µα] and for all t ≥ 0 (e.g. β = 0), then:

g(x(k))− g∗ ≤ (1− µ · α · κ(γ))k
(
g(x(0))− g∗

)
∀k ≥ 0

= (1− µ · α · (2− αL))
k
(
g(x(0))− g∗

)
∀k ≥ 0, for γ = 0

=
(µ
L

)k (
g(x(0))− g∗

)
∀k ≥ 0, for γ = 0 and α = 1/L

(53)

Proof. Fix t ≥ 0, and assume β∥H(x(t))∥2 ≤ γ∥G(x(t))∥2. Since g has an L-Lipschitz continuous gradient, we have

g(x(t+1)) ≤ g(x(t)) + (x(t+1) − x(t))⊤G(x(t)) +
L

2
∥x(t+1) − x(t)∥22 (Lemma C.4)

= g(x(t))− α(G(x(t)) + βH(x(t)))⊤G(x(t)) +
Lα2

2
∥G(x(t)) + βH(x(t))∥22

= g(x(t))− α

2
(2− αL) ∥G(x(t))∥22 −

α

2
(2− αL)βH(x(t))⊤G(x(t)) +

α2L

2
∥βH(x(t))∥22

≤ g(x(t))− α

2
(2− αL) ∥G(x(t))∥22 +

α

2
|2− αL|β

∣∣∣H(x(t))⊤G(x(t))
∣∣∣+ α2L

2
∥βH(x(t))∥22

≤ g(x(t))− α

2
(2− αL) ∥G(x(t))∥22 +

α

2
(2− αL)β∥H(x(t))∥2∥G(x(t))∥2 +

α2L

2
∥βH(x(t))∥22

≤ g(x(t))− α

2
(2− αL) ∥G(x(t))∥22 +

α

2
(2− αL)γ∥G(x(t))∥22 +

α

2
αLγ2∥G(x(t))∥22

= g(x(t))− ακ

2
∥G(x(t))∥22 with κ = (2− αL)− (2− αL) γ − αLγ2 ≥ 0

≤ g(x(t))− αµκ ·
(
g(x(t))− g∗

)
since κ ≥ 0 and g is µ-PL, i.e. ∥G(x(t))∥22 ≥ 2µ(g(x(t))− g∗)

= (1− αµκ)
(
g(x(t))− g∗

)
+ g∗

(54)

As a consequence, if we have β∥H(x(k))∥2 ≤ γ∥G(x(k))∥2 for all k < t, then g(x(1))− g∗ ≤ (1− αµκ)
(
g(x0)− g∗

)
,

|g(x(2)) − g∗| ≤ |1 − αµκ||g(x1) − g∗| ≤ |1 − αµκ|2(g(x0) − g∗), · · · , |g(x(t)) − g∗| ≤ |1 − αµκ||g(xt−1) − g∗| ≤
|1− αµκ|t(g(x0)− g∗). Note that d

dα (1− µα (2− αL)) = 0 ⇐⇒ α = 1/L.
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One recovers the standard convergence result under PL inequality (Karimi et al., 2020) from this Theorem with β = 0
(Equation (53)). Note that the smoothness of g along the trajectory is only a consequence of the result under CL, whereas
under PL, it is assumed in advance. More importantly, the CL is only required at initialization, whereas PL is required on
the entire domain of g.

Let τ = αL ∈ (0, 2) and κ(γ) = (2−τ)−(2−τ)γ−τγ2. We want (α, γ) ∈ (0, 2/L)× [0, 1) such that 0 ≤ κ(γ) ≤ 2/µα.

We have 0 ≤ κ(γ) ⇐⇒ τγ2 + (2− τ)γ − (2− τ) ≤ 0 ⇐⇒ 0 ≤ γ ≤
√

(2−τ)(2+3τ)−(2−τ)

2τ ≤ 1. Since κ is a downward-
opening parabola in γ, its maximum value in the interval [0, 1] occurs at γ = 0 (since the vertex is at a negative γ value).
Therefore, we only need to satisfy the inequality κ(γ) ≤ 2/µα at γ = 0, that is 2− αL ≤ 2

µα ⇐⇒ µLα2 − 2µα+ 2 ≤ 0.
The solutions for α depend on the discriminant ∆ = (−2µ)2 − 4(µL)(2) = 4µ(µ− 2L) of this quadratic.

If µ < 2L, ∆ < 0, and the quadratic function µLα2 − 2µα+ 2 is always positive. So the set of solutions is empty.

If µ = 2L, ∆ = 0, and the quadratic inequality for α is satisfied only at its root α = 2µ
2µL = 1

L . For this single value of α, the

condition on γ is: 0 ≤ γ ≤
√

(2−1)(2+3)−(2−1)

2(1) =
√
5−1
2 . So, the solution set is a line segment,

{(
1
L , γ

)
| γ ∈

[
0,

√
5−1
2

]}
.

If µ > 2L, ∆ > 0, and the quadratic inequality µLα2 − 2µα + 2 ≤ 0 is satisfied for α between the two real roots

α ∈
[
µ−

√
µ2−2µL

µL ,
µ+

√
µ2−2µL

µL

]
⊂ (0, 2/L). For any α chosen from this interval, the corresponding values for γ are

given by 0 ≤ γ ≤
√

(2−αL)(2+3αL)−(2−αL)

2αL .

C.3. Preservation of the Chatterjee–Łojasiewicz Inequality under Perturbation

In Section C.1, we study how g behaves when a regularization h is added to the optimization objective f = g+ βh. We also
study the behavior of f and the regularization term h when g and its gradient are already small. We establish below that,
under some assumptions on h and g, if g is r-CL at x ∈ Rp, then for all ε ∈ (0, 1), there exists βmax = βmax(ε,x, r) > 0
such that for all β < βmax, the function f = g + βh is also εr-CL at x. This means that Theorem C.15 also applies to
f − f∗. In other words, we also have (undefined terms are those of Theorem C.15):

• x(k) ∈ B(x(0), εr) for all k, and as k → ∞, x(k) converges to a point x∗ ∈ B(x(0), εr) where f(x∗) = f∗.

• For each k ≥ 0, ∥x(k) − x∗∥22 ≤ (1− δ)kε2r2 and f(x(k))− f∗ ≤ (1− δ)k
(
f(x(0))− f∗

)
with δ := min{1, (1−

ϵ) · χ(f,x(0), εr) · α}.

We start by introducing a property less restrictive than convexity, which we call the Zero-Stationary Property (ZSP).

Definition C.26 (Zero-Stationary Property). A subdifferentiable function φ : Rp → R is said to satisfy the zero-stationary
property (ZSP) or to be ZSP on U ⊂ Rp if and only if for all x ∈ U , 0 ∈ ∂φ(x) =⇒ φ(x) = 0.

For a ZSP function, if a point is stationary (in the sense that 0 is a subgradient), its value must be zero. In the context
of non-negative functions, this implies that only points with the optimal value (zero) can be stationary. This is linked to
Fermat’s or interior extremum theorem (which identifies stationary points via derivatives), but adds a zero constraint on the
function’s value. The ℓp norm (p > 0) and nuclear norm ℓ∗ are ZSP on Rp. Convex functions are not ZSP in general. Take
for example φ(x) = 1 or φ(x) = (x − 1)2 − 1. But if φ is convex and φ∗ := infx∈Rp φ(x) is in the image Im(φ) of φ,
then φ is ZSP (Lemma C.27). The ZSP property does not imply convexity. The ZSP is local because it only constrains the
function’s value at points where the subgradient contains zero. It does not constrain the function’s curvature or behavior
away from these stationary points. Therefore, for a ZSP function to be convex, it must satisfy one of the standard conditions
that define or characterize convexity (first or second-order condition, Jensen’s inequality, convexity of the Epigraph, etc).

Lemma C.27. Let φ : Rp → R be a subdifferentiable function such that −∞ < φ∗ := infx∈Rp φ(x) ∈ Im(φ). If φ is
convex, then φ− φ∗ is ZSP. The converse is false.

Proof. Let φ be convex and assume −∞ < φ∗ = infx∈Rp φ(x) ∈ Im(φ). Define φ̃(x) := φ(x)− φ∗. Let x ∈ Rp such
that 0 ∈ ∂φ̃(x) = ∂φ(x). By the definition of convexity, we know that φ(y) ≥ φ(x) + (y − x)⊤z for all y and all
z ∈ ∂φ(x). Since 0 ∈ ∂φ(x), we choose z = 0, and get φ(y) ≥ φ(x) for all y. This means that x is a global minimum of
φ. Since φ∗ ∈ Im(φ), we conclude φ(x) = φ∗, i.e. φ̃(x) = 0. This proves that φ̃ is ZSP.
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Take φ(x) = x2

1+x2 for x ∈ R, with φ∗ = 0. Since φ′(x) = 2x
(1+x2)2 , we have 0 ∈ ∂φ(x) ⇐⇒ x = 0 ⇐⇒ φ(x) = 0. So

φ− φ∗ is ZSP. But φ is neither globally convex nor globally concave on R because φ′′(x) = 2(1−3x2)
(1+x2)3 changes sign.

Theorem C.28 (Chatterjee–Łojasiewicz stability under ZSP Perturbation). Let g : Rp → [0,∞) be a differentiable function,
and let h : Rp → [0,∞) be a subdifferentiable function. For all x ∈ Rp and r > 0, if g satisfies the r-CL inequality at x, i.e
4g(x) < r2 · χ(g,x, r), then:

• For all ε ∈ (0, 1), letting r′ := εr, the function f := g + βh satisfies the r′-CL inequality at x with respect to

g, i.e., 4f(x) < r′2 · χ(f,x, r′, g), provided that β ≤ βmax(ε,x, r) = min

{√
g·χ(g,x,r)

4L ,
√
∆−B
2C

}
. Moreover, if

g(y) = 0 =⇒ f(y) = 0, then f = g + βh satisfies the r′-CL inequality at x provided that β satisfies this constraint,
i.e., 4f(x) < r′2 · χ(f,x, r′).

• If h is ZSP, then for all ε ∈ (0, 1) such that 4h(x) > r′2χ(h,x, r′) with r′ := εr, the function f := g + βh satisfies
the εr-CL inequality at x, i.e., 4f(x) < ε2r2 · χ(f,x, εr), provided that β ≤ βmax(ε,x, r) with

βmax(ε,x, r) = min


√
g · χ(g,x, r)

4L
,

√
∆−B

2C
,

4g(x)

r′2 · χ(h,x, r′)− 4h(x)

 (55)

• If h is ZSP, then for all ε ∈ (0, 1) such that 0 /∈ g (B(x, εr)), the function f := g + βh satisfies the εr-CL inequality
at x, i.e., 4f(x) < ε2r2 · χ(f,x, εr), provided that β ≤ βmax(ε,x, r) with

βmax(ε,x, r) = min


√
g · χ(g,x, r)

4L
,

√
∆−B

2C
,

√
∆′ − gχ(h,x, εr)

2hχ(h,x, εr)

 (56)

where

r′ := εr, g := inf
y∈B(x,r′)
g(y)̸=0

g(y); g := sup
y∈B(x,r′)

g(y), h := sup
y∈B(x,r′)

h(y)

L := sup
y∈B(x,r)

sup
z∈∂h(y)

∥z∥2 ∈ (0,∞), ∆′ := (gχ(h,x, r′))
2
+ 2gχ(g,x, r)

A := 4g(x) · g, B := 4g(x) · h+ 4h(x) · g, C := 4h(x) · h, D :=
1

2
r′2 · χ(g,x, r) · g

∆ := B2 − 4C(A−D) = 16(g(x)h− h(x)g)2 + 8h(x)h · r′2 · χ(g,x, r) · g ≥ 0

(57)

Proof. Fix any ε ∈ (0, 1) and define r′ := εr. We have B(x, r′) ⊂ B(x, r) since r′ < r. Let y ∈ B(x, r′) with f(y) ̸= 0.
Write ∇f(y) = ∇g(y) + βzy for a certain zy ∈ ∂h(y).

1. If g(y) ̸= 04, then since y ∈ B(x, r) and g(y) ̸= 0, we have ∥∇g(y)∥22 ≥ g(y) · χ(g,x, r) from the CL constant for
g. We also have ∥zy∥2 ≤ L since L = supy′∈B(x,r) supz∈∂h(y′) ∥z∥2. Using Cauchy–Schwarz:

⟨∇g(y), zy⟩ ≥ −∥∇g(y)∥2 · ∥zy∥2 ≥ −L∥∇g(y)∥2 (58)

So

∥∇f(y)∥22 = ∥∇g(y)∥22 + 2β⟨∇g(y), zy⟩+ β2∥zy∥22
≥ ∥∇g(y)∥22 + 2β⟨∇g(y), zy⟩
≥ ∥∇g(y)∥22 − 2βL∥∇g(y)∥2
= ∥∇g(y)∥2 (∥∇g(y)∥2 − 2βL)

≥
√
g(y) · χ(g,x, r)

(√
g(y) · χ(g,x, r)− 2βL

)
=
(√

g(y) · χ(g,x, r)− βL
)2

− β2L2

(59)

4g(y) ̸= 0 ∨ h(y) ̸= 0 =⇒ f(y) ̸= 0, but the converse is false.
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Since
√
g · χ(g,x, r) ≥ 4βL by the choice of β, we have

√
g(y) · χ(g,x, r) ≥ 4βL. So

√
g(y) · χ(g,x, r)−2βL ≥

2βL > 0 and
√
g(y) · χ(g,x, r)− 2βL ≥ 1

2

√
g(y) · χ(g,x, r). This gives ∥∇f(y)∥22 ≥ 1

2g(y) · χ(g,x, r).

Since f(y) = g(y) + βh(y) ≤ g + βh, we get ∥∇f(y)∥2
2

f(y) ≥ 1
2χ(g,x, r) ·

g(y)
f(y) ≥

1
2χ(g,x, r) · θ(β) with

θ(β) := inf
y∈B(x,r′)

f(y) ̸=0, g(y)̸=0

g(y)

f(y)
≥

g

g + βh
(60)

Plugging χ(f,x, r′) ≥ 1
2χ(g,x, r) · θ(β) into the CL inequality:

4f(x) = 4g(x) + 4βh(x) <
1

2
r′2 · χ(g,x, r) ·

g

g + βh
≤ r′2 · χ(f,x, r′) (61)

Multiply both sides by g + βh, we obtain the inequality (4g(x) + 4βh(x))
(
g + βh

)
< 1

2r
′2 · χ(g,x, r) · g. Expand

and rearrange, we get Cβ2 + Bβ + (A − D) < 0 where A,B,C,D are defined above. The discriminant of this
quadratic is:

∆ = B2 − 4C(A−D)

= 16(g(x)h+ h(x)g)2 − 4 · (4h(x)h) ·
(
4g(x)g − 1

2
r′2 · χ(g,x, r) · g

)
= 16g(x)2h

2
+ 32g(x)h(x)hg + 16h(x)2g2 − 64g(x)h(x)hg + 8h(x)hr′2 · χ(g,x, r) · g

= 16g(x)2h
2 − 32g(x)h(x)hg + 16h(x)2g2 + 8h(x)hr′2 · χ(g,x, r) · g

= 16(g(x)h− h(x)g)2 + 8h(x)hr′2 · χ(g,x, r) · g ≥ 0

(62)

Therefore, the inequality admits a real solution, and the optimal range of β is given by β < −B+
√
∆

2C . So f satisfies the

r′-CL inequality at x with respect to g, i.e., 4f(x) < r′2 ·χ(f,x, r′, g), provided that β < min

{√
g·χ(g,x,r)

4L ,
√
∆−B
2C

}
.

Moreover, if g(y) = 0 =⇒ f(y) = 0, then f = g + βh satisfies the r′-CL inequality at x provided that β satisfies this
constraint, i.e., 4f(x) < r′2 · χ(f,x, r′).

2. If g(y) = 0, then f(y) = βh(y) ̸= 0 and zy ̸= 0 (since 0 ∈ ∂h(y) =⇒ h(y) = 0). So ∥∇f(y)∥2
2

f(y) ≥ β
∥zy∥2

2

h(y) ≥
βχ(h,x, r′). Plugging χ(f,x, r′) ≥ βχ(h,x, r′) into the CL inequality:

4f(x) = 4g(x) + 4βh(x) < r′2β · χ(h,x, r′) ≤ r′2 · χ(f,x, r′)
⇐⇒ 4g(x) <

(
r′2 · χ(h,x, r′)− 4h(x)

)
β with r′2 · χ(h,x, r′)− 4h(x) > 0

⇐⇒ 4g(x)

r′2 · χ(h,x, r′)− 4h(x)

{
< β if 4h(x) < r′2χ(h,x, r′)
> β if 4h(x) > r′2χ(h,x, r′)

(63)

The equation 4h(x) < r′2χ(h,x, r′) means h is r′-CL at x. There exists x such that the ℓp norm (p > 0) and nuclear
norm ℓ∗ satisfy this condition.

