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ABSTRACT

Human-labeled data is essential for developing deep learning models that can
attain human-level recognition. However, the cost associated with annotation
presents a substantial practical challenge when deploying these models in real-
world applications. Recently, vision-language models like CLIP have shown re-
markable zero-shot learning abilities due to vision-language pre-training. While
these models can adapt to various tasks without task-specific human-labeled data,
fine-tuning them with such data, though beneficial, can be impractical in cost-
sensitive situations. In this paper, we propose an alternative method that harnesses
vast amounts of open-set unlabeled data from the wild to establish a robust image
classification model suitable for real-world scenarios. Our proposed algorithm,
Unsupervised Open-Set Task Adaptation (UOTA), offers a straightforward and
practical solution, fully capitalizing on the pre-trained CLIP model to enhance
its performance by exhaustively utilizing open-set unlabeled data. We substan-
tiate the effectiveness of our contributions through comprehensive experiments
conducted on open-set domain adaptation (OSDA) benchmarks that are relevant
to our framework. Remarkably, without leveraging any source domain model or
labeled source data, our method substantially enhances CLIP’s classification per-
formance and attains state-of-the-art results on these benchmarks.

1 INTRODUCTION

Large amounts of human-annotated data are generally required to train high-performance deep neu-
ral networks. However, collecting such data is costly, posing a challenge for real-world applications.
Solutions utilizing unlabeled data (Devlin et al., 2019; Brown et al., 2020; He et al., 2022; Chen et al.,
2020; He et al., 2020) have been proposed, but human-labeled data is still required for task-specific
learning stages (i.e., task adaptation, fine-tuning, and transfer learning).

Recent studies have proposed a new learning paradigm (Radford et al., 2021; Gao et al., 2021; Jia
et al., 2021b; Zhou et al., 2022) that achieves zero-shot capabilities by learning transferable repre-
sentations through vast amounts of image and text pairs, although task-specific human-labeled data
is needed to improve downstream performance (Radford et al., 2021; Zhou et al., 2022; Gao et al.,
2021). However, to the best of our knowledge, no previous work in the literature has explored real-
world scenarios where transfer performance can be enhanced solely by utilizing open-set unlabeled
data, including both in-distribution (ID, task-relevant) and out-of-distribution (OOD, task-irrelevant)
data.

To address this problem, we begin by considering a scenario in real-world situations where only
unlabeled data from a specific origin (e.g., a camera at a specific location) is available. This will be
the target domain of our zero-shot model based on CLIP (Radford et al., 2021) for a given down-
stream task, and we assume all data from it shares some characteristics, such as style and texture.
We then assume the realistic, open-set setting (Scheirer et al., 2012; Bendale & Boult, 2016; Kong
& Ramanan, 2021; Vaze et al., 2022), which does not impose any constraints on the data, where data
can be randomly collected from a particular origin and may contain content related to known (i.e.,
in-distribution; ID) or unknown (i.e., out-of-distribution; OOD) classes.

To improve the transfer performance of CLIP (Radford et al., 2021) using open-set unlabeled data,
we propose Unsupervised Open-Set Task Adaptation (UOTA), a simple and practical algorithm that
operates within a unified framework based on CLIP as shown in Figure 1.
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Figure 1: An overview of our proposed method.
The goal of Unsupervised Open-Set Task Adaptation
(UOTA) is to enhance the transfer performance of the
zero-shot model (CLIP) on a downstream target task by
leveraging open-set unlabeled data in the wild.

Our method consists of three objectives: (1) a
self-training objective and (2) a OOD training
objective based on curriculum learning (Ben-
gio et al., 2009; Zhang et al., 2017; Li et al.,
2017; Huang et al., 2020; Zhou et al., 2020;
Zhang et al., 2021a;b), where class-wise thresh-
olds for detecting unknown class data and clas-
sifying known class data are gradually adjusted
according to the training status, and (3) a con-
trastive objective (Sohn, 2016; van den Oord
et al., 2018) to push data with unknown classes
away from the space of data with known classes
and learn a more discriminative representation
space for OOD detection.

Leveraging only open-set unlabeled data, our
approach enhances pre-trained CLIP (Radford
et al., 2021) to implicitly acquire significantly
improved ability to perform OOD detection as
well as ID classification during the training pro-
cess without additional explicit methods (i.e.,
Generating candidate unknown classes (Esmaeilpour et al., 2022)) to detect OOD samples. Further-
more, our proposed method is computationally efficient, as it only updates a lightweight adapter
inserted in the image encoder while freezing the rest of the model. We validate the effectiveness of
UOTA by comparing it with pre-trained CLIP (denoted as “Zero-shot”) and methods that can per-
form open-set domain adaptation (OSDA) or source-free open-set domain adaptation (SF-OSDA)
using standard OSDA benchmarks. Note that, as explained in Table 1, UOTA does not use labeled
source data or a model trained on labeled source data, which are used for OSDA and SF-OSDA,
respectively. Despite this, UOTA significantly outperforms models that can perform OSDA and
SF-OSDA, while remarkably improving pre-trained CLIP.

In summary, our main contribution is proposing a simple yet effective method to significantly en-
hance the classification task performance of a zero-shot model (e.g., CLIP) in a realistic open-set
unlabeled data setting where only unlabeled data collected from a specific origin is provided, and
each sample can be either task-relevant (known class, ID) or irrelevant (unknown class, OOD).

2 RELATED WORK

Multimodal zero-shot model CLIP (Radford et al., 2021) is a new method for open-vocabulary
zero-shot image classification using natural language supervision on large datasets. ALIGN (Jia
et al., 2021a) and SLIP (Mu et al., 2022) improved CLIP by aligning vision-language representations
in a latent space and using self-supervision, respectively. Some recent works have attempted to adapt
CLIP to downstream tasks using labeled data (Zhou et al., 2022; Gao et al., 2021) or unsupervised
fine-tuning (Li et al., 2022). Moreover, (Ming et al., 2022; Esmaeilpour et al., 2022) conduct OOD
detection using pre-trained CLIP, but Ming et al. (2022) is a training-free method that does not
improve the OOD detection capability that pre-trained CLIP originally possesses, and Esmaeilpour
et al. (2022) explicitly generates candidate OOD class prompts. We propose, for the first time in the
literature, a novel method that simultaneously improves the OOD detection and image classification
capabilities of CLIP by utilizing only open-set unlabeled data and without using any explicit methods
for OOD detection such as generating candidate class prompts (Esmaeilpour et al., 2022).

Open-set domain adaptation In real-world scenarios, the set of classes in the target distribu-
tion may expand to include unknown classes, which leads to the field of open-set domain adaptation
(OSDA) (Saito et al., 2018; Liu et al., 2019). Conventional OSDA methods have focused on aligning
the features of known classes in the source and target domains through domain adversarial learning
(Saito et al., 2018; Liu et al., 2019). Some methods proposed more advanced approach by learn-
ing intrinsic target structures through self-supervised learning (Li et al., 2021; Saito et al., 2020).
While general OSDA methods allow access to source domain data during the adaptation stages,
recently proposed source-free OSDA (SF-OSDA) (Yang et al., 2022; Liang et al., 2020) methods
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Table 1: Comparison of settings. In Unsupervised Domain Adaptation (UDA), models are initially trained
on the labeled source domain data (Ds). During the adaptation stage, both the labeled source domain data (Ds)
and the unlabeled target domain data (Dt) are employed to adapt the model to the target domain. It assumes
a closed-set setting where the source domain classes (Cs) are equal to the target domain classes (Ct), so an
unknown class does not exist in Dt. OSDA follows the UDA framework, but the only difference is that Cs is
a subset of Ct, thereby suggesting an open-set setting where unknown classes are present in Dt. SF-OSDA
basically follows OSDA, but it does not utilize Ds during the adaptation stage. However, it still uses a model
trained on Ds. ODAwVL (Yu et al., 2023) principally adheres to SF-OSDA, employing a model trained on Ds

and not using Ds during the adaptation. However, they additionally use guidance from pre-trained CLIP during
the adaptation. In contrast to all previous methods, UOTA assumes a more restrictive open-set unlabeled data
setting, which neither uses a model trained on Ds nor Ds itself. It only uses Dt for adaptation.