Assume 4h(x) < r′2χ(h,x, r′). Since β < min

{√
g·χ(g,x,r)

4L ,
√
∆−B
2C

}
(Equation (56)), the choice β > 4g(x)

r′2·χ(h,x,r′)−4h(x)

is possible if and only if

4g(x)

r′2 · χ(h,x, r′)− 4h(x)
< min


√
g · χ(g,x, r)

4L
,

√
∆−B

2C

 (64)

Ensuring that this constraint is satisfied can be complicated. To avoid this, we will make sure that only the first case above is
considered. We have

∥∇f(y)∥22
f(y)

≥

{
1
2

χ(g,x,r)·g
g+βh

if g(y) ̸= 0

βχ(h,x, r′) otherwise
(65)
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So if we impose 1
2

χ(g,x,r)·g
g+βh

≥ βχ(h,x, r′), we have ∥∇f(y)∥2
2

f(y) ≥ 1
2

χ(g,x,r)·g
g+βh

, and thus β < −B+
√
∆

2C . The constraint is
equivalent to

hχ(h,x, r′) · β2 + gχ(h,x, r′) · β − 1

2
gχ(g,x, r) ≤ 0

⇐⇒ −
√
∆′ − gχ(h,x, r′)

2hχ(h,x, r′)
≤ β ≤

√
∆′ − gχ(h,x, r′)

2hχ(h,x, r′)
with ∆′ = (gχ(h,x, r′))

2
+ 2gχ(g,x, r)

(66)

C.4. Proof of Theorem 3.1

Let y(a) = Xa. We have y∗ = Xa∗ + ξ, and want to minimize f(a) = g(a) + βh(a) using gradient descent with learning
rate α > 0, where h(a) := ∥a∥1 and

g(a) :=
1

2
∥y(a)− y∗∥22 =

1

2
a⊤X⊤Xa−

(
X⊤Xa∗ +X⊤ξ

)⊤
a+

1

2
∥Xa∗ + ξ∥22 (67)

We write F (a) := G(a) + βH(a) with G(a) := ∇ag(a) = X⊤Xa −
(
X⊤Xa∗ +X⊤ξ

)
and H(a) ∈ ∂∥a∥1 any

subgradient of ∥a∥1, that is H(a)i = sign(ai) for ai ̸= 0, and any value in [−1,+1] for ai = 0 5. Suppose we start at some
a(1). The subgradient update rule is

a(t+1) = a(t) − αF(a(t)) =
(
In − αX⊤X

)
a(t) + α

(
X⊤Xa∗ +X⊤ξ

)
− βαH(a(t)) ∀t > 1 (68)

To explain grokking in such a setting, we will look at the landscape of the iterate a(t). Let X = UΣ
1
2V⊤ under the SVD

decomposition, with Σ = diag(σk)k∈[r], where r = rank(X) and σmax = σ1 ≥ · · ·σk ≥ σk+1 · · · ≥ σmin = σr >
σr+1 = · · · = 0. We assume by default the SVD to be compact, i.e., U ∈ RN×r and V ∈ Rn×r have orthonormal columns,
but we will make precision when we want it full, i.e., they also orthonormal rows, with that time U ∈ RN×N and V ∈ Rn×n.
Using Σ̃ = I − αΣ, the dynamics rewrites

a(t+1) = VΣ̃V⊤a(t) + α
(
VΣV⊤a∗ +VΣ

1
2U⊤ξ

)
− αβH(a(t))

We assume the step size α satisfies 0 < α < 2
σmax

. In fact, for the dynamical system to converge, we need
λ
(
In − αX⊤X

)
= 1 − ασ

(
In − αX⊤X

)
⊂ (−1, 1), that is 0 < ασk < 2 ∀k ∈ [n]. For all p > 0, let define ρp :=∥∥In − αX⊤X

∥∥
p→p

, so that ρ2 = ∥In − αΣ∥2→2 = maxk∈[r] |1− ασk| ∈ (0, 1]. We will show that for β small enough,

the update first moves near the least square solution of the problem, â =
(
X⊤X

)†
X⊤y∗ = V

(
V⊤a∗ +Σ− 1

2U⊤ξ
)

with

g(â) = 1
2ξ

⊤(IN −UU⊤)ξ ≤ 1
2∥ξ∥

2
2. Later in training, H(a) dominates the update, leading to ∥a(t)∥1 ≈ ∥a∗∥1.

Theorem C.29. Assume the learning rate, the regularization coefficent and the noise satisfy 0 < α < αmax := 2
σmax(X⊤X)

,

0 < β < σmax(X
⊤X)√

n
and ∥X⊤ξ∥2 ≤

√
Cαβ, C > 0. Let ρ2 := σmax

(
In − αX⊤X

)
. There exist t1 <∞ and a constant

C ′ > 0 such that:

∥a(t) − â∥2 ≤ 2αβn1/2

1− ρ2
and g(a(t)) ≤ g(â) +

2nα2β2σ2
max(X)

(1− ρ2)2
∀t ≥ t1, 2g(â) = ξ⊤(IN −UU⊤)ξ ≤ ∥ξ∥22

∀η > 0, min
t1≤t≤t2

(
f(a(t))− f(a∗)

)
≤ (η + C ′αβ)β

2
⇐⇒ t2 ≥ t1 +∆t(η, t1), ∆t(η, t1) :=

∥a(t1) − a∗∥22
αβη

∀η > 0, min
t1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ η + (C + C ′)αβ

2
⇐⇒ t2 ≥ t1 +∆t(η, t1)

(69)

Proof. First, we observe that if β is too high, the subgradient term H(a) dominates early, and there is no convergence, i.e.,
no memorization nor generalization. In fact, if β > σmax√

n
then the ℓ1-term dominates the updates, causing the sequence a(t)

to exhibit oscillatory behavior without convergence to a minimizer of f(a) = g(a) + β∥a∥1 (Lemma C.33).

5For the experiments, we used H(a) = sign(a).
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Let first evaluate g(â) and ∥â− a∗∥22. We have

â =
(
X⊤X

)†
X⊤y∗ = VΣ−1V⊤VΣ

1
2U⊤

(
UΣ

1
2V⊤a∗ + ξ

)
= VV⊤a∗ +VΣ− 1

2U⊤ξ (70)

So

Xâ− y∗ = UΣ
1
2V⊤VV⊤a∗ +UΣ

1
2V⊤VΣ− 1

2U⊤ξ −UΣ
1
2V⊤a∗ − ξ = (IN −UU⊤)ξ (71)

and

∥Xâ− y∗∥22 = ξ⊤(IN −UU⊤)(IN −UU⊤)ξ = ξ⊤(IN −UU⊤)ξ ≤ ∥ξ∥22 (72)

i.e. g(â)− 1
2∥ξ∥

2
2 = − 1

2ξ
⊤UU⊤ξ = − 1

2∥U
⊤ξ∥22. This implies, assuming E[ξ] = 0 and Cov(ξ) = σ2

ξ IN ,

2Eξg(â) = Eξ∥Xâ− y∗∥22 = Eξ∥(IN −UU⊤)y∗∥22 = Eξ

[
ξ⊤(IN −UU⊤)ξ

]
= tr

(
(IN −UU⊤) Cov(ξ)

)
+ (Eξ)⊤ (IN −UU⊤) (Eξ)

= σ2
ξ tr

(
IN −UU⊤) = σ2

ξ (N − r)

(73)

Since

â− a∗ =
(
X⊤X

)†
X⊤y∗ − a∗ = V

(
V⊤a∗ +Σ− 1

2U⊤ξ
)
− a∗ = (In −VV⊤)a∗ +VΣ− 1

2U⊤ξ (74)

we have
∥â− a∗∥22 = a∗⊤

(
In −VV⊤)a∗ + ξ⊤UΣ−1U⊤ξ (75)

Equations (72) and (75) show that the least square memorizes but does not generalize (for N < n). In particular, if a∗ has a
nonzero component orthogonal to the column space Col(V) of V, then â cannot perfectly generalize.

From now on, we fixed p > 0 such that ρp < 1, e.g. p = 2. Recall G(a) = X⊤(y − y∗) =
(
X⊤X

)
a −(

X⊤Xa∗ +X⊤ξ
)
. Starting from the update rule a(t+1) = a(t) − α

(
G(a(t)) + βH(a(t))

)
, we have a(t+1) − â =(

a(t) − â
)
− α

(
G(a(t)) + βH(a(t))

)
. Since G(â) = 0 and G is linear, G(a(t)) = X⊤X(a(t) − â). Substituting this back,

a(t+1) − â =
(
a(t) − â

)
− α

(
G(a(t)) + βH(a(t))

) (
In − αX⊤X

) (
a(t) − â

)
− αβH(a(t)) (76)

Taking the norm; applying triangle inequality and using6 ∥H(a(t))∥p ≤ n1/p give

∥a(t+1) − â∥p ≤ ρp∥a(t) − â∥p + αβn1/p (77)

Repeatedly applying the recurrence,

∥a(t) − â∥p ≤ ρtp∥a(1) − â∥p + αβn1/p
(
1 + ρp + · · ·+ ρt−1

p

)
= ρtp∥a(1) − â∥p + αβn1/p

1− ρtp
1− ρp

for ρp ̸= 1

≤ ρtp∥a(1) − â∥p +
αβn1/p

1− ρp
for ρp < 1

(78)

Define

t1 :=

−
ln
(
1 +

(1−ρp)∥a(1)−â∥p

αβn1/p

)
ln(ρp)

 (79)

The definition of t1 ensures that for t ≥ t1,

ρt∥a(1) − â∥p ≤ αβn1/p
1− ρtp
1− ρp

(80)

6Let u ∈ ∂∥a∥1. Then |ui| ≤ 1 for all i ∈ [n]. So ∥u∥p =
(∑n

i=1 |ui|p
)1/p ≤ n1/p.
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Thus, using Equation (78), we have for all t ≥ t1,

∥a(t) − â∥p ≤ 2αβn1/p
1− ρtp
1− ρp

(81)

Using this, we derive

∥Xa(t) − y∗∥p = ∥X(a(t) − â) + (Xâ− y∗)∥p
≤ ∥X∥p→p∥a(t) − â∥p + ∥Xâ− y∗∥p

≤ 2αβn1/p
1− ρtp
1− ρp

∥X∥p→p + ∥Xâ− y∗∥p

(82)

and

∥G(a(t))∥p = ∥X⊤X(a(t) − â)∥p
≤ ∥X⊤X∥p→p∥a(t) − â∥p

≤ 2αβn1/p∥X⊤X∥p→p

1− ρtp
1− ρp

≤ 2αβn1/p

1− ρp
∥X⊤X∥p→p

∝ 2
√
nβσmax(X

⊤X) for p = 2 since 1− ρ2 ∝ α

(83)

and

∥F (a(t))∥2 = ∥G(a(t)) + βH(a(t))∥2
≤ ∥G(a(t))∥2 + β∥H(a(t))∥2

∝ 2αβ
√
n

1− ρ2
∥X⊤X∥2→2 + β

√
n

=
√
n
(
2σmax

(
X⊤X

)
+ 1
)
β

(84)

Also, since X(a(t) − â) ∈ Col(X) = Col(U) and Xâ− y∗ = (IN −UU⊤)ξ ∈ Col(U)⊥, we have for t ≥ t1,

g(a(t))− g(â) =
1

2
∥Xa(t) − y∗∥22 −

1

2
∥Xâ− y∗∥22

=
1

2
∥X(a(t) − â) + (Xâ− y∗) ∥22 −

1

2
∥Xâ− y∗∥22

=
1

2
∥X(a(t) − â)∥22 +

1

2
∥Xâ− y∗∥22 −

1

2
∥Xâ− y∗∥22

=
1

2
∥X(a(t) − â)∥22

(85)

So

g(a(t))− g(â) ≤ 1

2
∥X∥22→2∥a(t) − â∥22 ≤ 2nα2β2σ2

max(X)

(1− ρ2)2
∝ 2nβ2σmax(X

⊤X) (86)

All this shows that after t1, the iterate a(t), its error g(a(t)), and the associated gradient G(a(t)) behave respectively like
â, g(â), and G(â) = 0 up to an error of order O(β). Note that we assume 0 < β

√
n ≪ σmax(X

⊤X). So, the gradient
of g can be made much smaller than the subgradient term after t1 by choosing β sufficiently small. After time t1, the
contribution of the gradient G to the update of a(t)i is dominated by the ℓ1–regularization term up to an error of order
O(β). Specifically for all t ≫ t1, the update rule approximates a

(t+1)
i ≈ a

(t)
i − αβH(a

(t)
i ). If |a(t1)i | > |a∗i |, then

H(a
(t)
i ) = H(a

(t)
i −a∗i ) (Lemma C.32), and so a

(t+1)
i −a∗i = a

(t)
i −a∗i −αβH(a

(t)
i −a∗i ) for all t ≥ t1. By Lemma C.31,

this lead to |a(t)i −a∗i | ≤ αβ for (and only for) t ≥ t1+

⌊
|a(t1)

i −a∗
i |

αβ

⌋
. This suggest that we may have ∥a(t)−a∗∥∞ = O(αβ)
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for (and only for) t ≥ t1 +
⌊
∥a(t1)−a∗∥∞

αβ

⌋
. In fact, considering the canonical subgradient H(a) = sign(a), we have

at+1 − a∗ = a(t) − a∗ − αG(a(t))− αβ sign(a(t)) = Cαβ(a
(t) − a∗ − αG(a(t))) with

Cγ(z) =

 z − γ if z > γ
z + γ if z < γ
∈ [z − γ, z + γ] if − γ ≤ z ≤ γ

∈ z ± γ

a coordinate shrink operator, since |Cγ(z)| =
{

|z| − γ if |z| > γ
∈ [0, γ] if |z| ≤ γ

≤ max(|z| − γ, γ). So the goal of H(a) is to reduce

the components of a(t) − a∗ at each iteration until they are all in [−αβ, αβ]. We now prove this intuition below using
Lemma C.12, which proves the second part of the theorem.

We have g(a(t)) = 1
2∥Xa(t) − y∗∥22, h(a(t)) = ∥a(t)∥1, f(a(t)) = g(a(t)) + βh(a(t)) and f(a∗) = β∥a∗∥1 + 1

2∥ξ∥
2
2. We

also have Θf = {a∗} and Θg = {a | X(a− a∗) = ξ}. Applying Lemma C.12, we get

min
t1≤t≤t2

(
f(a(t))− f(a∗)

)
≤ ∥a(t1) − a∗∥22 + (t2 − t1)α

2 maxt1≤t≤t2 ∥F (a(t))∥22
2α(t2 − t1)

∀t2 ≥ t1 (87)

Using ∥F (a(t))∥2 = O (β) ∀t ≥ t1 (Equation (84)) we get from Theorem C.13 that there exists C ′ > 0,

min
t1≤t≤t2

(
f(a(t))− f(a∗)

)
≤ (η + C ′αβ)β

2
⇐⇒ t2 ≥ t1 +

∥a(t1) − a∗∥22
αβη

(88)

And it Θf ∩Θg ̸= ∅, i.e. ξ = 0,

min
t1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ η + C ′αβ

2
⇐⇒ t2 ≥ t1 +

∥a(t1) − a∗∥22
αβη

(89)

We now prove this result in a general case ξ ̸= 0. Let R(a) := (a− a∗)
⊤
G(a). We have from Lemma C.12,

min
t1≤t≤t2

[
R(a(t)) + β

(
∥a(t)∥1 − ∥a∗∥1

)]
≤ min

t1≤t≤t2

[(
g(a(t))− g(a∗)

)
+ β

(
∥a(t)∥1 − ∥a∗∥1

)]
≤ min

t1≤t≤t2

(
f(a(t))− f(a∗)

)
∀t2 ≥ t1

(90)

So

β min
t1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ min

t1≤t≤t2

(
f(a(t))− f(a∗)

)
−
(

min
t1≤t≤t2

g(a(t))− 1
2∥ξ∥

2
2

)
∀t2 ≥ t1 (91)

Since

g(a(t))− 1
2∥ξ∥

2
2 = g(â) +

1

2
∥X(a(t) − â)∥22 − 1

2∥ξ∥
2
2 =

1

2
∥X(a(t) − â)∥22 −

1

2
∥U⊤ξ∥22 ≥ −1

2
∥U⊤ξ∥22 (92)

We obtain

β min
t1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ min

t1≤t≤t2

(
f(a(t))− f(a∗)

)
+

1

2
∥X⊤ξ∥22 ∀t2 ≥ t1

≤ (η + C ′αβ)β

2
+
Cαβ2

2
⇐⇒ t2 ≥ t1 +∆t(η, t1) since ∥X⊤ξ∥2 ≤

√
Cαβ

=
(η + (C + C ′)αβ)β

2
⇐⇒ t2 ≥ t1 +∆t(η, t1)

(93)

Lemma C.30. Given α > 0 and a(1) ∈ R, let a(t+1) = a(t) − αH(a(t)) for all t ≥ 1, where H(a) ∈ ∂|a|.