SETTING COMPARISON UDA OSDA SF-OSDA ODAWVL OURS

PRE-TRAINING DATASET / MODEL IMAGENET IMAGENET IMAGENET IMAGENET+CLIP CLIP
UNLABELED TARGET DATA DURING ADAPTATION 4 4 4 4 4
UNKNOWN CLASSES ALLOWED (OPEN-SET SETTING) - 4 4 4 4
NO SOURCE DATA DURING ADAPTATION (SOURCE-FREE) - - 4 4 4
NO PRE-TRAINING ON SOURCE DATA - - - - 4

utilize a model trained on the source domain but do not use source data during the adaptation stage.
ODAwVL (Yu et al., 2023) utilized the guidance of CLIP for training the SF-OSDA model, but still
used the model trained on labeled source domain data. In this paper, we propose a more restric-
tive setting than previous SF-OSDA, where the model uses neither source domain data nor a model
trained on source data as shown in Table 1.

3 METHOD

UOTA fully exploits the pre-trained CLIP model that has a dual-stream architecture with a text
encoder T� and an image encoder I✓, where � and ✓ are the pre-trained parameters. For a given
downstream task ⌧ with a class set Y⌧ = {yi}K⌧

i=1, where K⌧ denotes the number of classes to be
classified, we first complete a set of class embeddings C⌧ = {T�(pi)}K⌧

i=1 by using natural language
prompting pi = "a photo of a {class name of yi}". When image data x is given, the
corresponding embedding I✓(x) is compared with the class embeddings by measuring the cosine
similarity, and then we compute the task-wise classification probability as:

p(y = yi|x;�, ✓) =
e↵·Sim(I✓(x),T�(pi))

PN
j=1 e

↵·Sim(I✓(x),T�(pj))
, (1)

where ↵ is a learnable scaling factor (i.e., temperature) and Sim(·, ·) denotes cosine similarity be-
tween two vectors. The overall architecture is shown in Figure 2.

3.1 SELF-TRAINING WITH OPEN-SET UNLABELED DATA

We compute and utilize the maximum value maxi p(y = yi|x,�, ✓) of the predicted probabil-
ity (= smax, maximum probability score), described in Equation 1, for detecting OOD samples
in the dataset D by using a CLIP model. If an image x belongs to the in-distribution (ID), the
similarity to one of the known class embeddings C⌧ will be high and result in a high maximum
probability score. Conversely, if it belongs to an out-of-distribution (OOD) class, there will be no
matching known class embedding, resulting in a low maximum probability score. We can confi-
dently identify an image as ID if its maximum probability score is above a certain threshold for ID
(i.e.,maxi p (y = yi|x,�, ✓) � �in) and as OOD if 1 � smax is above another threshold for OOD
(i.e., 1�maxi p (y = yi|x,�, ✓) � �out).

Our approach is novel in that, for the first time in the literature, it simultaneously adjusts both �in
and �out based on the model’s learning status for each class. This method aligns well with the
curriculum learning strategy (Bengio et al., 2009) and ensures that the model adaptively focuses on
the confident images, improving its ability to detect OOD samples as well as precisely classify the
ID classes.
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Figure 2: Left: Implementation details of Unsupervised Open-Set Task Adaptation (UOTA). Our
framework improves the adaptation performance of CLIP by leveraging both in-distribution (ID) and out-of-
distribution (OOD) samples. Right: Architecture of the adapter module. The adapter in our framework com-
prises two linear layers and two activation layers. During the training process, we update only this lightweight
adapter, enabling computationally efficient training.

Gradual adjustment of class-wise thresholds Our adjustable class-wise thresholds for both ID
and OOD are defined by scaling the fixed thresholds �in and �out as:

�in(yi) = �in(yi) · �in and �out(yi) = �out(yi) · �out, (2)

where the class-wise scaling factors �in(yi) and �out(yi) are computed in the same manner and
updated regularly (i.e., at each epoch). For example, we update the class-wise scaling factor �in(yi)
for ID as:

�in(yi) =
nin(yi) + � ·maxj nin(yj)

(1 + �) ·maxj nin(yj)
, (3)

where nin(yi) denotes the number of samples in the dataset D whose classes are predicted as yi
while presenting maximum probability scores higher than �in. Here, � denotes a smoothness factor
to reduce the variability of scaling factors between classes. We experimentally found there is a neg-
ligible performance variation with slight changes in �. We also update the class-wise scaling factor
�out(yi) for OOD using the same equation, where nout(yi) are collected similarly but differently,
with 1� smax higher than �out. Additionally, we empirically found that updating nin and nout as a
moving average results in a more stable learning, further improving the performance of UOTA. This
flexible modification of �in and �out based on the model’s training status allows the model to implic-
itly and accurately separate OOD samples from ID ones without additional explicit methods (i.e.,
Utilizing candidate unknown classes (Esmaeilpour et al., 2022)). This also prevents a considerable
amount of data from being discarded due to imprecise, fixed thresholding.

Self-training with in-distribution data We first obtain pseudo-labels using two randomly aug-
mented views of x, denoted as A1(x) and A2(x). Since we deal with open-set unlabeled data, some
pseudo-labels may be generated from OOD samples, but utilizing such samples for pseudo-labeling
may negatively affect the model’s training. Therefore, we aim to employ only the images confi-
dently predicted as ID for generating pseudo-labels. Concretely, for each image x, we formulate the
sample-level self-training loss L0

in as:

L0
in(p1(x), p2(x)) = [max p1(x)��in(p̂1(x))]Lce(p̂1(x), p2(x)), (4)

where p1(x) and p2(x) are the predicted probabilities p(y|A1(x),�, ✓) and p(y|A2(x),�, ✓), re-
spectively. In this loss, p1(x) is treated as the target distribution of p2(x), and thus we use the cross
entropy loss Lce by making a hard pseudo-label p̂1(x) from p1(x). By using our class-wise thresh-
olds �in(·), we adaptively mask out this loss if the image x is not confidently predicted as ID. With
this sample-level self-training loss L0

in, we formulate the overall loss related to ID data as:

Lin =
1

2|B|

X

x2B

L0
in(p1(x), p2(x)) + L0

in(p2(x), p1(x)), (5)

where we symmetrically compute the loss with two differently predicted probabilities p1(x) and
p2(x) for each x and average over a mini-batch B sampled from the dataset D.
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Utilizing out-of-distribution data Since OOD samples do not have matching classes in Y⌧ , we
assume that forcing them to move away from the corresponding class embedding space can improve
the model’s capability to detect OOD data. Therefore, we propose to reduce the maximum proba-
bility scores of OOD samples during task adaptation, and this can be treated as regularization that
makes the model’s prediction for OOD data more unconfident (i.e., makes the prediction probability
near uniform). For each sample x, we define the sample-level negative learning loss L0

out as:

L0
out(p1(x), p2(x)) = [1�max p1(x)��out(p̂1(x))]Lce(p̂1(x), 1� p2(x)). (6)

Using this loss, we aim to maximize the cross-entropy between p1(x) and p2(x) by simply treating
p1(x) as the target distribution of 1�p2(x). To properly apply this loss to only OOD samples, similar
to Equation 4, we apply adaptive masking to each image x using class-wise thresholds �out(·) that
selectively choose samples with unconfident predictions (i.e., lower maximum probability scores).
Based on this sample-level loss L0

out, we formulate the overall loss related to OOD data as:

Lout =
1

2|B|

X

x2B

L0
out(p1(x), p2(x)) + L0

out(p2(x), p1(x)). (7)

Our proposed loss related to OOD data aligns well with negative learning (Kim et al., 2019), yet ours
possesses distinct and novel characteristics that markedly differentiate it from (Kim et al., 2019).
Kim et al. (2019) uses fixed thresholds to filter noisy data, while we propose a new method that
updates the class-wise OOD thresholds considering training status to improve OOD detection accu-
racy as training progresses. Also, Kim et al. (2019) randomly chooses a complementary label for the
noisy data from given labels, while we use a label of differently augmented view as the complemen-
tary label for OOD data to align with our self-training scheme for ID data. Moreover, while Kim
et al. (2019) updates whole network parameters several times in a single iteration using sequential
losses and has a complicated multi-stage training process, we jointly minimize all losses to update a
lightweight adapter only once in a single iteration for computational efficiency and employ a simple
end-to-end training.

Contrastive loss as an additional regularizer Recent studies (Winkens et al., 2020; Tack et al.,
2020) have demonstrated that the use of contrastive loss can improve OOD detection by enriching
the representation space. In that way, we adopt the contrastive loss Lcont proposed in SimCLR (Chen
et al., 2020) to all given data, regardless of whether it is ID or OOD data, and use it as a regularizer
to enhance not only OOD detection but also the adaptation performance.

Based on the objectives described thus far, we fully utilize both ID and OOD samples in the open-set
unlabeled dataset to update the lightweight adapter in the image encoder I✓ of the CLIP during task
adaptation, and the overall loss is:

L = Lin + Lout + ! · Lcont, (8)

where ! is used as a balancing hyper-parameter. After the task adaptation is finalized by optimizing
the model with this overall loss, we use a fixed threshold �ood at test time to detect OOD samples by
simply comparing it with the maximum probability scores.

4 EXPERIMENTS

In this section, we provide a detailed overview of our experimental settings, which include the
datasets, baselines, and evaluation metrics. We then present a comprehensive quantitative and quali-
tative analysis of UOTA and compare it with state-of-the-art models on open-set domain adaptation
(OSDA) and source-free OSDA (SF-OSDA). Note that UOTA is the first approach to perform task
adaptation using only open-set unlabeled data and without any source domain model or data as
explained in Table 1. As a result, technically, there are no comparable models or experimental pro-
tocols available. Therefore, we compare our approach with the models that can perform OSDA and
SF-OSDA using benchmarks utilized in the OSDA. Additionally, we provide a detailed ablation
study for each component of UOTA.
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Table 2: Experiment results on Office-31, Office-Home, and VisDA. We utilize the HOS score (%) as an
evaluation metric. As explained in Table 1, OSDA employs both the labeled source data and the target data
during the adaptation stage. Source-free OSDA employs models trained on labeled source data but use only
target data during the adaptation stage. In contrast with OSDA or source-free OSDA, UOTA only utilizes
unlabeled target data and does not use either the source data or the model trained on source data.

Method
Office-31 Office-Home Visda

W D A D A W Avg. R C A P C A P R A P R C Avg. S
A W D P R C A R

OSDA (use labeled source domain data during the adaptation)
DANN 72.6 73.7 68.1 86.7 71.5 82.5 75.9 68.4 60.9 65.2 69.8 66.7 71.0 44.6 50.9 51.2 56.3 65.4 57.6 60.7 -
CDAN 71.0 72.7 64.9 84.3 66.8 80.5 73.4 67.6 61.7 65.1 69.7 67.1 70.7 47.2 52.7 52.9 58.6 66.0 58.2 61.4 -
STA 66.1 73.2 75.9 69.8 75.0 75.2 72.5 64.5 60.4 54.0 69.5 66.8 68.3 53.2 54.5 55.8 61.9 67.1 57.4 61.1 72.7

OSBP 73.7 75.1 82.7 97.2 82.4 91.1 83.7 72.3 64.7 65.2 73.9 70.6 72.9 53.2 54.5 55.1 63.2 66.7 64.3 64.7 69.8
PGL 70.1 69.5 74.6 76.5 72.8 72.2 72.6 52.5 36.8 45.6 41.6 45.6 55.8 46.6 0.0 29.3 47.2 11.4 10.0 35.2 74.7
ROS 77.2 77.9 82.1 96.0 82.4 99.7 85.9 75.7 65.2 69.3 74.4 68.6 76.5 56.3 60.4 60.1 60.6 68.8 58.9 66.2 -

DANCE 70.2 65.8 66.9 80.0 70.7 84.8 73.1 44.0 45.9 49.8 41.2 30.2 39.4 55.7 48.3 53.1 54.2 27.5 40.9 44.2 -
DCC 84.4 85.5 87.1 91.2 85.5 87.1 86.8 62.7 66.6 67.4 64.0 67.0 80.6 52.8 76.9 52.9 59.5 56.0 49.8 64.2 70.7

OSLPP 78.7 79.3 89.0 92.3 91.5 93.6 87.4 74.4 66.9 72.8 74.0 70.4 74.3 59.3 59.0 61.0 63.6 67.2 60.9 67.0 -
UADAL 76.5 79.7 89.1 97.8 86.0 99.5 88.1 76.8 69.5 70.8 76.9 73.4 77.4 56.6 60.6 63.2 63.0 72.1 64.2 68.7 75.3
cUADAL 75.1 80.5 90.1 98.2 87.9 99.4 88.5 76.7 68.3 71.6 76.8 72.6 77.5 54.6 59.9 63.6 62.9 72.6 65.0 68.5 75.9
ODAwVL 91.0 91.6 92.1 93.5 93.7 95.0 92.8 75.9 77.3 76.0 82.7 82.4 83.4 76.5 76.1 76.7 82.0 82.8 81.5 79.4 80.7

SF-OSDA (do not use labeled source domain data during the adaptation but use a source model trained on it)
SHOT 75.9 74.0 69.1 87.2 67.2 92.7 77.7 42.3 40.2 39.8 46.2 39.1 47.0 40.8 40.1 39.5 57.7 59.9 54.6 45.6 42.6
AaD 73.9 73.0 78.3 91.2 77.7 93.5 81.3 70.1 61.4 66.9 70.6 67.8 69.9 55.9 57.5 57.6 60.1 64.6 60.5 63.6 16.0

ODAwVL 90.8 91.9 89.3 92.6 93.3 93.8 91.9 78.9 78.6 79.3 84.6 84.8 85.5 76.5 76.8 76.5 82.2 82.1 82.3 80.7 83.81
Our Setting (neither use a source domain model nor source domain data)

Zero-shot 48.0 57.0 65.3 56.8 57.4 63.9 63.1 69.2 63.4 83.1
UOTA 93.8 94.7 99.3 96.0 92.8 92.2 85.4 83.7 88.5 93.7

Zero-shot (Oracle) 96.8 97.8 98.0 97.5 97.0 98.7 93.6 96.3 96.4 94.0
UOTA (Oracle) 97.2 100 100 99.1 98.1 98.9 95.1 97.1 97.3 96.1

4.1 EXPERIMENTAL SETTINGS

We evaluated the performance of UOTA by following the experimental settings of UADAL (Jang
et al., 2022) and using a variety of benchmark datasets, including (i) Office-31 (Saenko et al., 2010),
(ii) Office-Home (Venkateswara et al., 2017), (iii) VisDA (Peng et al., 2017), and (iv) Domain-
Net (Peng et al., 2019). Note that no existing OSDA or SF-OSDA model has conducted experiments
on the full DomainNet dataset, and there is no established experimental protocol for it. Therefore,
to maintain a similar ratio of ID classes as applied in the other datasets, we set 100 classes out of the
total 345 categories as known classes and the remaining as unknown classes.

To quantitatively evaluate the performance of UOTA, we compare it with several existing methods
that can perform OSDA, including DANN (Ganin & Lempitsky, 2015), CDAN (Long et al., 2018),
STA (Liu et al., 2019), OSBP (Saito et al., 2018), ROS (Bucci et al., 2020), DANCE (Saito et al.,
2020), DCC (Li et al., 2021), UADAL (cUADAL) (Jang et al., 2022), and ODAwVL (Yu et al.,
2023). Note that some of these models (e.g., CDAN, DANN, etc.) are not tailored for OSDA.
However, they can still perform OSDA and given that they are frequently used for comparison, we
also utilized them. Furthermore, we compare UOTA with state-of-the-art models that can perform
SF-OSDA such as SHOT (Liang et al., 2020), AaD (Yang et al., 2022), and ODAwVL (Yu et al.,
2023). SHOT and AaD can also perform source-free closed-set domain adaptation, but we uti-
lized them only for SF-OSDA. Note that ODAwVL (Yu et al., 2023) is fundamentally an SF-OSDA
method. However, by using labeled source domain data during the adaptation stage, it can also con-
duct OSDA. Therefore, for ODAWVL, we present results for both OSDA and SF-OSDA. We also
demonstrate the effectiveness of UOTA by comparing it with a pre-trained CLIP model (Radford
et al., 2021), denoted as “Zero-shot”. In particular, it is used as our initialization, and the goal of our
method is to further improve it.

To effectively evaluate the performance of UOTA, we utilized the HOS metric, which is commonly
used as an evaluation criterion by existing OSDA approaches (Bucci et al., 2020; Jang et al., 2022;
Yang et al., 2022). The HOS metric is calculated by taking the harmonic mean of OS* and UNK,
where OS* represents the mean accuracy over known classes and UNK represents the accuracy of
the unknown class. This metric is particularly suitable for evaluating models in OSDA tasks as it
considers both known and unknown (ID and OOD) classification capabilities, providing a higher
evaluation to models that excel in both. Therefore, we follow the established protocols of OSDA
and mainly employ the HOS score as the evaluation metric.
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4.2 QUANTITATIVE ANALYSIS

Table 3: Experiment results on DomainNet. We utilize
the HOS score (%) as an evaluation metric. For SF-OSDA
methods, we average scores over different source domains
for each target domain. Our setting does not use either the
source data or a model trained on the source data.