1. A point a is stationary for this dynamical system if and only if |a| ≤ α.
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2. We have |a(t)| ≤ α if and only if t > ⌊ |a(1)|
α ⌋.

3. In particular, for h(a) = sign(a) ∀a ∈ R, if a(1)/α ∈ Z, then a(t) = 0 for all t > ⌊ |a(1)|
α ⌋.

Proof. Let first consider the simple case H(a) = sign(a), so that a(t+1) = a(t) − α sign(a(t)).

• If a(t) ∈ {0, α,−α}, then a(t+∆) = 0 for all ∆ > 0.

• If a(t) ∈ (0, α), then a(t+1) = a(t) − α ∈ (−α, 0), and a(t+2) = a(t+1) + α = a(t) ∈ (0, α), and so on.

• If a(t) ∈ (−α, 0), then a(t+1) = a(t) + α ∈ (0, α), and a(t+2) = a(t+1) − α = a(t) ∈ (−α, 0), and so on.

• If a(t) > α (resp. a(t) < −α), it will be decreased (resp. increase) by α until a(t) ∈ (0, α] (resp. a(t) ∈ [−α, 0)), and

we get back to the previous cases. In that case, |a(t+1)| = |a(t)| − α = |a(1)| − tα ≤ α =⇒ t+ 1 ≥ |a(1)|
α .

Now consider the general dynamic a(t+1) = a(t) − αH(a(t)). If a(1) ̸= 0 (the case a(1) = 0 is trivial), then the dynamic is
a(t+1) = a(t) − α sign(a(t)) as long as |a(t)| ≥ α, after which it will just oscillate in the ball {a, |a| ≤ α} indefinitely. In
fact, a fixed point a must satisfy a = a − αH(a); i.e. H(a) = 0. The only case where 0 ∈ ∂|a| is a = 0 or when it lies
in the interval where the subgradient can be 0. However, for any a such that |a| ≤ α, it is possible to choose H(a) (for
instance, H(a) = a/α) such that a = a − αH(a), making a a fixed point. Conversely, if |a| > α, then |H(a)| = 1 and
|a− αH(a)| = ||a| − α| > 0, so a is not a fixed point.

Lemma C.31. Given α > 0 and a(1) ∈ Rn, let a(t+1) = a(t) − αH(a(t)) for all t ≥ 1, where H(a) ∈ ∂∥a∥1.

1. A point a is stationary for this dynamical system if and only if ∥a∥∞ ≤ α.

2. We have ∥a(t)∥∞ ≤ α if and only if t > ⌊∥a(1)∥∞
α ⌋.

3. In particular, for h(a) = sign(a) ∀a ∈ Rn, we have ∥a(t)∥0 =
∣∣∣{i | a(1)i /α ∈ Z

}∣∣∣ for all t > ⌊∥a(1)∥∞
α ⌋.

Proof. The proof is immediate by applying the Lemma C.30 coordinate-wise.

Lemma C.32. Let a, a∗ ∈ R with a ̸= 0. If |a| > |a∗|, then sign(a− a∗) = sign(a).

Proof. We have |a∗| < |a| ⇐⇒ −|a| < a∗ < |a| ⇐⇒ −|a| − a∗ < 0 < |a| − a∗. This implies a− a∗ < 0 for a < 0 and
0 < a− a∗ for 0 < a.

Lemma C.33. Let f(θ) = g(θ) + βh(θ) be a function from Rn to R, where g is a differentiable function and h is a
sub-differentiable function. Consider the subgradient descent update θ(t+1) = θ(t) − α

(
∇g(θ(t)) + βH(θ(t))

)
with a fixed

small step size α > 0, where H(θ(t)) ∈ ∂h(θ). If β∥H(θ(1))∥2 ≫ ∥∇g(θ(1))∥2 then the regularization term dominates
the updates, causing the sequence {θ(t)}t>1 to exhibit oscillatory behavior without convergence to a minimizer of f . The
condition β∥H(θ(1))∥2 ≫ ∥∇g(θ(1))∥2 writes β

√
n ≫ ∥∇g(θ(1))∥2 for ℓ1 regularization, h(θ) = ∥θ∥1 ∀θ ∈ Rn; and

β
√

min(n1, n2) ≫ ∥∇g(θ(1))∥2 for ℓ∗ regularization, h(θ) = ∥θ∥∗ ∀θ ∈ Rn1×n2 .

Proof Sketch. Given that ∥∇g(θ(t))∥2 ≈ ∥∇g(θ(1))∥2 and H(θ(t)) ≈ H(θ(1)) at the beginning of training, if
β∥H(θ(1))∥2 ≫ ∥∇g(θ(1))∥2, then β∥H(θ(t))∥2 ≫ ∥∇g(θ(t))∥2. This inequality implies that the regularization term
dominates the update, θ(t+1) ≈ θ(t) − αβH(θ(t)), with the influence of ∇g(θ(t)) becoming negligible. Consequently, the
iterates do not converge to a stable minimizer of f , and the training and test error metrics oscillate, remaining above some
suboptimal value.

For ℓ1 regularization, h(θ) = ∥θ∥1 ∀θ ∈ Rn, given that ∥h(θ(t))∥2 ≈
√
n at the beginning of training, if β

√
n ≫

∥∇g(θ(1))∥2, then that the update becomes dominated by the ℓ1-term. Because H(θ(t)) reflects the sign of θ(t), the update
effectively pushes the iterates in a direction that primarily depends on sign changes rather than the curvature of g (Lemma
C.31). This leads to overshooting and sign flipping in each coordinate, resulting in oscillations.

For ℓ∗ regularization, h(θ) = ∥θ∥∗ ∀θ ∈ Rn1×n2 , the subgradient H(θ(t)) of ∥θ(t)∥∗ satisfy ∥H(θ(t))∥∗ ≈√
min(n1, n2) at the beginning of training (full rank matrix), so ∥H(θ(t))∥F ≥ ∥H(θ(t))∥∗/ rank(H(θ(t))) ≈√
min(n1, n2)/min(n1, n2) =

√
min(n1, n2). If β

√
min(n1, n2) ≫ ∥∇g(θ(1))∥2, then the update is dominated by

the ℓ∗-term, making the iterates swing sharply depending on the current singular-vector configuration (Lemma C.42).
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C.5. Proof of Theorem 3.3

For a vector u ∈ Rn and a set S ⊂ [n], we let uS = [ui]i∈S ∈ R|S|; and S̄ = [n]\S.

Definition C.34 (Null Space Property). A matrix A ∈ Rm×n is said to satisfy the null space property relative to a set
S ⊂ [n] if ∥uS∥1 < ∥uS̄∥1 for all non zero vector u ∈ Rn in kerA. It is said to satisfy the null space property of order
s ∈ N if it satisfies the null space property relative to any set S ⊂ [n] with |S| ≤ s.

If we add ∥uS∥1 on both side of ∥uS∥1 < ∥uS̄∥1 we obtain the equivalent formulation 2∥uS∥1 < ∥u∥1. On the other hand,
by choosing S as an index set of s largest (in absolute value) entries of u and this time by adding ∥uS̄∥1 to both sides of the
inequality, the null space property of order s reads ∥u∥1 < 2σ1(u), where σp(u) = inf∥v∥0≤s ∥u− v∥p. In fact, σp(u) is
achieve (but not only) at v = Hs(u), with Hs the hard thresholding operator (it keeps the s largest entries of u in absolute
value, and set the remaining to 0). We have ∥u−Hs(u)∥p = ∥uS̄∥p with S the support of Hs(u).

In theory, sparse recovery methods are designed to recover exactly sparse vectors. However, in more realistic scenarios, the
vectors we aim to recover are not exactly sparse but can be well-approximated by sparse vectors. In other words, while
the true signal may not have strictly zero entries outside a small support, most of its energy or information content is
concentrated on a small number of components. This motivates the need for recovery guarantees that extend beyond exact
sparsity. In such settings, we no longer expect perfect recovery of the original vector. Instead, we aim to reconstruct a vector
a such that the error between a and the true signal a∗ is controlled by how well the true signal can be approximated by an
s-sparse vector. In other words, the reconstruction error should scale with the sparsity defect σs(a∗), which is typically
measured by the distance from the signal to the set of exactly s-sparse vectors. A reconstruction scheme that provides such
guarantees is said to be stable with respect to the sparsity defect (Foucart & Rauhut, 2013).

Definition C.35 (Stable Null Space Property). A matrix A ∈ Rm×n is said to satisfy the stable null space property with
constant ρ ∈ (0, 1) relative to a set S ⊂ [n] if ∥uS∥1 < ρ∥uS̄∥1 for all u ∈ kerA. It is said to satisfy the robust null space
property of order s ∈ N with constant ρ ∈ (0, 1) if it satisfies the robust null space property with constant ρ relative to any
set S ⊂ [n] with |S| ≤ s.

Theorem C.36 (Theorem 4.14 (Foucart & Rauhut, 2013)). The matrix A ∈ Rm×n satisfies the stable null space property
with constant ρ ∈ (0, 1) relative to a set S ⊂ [n] if and only if ∥v − u∥1 ≤ 1+ρ

1−ρ (∥v∥1 − ∥u∥1 + 2∥uS̄∥1) for all vector
u,v ∈ Rn with Au = Av.

If we apply this to the noiseless version of the problem of minimizing ∥a∥1 subject to ∥Xa− y∗∥2 ≤ ϵ, with a the solution
return by, say basis pursuit, and S the support of Hs(a), the we get ∥a − a∗∥1 ≤ 2(1+ρ)

1−ρ σs(a) since ∥a∗∥1 ≤ ∥a∥1 and
∥aS̄∥1 = σs(a).

In practical applications, it is fundamentally unrealistic to assume that we can observe or measure a signal a∗ with
perfect, infinite precision. All real-world measurements are subject to various sources of error, such as sensor inaccuracies,
quantization effects, environmental noise, or other imperfections in the acquisition process. As a result, the measurement
vector y∗ that we actually obtain is not exactly equal to the ideal linear measurement Xa∗, but only an approximation of it.
This deviation is typically modeled as an additive noise term so that we only know that the measurement error is bounded,
∥y∗ −Xa∗∥2 = ∥ξ∥2 ≤ ϵ for some known or estimated noise level ϵ > 0. In this noisy setting, an effective reconstruction
scheme should not aim to recover a∗ exactly since doing so is impossible, but instead produce an estimate a that is close to
the true signal a∗, with an error that is controlled by the magnitude of the measurement error ϵ. That is, small changes or
perturbations in the observed measurements should only lead to small changes in the reconstructed signal. This desirable
behavior is known as the robustness of the reconstruction scheme with respect to measurement error.

Definition C.37 (Robust Null Space Property). A matrix A ∈ Rm×n is said to satisfy the robust null space property (with
respect to ∥ · ∥) with constant ρ ∈ (0, 1) and τ > 0 relative to a set S ⊂ [n] if ∥uS∥1 < ρ∥uS̄∥1 + τ∥Au∥ for all u ∈ Rn.
It is said to satisfy the robust null space property of order s ∈ N with constant ρ ∈ (0, 1) and τ > 0 if it satisfies the robust
null space property with constant ρ and τ relative to any set S ⊂ [n] with |S| ≤ s.

Theorem C.38 (Theorem 4.20 (Foucart & Rauhut, 2013)). The matrix A ∈ Rm×n satisfies the robust null space property
with constant ρ ∈ (0, 1) and τ > 0 relative to a set S ⊂ [n] if and only if ∥v − u∥1 ≤ 1+ρ

1−ρ (∥v∥1 − ∥u∥1 + 2∥uS̄∥1) +
2τ
1−ρ∥A(v − u)∥ for all vector u,v ∈ Rn.

Theorem C.39. Assume the matrix X ∈ RN×n satisfies the robust null space property with constant ρ ∈ (0, 1) and τ > 0
relative to the support of a∗. Then, under the same condition as in Theorem C.29 on α, β and ξ; i.e. 0 < ασmax(X

⊤X) < 2,
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0 < β
√
n < σmax(X

⊤X) and ∥X⊤ξ∥2 ≤
√
Cαβ with C > 0; there exists C ′ > 0 such that for all η > 0,

min
t1≤t≤t2

∥a(t) − a∗∥1 ≤ C1η + C2αβ + C3∥ξ∥2 ⇐⇒ t2 ≥ t1 +∆t(η, t1), ∆t(η, t1) :=
∥a(t1) − a∗∥22

αβη
(94)

with

ρ2 = σmax

(
In − αX⊤X

)
C1 =

1 + ρ

2(1− ρ)

C2 =
C + C ′

2

1 + ρ

1− ρ
+

2
√
nσmax(X)

1− ρ2

2τ

1− ρ
=

(C + C ′)(1− ρ2)(1 + ρ) + 8
√
nσmax(X)τ

2(1− ρ2)(1− ρ)

C3 =
4τ

1− ρ

(95)

Proof. Using Theorem C.38, we get ∥a − a∗∥1 ≤ 1+ρ
1−ρ (∥a∥1 − ∥a∗∥1) + 2τ

1−ρ∥X(a − a∗)∥2. We also have

mint1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ η+(C+C′)αβ

2 if and only if t2 ≥ t1 + ∆t(η, t1) (Theorem C.29). For t ≥ t1, we
have

∥X(a(t) − a∗)∥2 = ∥Xa(t) − y∗ + ξ∥2
≤ ∥Xa(t) − y∗∥2 + ∥ξ∥2

≤ 2
√
n∥X∥2→2

1− ρ2
αβ + ∥Xâ− y∗∥2 + ∥ξ∥2 (Equation (82))

=
2
√
n∥X∥2→2

1− ρ2
αβ + 2∥ξ∥2 since ∥Xâ− y∗∥22 = ξ⊤(IN −UU⊤)ξ ≤ ∥ξ∥22 (Equation (72))

(96)

So,

min
t1≤t≤t2

∥a(t) − a∗∥1 ≤ 1 + ρ

1− ρ

η + (C + C ′)αβ

2
+

2τ

1− ρ

(
2
√
nσmax(X)αβ

1− ρ2
+ 2∥ξ∥2

)
⇐⇒ t2 ≥ t1 +∆t(η, t1)

= C1η + C2αβ + C3∥ξ∥2 ⇐⇒ t2 ≥ t1 +∆t(η, t1)

(97)

C.6. Proof of Theorem 3.4

Let y(A) = X vec(A) for A ∈ Rn1×n2 . We have y∗ = X vec(A∗) + ξ, and want to minimize f(A) = g(A) + βh(A)
using gradient descent with learning rate α > 0, where h(A) := ∥A∥∗ and g(A) := 1

2∥y(A) − y∗∥22 = 1
2a

⊤X⊤Xa −(
X⊤Xa∗ +X⊤ξ

)⊤
a + 1

2∥Xa∗ + ξ∥22. We write F (A) := G(A) + βH(A) with vecG(A) := ∇ag(A) = X⊤Xa −(
X⊤Xa∗ +X⊤ξ

)
andH(A) ∈ ∂∥A∥∗ = {UV⊤+W, ∥W∥2→2 ≤ 1,U⊤W = 0,WV = 0} any subgradient of ∥A∥∗,

with A = UΣV⊤ under the compact SVD7 8. Suppose we start at some A(1). Using F(t) := F (A(t)), the subgradient
update rule is

a(t+1) = a(t) − αF(t) =
(
In − αX⊤X

)
a(t) + α

(
X⊤Xa∗ +X⊤ξ

)
− αβ vec

(
H(A(t))

)
∀t > 1 (98)

As in Section C.4, we let X = UΣ
1
2V⊤ under the compact SVD decomposition, with Σ = diag(σk)k∈[r], where

r = rank(X) and σmax = σ1 ≥ · · ·σk ≥ σk+1 · · · ≥ σmin = σr > σr+1 = · · · = 0. We assume the step size α satisfies
0 < α < 2

σmax
. We define ρp :=

∥∥In − αX⊤X
∥∥
p→p

for all p > 0. We will show that for β small enough, the update first

moves near the least square solution of the problem, â = vec Â =
(
X⊤X

)†
X⊤y∗ = V

(
V⊤a∗ +Σ− 1

2U⊤ξ
)

. Later in

training, H(A) dominates the update, leading to ∥A(t)∥∗ ≈ ∥A∗∥∗.