METHOD
DOMAINNET

C I P Q R S AVG.
SF-OSDA

SHOT 43.1 23.4 34.0 12.3 39.8 36.9 31.6
AAD 49.4 24.6 30.9 15.3 51.8 42.6 35.8

OUR SETTING
ZERO-SHOT 77.6 65.7 74.3 34.8 81.1 76.3 68.3

UOTA 82.4 68.7 77.0 35.9 85.2 77.3 71.1
ZEROSHOT (ORACLE) 93.5 82.2 89.9 49.3 96.2 91.0 83.7

UOTA (ORACLE) 94.3 84.7 91.4 58.4 96.3 91.4 86.1

Table 2 and 3 show that UOTA outper-
forms “Zero-shot (pre-trained CLIP)” on
all benchmark datasets and all target do-
mains, indicating that UOTA improves
the CLIP’s capabilities to precisely distin-
guish OOD samples from ID samples as
well as to classify ID samples. The re-
sults also show that UOTA consistently
exhibits superior performance compared
to the models that can perform OSDA or
SF-OSDA across all benchmark datasets,
despite the more challenging setting as-
sumed for UOTA as shown in Table 1.
Note that the key point of our experiments
is that UOTA showed results that were significantly enhanced compared to “Zero-shot”. As ex-
plained in Table 1, the pre-trained backbone we used differs from other OSDA and SF-OSDA mod-
els. While ODAwVL (Yu et al., 2023) utilizes the pre-trained CLIP, this method simultaneously
employs an ImageNet (Deng et al., 2009) pre-trained model, which is additionally trained on the
labeled source domain data. (Although it uses an additional model along with pre-trained CLIP, it
still shows inferior results compared to UOTA) For other OSDA and SF-OSDA models, experiments
were conducted under the best settings they proposed, which means an ImageNet pre-trained back-
bone was used instead of CLIP. Also, in contrast with OSDA and SF-OSDA, our proposed novel
setting does not use the source domain model or data as mentioned in Table 1. Thus, strictly speak-
ing, a direct comparison between UOTA and OSDA (or SF-OSDA) is not appropriate. The results
from other methods that can perform OSDA and SF-OSDA serve merely as a reference point, and
the core of our experiment is that UOTA significantly improved pre-trained CLIP’s capabilities of
conducting both OOD detection and ID classification. However, although it is not important for
validating the effectiveness of UOTA, we investigated the performance of various methods that can
perform OSDA and SF-OSDA (e.g., UADAL, cUADAL, SHOT, AaD, etc.) when the CLIP en-
coder was used as the backbone. Since these models did not provide experimental results with CLIP
as the backbone, we carried out test on our own. Because these models are not tailored for use in
vision-language models, the results showed they did not converge well, generally achieving less than
half the performance of the best settings. Furthermore, concerning the experiments on DomainNet,
while ODAwVL did report results for DomainNet, they did not utilize the full dataset. Instead, they
selected 126 classes out of the total of 345. Since there are no official codes and it’s unclear which
specific classes they chose, we excluded ODAWVL from our experiments.

Additionally, to evaluate the effectiveness of the training strategy and determine the maximum per-
formance (i.e., upper-bound) that our method can achieve, we assess the performance of UOTA in
an oracle setting. The oracle setting assumes an experimental environment where accurate sepa-
ration of ID and OOD classes is provided during training. As one of UOTA’s training objectives
(Lout) mainly focuses on learning a discriminative representation for ID and OOD separation, the
effect of its loss functions is largely offset in this setting. Nonetheless, UOTA consistently shows
performance improvement over “Zero-shot” across all datasets and all target domains.

4.3 QUALITATIVE ANALYSIS

In this section, we further demonstrate the effectiveness of UOTA in distinguishing OOD sam-
ples from ID ones by visualizing the performance gap between “Zero-shot” and UOTA. We
mainly utilize the Office-31 dataset and all of its domains (A,D, and W) as target tasks. First,
we compare the maximum probability score distributions obtained from “Zero-shot” and UOTA
by visualizing them using histograms. The horizontal axis represents the maximum probabil-
ity score, while the vertical axis indicates the number of samples. As shown in Figure 3, we
observe that “Zero-shot” is unable to clearly distinguish between ID (green) and OOD (red)
samples. In contrast, UOTA effectively separates ID and OOD samples by predicting gen-
erally low maximum probability scores for OOD samples and high scores for ID samples.

7



Under review as a conference paper at ICLR 2024

(i) Zero-shot (ii) UOTA

(a) Domain “Amazon”

(i) Zero-shot (ii) UOTA

(b) Domain “Webcam”

(i) Zero-shot (ii) UOTA

(a) Domain “DSLR”
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Figure 3: Histogram and t-SNE visualization on Office-31. The visualization results for (a) domain A, (b)
domain W, and (c) domain D of the Office-31 dataset are shown with histograms and t-SNE plots. Across
all domains, UOTA consistently exhibits improved performance over “Zero-shot”, with OOD samples (red)
appearing more tightly clustered and a clearer separation between ID (green) and OOD samples.

(a) MMD (b) PAD

Figure 4: MMD and PAD values between known
and unknown feature distributions. UOTA (green)
consistently exhibits a noticeable improvement in both
metrics over “Zero-shot” (pre-trained CLIP, red). Each
metric value is an average result across all domains of
Office-31. This result demonstrates that UOTA more
accurately distinguishes between ID and OOD distribu-
tions in comparison to “Zero-shot”.

In the next step, we present the t-SNE visual-
izations of the learned features by “Zero-shot”
and UOTA in Figure 3. Each data point in
the figure represents the classification probabil-
ity vector (as described in Equation 1) for each
sample. The figure illustrates that the features
for OOD samples (red) obtained by “Zero-shot”
are not well distinguished from the features for
ID samples (green). In contrast, UOTA pre-
cisely segregates OOD samples from ID ones.
Lastly, we measure the distance between the
ID and OOD feature distributions produced by
“Zero-shot” and UOTA. For this, we use Proxy
A-Distance (PAD) (Ganin et al., 2016) and
Maximum Mean Discrepancy (MMD) (Ghifary
et al., 2014), and the corresponding results are
shown in Figure 4. Higher PAD and MMD val-
ues indicate clearer discrimination between ID
and OOD feature distributions. Our analysis re-
veals that UOTA (green) exhibits approximately 50% and 15% higher PAD and MMD, respectively,
compared to “Zero-shot (red)”. This suggests that UOTA is better able to distinguish between ID
and OOD feature distributions.

4.4 ABLATION STUDY

Table 4: Ablation on the proposed training objec-
tives. The result demonstrates that the performance of
the model is maximized when all losses that constitute
the training objectives are used together rather than any
one of them being omitted.

METHOD
OFFICE-31

A W D AVG.
ZERO-SHOT 48.0 57.0 65.3 56.8

Lin DIVERGED
Lout 87.6 89.3 92.6 89.8
Lcont 66.9 64.2 68.1 66.4

Lin + Lcont 47.6 57.4 66.3 57.1
Lout + Lcont 89.2 89.9 92.9 90.7
Lin + Lout 92.9 94.7 94.6 94.1

Lin + Lout + Lcont (UOTA) 93.8 94.7 99.3 96.0

Effectiveness of the proposed training objec-
tives. In this section, we conduct an ablation
study on the loss components of UOTA using
the Office-31 dataset and HOS score. In Ta-
ble 4, we compare eight different cases: (1)
“Zero-shot”, (2) “Lin”, (3) “Lout”, (4) “Lcont”,
(5) “Lin + Lcont”, (6) “Lout + Lcont”, (7)“Lin +
Lout”, and (8) UOTA. When using only “Lin”,
the model diverges and shows a gradual reduc-
tion in the HOS score as the inaccurate sepa-
ration of ID and OOD samples persists during
the training process. On the other hand, when
only “Lout” is used, the OOD samples grad-
ually separate from the ID samples, and the
model shows fairly good performance for all domains. For the “Lcont” case, the model achieves
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better performance than “Zero-shot” through self-supervised learning. However, since it does not
have any learning objectives for dividing ID and OOD samples, it does not show satisfying perfor-
mance. When “Lin” and “Lcont” are used together, the model still does not accurately detect OOD
samples well due to absence of “Lout”. If “Lout” and “Lcont” are used together, the HOS score
improves for all domains when compared to the case where only “Lout” is used. For the “Lin +
Lout” case, class-wise thresholds for distinguishing between ID and OOD samples are continuously
revised through training, leading to more accurate separation of ID and OOD samples as training
proceeds. Finally, when all of the losses are used together (UOTA), the separation of ID and OOD
samples becomes more precise, and the performance of ID image classification greatly improves,
resulting in the highest performance.

# of ID classes

UOTA
Zero-shot

2             4             6             8            10        

100

80

60

40

20

(a) Different # of ID classes.

# of OOD classes

UOTA
Zero-shot

2           4            6           8                11        

100

80

60

40

20

(b) Different # of OOD classes.

Figure 5: Robustness on different number of ID and OOD
classes. Using the Office-31, we evaluate the performance of
“Zero-shot” (pre-trained CLIP) and UOTA according to the vary-
ing number of ID and OOD classes. In both settings, UOTA
(green) consistently shows higher HOS scores than “Zero-shot”
(red) regardless of the number of ID and OOD classes.

Robustness on varying the ratio
between ID and OOD samples.
We conduct openness experiments
on the Office-31 dataset to observe
whether UOTA shows improved per-
formance over “Zero-shot” given dif-
ferent numbers of ID and OOD sam-
ples. To do that, we vary the num-
ber of known and unknown classes
used as labels for ID and OOD sam-
ples, respectively. We use the av-
erage HOS scores of all domains
in the dataset. As shown in Fig-
ure 5, regardless of the varying num-
ber of known or unknown classes,
UOTA (green) consistently outper-
forms “Zero-shot” (red) by a signif-
icant margin.
Robustness on different backbones. We also conduct ablation on backbones (i.e., feature extrac-
tors) to observe if UOTA consistently improves “Zero-shot” when given backbones with different
scales. We compare three different backbones, denoted as (1) “ViT-B/16”, (2) “ViT-B/32”, and (3)
“ViT-L/14” (our default backbone). We use the Office-31, Office-Home, and VisDA datasets, with
the HOS score as the evaluation metric. As presented in Table 5, UOTA consistently shows improved
average HOS scores compared to “Zero-shot” and presents state-of-the-art performance, even when
the backbone is changed.

Table 5: Ablation on different backbones. UOTA achieves higher HOS scores than “Zero-shot” for all
datasets and target domains, regardless of the scale of its backbone. The bold results represent the best scores,
while the underlined one is the second-best score.

METHOD
OFFICE-HOME OFFICE-31 VISDA

P R C A AVG. A W D AVG. R

ZERO-SHOT-VIT-B/16 61.6 66.2 67.7 69.8 66.3 53.7 49.4 55.2 52.8 85.2
ZERO-SHOT-VIT-B/32 65.6 68.1 67.2 69.5 67.6 52.7 66.1 63.6 60.8 84.0
ZERO-SHOT-VIT-L/14 57.4 63.9 63.1 69.2 63.4 48.0 57.0 65.3 56.8 83.1

UOTA-VIT-B/16 87.0 87.4 79.1 79.1 83.2 89.6 96.0 98.1 94.6 89.7
UOTA-VIT-B/32 84.2 86.2 75.1 75.9 80.4 89.5 87.2 88.6 88.4 85.3

UOTA-VIT-L/14 (OURS) 92.8 92.2 85.4 83.7 88.5 93.8 94.7 99.3 96.0 93.7

5 CONCLUSION

In conclusion, we address the challenge of building a reliable image classification model in real-
world scenarios by leveraging large amounts of easily collectible, unlabeled data in the wild, in-
cluding both task-relevant (ID) and task-irrelevant (OOD) data. To achieve this, we propose Un-
supervised Open-Set Task Adaptation (UOTA), a simple yet effective algorithm that substantially
improves the capability of pre-trained CLIP to perform OOD detection as well as ID classification
under the open-set unlabeled data setting. Our work provides a promising direction for utilizing
unlabeled data in real-world scenarios, potentially overcoming the cost and practical limitations of
human-annotated data, and enhancing the transferability of zero-shot models.
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A APPENDIX

We provide supplementary materials for “Unsupervised Open-Set Task Adaptation Using a Vision-
Language Foundation Model” in this document.

B HYPERPARAMETERS

Tab. 1 presents the hyperparameters utilized for “Zero-shot (pre-trained CLIP)” and UOTA in our
experiment. While some adjustments were made to a few hyperparameters for specific datasets,
it is noteworthy that the experiment was mostly conducted without any significant hyperparameter
tuning. In fact, slight differences in hyperparameters did not have a considerable impact on the
experimental results. This demonstrates our model’s robustness on hyperparameters.

Table 1: List of hyperparameters.

Hyper-parameter Office-31 Office-Home VisDA DomainNet Office-31 (Oracle) Office-Home (Oracle) VisDA (Oracle) DomainNet (Oracle)

batch size 32 32 32 32 32 32 32 32
optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
�in 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
�out 0.5 0.5 0.8 0.8 0.5 0.5 0.8 0.8
� 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
! 1.0 1.0 1.0 1.0 1.0 10.0 10.0 1.0
�ood 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

C ADDITIONAL QUALITATIVE ANALYSIS

C.1 HISTOGRAM VISUALIZATION

In this experiment, we use histograms to visualize how effectively UOTA distinguishes OOD sam-
ples from ID samples in comparison to “Zero-shot.” The horizontal axis of the histogram represents
the maximum probability scores, while the vertical axis denotes the number of samples. We use
the Office-31, Office-Home, and VisDA datasets. With the histogram visualization, we can observe
that UOTA computes lower maximum probability scores for unknown class (OOD) samples and
higher maximum probability scores for known class (ID) samples, thereby exhibiting a significantly
improved performance in differentiating OOD data from ID data when compared to “Zero-shot.”
Since the case of using ViT-L/14 as the backbone and Office-31 as a dataset has already been illus-
trated in Figure 3 of the main paper, we omit it here. Based on the results presented in Figure 1, 2,
3, 4, 5, and 6, we can confirm that, regardless of the dataset or backbone type, UOTA consistently
segregates OODs from IDs more effectively than “Zero-shot.”

C.2 T-SNE VISUALIZATION

In this section, by utilizing t-SNE visualizations, we experimentally demonstrate that UOTA con-
sistently exhibits significantly improved ID and OOD discrimination capabilities compared to the
pre-trained CLIP “Zero-shot (pre-trained CLIP)”, irrespective of the backbone employed. We use
the Office-31 and Office-Home datasets, and each datapoint in the t-SNE figure represents the clas-
sification probability vector (described in Equation 1 of the main paper), as explained in Section
4.3 of the main paper. The backbones used are (1) ViT-B/16, (2) ViT-B/32, and (3) ViT-L/14 (our
default backbone). Since the case of using ViT-L/14 as the backbone and Office-31 as a dataset
has already been illustrated in Figure 3 of the main paper, we omit it here. Based on the results
illustrated in Figure 7, 8, 9, 10, and 11, we can confirm that, regardless of the dataset or back-
bone type, UOTA consistently separates OODs from IDs more effectively than “Zero-shot” while
simultaneously clustering OOD features more cohesively.
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(a) Zero-shot (Amazon) (b) Zero-shot (Webcam) (c) Zero-shot (DSLR)

(d) UOTA (Amazon) (e) UOTA (Webcam) (f) UOTA (DSLR)

Figure 1: Histogram visualization on Office-31 using ViT-B/16. When employing the Office-31 dataset
and using ViT-B/16 as the backbone for histogram visualization, the results of UOTA exhibit a more clear
separation of OODs (red) from IDs (green) by producing lower maximum probability scores for OODs and
higher maximum probability scores for IDs. We conducted experiments on three distinct domains, named (1)
“Amazon”, (2) “Webcam”, and (3) “DSLR.”

(a) Zero-shot (Amazon) (b) Zero-shot (Webcam) (c) Zero-shot (DSLR)

(d) UOTA (Amazon) (e) UOTA (Webcam) (f) UOTA (DSLR)

Figure 2: Histogram visualization on Office-31 using ViT-B/32. When employing the Office-31 dataset
and using ViT-B/32 as the backbone for histogram visualization, the results of UOTA exhibit a more distinct
separation of OODs (red) from IDs (green) by computing lower maximum probability scores for OODs and
higher maximum probability scores for IDs. We conducted experiments on three distinct domains, named (1)
“Amazon”, (2)“Webcam”, and (3) “DSLR.”
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(a) Zero-shot (Artistic) (b) Zero-shot (Clipart) (c) Zero-shot (Product)
(d) Zero-shot (Real-
world)

(e) UOTA (Artistic) (f) UOTA (Clipart) (g) UOTA (Product) (h) UOTA (Real-world)

Figure 3: Histogram visualization on Office-Home using ViT-B/16. When employing the Office-Home
dataset and using ViT-B/16 as the backbone for histogram visualization, the results of UOTA exhibit a more
distinct separation of OOD samples (red) from ID samples (green) compared to the “Zero-shot” by computing
lower maximum probability scores for OODs while producing lower maximum probability scores for IDs. We
conducted experiments on four distinct domains, named (1) “Artistic”, (2) “Clipart”, (3) “Product”, and (4)
“Real-world.”