7The norm ∥A∥∗ is not differentiable everywhere because the singular values of A can be non-differentiable at points where they
have multiplicities (e.g., when the singular values are not distinct)

8For the experiments, we used the polar factor H(A) = UV⊤. This is the gradient provided by automatic differentiation in many
optimization libraries, like Pytorch.
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Theorem C.40. Assume the learning rate, the regularization coefficient and the noise satisfy 0 < α < αmax, 0 < β <
σmax(X

⊤X)√
min(n1,n2)

and ∥X⊤ξ∥2 ≤
√
Cαβ, C > 0. Let ρ2 := σmax

(
In − αX⊤X

)
. There exist t1 <∞ and a constant C ′ > 0

such that:

∥ vec(A(t) − Â)∥2 ≤ 2αβn1/2

1− ρ2
and g(A(t)) ≤ g(Â) +

2nα2β2σ2
max(X)

(1− ρ2)2
∀t ≥ t1, with g(Â) ≤ 1

2
∥ξ∥22

∀η > 0, min
t1≤t≤t2

(
f(A(t))− f(A∗)

)
≤ (η + C ′αβ)β

2
⇐⇒ t2 ≥ t1 +∆t(η, t1), ∆t(η, t1) :=

∥A(t1) −A∗∥2F
αβη

∀η > 0, min
t1≤t≤t2

(
∥A(t)∥∗ − ∥A∗∥∗

)
≤ η + (C + C ′)αβ

2
⇐⇒ t2 ≥ t1 +∆t(η, t1)

(99)

Proof. First, we observe that if β is too high, the subgradient term H(A) dominates early, and there is no convergence,
i.e., no memorization nor generalization. In fact, if β > σmax√

min(n1,n2)
then the ℓ∗-term dominates the updates, causing the

sequence A(t) to exhibit oscillatory behavior without convergence to a minimizer of f(A) = g(A)+β∥A∥∗ (Lemma C.33).
The memorization phase is similar to that of Theorem C.29, with n = n1n2. For t ≥ t1, g(A(t))−g(Â) ≤ 2nα2β2σ2

max(X)
(1−ρ2)2

=

O
(
2nβ2σ2

max(X)
)

and ∥ vecG(A(t))∥2 ≤ Θ
(
2β

√
nσmax(X

⊤X)
)
= Θ(β). So after time t1, the contribution of the

gradient G to the update of A(t) is dominated by the ℓ∗–regularization term. Specifically for all t ≫ t1, the update rule
approximates A(t+1) ≈ A(t) − αβH(A

(t)
i ) = A(t) − αβH(A(t) − A∗) up to an error E ∈ Rn1×n2 of order ∥E∥F =

O

(
αβ

√
rank(A(t1))

σmin(A(t1))/σmax(A∗)−1

)
(Lemma C.45). So, as soon as the singular–value gap widens (i.e. mini |Σ(t1)

i | ≫ maxi |Σ∗
i |,

empirically typical after a warm–up phase), the approximation becomes tighter, even more so for small αβ. By Lemma C.42,
this lead to ∥A(t) −A∗∥2→2 = O(αβ) for (and only for) t ≥ t1 +

⌊
∥A(t1)−A∗∥2→2

αβ

⌋
. As the error ∥E∥F is of order O (αβ)

for iterations directly following t1, choosing a time Θ(1/αβ) also somehow counterbalances its cumulative effect. Equipped
with this insight, we prove the exact delay below.

We have g(A(t)) = 1
2∥X vecA(t) − y∗∥22, h(A(t)) = ∥A(t)∥∗, f(A(t)) = g(A(t)) + βh(A(t)) and f(A∗) = β∥A∗∥∗ +

1
2∥ξ∥

2
2, Θf = {A∗} and Θg = {A | X vec(A−A∗) = ξ}. Applying Lemma C.12, we get

min
t1≤t≤t2

(
f(A(t))− f(A∗)

)
≤

∥ vec
(
A(t1) −A∗) ∥22 + (t2 − t1)α

2 maxt1≤t≤t2 ∥ vec
(
F (A(t))

)
∥22

2α(t2 − t1)
∀t2 ≥ t1 (100)

Using ∥ vecF (A(t))∥2 = O (β) ∀t ≥ t1 we get from Theorem C.13 that there exists C ′ > 0,

min
t1≤t≤t2

(
f(A(t))− f(A∗)

)
≤ (η + C ′αβ)β

2
⇐⇒ t2 ≥ t1 +

∥ vec
(
A(t1) −A∗) ∥22
αβη

(101)

and

β min
t1≤t≤t2

(
∥A(t)∥∗ − ∥A∗∥∗

)
≤ min

t1≤t≤t2

(
f(A(t))− f(A∗)

)
−
(

min
t1≤t≤t2

g(A(t))− 1
2∥ξ∥

2
2

)
∀t2 ≥ t1

≤ (η + C ′αβ)β

2
+

1

2
∥X⊤ξ∥22 ⇐⇒ t2 ≥ t1 +∆t(η, t1)

≤ (η + (C + C ′)αβ)β

2
⇐⇒ t2 ≥ t1 +∆t(η, t1) since ∥X⊤ξ∥2 ≤

√
Cαβ

(102)

since g(A(t))− 1
2∥ξ∥

2
2 = 1

2∥X vec(A(t) − Â)∥22 − 1
2∥U

⊤ξ∥22 ≥ − 1
2∥U

⊤ξ∥22.

Lemma C.41. Let A ∈ Rn1×n2 . We have ∥ vec(H)∥p ≤ (n1n2)
1/p for all H ∈ ∂∥A∥∗ and p > 0.

Proof. Let H ∈ ∂∥A∥∗. Then ∥H∥2→2 ≤ 1. So by the definition of the spectral (operator) norm, we have ∥H∥2→2 =

supx̸=0
∥Hx∥2

∥x∥2
= σmax(H) ≤ 1. Taking x = e

(n2)
j , the j-th standard basis vector in Rn2 , we obtain ∥H:,j∥2 =

∥He
(n2)
j ∥2 ≤ 1; which implied Hij ≤ ∥H:,j∥2 ≤ 1. So ∥ vec(H)∥p =

(∑n1

i=1

∑n2

j=1 |Hij |p
)1/p

≤ (n1n2)
1/p.
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Lemma C.42. Given α > 0 and A(1) ∈ Rn1×n2 , let A(t+1) = A(t) − αH(A(t)) for all t ≥ 1, where H(A) ∈ ∂∥A∥∗.

1. A point A is stationary for this dynamical system if and only if ∥A∥2→2 = σmax(A) < α.

2. ∥A(t)∥2→2 < α if and only if t > ⌊∥A(1)∥2→2

α ⌋.

3. For all t > ⌊∥A(1)∥2→2

α ⌋, rt := rank(A(t)) =
∣∣∣{i | σ

(1)
i /α ∈ Z}

∣∣∣, with σ(1)
1 , . . . , σ

(1)
r1 the singular values of A(1).

Proof. We start with the subgradient H(A) = UV⊤ for A = UΣV⊤, so that the update rule becomes

A(t+1) = A(t) − αU(t)V(t)⊤ = U(t)
(
Σ(t) − αIrt

)
V(t)⊤for all t ≥ 1 (103)

This equation also writes

A(t+1) = U(t+1)Σ(t+1)V(t+1)⊤ =

rt+1∑
i=1

σ
(t+1)
i U

(t+1)
:,i V

(t+1)⊤
:,i

=

rt∑
i=1

(σ
(t)
i − α)U

(t)
:,i V

(t)⊤
:,i =

rt∑
i=1

|σ(t)
i − α| · sign(σ(t)

i − α)U
(t)
:,i V

(t)⊤
:,i

(104)

This implies σ(t+1)
i = |σ(t)

i − α| ∀i ∈ [r1]. So starting at σ(1)
i , each σi decay at each step by α until σ(t)

i =: σ∗
i ∈ [0, α),

and start oscillating between σ∗
i and α− σ∗

i . It starts doing so when t > ti := ⌊σ
(1)
i

α ⌋. We take t = maxi ti.

In general, we have H(A) = UV⊤ + W, ∥W∥2→2 ≤ 1,U⊤W = 0,WV = 0. The dynamics becomes A(t+1) =
U(t)

(
Σ(t) − αIrt

)
V(t)⊤ − αW(t) with U(t)⊤W(t) = 0,W(t)V(t) = 0. So U(t)⊤A(t+1)V(t) = Σ(t) − αIrt , leading

again to σ(t+1)
i = |σ(t)

i − α| ∀i ∈ [r1].

We show in Lemma C.32 that for a, a∗ ∈ R, |a| > |a∗| =⇒ sign(a − a∗) = sign(a), with sign(a) ∈ ∂|a|. Now,
considering the canonical nuclear–norm subgradient H(A) = UV⊤ ∈ ∂∥A∥∗ for A = UΣV⊤ ∈ Rn1×n2 , we ask if
σmin(A) > σmax(A

∗) =⇒ H(A−A∗) = H(A), and if not, how does H(A−A∗) deviate from H(A). Throughout, let
A = UΣV⊤ ∈ Rn1×n2 of rank r ≥ 1, and A−A∗ = ŨΣ̃Ṽ⊤ ∈ Rn1×n2 , with U, Ũ ∈ Rn1×r and V, Ṽ ∈ Rn2×r having
orthonormal columns. So H(A) = UV⊤ and H(A−A∗) = ŨṼ⊤.

There exist matrices with σmin(A) > σmax(A
∗) for which H(A−A∗) ̸= H(A). E.g., A =

[
2 0
0 0

]
, A∗ =

[
0 1
0 0

]
. But

it easy to check that if σmin(A) > σmax(A
∗) and A and A∗ have the same singular directions, then H(A−A∗) = H(A).

Lemma C.43. Let A = UΣV⊤ ∈ Rn1×n2 . If A∗ = UBV⊤ with σmax(B) < σmin(A), then H(A−A∗) = H(A).

Now we focus on bounding ∥H(A − A∗) − H(A)∥ in a general setting. We introduce some notations, then Wedin’s
sinΘ bound (Wedin, 1972), and our result. Let SL = span(U) ⊂ Rn1 and S̃L = span(Ũ) ⊂ Rn1 . The principal angles
0 ≤ θ1 ≤ · · · ≤ θr ≤ π/2 between SL and S̃L are defined by cos θi := σi

(
U⊤Ũ

)
∀i ∈ [r], where σ1 ≥ · · · ≥ σr are

the singular values. In fact, the classical (geometric) definition of the principal angles is given recursively by cos θ1 =
maxu∈SL, ũ∈S̃L

u⊤ũ, cos θ2 = maxu∈SL,ũ∈S̃L,u⊥u1,ũ⊥ũ1
u⊤ũ... Each pair is taken orthogonal to the previous ones, so

we end up with r angles θ1 ≤ · · · ≤ θr, all in [0, π/2]. Write u = Ux, ũ = Ũx̃ with x, x̃ ∈ Rr, ∥x∥ = ∥x̃∥ = 1. The
first maximisation therefore reads cos θ1 = max∥x∥=∥x̃∥=1 x

⊤U⊤Ũx̃ = σ1(U
⊤Ũ). The orthogonality constraints in the

subsequent steps force (xk, x̃k) = (U⊤uk, Ũ
⊤ũk) to lie in the left-over singular subspaces of U⊤Ũ, with (uk, ũk) the

maximisers at step k. Inductively, one obtains cos θi = σi(U
⊤Ũ) (i = 1, . . . , r) as a standard consequence of the SVD

and the min–max (Courant–Fischer/Ky Fan) principle.

It is customary to collect the angles into a diagonal matrix ΘL := diag(θ1, . . . , θr). Applying sin(·) entry-wise gives
sinΘL := diag (sin θ1, . . . , sin θr). One never needs to compute the angles explicitly because ∥sinΘL∥2→2 = sin θmax =

∥U⊤Ũ⊥∥2→2 where θmax = θr is the largest principal angle, and Ũ⊥ is an orthonormal basis of S̃⊥
L . In fact, let

B := U⊤Ũ ∈ Rr×r and C := U⊤Ũ⊥ ∈ Rr×(n1−r). We can write the SVD of B as B = D cosΘLE
⊤, with
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E ∈ Rr×r orthogonal. This gives BB⊤ = D(cosΘL)
2D⊤. Because of the orthogonality relation BB⊤ + CC⊤ =

U⊤(ŨŨ⊤ + Ũ⊥Ũ⊥⊤)U = U⊤U = Ir, we have CC⊤ = Ir − BB⊤ = D(Ir − (cosΘL)
2)D⊤ = D(sinΘL)

2D⊤.
So, under SVD, C = D sinΘLF

⊤ with F ∈ R(n1−r)×(n1−r) orthogonal. This is related to the CS (cosine-sine) matrix
decomposition of U⊤[Ũ Ũ⊥]. Therefore, ∥C∥2→2 = ∥sinΘL∥2→2 = sin θmax.

Thus ∥ sinΘL∥2→2 measures the worst-case misalignment between the two subspaces; it equals the operator norm of the
difference of their orthogonal projections. In the following, we use sinΘL in place of ∥ sinΘL∥2→2 by abuse of notation.
The following result can be derived from the Davis–Kahan sinΘ theorem.

Lemma C.44 (Wedin’s sinΘ bound). Let E ∈ Rn1×n2 and set Ã := A + E. Let Ur, Ũr ∈ Rn1×r span the leading
r left singular subspaces of A and Ã, respectively, and let ΘL be the matrix of canonical angles between these sub-
spaces. If ∥E∥2→2 < σr(A) − σr+1(A) (with σr+1(A) = 0 because rank(A) = r), then sinΘL := ∥U⊤

r Ũ
⊥
r ∥2→2 ≤

σmax(E)
σr(A)−σmax(E) . An analogous bound on sinΘR := ∥V⊤

r Ṽ
⊥
r ∥2→2 holds on the right singular side.

Lemma C.45. If σmin(A) > σmax(A
∗), then ∥H(A−A∗)−H(A)∥F ≤ 2

√
2 rank(A)

σmin(A)/σmax(A∗)−1 .

Proof. Let r = rank(A). WriteH(A) = UV⊤ andH(A−A∗) = ŨṼ⊤, with U, V, Ũ, Ṽ having orthonormal columns.

∥U− Ũ∥2F = ∥U∥2F + ∥Ũ∥2F − 2 tr
(
Ũ⊤U

)
= 2r − 2

r∑
i=1

cos θi since ∥U∥2F = ∥Ũ∥2F = r and σi
(
Ũ⊤U

)
= cos θi

= 2

r∑
i=1

(1− cos θi) ≤ 2

r∑
i=1

sin2 θi since 1− cos θi =
sin2 θi

1 + cos θi
≤ sin2 θi for θi ∈ [0, π/2]

≤ 2r(sin θmax)
2 = 2r(sinΘL)

2

≤ 2r

(
σmax(A

∗)

σmin(A)− σmax(A∗)

)2

(Lemma C.44 with E = −A∗)

(105)

Hence

∥ŨṼ⊤ −UV⊤∥F ≤ ∥(Ũ−U)Ṽ⊤∥F + ∥U(Ṽ −V)⊤∥F

≤ ∥Ũ−U∥F + ∥Ṽ −V∥F ≤ 2
√
2rσmax(A

∗)

σmin(A)− σmax(A∗)

(106)

C.7. Proof of Theorem 3.5

Definition C.46 (Stable Rank Null Space Property). A linear measurement map F : Rn1×n2 → Rm is said to satisfy the
stable rank null space property of order r with constant ρ ∈ (0, 1) if for all A ∈ kerF \ {0}, the singular values of U
satisfy

∑r
i=1 σi(A) ≤ ρ

∑min{n1,n2}
i=r+1 σi(A).

Theorem C.47 (Exercises 4.19 in Foucart & Rauhut (2013)). The linear measurement map F : Rn1×n2 → Rm satisfies
the stable rank null space property of order r with constant ρ ∈ (0, 1) if and only if ∥B−A∥∗ ≤ 1+ρ

1−ρ (∥B∥∗ − ∥A∥∗ +
2
∑min{n1,n2}

i=r+1 σi(A)) for all vector A,B ∈ Rn1×n2 with F(A) = F(B).