(a) Zero-shot (Artistic) (b) Zero-shot (Clipart) (c) Zero-shot (Product)
(d) Zero-shot (Real-
world)

(e) UOTA (Artistic) (f) UOTA (Clipart) (g) UOTA (Product) (h) UOTA (Real-world)

Figure 4: Histogram visualization on Office-Home using ViT-B/32. When employing the Office-Home
dataset and using ViT-B/32 as the backbone for histogram visualization, the results of UOTA exhibit a more
noticeable discrimination of OOD samples (red) from ID samples (green) compared to the “Zero-shot.” We
conducted experiments on four distinct domains, named (1) “Artistic”, (2) “Clipart”, (3) “Product”, and (4)
“Real-world.”

15



Under review as a conference paper at ICLR 2024

(a) Zero-shot (Artistic) (b) Zero-shot (Clipart) (c) Zero-shot (Product)
(d) Zero-shot (Real-
world)

(e) UOTA (Artistic) (f) UOTA (Clipart) (g) UOTA (Product) (h) UOTA (Real-world)

Figure 5: Histogram visualization on Office-Home using ViT-L/14. When employing the Office-Home
dataset and using ViT-L/14 (our default backbone) as the backbone for histogram visualization, the results of
UOTA exhibit a more clear segregation of OOD samples (red) from ID samples (green) compared to the “Zero-
shot.” We conducted experiments on four distinct domains, named (1) “Artistic”, (2) “Clipart”, (3) “Product”,
and (4) “Real-world.”

(a) Zero-shot (ViT-B/16) (b) Zero-shot (ViT-B/32) (c) Zero-shot (ViT-L/14)

(d) UOTA (ViT-B/16) (e) UOTA (ViT-B/32) (f) UOTA (ViT-L/14)

Figure 6: Histogram visualization on VisDA using ViT-B/16, ViT-B/32, and ViT-L/14. When employing
the VisDA dataset and using ViT-B/16, ViT-B/32, and ViT-L/14 as the backbones for histogram visualization,
the results of UOTA exhibit a more clear separation of OODs (red) from IDs (green), regardless of the type of
backbone employed. (a), (d) are results of ViT-B/16; (b), (e) are results of ViT-B/32; and (c), (f) are results of
ViT-L/14.
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(a) Zero-shot (Amazon) (b) Zero-shot (Webcam) (c) Zero-shot (DSLR)

(d) UOTA (Amazon) (e) UOTA (Webcam) (f) UOTA (DSLR)

Figure 7: t-SNE visualization on Office-31 using ViT-B/16. When employing the Office-31 dataset and
using ViT-B/16 as the backbone for t-SNE visualization, the results of UOTA exhibit a more clear separation of
OODs (red) from IDs (green) and more tight clustering of OODs compared to the “Zero-shot.” We conducted
experiments on three distinct domains, named (1) “Amazon”, (2) “Webcam”, and (3) “DSLR.”

(a) Zero-shot (Amazon) (b) Zero-shot (Webcam) (c) Zero-shot (DSLR)

(d) UOTA (Amazon) (e) UOTA (Webcam) (f) UOTA (DSLR)

Figure 8: t-SNE visualization on Office-31 using ViT-B/32. When employing the Office-31 dataset and
using ViT-B/32 as the backbone for t-SNE visualization, the results of UOTA exhibit a more distinct separation
of OOD samples (red) from ID data (green) and more tight clustering of OODs compared to the “Zero-shot.”
We conducted experiments on three distinct domains, named (1) “Amazon”, (2) “Webcam”, and (3) “DSLR.”
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(a) Zero-shot (Artistic) (b) Zero-shot (Clipart) (c) Zero-shot (Product)
(d) Zero-shot (Real-
world)

(e) UOTA (Artistic) (f) UOTA (Clipart) (g) UOTA (Product) (h) UOTA (Real-world)

Figure 9: t-SNE visualization on Office-Home using ViT-B/16. When employing the Office-Home dataset
and using ViT-B/16 as the backbone for t-SNE visualization, the results of UOTA exhibit a more distinct
separation of OOD samples (red) from ID samples (green) and more tight clustering of OODs compared to
the “Zero-shot.” We conducted experiments on four distinct domains, named (1) “Artistic”, (2) “Clipart”, (3)
“Product”, and (4) “Real-world.”

(a) Zero-shot (Artistic) (b) Zero-shot (Clipart) (c) Zero-shot (Product)
(d) Zero-shot (Real-
world)

(e) UOTA (Artistic) (f) UOTA (Clipart) (g) UOTA (Product) (h) UOTA (Real-world)

Figure 10: t-SNE visualization on Office-Home using ViT-B/32. When employing the Office-Home dataset
and using ViT-B/32 as the backbone for t-SNE visualization, the results of UOTA exhibit a more distinct
separation of OODs (red) from IDs (green) and more tight clustering of OODs compared to the “Zero-shot.”
We conducted experiments on four distinct domains, named (1) “Artistic”, (2) “Clipart”, (3) “Product”, and (4)
“Real-world.”
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(a) Zero-shot (Artistic) (b) Zero-shot (Clipart) (c) Zero-shot (Product)
(d) Zero-shot (Real-
world)

(e) UOTA (Artistic) (f) UOTA (Clipart) (g) UOTA (Product) (h) UOTA (Real-world)

Figure 11: t-SNE visualization on Office-Home using ViT-L/14. When employing the Office-Home dataset
and using ViT-L/14 as the backbone for t-SNE visualization, the results of UOTA exhibit a more distinct
separation of OOD data (red) from ID data (green) and more tight clustering of OODs compared to the “Zero-
shot.” We conducted experiments on four distinct domains, named (1) “Artistic”, (2) “Clipart”, (3) “Product”,
and (4) “Real-world.”
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D SUPPLEMENTAL EXPERIMENT RESULTS ON OFFICE-31, OFFICE-HOME,
AND VISDA

Table 2: Additional results on Office-31.

METHOD

OFFICE-31
W D A D A W AVG.A W D

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
DANN 72.1 73.1 72.6 72.9 74.5 73.7 87.4 55.7 68.1 99.3 77.0 86.7 90.8 59.2 71.5 100.0 70.2 82.5 87.1 68.3 75.9
CDAN 72.8 69.3 71.0 74.9 70.6 72.7 90.3 50.7 64.9 99.6 73.2 84.3 92.2 52.4 66.8 100.0 67.3 80.5 88.3 63.9 73.4
OSBP 73.0 74.4 73.7 76.1 72.3 75.1 86.8 79.2 82.7 97.7 96.7 97.2 90.5 75.5 82.4 99.1 84.2 91.1 87.2 80.4 83.7
STA 66.2 68.0 66.1 83.1 65.9 73.2 86.7 67.6 75.9 94.1 55.5 69.8 91.0 63.9 75.0 84.9 67.8 75.2 84.3 64.8 72.5
PGL 80.8 61.8 70.1 80.6 61.2 69.5 82.7 67.9 74.6 87.5 68.1 76.5 82.1 65.4 72.8 82.8 64.0 72.2 82.7 64.7 72.6
ROS 69.7 86.6 77.2 74.8 81.2 77.9 88.4 76.7 82.1 99.3 93.0 96.0 87.5 77.8 82.4 100.0 99.4 99.7 86.6 85.8 85.9

DANCE 83.7 60.6 70.2 85.3 53.6 65.8 98.7 50.7 66.9 100.0 66.8 80.0 96.5 55.9 70.7 100.0 73.7 84.8 94.0 60.2 73.1
DCC - - 84.4 - - 85.5 - - 87.1 - - 91.2 - - 85.5 - - 87.1 - - 86.8

OSLPP 78.9 78.5 78.7 82.1 76.6 79.3 89.5 88.4 89.0 96.9 88.0 92.3 92.6 90.4 91.5 95.8 91.5 93.6 89.3 85.6 87.4
UADAL 67.4 88.4 76.5 73.3 87.3 79.7 84.3 94.5 89.1 99.3 96.3 97.8 85.1 87.0 86.0 99.5 99.4 99.5 84.8 92.1 88.1

CUADAL 65.6 87.8 75.1 74.2 87.8 80.5 85.5 95.1 90.1 98.7 97.7 98.2 85.6 90.4 87.9 99.3 99.4 99.4 84.8 93.0 88.5
SHOT 72.2 80.1 75.9 75.5 72.5 74.0 74.5 64.4 69.1 96.7 79.4 87.2 82.0 56.9 67.2 98.8 87.2 92.7 83.3 73.4 77.7
AAD 70.8 78.2 73.9 69.8 77.4 73.0 74.6 83.5 78.3 90.2 92.5 91.2 75.3 80.9 77.7 92.1 95.2 93.5 78.8 84.6 81.3

UOTA 89.6 98.5 93.8 89.6 98.5 93.8 90.0 100.0 94.7 90.0 100.0 94.7 98.7 100.0 99.3 98.7 100.0 99.3 92.8 99.5 96.0

Table 3: Additional results on Office-Home.

METHOD

OFFICE-HOME
R C A P C A

P R
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

CDAN 70.9 64.6 67.6 51.6 76.8 61.7 61.7 68.8 65.1 69.8 69.7 69.7 61.5 73.7 67.1 75.2 66.7 70.7
OSBP 76.3 68.6 72.3 67.0 62.7 64.7 71.8 59.8 65.2 76.2 71.7 73.9 72.0 69.2 70.6 79.3 67.5 72.9
STA 77.1 55.4 64.5 61.8 59.1 60.4 68.0 48.4 54.0 76.2 64.3 69.5 67.0 66.7 66.8 78.6 60.4 68.3
PGL 84.8 38.0 52.5 73.9 24.5 36.8 78.9 32.1 45.6 84.8 27.6 41.6 70.2 33.8 45.6 87.7 40.9 55.8
ROS 72.0 80.0 75.7 59.8 71.6 65.2 68.4 70.3 69.3 70.8 78.4 74.4 65.3 72.2 68.6 75.8 77.2 76.5

DANCE 86.2 29.6 44.0 76.3 32.8 45.9 84.0 35.4 49.8 86.5 27.1 41.2 83.9 18.4 30.2 89.8 25.3 39.4
DCC - - 62.7 - - 66.6 - - 67.4 - - 64.0 - - 67.0 - - 80.6
LGU 83.2 46.8 59.9 71.7 4.1 7.8 80.5 49.3 61.2 82.8 41.2 55.0 77.6 46.4 58.1 86.5 47.5 61.3

OSLPP 78.4 70.8 74.4 61.6 73.3 66.9 72.5 73.1 72.8 77.0 71.2 74.0 67.2 73.9 70.4 80.1 69.4 74.3
UADAL 77.4 76.2 76.8 62.1 78.8 69.5 69.1 72.5 70.8 71.6 83.1 76.9 69.1 78.3 73.4 81.3 73.7 77.4

CUADAL 77.8 75.6 76.7 61.1 77.4 68.3 69.4 73.9 71.6 71.2 83.4 76.8 69.3 76.3 72.6 82.2 73.3 77.5
SHOT 84.4 28.2 42.3 77.5 27.2 40.2 81.8 26.3 39.8 85.8 31.6 46.2 80.0 25.9 39.1 87.5 32.1 47.0
AAD 69.7 70.6 70.1 59.5 63.5 61.4 64.6 69.4 66.9 68.4 72.8 70.6 67.4 68.3 67.8 73.1 66.9 69.9

UOTA 88.2 97.9 92.8 88.2 97.9 92.8 88.2 97.9 92.8 88.6 96.1 92.2 88.6 96.1 92.2 88.6 96.1 92.2

METHOD

OFFICE-HOME
P R A P R C AVG.C A

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
DANN 30.1 86.3 44.6 37.1 80.9 50.9 37.1 82.7 51.2 42.4 83.9 56.3 56.8 77.1 65.4 43.8 84.3 57.6 52.6 77.1 60.7
CDAN 33.1 82.4 47.2 40.3 75.8 52.7 39.7 78.9 52.9 45.8 81.2 58.6 59.8 73.6 66.0 44.9 82.8 58.2 54.5 74.6 61.4
OSBP 44.5 66.3 53.2 48.0 63.0 54.5 50.2 61.1 55.1 59.1 68.1 63.2 66.1 67.3 66.7 59.4 70.3 64.3 64.1 66.3 64.7
STA 44.2 67.1 53.2 49.9 61.1 54.5 46.0 72.3 55.8 54.2 72.4 61.9 67.5 66.7 67.1 51.4 65.0 57.4 61.8 63.3 61.1
PGL 59.2 38.4 46.6 68.8 0.0 0.0 63.3 19.1 29.3 73.7 34.7 47.2 81.5 6.1 11.4 85.9 5.3 10.0 76.1 25.0 35.2
ROS 46.5 71.2 56.3 51.5 73.0 60.4 50.6 74.1 60.1 57.3 64.3 60.6 67.0 70.8 68.8 53.6 65.5 58.9 61.6 72.4 66.2

DANCE 48.2 67.4 55.7 60.1 41.3 48.3 54.4 53.7 53.1 70.7 43.9 54.2 79.2 16.7 27.5 72.9 28.4 40.9 74.4 35.0 44.2
DCC - - 52.8 - - 76.9 - - 52.9 - - 59.5 - - 56.0 - - 49.8 - - 64.2
LGU 54.5 18.1 27.2 63.4 29.6 40.4 58.6 32.6 41.9 69.1 50.9 58.6 77.5 48.9 60.0 67.2 30.8 42.2 72.7 38.9 50.7

OSLPP 53.1 67.1 59.3 54.4 64.3 59.0 55.9 67.1 61.0 54.6 76.2 63.6 60.8 75.0 67.2 49.6 79.0 60.9 63.8 71.7 67.0
UADAL 43.4 81.5 56.6 51.1 74.5 60.6 54.9 74.7 63.2 50.5 83.7 63.0 66.7 78.6 72.1 53.5 80.5 64.2 62.6 78.0 68.7

CUADAL 41.2 80.7 54.6 51.8 71.1 59.9 55.0 75.6 63.6 50.9 82.4 62.9 66.8 79.6 72.6 53.8 82.0 65.0 62.5 77.6 68.5
SHOT 59.3 31.0 40.8 65.3 28.9 40.1 67.0 28.0 39.5 66.3 51.1 57.7 73.5 50.6 59.9 66.8 46.2 54.6 74.6 33.9 45.6
AAD 45.4 72.8 55.9 49.0 69.6 57.5 50.7 66.4 57.6 47.3 82.4 60.1 54.5 79.0 64.6 48.2 81.1 60.5 58.2 71.9 63.6

UOTA 76.9 95.9 85.4 76.9 95.9 85.4 76.9 95.9 85.4 79.1 88.9 83.7 79.1 88.9 83.7 79.1 88.9 83.7 83.2 94.7 88.5

Table 4: Additional results on VisDA.

METHOD
VISDA

OS* UNK HOS
STA 63.9 84.2 72.7

OSBP 59.2 85.1 69.8
PGL 82.8 68.1 74.7
DCC 68.0 73.6 70.7

UADAL 61.1 93.3 75.3
CUADAL 64.3 92.6 75.9

SHOT 44.6 40.7 42.6
AAD 13.8 23.3 16.0

UOTA 89.4 98.4 93.7

In Tab. 2, 3, and 4, we provide additional results measuring the performance of UOTA and other
existing models using OS* (accuracy over known classes) and UNK (accuracy of unknown classes).
Note that, different from the HOS score, the OS* and UNK are biased evaluation metrics that do
not simultaneously consider a model’s ID classification and OOD detection capabilities. We em-
ploy Office-31, Office-Home, and VisDA as datasets. We utilize OSDA models (DANN, CDAN,
OSBP, STA, PGL, ROS, DANCE, DCC, OSLPP, UADAL, and cUADAL) and SF-OSDA models
(SHOT and AaD) as comparison models. We conduct experiments using the best settings for each
of these models on their respective datasets (e.g., use ResNet50 as a backbone for Office-31 and
Office-Home, and use VGGNet as a backbone for VisDA). As mentioned in the main paper, UOTA
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assumes a more constrained experimental environment that neither uses source models nor source
data; however, it records state-of-the-art results for all datasets and target domains.

E SUPPLEMENTAL EXPERIMENT RESULTS ON DOMAINNET

We also provide the OS* and UNK score results for DomainNet. For comparison, we used SF-
OSDA models (SHOT, AaD) and conducted experiments utilizing their best settings (e.g. using
ResNet50 as a backbone). Tab. 5, 6, 7, 8, 9, and 10 display the results of experiments conducted
with varying target domains.

Table 5: Additional results on DomainNet (Target domain: Quick draw).

METHOD

DOMAINNET
C I P R S AVG.Q

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
SHOT 11.1 38.6 17.2 3.3 21.1 5.7 8.7 34.9 13.9 9.8 39.8 15.7 3.9 34.1 6.9 7.4 33.7 12.3
AAD 13.3 62.7 21.3 4.6 60.0 7.5 6.8 63.0 11.3 9.6 60.4 15.7 12.6 67.2 20.4 9.4 62.7 15.3

UOTA 22.7 85.4 35.9 22.7 85.4 35.9 22.7 85.4 35.9 22.7 85.4 35.9 22.7 85.4 35.9 22.7 85.4 35.9

Table 6: Additional results on DomainNet (Target domain: Clipart).