Definition C.48 (Robust Rank Null Space Property). A linear measurement map F : Rn1×n2 → Rm is said to satisfy the
robust rank null space property of order r (with respect to ∥ · ∥) with constants ρ ∈ (0, 1) and τ > 0 if, for all A ∈ Rn1×n2 ,
the singular values of A satisfy

∑r
ℓ=1 σℓ(A) ≤ ρ

∑min{n1,n2}
ℓ=r+1 σℓ(A) + τ∥F(A)∥.

Theorem C.49 (Exercises 4.19 in Foucart & Rauhut (2013)). The linear measurement map F : Rn1×n2 → Rm satisfies
the robust rank null space property of order r (with respect to ∥ · ∥) with constants ρ ∈ (0, 1) and τ > 0 if and only if
∥B−A∥∗ ≤ 1+ρ

1−ρ (∥B∥∗ − ∥A∥∗ + 2
∑min{n1,n2}

ℓ=r+1 σℓ(A)) + 2τ
1−ρ∥F(B−A)∥ for all vector A,B ∈ Rn1×n2 .

Theorem C.50. Assume the linear measurement map F·(X) satisfies the robust rank null space property of order r with
constants ρ ∈ (0, 1) and τ > 0, i.e for all A ∈ Rn1×n2 ,

∑r
ℓ=1 σℓ(A) ≤ ρ

∑min{n1,n2}
ℓ=r+1 σℓ(A) + τ∥Fvec(A)(X)∥2. Then,
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under the same condition as in Theorem C.40 on α, β and ξ; i.e. 0 < ασmax(X
⊤X) < 2, 0 < β

√
min(n1, n2) <

σmax(X
⊤X) and ∥X⊤ξ∥2 ≤

√
Cαβ, C > 0; there exists C ′ > 0 such that for all η > 0,

min
t1≤t≤t2

∥A(t) −A∗∥∗ ≤ C1η + C2αβ + C3∥ξ∥2 ⇐⇒ t2 ≥ t1 +∆t(η, t1), ∆t(η, t1) :=
∥A(t1) −A∗∥2F

αβη
(107)

with ρ2 = σmax

(
In − αX⊤X

)
,

C1 =
1 + ρ

2(1− ρ)
, C2 =

C + C ′

2

1 + ρ

1− ρ
+

2
√
nσmax(X)

1− ρ2

2τ

1− ρ
and C3 =

4τ

1− ρ
(108)

Proof. We have ∥A − A∗∥∗ ≤ 1+ρ
1−ρ (∥A∥1 − ∥A∗∥∗) + 2τ

1−ρ∥X vec(A − A∗)∥2 (Theorem C.49). We also have

mint1≤t≤t2

(
∥A(t)∥∗ − ∥A∗∥∗

)
≤ η+(C+C′)αβ

2 if and only if t2 ≥ t1 + ∆t(η, t1) (Theorem C.40). For t ≥ t1, we
have

∥X vec(A−A∗)∥2 ≤ ∥X vecA(t) − y∗∥2 + ∥ξ∥2

≤ 2
√
n∥X∥2→2

1− ρ2
αβ + ∥Xâ− y∗∥2 + ∥ξ∥2 (Equation (82))

=
2
√
n∥X∥2→2

1− ρ2
αβ + 2∥ξ∥2 (Equation (72))

(109)

Combining these gives the desired result.

C.8. Proof of Theorem 3.6

We want to minimize f(a) = g(a) + βh(a) using gradient descent with a learning rate α, where g(a) = 1
2∥Xa− y∗∥22

and h(a) = 1
2∥a∥

2
2. Let Q := X⊤X+ βIn. We have

f(a) :=
1

2
∥y(a)− y∗∥22 +

β

2
∥a∥22 =

1

2
a⊤Qa−

(
X⊤Xa∗ +X⊤ξ

)⊤
a+

1

2
∥Xa∗ + ξ∥22 (110)

and

F (a) := ∇af(a) = X⊤(y − y∗) + βa = Qa−
(
X⊤Xa∗ +X⊤ξ

)
(111)

The subgradient update rule is

a(t+1) = a(t) − αF (a(t)) = (In − αQ)a(t) + α
(
X⊤Xa∗ +X⊤ξ

)
(112)

Let X = UΣ
1
2V⊤ under the SVD decomposition, with Σ = diag(σk)k∈[r], where r = rank(X) and σmax = σ1 ≥

· · ·σk ≥ σk+1 · · · ≥ σmin = σr > σr+1 = · · · = 0. If the step size α satisfies 0 < α < 2
σmax+β . The update a(t) converge

to the least square solution â := Q†X⊤y∗, but this solution can not give rise to generalization when N < n.

Theorem C.51. For all p > 0, let define ρp :=
∥∥In − α

(
X⊤X+ βIn

)∥∥
p→p

. Assume the learning rate satisfies 0 <

α < 2
σmax(X⊤X)+β

. Then ∥a(t) − â∥p ≤ ρt−1
p ∥a(1) − â∥p for all t ≥ 1. On the other hand, for N < n, ∥â − a∗∥22 ≥

∥(In − VV⊤)a∗∥22. In particular, if a∗ has a nonzero component orthogonal to the column space of V, then â cannot
perfectly generalize to a∗.

Proof. In Lemma C.52, we show that ∥a(t+1) − â∥p ≤ ρtp∥a(1) − â∥p ∀t ≥ 0. So for t ≥ ln
(
η/∥a(1) − â∥p

)
/ ln ρp,

we have ∥a(t+1) − â∥p ≤ η. Consider the regularized least-squares estimator â =
(
X⊤X+ βIn

)†
X⊤y∗ =

V (Σ + βI)−1
Σ

1
2U⊤y∗. We have VV⊤â = â, i.e. â ∈ Col(V). Let decompose a∗ into two orthogonal com-

ponents; a∗ = a∥ + a⊥, where a∥ := VV⊤a∗ ∈ Col(V) and a⊥ := (In − VV⊤)a∗ ∈ Col(V)⊥. Since
â ∈ Col(V), VV⊤(â − a∥) = â − a∥ and VV⊤a⊥ = 0 by orthogonality. Thus, we can express the error as
â − a∗ = â − (a∥ + a⊥) = (â − a∥) − a⊥. Because â − a∥ ∈ Col(V) and a⊥ lies in the orthogonal complement of
Col(V), these two vectors are orthogonal. Hence, ∥â− a∗∥22 = ∥â− a∥∥22 + ∥a⊥∥22 ≥ ∥a⊥∥22 = ∥(In −VV⊤)a∗∥22.
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Lemma C.52. If α ∈ (0, 2
σmax+β ), then F (a(t)) → 0 as t → ∞; where F (a) = 0 ⇐⇒ a = â +(

In −
(
X⊤X+ βIn

)† (
X⊤X+ βIn

))
c = â+

(
In −VV⊤) c ∀c ∈ Rn. Also, ∥a(t+1) − â∥p ≤ ρtp∥a(1) − â∥p ∀t.

Proof. The solutions of F (a) = 0 are(
X⊤X+ βIn

)
a = X⊤y∗

⇐⇒
(
X⊤X+ βIn

)
a = X⊤y∗ = X⊤Xa∗ +X⊤ξ = VΣV⊤a∗ +VΣ

1
2U⊤ξ

⇐⇒ a =
(
X⊤X+ βIn

)†
X⊤y∗ +

(
In −

(
X⊤X+ βIn

)† (
X⊤X+ βIn

))
c = â+

(
In −VV⊤) c ∀c ∈ Rn

(113)

Let Σ̃ = I − α (Σ + βI); A = In − α
(
X⊤X+ βIn

)
= VΣ̃V⊤ and w = αX⊤y∗ = α

(
X⊤Xa∗ +X⊤ξ

)
=

α
(
VΣV⊤a∗ +VΣ

1
2U⊤ξ

)
; so that

a(t+1) = Aa(t) +w = Ata(1) +

(
t−1∑
i=0

Ai

)
w = Ata(1) + (I −A)

† (I −At
)
w (114)

As t −→ ∞, Σ̃t −→ 0, so At = VΣ̃tV⊤ −→ 0. We have

t−1∑
i=0

Ai = In +

t−1∑
i=1

VΣ̃iV⊤ = In −VV⊤ +

t−1∑
i=0

VΣ̃iV⊤

= In −VV⊤ +V diag

(
t−1∑
i=0

σ̃i
k

)
k

V⊤ = In −VV⊤ +V diag

(
1− σ̃t

k

1− σ̃k

)
k

V⊤

= In −VV⊤ +V
(

I − Σ̃
)−1 (

I − Σ̃t
)
V⊤

−→ In −VV⊤ +V
(

I − Σ̃
)−1

V⊤ = In −VV⊤ +
1

α
V (Σ + βIn)

−1
V⊤ as t −→ ∞

(115)

So, as t −→ ∞,

a(t+1) =

( ∞∑
i=0

Ai

)
w = α

(
Ir −VV⊤ +

1

α
V (Σ + βIr)

−1
V⊤
)(

VΣV⊤a∗ +VΣ
1
2U⊤ξ

)
= V (Σ + βI)−1

V⊤
(
VΣV⊤a∗ +VΣ

1
2U⊤ξ

)
+
(
In −VV⊤) c with c = w

= V (Σ + βI)−1
V⊤

(
VΣV⊤a∗ +VΣ

1
2U⊤ξ

)
= â

(116)

We have Aâ+c = â, so a(t+1)−â = A(a(t)−â) = At(a(1)−â), which implies ∥a(t+1)−â∥p ≤ ∥At∥p→p∥a(1)−â∥2.

D. Other Iterative Method for ℓ1 and ℓ∗ Minimization
D.1. Sparse Recovery

For the experiments of this section, we use (n, ζ, α, β) = (102, 10−6, 10−1, 10−5). We solve the sparse recovery problem
using the projected subgradient (Figure 12) and the soft-thresholding algorithm (Figure 13). We observe a grokking-like
pattern similar to the subgradient case. One training step is enough for the projected subgradient to get zero training error.
This further shows that generalization is driven by α and, more importantly, β.

Projected subgradient To ensure memorization, we can use the projected subgradient for problem of minimizing
∥a∥1 subject to the constraint Xa = y∗, where at each step the update (using now just βH(a) as gradient, not the
whole F (a)) is projected onto the constraint set. In our case, the update write a(t+1) = Π

(
a(t) − αβH(a(t))

)
with

Π(a) = a − X⊤ (XX⊤)† (Xa − y∗) the projection of a on the set {a,Xa = y∗}. We can show that the ℓ1 optimal
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gap of this method enjoys the same bound O(αβ) given above (Theorem C.29) for the non-projected case. We have

mint1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ ∥a(t1)−a∗∥2

2+(βα)2(t2−t1)n
2βα(t2−t1)

−→
t2→0

αβ
2 . The proof is the following:

0 ≤ ∥a(t2+1) − a∗∥22 = ∥Π
(
a(t2) − αβ ·H(a(t2))

)
− a∗∥22

≤ ∥a(t2) − a∗ − αβ ·H(a(t2))∥22
= ∥a(t2) − a∗∥22 − 2αβ(a(t2) − a∗)⊤H(a(t2)) + β2α2∥H(a(t2))∥22
≤ ∥a(t2) − a∗∥22 − 2βα

(
∥a(t2)∥1 − ∥a∗∥1

)
+ β2α2∥H(a(t2))∥22 (by the definition of H)

≤ ∥a(t1) − a∗∥22 − 2βα

t2∑
t=t1

(
∥a(t)∥1 − ∥a∗∥1

)
+ β2α2

t2∑
t=t1

∥H(a(t))∥22

(117)

This implies

2β

(
t2∑

t=t1

α

)
min

t1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ ∥a(t1) − a∗∥22 + β2α2

t2∑
t=t1

∥H(a(t))∥22

⇐⇒ min
t1≤t≤t2

(
∥a(t)∥1 − ∥a∗∥1

)
≤ ∥a(t1) − a∗∥22 + β2α2(t2 − t1)maxt1≤t≤t2 ∥H(a(t))∥22

2βα(t2 − t1)

(118)
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Figure 12: Sparse recovery with the projected subgradient descent method.

Proximal Gradient Descent We have a− αG(a) = argminc g(a) + (c− a)⊤G(a) + 1
2α∥c− a∥22. So

a− αF (a) ≈ argmin
c

g(a) + (c− a)⊤G(a) +
1

2α
∥c− a∥22 + β∥c∥1

= argmin
c

1

2α
∥c− (a− αG(a)) ∥22 + β∥c∥1

= Πα (a− αG(a))
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with Πα the proximal mapping for c → β∥c∥1, Πα(a) = argminc
1
2α∥c−a∥22+β∥c∥1 = argminc

1
2∥c−a∥22+αβ∥c∥1 =

Sαβ(a), where Sγ(a) = sign(a)⊙max(|a| − γ, 0) the soft-thresholding operator9,

Sγ(a)i =

 ai − γ if ai > γ
0 if − γ ≤ ai ≤ γ
ai + γ if ai < −γ

The final form of the update, known as the Iterative soft-thresholding algorithm (ISTA) (Daubechies et al., 2003), is then
a(t+1) = Sαβ

(
a(t) − αG(a(t))

)
∀t > 1. Let L = ∥X⊤X∥2→2 = σmax(X

⊤X) be the Lipschitz constant for G. If

α ≤ 1/L, then mint≤T (f(a
(t)) − f(a∗)) ≤ ∥a(1)−a∗∥2

2αT −→
T→0

0 for the ISTA. We applied a standard bound on proximal

gradient descent (Tibshirani, 2015) for a function of the form f = g + h : Rn → R. Such result state that the proximal
gradient descent with fixed step size α ≤ 1/L satisfies mint≤T (f(a

(t))−f∗) ≤ ∥a(1)−a∗∥2
2

2αT when g is convex, differentiable,
dom(g) = Rn, ∇g is Lipschitz continuous with constant L > 0; and h is convex and its proximal map Πα can be evaluated.
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Figure 13: Sparse recovery with the soft-thresholding algorithm (ISTA)

D.2. Low Rank Matrix Factorization

For the experiments of this section we use (n1, n2, r,N, ζ, α, β) = (10, 10, 2, 70, 10−6, 10−1, 10−4) for a matrix sensing.
Figure 14 shows the results for the projected subgradient and Figure 15 shows the results for the proximal gradient method.

Projected subgradient At each step, the update (using now just βH(A) as gradient) is projected onto the constraint set.
In our case, the update write A(t+1) = Π

(
A(t) − αβH(A(t))

)
with Π the projection on the set {A,X vecA = y∗}.

Proximal Gradient Descent We have A − αF (A) = Πα (A− αG(A)) where Πα is the proximal mapping for
B → β∥B∥∗, Πα(A) = argminB

1
2α∥B − A∥2F + β∥B∥ = Sαβ(A) with Sγ(A) = Umax(Σ − γ, 0)V⊤ the soft-

thresholding operator for A = UΣV⊤ under SVD, where max(Σ− γ, 0)ij = δij max(Σij − γ, 0). The final form of the
update is then A(t+1) = Sαβ

(
A(t) − αG(A(t))

)
∀t > 1.

9On C, the soft-thresholding operator Sγ(a) = sign(a)⊙max(|a| − γ, 0) only shrinks the magnitude and keeps the phase fixed.
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Figure 14: Matrix sensing with the projected subgradient method.
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Figure 15: Matrix sensing with the Proximal Gradient Descent method.

E. Grokking Without Understanding
Consider the sparse recovery problem (the explanation below also holds for matrix factorization). We start the optimization
at a(1) iid∼ ζN (0, 1/n) with ζ ≥ 0 the initialization scale. With a small initialization, ℓ1 regularization is sufficient for
generalization to happen, provided N is large enough and ℓ2 regularization is not very large. If the scale at initialization is
large, then adding ℓ2 regularization is necessary to generalize, but is it sufficient? That is, can we generalize to the problem
studied here with only ℓ2 regularization?
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Figure 16: Relative errors and ∥a(t)∥1; with large initialization
scale ζ = 101 and small weights decay β = 10−5. Without
visualization of the error on a logarithmic scale (left), it looks
like grokking has occurred, whereas this is not the case (right).

As shown in Section C.8, the answer to this question is
no. But what we want to illustrate here is a phenomenon
that contradicts previous art (Liu et al., 2023a; Lyu et al.,
2023), namely that in the over-parametrized regime (N <
n in our case), large initialization and non-zero weight
decay do not always lead to grokking. What happens is
that, because of the large initialization, a more or less
abrupt transition is observed in the generalization error
during training, corresponding to a transition in the ℓ2
norm of the model parameters. But this can not be called
grokking because the model only converges to a sub-
optimal solution. What is more, this transition appears even if the problem posed admits no solution, e.g., sparse recovery or
matrix completion with a number N of examples far below the theoretical limit required for the solution to the problem
posed to be the optimal solution (by any method whatsoever). This transition appears abrupt just because the training error
is large at the beginning of training, since the model’s outputs are large. When its ℓ2 norm becomes small, its outputs also
become small, leading to a transition in error. In Figure 16, without visualization of the error on a logarithmic scale, it looks
like grokking has occurred, whereas this is not the case. For this figure we use (n, s,N, α) = (100, 5, 30, 10−1).

We call this phenomenon “grokking without understanding” like Levi et al. (2024) who illustrated it in the case of
linear classification. They show that the sharp increase in generalization accuracy may often not imply a transition from
“memorization” to “understanding” but can be an artifact of the accuracy measure. But in our case, we are not using any
significant scale at initialization (we focus on 0 ≤ ζ ≤ 10−5) and are not dealing with the generalization measure problem
since our test error is directly the recovery error in the function space, not the accuracy.
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We hypothesize that the interplay between large initialization and small non-zero weight decay that leads to grokking as
predicted (provably) by Lyu et al. (2023) does not hold in our setting because our model violates they Assumption 3.2. Let
ya(x) = a⊤x denote our model.

• Assumption 3.1 (Lyu et al., 2023): For all x ∈ Rn, the function a → ya(X) is 1-homogeneous since yca(x) = c1ya(x)
for all c > 0.

• Assumption 3.2 (Lyu et al., 2023): for ζ = 0, ya(1)(x) = 0 for all x (there is generalization in this case with ℓ1),
but if ζ > 0 (for instance ζ large), this is (almost surely) no longer true. So, this assumption is violated (with high
probability).

• Assumption 3.8 (Lyu et al., 2023): The NTK (Neural Tangent Kernel) features of training samples {∇aya(Xi)}i∈[N ]

are linearly independent (almost surely) at initialisation a = a(1). In fact, ∇aya(x) = x ∀x. In the over-parametrized
regime N < n, If M ∈ RN×n has entries iid from a normal distribution, then the NTK features {Xi}i∈[N ] are linearly
independent with high probability (because the rank of X is N with high probability), so this assumption is verified.

F. Implicit Bias of the Depth
F.1. Deep Sparse Recovery

For sparse recovery, let now use the parameterization a = ⊙L
k=1Ak ∈ Rn, with A ∈ RL×n. This corresponds to a linear

network with L layers, where each hidden layer has the parameter diag(Ak) ∈ Rn×n—with this, increasing L leads to
overparameterization without altering the expressiveness of the function class a → Fa(x) = x⊤a, since the model remains
linear with respect to the input x. Unlike the shallow case (L = 1), there is no need for ℓ1 regularization to generalize
when L ≥ 2 (and the initialization scale is small), as the experiments of this section suggest. With depth, the update for
the whole iteration (which is now replaced by a product of matrices and a vector) is similar to the shallow case, but with
a preconditioner in front of the gradient. This preconditioner makes it possible to recover the sparse signal without any
regularization.

We let h(Ai) =
1
2∥Ai∥2 so that H(Ai) = Ai. Also g(a) = 1

2∥y(a) − y∗∥22 = 1
2a

⊤X⊤Xa −
(
X⊤Xa∗ +X⊤ξ

)⊤
a +

1
2∥Xa∗ + ξ∥22. Let G(a) := ∂g(a)

∂a = X⊤X(a− a∗)−X⊤ξ. The gradient for each Ai is G(Ai) :=
∂g(a)
∂Ai

= ∂a
∂Ai

∂g(a)
∂a =

diag(⊙k ̸=iAk)G(a). We start the optimization at A(1)
i

iid∼ ζN (0, 1/n) with ζ ≥ 0 the initialization scale. The update rule
for each Ai is

A
(t+1)
i = A

(t)
i − αG(A

(t)
i )− αβH(A

(t)
i ) = (1− αβ)A

(t)
i − α diag(⊙k ̸=iA

(t)
k )G(a(t)) (119)

Without ovaparametrization (L = 1), the update is unconditioned and progresses uniformly in all directions. So without
ℓ1-regularization, there is no mechanism to enforce sparsity, and perfect recovery of a∗ is impossible. For L = 2, let
c := A1 ⊙A1 +A2 ⊙A2.

a(t+1) = A
(t+1)
1 ⊙A

(t+1)
2

=
(
(1− αβ)A

(t)
1 − α diag(A

(t)
2 )G(a(t))

)
⊙
(
(1− αβ)A

(t)
2 − α diag(A

(t)
1 )G(a(t))

)
= (1− αβ)2a(t) − α(1− αβ) diag(A

(t)
1 ⊙A

(t)
1 +A

(t)
2 ⊙A

(t)
2 )G(a(t)) + α2 diag(a(t))G(a(t))⊙2

= (1− αβ)2a(t) − α(1− αβ)c(t) ⊙G(a(t)) + α2a(t) ⊙G(a(t))⊙2

≈ (1− 2αβ)a(t) − αc(t) ⊙G(a(t)) for α→ 0

(120)

and

c(t+1) = A
(t+1)
1 ⊙A

(t+1)
1 +A

(t+1)
2 ⊙A

(t+1)
2

= (1− αβ)2A
(t)
1 ⊙A

(t)
1 − 2α(1− αβ) diag(A

(t)
1 ⊙A

(t)
2 )G(a(t)) + α2 diag(A

(t)
2 ⊙A

(t)
2 )G(a(t))⊙2

+ (1− αβ)2A
(t)
2 ⊙A

(t)
2 − 2α(1− αβ) diag(A

(t)
2 ⊙A

(t)
1 )G(a(t)) + α2 diag(A

(t)
1 ⊙A

(t)
1 )G(a(t))⊙2

= (1− αβ)2c(t) − 4α(1− αβ)a(t) ⊙G(a(t)) + α2c(t) ⊙G(a(t))⊙2

≈ (1− 2αβ)c(t) − 4αa(t) ⊙G(a(t)) for α→ 0

(121)
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The depth adds the preconditioning P(t) = (1−αβ) diag(c(t)) in front of the update for a. This preconditioning mechanism
seems to implicitly favor sparsity and, thus, a perfect recovery after memorization. In fact, when c

(t)
i goes to zero (which is

the case when a
(t)
i is also small), the update becomes a(t+1)

i ≈ (1− 2αβ)a
(t)
i , and thus push a

(t+1)
i to 0 at a geometric rate

of O(1− 2αβ). Otherwise, c(t)i (large) will amplify the gradient so that c(t)i G(a(t))i dominates the update, which pushes
a(t) towards a∗ (as the gradient G(a(t)) points towards a small error a(t) − a∗ direction, particularly for full rank X and
high signal to ratio regime).

With the deep parametrization above, we solve the sparse recovery problem using the subgradient descent method with
(n, s, α, β) = (102, 5, 10−1, 0), for different values of N and L ∈ {1, 2, 3, 4} (Figure 17 and 18). We use a small
initialization scale ζ = 10−6 for L = 1 and ζ = 10−2 for L > 1. Here, initializing A too close to the origin (initialization
scale ζ → 0) leads a to not change during training. The model is able to recover the true signal a∗, and the generalization
delay becomes extremely small (compared to the shallow case with non-zero ℓ1 coefficient) for L = 2 and disappears
(ungrokking) for L > 2. As L becomes larger, the phase transition to generalization becomes extremely abrupt. The loss
decreases in a staircase fashion, with more or less long plateaus of suboptimal generalization error during training. This
type of behavior is generally observed in the optimization of Soft Committee Machines (Biehl & Schwarze, 1995; Saad &
Solla, 1995b;a; 1996; Engel & Broeck, 2001; Aubin et al., 2018; Goldt et al., 2020), which are two-layer linear or non-linear
teacher-student systems, with the output layer of the student fixed to that of the teacher during training.

Additionally, for a fixed numberN of measures, the test error decreases with L, indicating that depth aids in finding the signal
with a smaller number of measures, albeit at the expense of a longer training time. So, the depth seems to have the same effect
on generalization as ℓ1. This is in accord with the result of Arora et al. (2018) in the context of matrix factorization. They
show that introducing depth effectively turns gradient descent into a shallow (single-layer) training process equipped with a
built-in preconditioning mechanism. This mechanism biases updates toward directions already explored by the optimization,
serving as an acceleration technique that fuses momentum with adaptive step sizes. Furthermore, they demonstrate that
depth-based overparameterization can substantially speed up training, even in straightforward convex tasks like linear
regression with ℓp loss, p > 2.

Note that for L ≥ 2, using a large-scale initialization and a small but non-zero ℓ2 regularization β results in grokking, unlike
the case of L = 1 that gives the “grokking without understanding” phenomenon. In this regime, when L increases, the
number of steps required for the model to move from memorization to generalization is reduced (grokking acceleration),
and the generalization error at the end of training is considerably lower. Lyu et al. (2023) used a similar setup to show that
an interplay between large initialization and small nonzero weights decay gives rise to grokking with the diagonal linear
network y(x) =

(
u⊙L − v⊙L

)⊤
x in the context of binary classification, but there did not study the impact of L on the

generalization delay, and instead focus on characterizing how sharp is the transition from memorization to generalization as
a function of the initialization scale and the weight decay coefficient, and how long it takes for this transition to occurs.
This diagonal linear network is also often used for sparse recovery problems (Vavskevivcius et al., 2019), but the focus is
generally on its ability to recover the optimal solution, not grokking.

F.2. Deep Matrix Factorization

For matrix factorization, let use the parameterization A =
∏L

k=1 Ak, with A1 ∈ Rn1×d, AL ∈ Rd×n2 , and Ai ∈ Rd×d

for all i ∈ (1, L). This corresponds to a linear network with L layers, where each hidden layer has the parameter
Ak—with this, increasing L leads to overparameterization without altering the expressiveness of the function class
A → FA(x) = x⊤ vecA, since the model remains linear with respect to the input x. Like in compressed sensing, there is
no need for ℓ∗ (or any other form of regularization) to generalize when L ≥ 2 (and the initialization scale is small), unlike
the shallow case (L = 1). This is an observation already made and proven in previous art (Gunasekar et al., 2017; Arora
et al., 2019; Gidel et al., 2019; Gissin et al., 2019; Razin & Cohen, 2020; Li et al., 2020). Gunasekar et al. (2017); Arora
et al. (2019) show that increasing L implicitly biases A toward a low-rank solution, which oftentimes leads to more accurate
recovery for sufficiently large N . In fact, with depth, the update for the whole iterate is similar to the shallow case but with a
preconditioner in front of the gradient (like in section F.1). This preconditioner makes it possible to recover the low-rank
matrix without any regularization and with fewer samples than in the shallow case (Arora et al., 2018; 2019). It is also
shown specifically for this problem that initializing the model very far from the origin and using a small (but non-zero)
weight decay leads to grokking (Lyu et al., 2023), i.e., the model first memorizes the observed entries, then after a long
training period, converges to the sought matrices provided the number of such observe entries is large enough.
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Figure 17: Training and recovery error as a function of the number of samples N and the depth L.
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Figure 18: Training and error ∥Xa(t1) − y∗∥2/∥y∗∥2 and recovery error ∥a(t2) − a∗∥2/∥a∗∥2 (along with t1 and t2, the
memorization and the generalization step) as a function of the number of sample N and the depth L. The growth (as a
function of N ) in the test error for L = 4 is simply due to the fact that we did not optimize long enough for it to decrease.

G. Amplifying Grokking through Data Selection
G.1. Sparse Recovery

Definition G.1 (Restricted Isometry Property (RIP) and Restricted Isometric Constant (RIC)). Let A ∈ Rm×n and
(s, δs) ∈ [n] × (0, 1). The matrix A is said to satisfy the (s, δs)-RIP if (1 − δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22
for all s-sparse vector x ∈ Rn (i.e. ∥x∥0 ≤ s). This is equivalent to saying that for every J ⊂ [n] with |J | = s,
(1 − δs)∥x∥22 ≤ ∥A:,Jx∥22 ≤ (1 + δs)∥x∥22 ∀x ∈ Rs where the submatrix A:,J ∈ Rm×s of A is build by selecting the
columns index in J . This condition is also equivalent to the statement ∥A⊤

:,JA:,J − Is∥2→2 ≤ δs, which is finally equivalent
to λ

(
A⊤

:,JA:,J

)
∈ [1− δs, 1 + δs] for all eigenvalues eigenvalue λ

(
A⊤

:,JA:,J

)
of A⊤

:,JA:,J . We say that A satisfies s-RIP
if it satisfies (s, δs)-RIP with some δs ∈ (0, 1). The s-RIC of A is defined as the infimum δs(A) of all possible δs such that
A ∈ Rm×n satisfy the (s, δs)-RIP. So, for all ∀J ⊂ [n] with |J | = s, the condition number of A⊤

:,JA:,J is bounds from

above by 1+δs(A)
1−δs(A) , a the one of A:,J by

√
1+δs(A)
1−δs(A) .

We say that a matrix A satisfies the RIP if δs(A) is small for reasonably large s. All the above definitions extend to any
linear map f : Rn → Rm. Note that δs(A) ≤ δs+1(A) for all A ∈ Rm×n and s ∈ [n].

Let F : Rm×n → Rq be a linear map and (r, δr) ∈ [n] × (0, 1). f is said to satisfy (r, δr)-RIP if for all rank-r matrices
X ∈ Rm×n, (1 − δr)∥X∥2F ≤ ∥F(X)∥22 ≤ (1 + δr)∥X∥2F. We say that F satisfies r-RIP if F satisfies (r, δr)-RIP with
some δr ∈ (0, 1), and the r-RIC of F is defined as the infimum δr(F) of all possible δr such that F satisfy the (r, δr)-RIP.

Definition G.2 (Coherence). The coherence between two matrices A ∈ Rq×m and B ∈ Rq×n is µ(A,B) =

maxi∈[m],j∈[n]
|⟨A:,i,B:,j⟩|
∥A:,i∥∥B:,j∥ = maxi∈[m],j∈[n]

|[A⊤B]i,j |
∥A:,i∥∥B:,j∥ . Coherence measures how similar or aligned two matrices

or vectors are. Specifically, it measures how much overlap there is between the columns of A and B. High coherence means
they are similar or aligned, and low coherence (or incoherence) means they are very different. Incoherence is essentially the
opposite of coherence. It refers to a low overlap or low similarity between the columns of A and B.

The mutual coherence of a matrix A ∈ Rm×n is µ(A) = max(i,j)∈[m]×[n],i̸=j
|⟨A:,i,A:,j⟩|
∥A:,i∥∥A:,j∥ =

max(i,j)∈[m]×[n],i̸=j
[A⊤A]i,j

∥A:,i∥∥A:,j∥ . If the coherence is small, then the columns of A are almost mutually orthogo-
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nal. A small coherence is desired in order to have good sparse recovery properties. We also have the 1-coherence
µ1(A, s) = maxi∈[n] maxJ⊆[n]\i,|J|≤s

∑
j∈J

|⟨A:,i,A:,j⟩|
∥A:,i∥∥A:,j∥ ≤ sµ(A).

For a matrix A ∈ Rm×n with unit norm columns, µ(A) ≥
√

n−m
m(n−1) and µ1(A, s) ≥ s

√
n−m

m(n−1) whenever s ≤
√
n− 1

(Rauhut, 2010). In high dimensional space (large n), µ(A) ≥
√

n−m
m(n−1) becomes µ(A) ≳ 1√

m
: this lower bound is

achieve when A is an equiangular tight frame.

Proposition G.3 (Relation between µ and δ). For a matrix A ∈ Rm×n with unit norm columns, µ(A) = δ2(A),
µ1(A, s) = maxJ∈[n],|J|≤s+1 ∥A⊤

:,JA:,J − I∥1→1, and δs(A) ≤ µ1(A, s− 1) ≤ (s− 1)µ(A) (Rauhut, 2010).