METHOD

DOMAINNET
Q I P R S AVG.C

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
SHOT 18.3 41.7 25.4 36.4 44.6 40.1 50.1 51.4 50.7 52.5 46.4 49.2 48.1 51.8 49.9 41.1 47.2 43.1
AAD 27.6 69.0 39.0 31.3 75.0 43.7 41.9 78.0 54.2 43.1 76.2 54.8 43.7 77.2 55.6 37.5 75.1 49.4

UOTA 89.4 76.5 82.4 89.4 76.5 82.4 89.4 76.5 82.4 89.4 76.5 82.4 89.4 76.5 82.4 89.4 76.5 82.4

Table 7: Additional results on DomainNet (Target domain: Infograph).

METHOD

DOMAINNET
Q C P R S AVG.I

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
SHOT 2.5 38.8 4.6 20.0 49.6 28.5 21.1 48.5 29.4 21.1 43.1 28.4 18.2 45.5 26.0 16.6 45.1 23.4
AAD 3.9 75.7 6.1 17.3 16.6 27.8 19.2 83.6 30.4 20.1 80.1 31.3 17.1 82.0 27.4 15.5 67.6 24.6

UOTA 61.6 77.8 68.7 61.6 77.8 68.7 61.6 77.8 68.7 61.6 77.8 68.7 61.6 77.8 68.7 61.6 77.8 68.7

Table 8: Additional results on DomainNet (Target domain: Painting).

METHOD

DOMAINNET
Q C I R S AVG.P

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
SHOT 5.5 24.6 9.0 50.9 32.5 39.7 36.0 42.8 39.1 48.8 45.9 47.3 41.4 30.1 34.9 36.5 35.2 34.0
AAD 14.4 70.5 23.1 39.9 76.8 52.2 31.4 70.0 43.0 44.0 74.2 55.0 39.5 75.8 51.7 33.8 73.5 30.9

UOTA 74.7 79.4 77.0 74.7 79.4 77.0 74.7 79.4 77.0 74.7 79.4 77.0 74.7 79.4 77.0 74.7 79.4 77.0

Table 9: Additional results on DomainNet (Target domain: Real).

METHOD

DOMAINNET
Q C I P S AVG.R

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
SHOT 17.1 20.6 18.7 64.8 46.3 54.0 63.2 26.5 37.4 71.4 28.9 41.1 61.3 39.0 47.7 55.6 32.3 39.8
AAD 25.9 59.0 35.7 56.1 57.4 56.7 50.4 56.1 53.1 57.0 56.2 56.6 54.8 58.8 56.7 48.8 57.5 51.8

UOTA 89.0 81.8 85.2 89.0 81.8 85.2 89.0 81.8 85.2 89.0 81.8 85.2 89.0 81.8 85.2 89.0 81.8 85.2

Table 10: Additional results on DomainNet (Target domain: Sketch).

METHOD

DOMAINNET
Q C I P R AVG.S

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
SHOT 16.1 41.6 23.2 43.5 47.2 45.3 30.9 44.9 36.6 42.9 44.4 43.6 33.7 38.6 36.0 33.4 43.3 36.9
AAD 21.3 71.0 32.2 37.6 76.7 50.1 24.3 70.5 35.7 36.0 78.8 49.0 34.6 71.4 46.3 30.8 73.7 42.6

UOTA 77.0 77.6 77.3 77.0 77.6 77.3 77.0 77.6 77.3 77.0 77.6 77.3 77.0 77.6 77.3 77.0 77.6 77.3
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F PYTORCH-STYLE PSEUDOCODE FOR UOTA

Algorithm 1 UOTA: PyTorch Pseudocode

# img_1, img_2, img_encoder, txt_feat: View 1, view 2, image encoder, and text feature, respectively.

# alpha_1, alpha_2 : Learnable temperatures for sharpening the prediction.

# norm, batch_size, CE: Normalization, batch size, and cross-entropy loss, respectively.

# data_num, known_cls_num: Total number of images in a dataset and the number of known classes,

respectively.

# count_in, count_out: Used for collecting pseudo-labels for each image. Initialized with -1s.

# omega, gamma: A balancing weight and a smoothness factor, respectively.

# delta_in, delta_out: Thresholds for IDs and OODs, respectively.

for (img_1, img_2, idx) in train_loader:

img_feat_1, img_feat_2 = img_encoder(img_1), img_encoder(img_2)

cos_sim_1 = alpha_1 * norm(img_feat_1, dim=1) @ norm(txt_feat, dim=1).T

cos_sim_2 = alpha_1 * norm(img_feat_2, dim=1) @ norm(txt_feat, dim=1).T

max_prob_1, max_idx_1 = max(softmax(cos_sim_1, dim=1), dim=1)

max_prob_2, max_idx_2 = max(softmax(cos_sim_2, dim=1), dim=1)

count_in, count_out, thres_in, thres_out = classwise_threshold(count_in, count_out, beta_in,

beta_out)

mask_in_1, mask_in_2 = max_prob_1.ge(thres_in[max_idx_1]), max_prob_2.ge(thres_in[max_idx_2])

mask_out_1, mask_out_2 = (1-max_prob_1).ge(thres_out[max_idx_1]), (1-max_prob_2).ge(thres_out[

max_idx_2])

loss_in = (CE(max_prob_2,max_idx_1) *mask_in_1 + CE(max_prob_1,max_idx_2) * mask_in_2) / 2.0

loss_out = (CE((1-max_prob_2),max_idx_1) * mask_out_1 + CE((1-max_prob_1),max_idx_2) * mask_out_2)

/ 2.0

loss_cont = contrastive_loss(img_feat_1, img_feat_2, batch_size)

loss = loss_in + loss_out + omega * loss_cont

loss.backward()

update(img_encoder.parameters())

count_in_temp, count_out_temp = ones(data_num))*(-1), ones(data_num)*(-1)

idx_in_1, idx_in_2 = max_prob_1.ge(delta_in), max_prob_2.ge(delta_in)

idx_out_1, idx_out_2 = (1-max_prob_1).ge(delta_out), (1-max_prob_2).ge(delta_out)

count_in_temp[idx[idx_in_1]], count_in_temp[idx[idx_in_2]] = max_idx_1[idx_in_1], max_idx_2[

idx_in_2]

count_out_temp[idx[idx_out_1]], count_out_temp[idx[idx_out_2]] = max_idx_1[idx_out_1], max_idx_2[

idx_out_2]

count_in_temp, count_out_temp = Counter(count_in_temp), Counter(count_out_temp)

momentum = (batch_size*2 / data_num)

for i in range(known_cls_num):

count_in[i] = count_in[i]* (1-momentum) + count_in_temp[i]

count_out[i] = count_out[i]* (1-momentum) + count_out_temp[i]

def classwise_threshold(count_in, count_out, beta_in, beta_out):

for (img_1, img_2, idx) in train_loader:

img = cat([img_1,img_2], dim=0)

img_feat = img_encoder(img)

cos_sim = alpha_1 * norm(img_feat, dim=1) @ norm(txt_feat, dim=1).T

max_prob, max_idx = max(softmax(cos_sim, dim=1), dim=1)

idx_in, idx_out = max_prob.ge(delta_in), (1-max_prob).ge(delta_out)

count_in[idx[idx_in]], count_out[idx[idx_out]] = max_idx[idx_in], max_idx[idx_out]

count_in, count_out = Counter(count_in), Counter(count_out)

max_in, max_out = max(count_in.values()), max(count_out.values())

for i in range(known_cls_num):

if i in count_in:

beta_in = (count_in[i] + gamma*max_in) / (1+gamma)*max_in

if i in count_out:

beta_out = (count_out[i] + gamma*max_out) / (1+gamma)*max_out

return count_in, count_out, beta_in*delta_in, beta_out*delta_out

def contrastive_loss(feat_1, feat_2, batch_size):

feat_1, feat_2 = norm(feat_1, dim=1), norm(feat_2, dim=1)

label = arange(batch_size)

mask = eye(batch_size) * 1e9

matrix = feat_1 @ feat_2.T

matrix1 = feat_1 @ feat_1.T - mask

matrix2 = feat_2 @ feat_2.T - mask

matrix1, matrix2 = cat([matrix, matrix1], dim=0), cat([matrix.T, matrix2], dim=0)

loss = (CE(matrix1 / alpha_2, label) + CE(matrix2 / alpha_2, label)) / 2.0

return loss
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