G.1.1. THE PROBLEM

Given the sparse basis (or dictionary) Φ ∈ Rn×n, the measurement matrix M ∈ RN×n, and the measures y∗ =
Fb∗(M) + ξ = Mb∗ + ξ ∈ RN ; we aim to solve (P0) Minimize ∥a∥0 s.t. ∥Fa(MΦ) − y∗∥2 ≤ ϵ, and more pre-
cisely, its convex relaxation (P1) Minimize ∥a∥1 s.t. ∥Fa(MΦ) − y∗∥2 ≤ ϵ. This problem has been well studied in the
signal processing literature under the name Basis Pursuit. It is well known that under certain conditions on the mea-
surement matrix M (e.g., coherence with respect to Φ) and the sparsity of b∗ in Φ, sufficiently sparse solutions of (P1)
are also solutions of (P0) (Donoho & Elad, 2003; Candes et al., 2006). Many lower bounds on the number of measures
N guaranteeing ∥a − a∗∥2 ≤ ϵ with high probability have also been derived. Such lower bounds generally have the
form N = Ω

(
δ−C1

(
s logC2 (n/s) + log 1/η

))
(Rauhut, 2010), where δ capture the Restricted Isometry Property (Def-

inition G.1) of X = MΦ (δ2s(X) ≤ δ) and is also related to the coherence (Definition G.2) of M with respect to Φ
(Proposition G.3), η is the percentage of error (i.e. N guaranteed a recovery with probability at least 1− η), C1 > 0 and
C2 > 0 are constants. Observe that in the noiseless setting, we want a such that Xa = Xa∗, that is a ∈ a∗ + Null(X).
Donoho (2006b;a) show that the nullspace {a,Xa = 0} has a very special structure for certain X (e.g. incoherent with any
orthonormal basis): when a∗ is sparse, the only element in the affine subspace a∗ + Null(X) that can have a small ℓ1 norm
is a∗ itself.

We will assume for simplicity that Φ is an orthonormal matrix, Φ⊤Φ = In. It is common in sparse coding theory to
consider Φ ∈ Rn×m as a dictionary with m columns referred to as atoms (square, n = m; undercomplete, n > m; or
overcomplete, n < m); and saying b∗ is sparse means it can be written as a linear combination of a few of such atoms.
But here, we assume for simplicity that we have b∗ = Φa∗ with a∗ ∈ Rm and Φ ∈ Rn×m a set of m ≤ n linearly
independent vectors (its column). Let Φ⊥ ∈ Rn×(n−m) be the orthogonal complement of Φ in Rn, Ψ :=

[
Φ Φ⊥] ∈ Rn×n,

Φ̃ := Ψ
(
Ψ⊤Ψ

)−1/2 ∈ Rn×n the orthonormal version of Ψ, and ã∗ :=
(
Ψ⊤Ψ

)1/2 [a∗
0

]
. We still have b∗ = Φ̃ã∗, with

∥ã∗∥0 = ∥a∗∥0 since Ψ⊤Ψ is diagonal. So, assuming Φ orthonormal is without loss of generality.

Example G.1. For the Fourier basis
√
nΦji = e−2πi jin , we have µ1(Φ, s) = sµ(Φ) = s/

√
n (Rauhut, 2010). Each column

in this basis vector corresponds to a specific frequency. For a signal b∗, if only a few frequency components contribute
significantly to b∗, then a∗ = Φ−1b∗, the Fourier transform of b∗, will be sparse.

G.1.2. THE CONTROLS PARAMETERS

The incoherence between the measurement vectors (line of M) and the sparse basis (column of Φ) is crucial for successfully
recovering b∗ (or equivalently a∗, the sparse representation). If M is incoherent with Φ, each measurement captures a
distinct “view” of b∗, reducing redundancy. This diversity of information allows for the successful reconstruction of a∗

even with fewer measurements (e.g., below the Nyquist rate for signals). Achieving low coherence (high incoherence) can
be done by designing M to be a random matrix (e.g., Sub-Gaussian like Gaussian or Bernoulli matrices). Such random
matrices are, with high probability, incoherent with any fixed orthonormal basis, as Theorems G.4 and G.5 show.

Theorem G.4. Le m ≤ n and Φ ∈ Rn×m with Φ⊤Φ = Im. For any N ≥ 1, C1 > 0 and C2 ≥ 1; the matrix M ∈ RN×n

with nC1M
iid∼ N (0, 1) satisfies µ(M⊤,Φ) ≤ 2C2

√
ln(nN)

nC1
with probability at least 1− 1/(nN)2C

2
2−1.

Proof. Let σ = n−C1 , C1 > 0. We have M
iid∼ N (0, σ2), so [MΦ]ij

iid∼ N (0, σ2) since Φ has normal columns. This

implies P
[∣∣∣[MΦ]ij

∣∣∣ ≥ t
]
≤ exp

(
− t2

2σ2

)
, which in turn implies P

[
maxi,j

∣∣∣[MΦ]ij

∣∣∣ ≥ t
]
≤
∑

i,j P
[∣∣∣[MΦ]ij

∣∣∣ ≥ t
]
≤
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Figure 19: (a) Cohence µ(M⊤,Φ) as a function of τ ∈ (0, 1) (b) Minimum number of samples for perfect recovery (relative
recovery error ≤ 10−6) for n = 102 as a function of the sparsity level s ∈ [n] and coherence parameter τ ∈ (0, 1)

nN exp
(
− t2

2σ2

)
. Using t = 2C2

√
ln(nN)

nC1
with C2 ≥ 1, we have t2 = 2

(
1

nC1

)2
ln
(

nN
η

)
with η = (nN)1−2C2

2 , so

nN exp
(
− t2

2σ2

)
= η.

We also have the following theorem from Rauhut (2010) about the RIP of such a matrix.

Theorem G.5. Let M ∈ RN×n be a Gaussian or Bernoulli random matrix. Let η, δ ∈ (0, 1) and assume N ≥
Cδ−2 (s ln (n/s) + ln (1/η)) for a universal constant C > 0. Then, δs(M) ≤ δ with probability at least 1− η .

In the rest of this section,

• To control the incoherence, we generate M for a givenN by taking the firstN1 = min(⌊τN⌋, n) rows (with 0 ≤ τ ≤ 1,
default to 0) from the first columns of Φ and the elements of the remaining N2 = N −N1 rows iid from N (0, 1/n)

so that X = MΦ =

[
Φ⊤

:,:N1

MN1:,:

]
Φ =

[
IN1×n

MN1:,:Φ

]
with MN1:,:

iid∼ N (0, 1/n). The higher τ (and so N1), the less is the

incoherence between the measures (columns of M⊤) and Φ. τ = 0 correspond to a full random gaussian M, and
correspond to the maximum incoherence, while τ = 1 correspond to Mi ∈ {Φ:,j}j∈[n] for all i ∈ [N ], and correspond
minimum incoherence (coherence of 1).

• For a given s, we generate a random vector a∗ iid∼ N (0, 1/n) such that ∥a∗∥0 ≤ s, and set b∗ = Φa∗.

• We generated Φ by performing a QR decomposition on a random Gaussian matrix n× n and taking the Q part.

• For the noise ξ ∈ RN , we use ξ iid∼ N (0, σ2
ξ ) with SNR =

E∥a∗∥2
2

Nσ2
ξ

= 108 (signal to noise ratio).

G.1.3. IMPACT OF COHERENCE ON GROKKING

Convex Optimization We fix n = 102 and solve for different (N, s, τ) the problem (P1) using the cvxpy library. As s
and/or τ increases, Nmin(s, τ), the number of samples needs for perfect recovery increases (Figures 19 and 20). When τ
converges to 1, Nmin(s, τ) → n for all s. The error in those figures is the relative recovery error ∥a− a∗∥2/∥a∗∥2. This
error is usually of the order of 10−6, giving us a basis for comparison with other methods.

Gradient Descent Here, we also observe that the generalization time and the generalization delay increase with τ while
the generalization error decreases with it (Figures 21 and 22). For N < n, when τ → 1, the generalization time t2 → ∞.
This is because each measurement captures a single view (component) of b∗ = Φa∗, and this makes it impossible to
find the optimal a∗ by solving the equation MΦa = y∗ for N < n (by any method whatsoever). On the other hand, as
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Figure 20: Relative error ∥a− a∗∥2/∥a∗∥2 as a function of the number of measurements N , the sparsity level s ∈ [n] and
and coherence parameter τ ∈ (0, 1), for n = 102
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τ → 0, M becomes completely random, and every measurement captures a distinct “view” of b∗, giving the best possible
generalization time for the data size considered. The error ∥a(t2) − a∗∥2/∥a∗∥2 at generalization (t2) as a function of
N and τ has the same shape as in the convex programming. We use (n, s, α, β, ζ) = (102, 5, 10−1, 10−5, 10−6) in the
experiments.

G.2. Matrix Factorization

G.2.1. THE PROBLEM

Given a low rank r matrix A∗ ∈ Rn1×n2 , a measurement matrix X ∈ RN×n1n2 ; we aim to solve the following problem
for A ∈ Rn1×n2 ; (P3) Minimize rank(A) subject to ∥Fvec(A) (X)− y∗∥2 ≤ ϵ; and more precisely, its convex relaxation
(P4) Minimize ∥A∥∗ =

∑
i σi(A) subject to ∥Fvec(A) (X)− y∗∥2 ≤ ϵ; where y∗ = Fvec(A∗) (X) + ξ are the measures

and ϵ an upper bound on the size of the error term ξ ∈ RN , ∥ξ∥2 ≤ ϵ.

Matrix Sensing Matrix sensing seeks to recover a low rank matrix A∗ ∈ Rn1×n2 from N measurement matrices
{Xi ∈ Rn1×n2}i∈[N ] and measures y∗ =

(
tr(X⊤

i A
∗)
)
i∈[N ]

. We have y∗
i = tr(X⊤

i A
∗) = vec(Xi)

⊤ vec(A∗) =

Fvec(A∗)(vec(Xi)). This gives us a compressed sensing problem, with the signal vector vec(A∗) ∈ Rn1n2 and the
measurement matrix X = [vec(Xi)]i∈[N ] ∈ RN×n1n2 . In fact, under full SVD A∗ = U∗Σ∗V∗⊤, we have a∗ =
vec(A∗) = Φvec(Σ∗); where vec(Σ∗) ∈ Rn1n2 , is sparse since ∥ vec(Σ∗)∥0 = rank(A∗) ≤ min(n1, n2) ≪ n1n2; and
Φ = V∗ ⊗U∗ ∈ Rn1n2×n1n2 has orthonormal column since Φ⊤Φ =

(
V∗⊤V∗)⊗ (U∗⊤U∗) = In1n2

.

Matrix Completion For a matrix completion problem with matrix A∗ ∈ Rn1×n2 , we have N measurement vectors(
X

(1)
i ,X

(2)
i

)
∈ Rn1 × Rn2 and measures y∗

i = X
(1)⊤
i A∗X

(2)
i =

(
X

(2)
i ⊗X

(1)
i

)⊤
vec(A∗) = Fvec(A∗)

(
X

(2)
i ⊗X

(1)
i

)
,

i.e. y∗ =
(
X(2) •X(1)

)
vec(A∗) = Fvec(A∗)

(
X(2) •X(1)

)
. This gives us a compressed sensing problem, with the signal

vector vec(A∗) ∈ Rn1n2 and the measurement matrix X = X(2) •X(1) ∈ RN×n1n2 . Standard matrix completion is usually
defined as recovering missing elements of a matrix from its incomplete observation. This is equivalent to requiring X

(k)
i to

be selection vectors for all k ∈ [K] (with K = 2), i.e. X(k)
i is the s(i, k)th vector of the canonical basis of Rnk for a certain

s(i, k) ∈ [nk]. This make each Xi = X
(2)
i ⊗X

(1)
i a selection vector in Rn, and X = X(2) •X(1) a selection matrix in

RN×n, so that y∗
i = A∗

s(i,1),s(i,2)∀i ∈ [N ]. So, in this formulation, each X
(k)
i is a sample from the columns of Ink

. Note

that under a change of basis X̃
(k)
i = P(k)X

(k)
i , we have ỹ∗

i =
(
⊗K

k=1P
(k)
)
y∗
i , that is ỹ∗ = y∗ (⊗K

k=1P
(k)
)⊤

. A less
standard formulation of the matrix completion task requires each X

(k)
i to be a sample from an orthonormal basis, i.e., X(k)

i

is a sample from the columns of V(k) ∈ Rnk×nk with V(k)⊤V(k) = Ink
. We let X(k)

i be the s(i, k)th column of V(k) for
a certain s(i, k) ∈ [nk]. Then y∗

i = Ã∗
s(i,1),··· ,s(i,K) with Ã∗ = A∗ ×1 V

(1) ×2 V
(2). So, any result state of A∗ in the

standard formulation where the measurement vectors are selection vectors is valid for the matrix Ã∗.

Assume the target matrix A∗ has rank r. Then it has r(n1 + n2 − r) degree of freedom10, and we need to observe at
least r(n1 + n2 − r) entries for perfect recovery. This bound can be improved by considering the structure of A∗. Let
A∗ = U∗Σ∗V∗⊤ be the full SVD of A∗. As observed above, we are dealing with a compressed sensing problem with
the signal vector a∗ = vec(A∗) = Φvec(Σ∗); where vec(Σ∗) ∈ Rn1n2 is sparse and Φ = V∗ ⊗U∗ ∈ Rn1n2×n1n2 has
orthonormal column.

G.2.2. THE CONTROL PARAMETERS

In this sub-section, we assume standard matrix completion. But the theories outlined here also apply to the general
framework. The theory gives the minimal number of observations that guarantee A∗ to be a unique solution to problem
(P4) and allow perfect recovery of A∗ with fewer samples (Candès & Tao, 2010; Candes & Recht, 2012; Chen et al.,
2014). Generally, the lower bound on N has a form N ≥ Cmax(n1, n2)

C2

(
rC3 logC1 (max(n1, n2)) + log 1

η

)
where η

is the percentage of error (i.e N guaranteed perfect recovery with probability at least 1− η), C1 > 0, C2 > 0, C3 > 0 are

10The first r columns of U∗ form an orthonormal basis for a r-dimensional subspace of Rn1 (the columns space of A∗). Specifying
this requires r(n1 − r) parameters. Similarly, the first r columns of V∗ form an orthonormal basis for a r-dimensional subspace of Rn2

(the rows space of A∗), and specifying this requires r(n2 − r) parameters. The r non-zero singular values are independent parameters.
Thus, specifying them requires r parameters.
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Figure 21: Training and recovery error as a function of the number of samples N and the coherence parameter τ ∈ [0, 1].
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Figure 22: Training and error ∥Xa(t1) − y∗∥2/∥y∗∥2 and recovery error ∥a(t2) − a∗∥2/∥a∗∥2 (along with t1 and t2, the
memorization and the generalization step) as a function of the number of sample N and the coherence parameter τ ∈ [0, 1].

constant, and C > 0 a universal constant. For example, in Candes & Recht (2012), (C1, C2, C3) = (1, 1.2, 1) for small rank
r ≤ max(n1, n2)

0.2, and C2 = 1.25 for any rank. The term max(n1, n2) log (max(n1, n2)) is due to the coupon collector
effect since to recover an unknown matrix, one needs at least one observation per row and one observation per column
(Candes & Recht, 2012).

Definition G.6 (Random orthogonal model (Candes & Recht, 2012)). For a given r, we generate two orthonormal matrices
U∗ ∈ Rn1×r and V∗ ∈ Rn2×r with columns selected uniformly at random among all families of r orthonormal vectors;
and a diagonal matrix Σ∗ with only the first r diagonal element non-zero (with no assumptions about the singular values11),
then set A∗ = U∗Σ∗V∗⊤.

We have the following result about the standard formulation for such matrices in the absence of noise.

Theorem G.7 (Theorem 1.1, Candes & Recht (2012)). Let A∗ ∈ Rn1×n2 be a matrix of rank r sampled from the random
orthogonal model, and put n = max(n1, n2). Suppose we observe N entries of A∗ with locations sampled uniformly at
random. Then there are numerical constants C and c such that if N ≥ Cn5/4r log (n), the minimizer to the problem (P4)
is unique and equal to A∗ with probability at least 1− c/n3; that is to say, the semidenite program (P4) recovers all the
entries of A∗ with no error. In addition, if r ≤ n1/5, then the recovery is exact with probability at least 1− c/n3 provided
that N ≥ Cn6/5r log (n).

Assume for example A∗ = e
(n1)
k e

(n2)
ℓ for (k, ℓ) ∈ [n1]× [n2]. Even if this matrix ranks at 1, it has only zeros everywhere

except 1 at position (k, ℓ), so we have very little chance of reconstructing it in a high dimension by observing a portion of its
inputs. The only way to guarantee observation of the input at position (k, ℓ) is to choose measurements coherently with its
singular basis e(n2)

k ⊗ e
(n1)
ℓ . This idea is formulated more generally below.

Definition G.8. Let U be a subspace of Rn of dimension r and PU be the orthogonal projection onto U . Then, the coherence
of U vis-a-vis a basis {u(n)

i }i∈[n] is defined by µ(U) = n
r maxi ∥PUu

(n)
i ∥2. We have 1 ≤ µ(U) ≤ n/r (Candes & Recht,

2012).

For a matrix A = UΣV⊤ ∈ Rn1×n2 under the compact SVD, the projection on the left singular value is x → UU⊤x,

11Unless otherwise specified, we default the nonzero singular values to 1/
√
r.
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and ∥UU⊤x∥22 = ∥U⊤x∥22 for all x (similarly for the right singular value). We have the following definition of coherence,
which considers each matrix entry.

Definition G.9 (Local coherence & Leverage score). Let A = UΣV⊤ ∈ Rn1×n2 be the compact SVD of a matrix A of
rank r. The local coherences of A are defined by

µi(A) =
n1
r
∥U⊤e

(n1)
i ∥2 =

n1
r
∥Ui,:∥2 ∀i ∈ [n1]

νj(A) =
n2
r
∥V⊤e

(n2)
j ∥2 =

n2
r
∥Vj,:∥2 ∀j ∈ [n2]

(122)

with µi for row i and νj for row j. The quantities ∥U⊤e
(n1)
i ∥2 and ∥V⊤e

(n2)
i ∥2 are the leverage score of A (Chen et al.,

2014), which indicate how “aligned” each row or column of the original data matrix is with the principal components (the
columns of U or V). For each row i, µi(A) measures how much this row vector projects onto the subspace spanned by the
first r left singular vectors in U. Rows with high leverage scores contribute more to the low-rank structure of A and are
more “influential” in representing A. Similarly, νj(A) measures the coherence of each column j in A with respect to the
low-rank subspace formed by the right singular vectors in V. High values indicate columns well-aligned with the principal
directions of A and play a significant role in capturing its structure. Matrices with uniformly low coherence scores have
rows and columns that are evenly influential. In contrast, matrices with high coherence scores for certain rows or columns
have a few specific rows or columns that dominate the low-rank structure.

In the general formulation, this definition can be extended to the set from which the measures are chosen. But in general, it
leads back to the standard formulation under the change of basis.

Definition G.10 (Generalize local coherence & Leverage score). We generalize the notion of coherence to any arbitrary
set of vectors U(n1) = {u(n1)

i }i∈[N1] ∈ Rn1×N1 and V(n2) = {v(n2)
j }j∈[N2] ∈ Rn2×N2 , and defined the generalized local

coherences as

µi(A) =
n1
r
∥U⊤u

(n1)
i ∥2 ∀i ∈ [N1], νj(A) =

n2
r
∥V⊤v

(n2)
j ∥2 ∀j ∈ [N2] (123)

Suppose the sets U(n1) and V(n2) are be orthonormal basis (i.e. (N1, N2) = (n1, n2), u
(n2)
i

⊤
u
(n2)
k = δik and

v
(n1)
j

⊤
v
(n1)
l = δjl). We can write u

(n1)
i = P(1)e

(n1)
i and v

(n2)
j = P(2)e

(n2)
j with P(k) ∈ Rnk×nk the base change

matrix from the canonical basis to U(n1) and V(n2) respectively. So

µi(A) =
n1
r
∥U⊤P(1)e

(n1)
i ∥2 =

n1
r
∥Ũ⊤e

(n1)
i ∥2 = µi(Ã) ∀i ∈ [N1]

νj(A) =
n2
r
∥V⊤P(2)e

(n2)
j ∥2 =

n2
r
∥Ṽ⊤e

(n2)
j ∥2 = νi(Ã) ∀j ∈ [N2]

(124)

with Ã = A ×1 P
(1) ×2 P

(2) = P(1)⊤AP(2) = P(1)⊤UΣ
(
P(2)⊤V

)⊤
= ŨΣṼ⊤. That said, any result stated in the

standard formulation for A is valid for Ã under the general orthonormal formulation.

Candès & Tao (2010) and Candes & Recht (2012) used mainly an upper bound µ0 on µi and νi;
µ0 ≥ max

(
maxi∈[n1] µi(A

∗),maxi∈[n2] νi(A
∗)
)
, and define a constant µ1 such that the maxi,j [U

∗V∗⊤]ij =

maxi,j
∑

k U
∗
i,kV

∗
j,k ≤ µ1

√
r

n1n2
. Since

∣∣∣∑k U
∗
i,kV

∗
j,k

∣∣∣ ≤
√∑

k U
∗2
i,k

√∑
k V

∗2
j,k = ∥U∗

i,:∥2∥V∗
j,:∥2 =

r√
n1n2

√
µi(A∗)νj(A∗) ≤ r√

n1n2
µ0 for all i, j; we can just take µ1 ≥ µ0

√
r. From this, Candes & Recht (2012)

show that if the coherence µ0 is low, few samples are required to recover A∗.

Theorem G.11 (Theorem 1.3, Candes & Recht (2012)). Let A∗ ∈ Rn1×n2 be a matrix of rank r sampled from the random
orthogonal model, and put n = max(n1, n2). Suppose we observe N entries of A∗ with locations sampled uniformly at

random. Then there are numerical constants C and c such that if N ≥ Cmax
(
µ2
1, µ

1
2
0 µ1, µ0n

1
4

)
nrβ log (n) for some

β > 2, the minimizer to the problem (P4) is unique and equal to A∗ with probability at least 1 − c/n3. In addition, if
r ≤ n1/5/µ0, then the recovery is exact with probability at least 1− c/n3 provided that N ≥ Cµ0n

6/5rβ log (n).

Chen et al. (2014) show that sampling the element at position (i, j) with probability pij = Ω(µi + νj) allows perfect
recovery of A∗ with fewer samples, and called such sampling strategies local coherence sampling.
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Theorem G.12 (Theorem 3.2 and Corollary 3.3, Chen et al. (2014)). Let A∗ ∈ Rn1×n2 be a matrix of rank r with local
coherence {µi, νj}i∈[n1],j∈[n2]. There are universal constant c0, c1, c2 > 0 such that if each element (i, j) is independently

observed with probability pij ≥ max
{
min

{
c0

(µi+νj)r log2(n1+n2)
min(n1,n2)

, 1
}
, 1
min(n1,n2)10

}
, then A∗ is the unique optimal

solution of the nuclear minimization problem (P4) with probability at least 1− c1/(n1 + n2)
c2 , for a number of sample

N ∈ O
(
max(n1, n2)r log

2(n1 + n2)
)
.

Given N and τ ∈ [0, 1], to control the coherence,

• For matrix factorization, we select the first N1 = τN examples with the highest values of µi(A
∗)+ νj(A

∗), and select
the remaining (1− τ)N examples uniformly among the rest. The positions selected are one-hot encoded in dimensions
n1 (for row positions) and n2 (for column positions) to have X(1) and X(2), respectively.

• For matrix sensing, we generate X(1) (resp. X(2)) by taking the first N1 = min(⌊τN⌋, n1) (resp. N1 =
min(⌊τN⌋, n2)) rows from the first columns of U∗ (resp. V∗) and the elements of the remaining N2 = N −N1 rows
iid from the Gaussian distribution N (0, σ2) with σ = 1/n1 (resp. σ = 1/n2).

The higher τ (and so N1), the less incoherence between the measures (rows of X = X(2) •X(1)) and Φ = V∗ ⊗U∗.

G.2.3. IMPACT OF COHERENCE ON GROKKING

Linear programming We fix n1 = n2 = 102 and ξ = 0 (no noise) and solve for different (N, r, τ) the matrix factorization
problem presented above using standard linear programming (we use the cvxpy library). As r and/or τ increases, the
number of samples needed for perfect recovery decreases. The relative recovery error ∥A − A∗∥2/∥A∗∥2 obtained is
usually of the order of 10−6 and gives us a basis for comparison with other methods. We do not include figures to save
space.

Gradient Descent Unlike compressed sensing where large values of τ are detrimental to generalization, here, as τ → 1,
performance improves, and the number of examples required to generalize decreases exponentially, as does the time it
takes the models to do so. See Figure 23 for (n1, n2, r, α, β, ζ) = (10, 10, 2, 10−1, 10−5, 10−6). Note that here, for matrix
completion, for a fixed τ , we select the first τN examples with the highest values of µi(A

∗) + νj(A
∗), and select the

remaining (1− τ)N examples at random, uniformly.
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Figure 23: Training error ∥X vecA(t) −y∗∥2/∥y∗∥2 and recovery error ∥A(t) −A∗∥2/∥A∗∥F as a function of the number
of sample N and the coherence parameter τ ∈ [0, 1]

H. Additional Experiments
H.1. Sparse Recovery

Optimization landscape We look at the landscape of the solution in the context of sparse recovery. Let I := {i ∈
[n] | a∗i ̸= 0} be the support of the ground truth signal a∗; u(t) = ∥a(t)I ∥2 and v(t) = ∥a(t)[n]\I∥2 be the norms of a(t)

restraint on its indexes in I and outside I , respectively. Figure 24 shows how a(t) first converges to the least square
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solution (memorization), and from the least square solution to a∗ (N large enough) or a suboptimal solution (N too small).
After memorization, when N is large enough, v(t) converges to zero while u(t) converges to the norm of a∗. This is
because the components of a(t) that are not in I are shrunk at each training step until they all reach 0 (Figure 25). This
convergence is impossible if the ℓ1 regularization strength is 0 (even if ℓ2 is used). For the experiments of this section we
use N ∈ {20, 30, 40, 50, 60, 70}, for (n, s) = (100, 5) and (α, β) = (10−1, 10−5).

Figure 24: From initialization to least square solution â (memorization), and from least square solution to a∗ (N large
enough) or a suboptimal solution (N too small). The steps t1 and t2 are different from those introduced above to measure
memorization and generalization (respectively). They are just a means of tracing the evolution of training here.

Scaling the Learning Rate α and the Regularization Strength β We solve the sparse recovery problem using the
subgradient descent method with (n, s,N, ζ) = (102, 5, 30, 10−6) for different values of α and β. As expected, larger α
and/or β lead to fast convergence and do so at a suboptimal value of the test error (Figure 26). However, small values require
longer training time to plateau and generally do so at a lower value of recovery error (grokking). These are the experiments
used to produce Figure 4.

Scaling the Data Size N and the Sparsity Parameter s We solve the sparse recovery problem using the subgradient
descent method with (n, ζ, α, β) = (102, 10−6, 10−1, 10−5), for s ∈ {1, 5, 10, 15} and N ∈ {10, 20, . . . 100}. See
Figures 27 and 28 for the results. Smaller s requires a smaller N for generalization.

H.2. Matrix Factorization

We optimize the noiseless matrix completion problem using the subgradient descent method with (n1, n2, r,N, ζ) =
(10, 10, 2, 70, 10−6) for different values of α and β. As expected, larger α and/or β lead to fast convergence and do so at a
suboptimal value of the test error (Figure 29). These are the experiments used to produce Figure 6.

H.3. General Setting

In this section we optimize functions of the form f(θ) = g(θ) + βh(θ), where g is the square loss or cross-entropy loss
function of the considered model on the training data, θ the set of model parameters, and h a regularizer applied to θ. It
can be the standard ℓp norm or quasi-norm of θ, the sum of the nuclear norms of each matrix in θ (i.e. ℓ∗), etc. By normal

initialization for a parameter A ∈ Rn1×n2 , we mean A(1) iid∼ N (0, 1/n1). For the experiments of this section only, we used
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Figure 25: Convergence of a(t)i to a∗i for each i ∈ [n]. Here (n, s,N) = (100, 5, 30) and (α, β) = (10−1, 10−5).
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Figure 26: Training and recovery error as a function of the learning rate α and the ℓ1-regularization coefficient β.
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Figure 27: Training and recovery error as a function of the sparsity level s and the number of measurements N .
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Figure 29: Training and recovery error as a function of the learning rate α and the ℓ∗-regularization coefficient β.

Adam as the optimizer, with its default parameters (as specified in PyTorch), except for the learning rate.

H.3.1. ALGORITHMIC DATASET

We consider addition modulo p = 97 as described in Section 2.1 with rtrain = 40%. For MLP, ℓ1 and ℓ∗ have the same effect
on grokking as ℓ2, i.e., large αβ values lead to faster grokking. See Figure 2 for ℓ∗, and 30 for ℓ1 and ℓ2. Note that for the
MLP, the logits are given by y(x) = b(2) +W(2)ϕ

(
b(1) +W(1)

(
E⟨x1⟩ ◦E⟨x2⟩

))
, with ϕ(z) = max(z, 0), E ∈ Rp×d1 ,

W(1) ∈ Rd2×d1 , b(1) ∈ Rd2 , W(2) ∈ Rp×d2 , and b(2) ∈ Rp, where d1 the embedding dimension. We use d1 = d2 = 26.
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Figure 30: Training and test accuracy of a MLP trained on modular addition with ℓ1 (top) and ℓ2 (bottom) regularization for
different values of the learning rate α and the ℓ1 coefficient β.
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H.3.2. NON LINEAR TEACHER-STUDENT

We consider a teacher y∗(x) = B∗ϕ(A∗x) from Rd to Rc with r hidden neurons (A∗ ∈ Rr×d and B∗ ∈ Rc×r); where
ϕ(z) = max(z, 0) and x,A∗, rB∗ iid∼ N (0, 1). We i.i.d sample N inputs output pair Dtrain = {(xi,y

∗(xi))}Ni=1 and
optimize the parameters θ = (A,B) of a student yθ(x) = Bϕ(Ax) on them, starting from normal initialization, with
the loss function g(θ) = 1

2N

∑N
i=1 ∥yθ(xi) − y∗(xi)∥22 and different regularizer h(θ), ℓp for p ∈ {1, 2, ∗}. For all these

regularizers, the smaller αβ is, the longer the delay between memorization and generalization. See Figures 31, 32 and 33 for
an experiment with (d, r, c,N) = (100, 500, 2, 102).
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Figure 31: Training and test error two layers ReLU teacher-student with ℓ1 regularization, for different values of the learning
rate α and the ℓ1 coefficient β.

H.3.3. DOMAIN SPECIFIC REGULARIZATION

Physics-Informed Neural Networks (Raissi et al., 2019) leverage prior knowledge from differential equations by incorporating
their residuals into the loss function, ensuring that solutions remain consistent with physical laws. Sobolev training
(Czarnecki et al., 2017) generalizes this idea by incorporating not only input-output pairs but also derivatives of the target

function. More precisely, given input-output pairs {(xi,y
∗(xi)}i∈[N ] along with known derivatives

{
∂ky∗(x)

∂xk

∣∣∣
x=xi

}
i∈[N ]

for k ∈ [K], the goal is to train a neural network yθ(x) that approximates both the output and its derivatives. The loss
function extends the standard mean squared error (MSE) to include Sobolev penalties:

f(θ) =
1

N

N∑
i=1

∥yθ(xi)− y∗(xi)∥2︸ ︷︷ ︸
data loss

+
β

N

K∑
k=1

N∑
i=1

∥∥∥∥∂kyθ

∂xk
(xi)−

∂ky∗

∂xk
(xi)

∥∥∥∥2
F︸ ︷︷ ︸

Sobolev penalty

(125)

The hyperparameter β controls the contribution of the derivative alignment term. This penalty ensures that the model
not only fits the data but also respects known smoothness constraints or differential structure, which is crucial in physics-
based applications (Lu et al., 2021). We consider the two layers feed forward teacher of Section H.3.2, and optimize
the parameters θ = (A,B) of a student using the sobolev objectify for K = 1, ∂y∗(x)

∂x = B∗ diag (ϕ′(A∗x))A∗. The
smaller is αβ, the longer is the delay between memorization and generalization. See Figure 34 for an experiment with
(d, r, c,N) = (100, 500, 2, 102).
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Figure 32: Training and test error two layers ReLU teacher-student with ℓ2 regularization, for different values of the learning
rate α and the ℓ2 coefficient β.
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Figure 33: Training and test error two layers ReLU teacher-student with ℓ∗ regularization, for different values of the learning
rate α and the ℓ∗ coefficient β.
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Figure 34: Training and test error two layers ReLU teacher-student with Sobolev training, for different values of the learning
rate α and the ℓ1 coefficient β.

H.3.4. IMAGE CLASSIFICATION

We optimize the parameters θ = (A,B) of a model yθ(x) = Bϕ(Ax) on N = 1000 samples of the MNIST dataset. Figure
35 show the results for ℓ1 : the result for ℓ2 and ℓ∗ are similar.
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Figure 35: Training and test accuracy of a MLP trained on MNIST with ℓ1 regularization for different values of the learning
rate α and the ℓ1 coefficient β
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