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ABSTRACT

Modern video-text retrieval (VTR) models excel on in-distribution benchmarks
but are highly vulnerable to real-world query shifts, where the distribution of query
data deviates from the training domain, leading to a sharp performance drop. Ex-
isting image-focused robustness solutions are inadequate to handle this vulnerabil-
ity in video, as they fail to address the complex spatio-temporal dynamics inherent
in these shifts. To systematically evaluate this vulnerability, we first introduce
a comprehensive benchmark featuring 12 distinct types of video perturbations
across five severity degrees. Analysis on this benchmark reveals that query shifts
amplify the hubness phenomenon, where a few gallery items become dominant
“hubs” that attract a disproportionate number of queries. To mitigate this, we then
propose HAT-VTR (Hubness Alleviation for Test-time Video-Text Retrieval), as
our baseline test-time adaptation framework designed to directly counteract hub-
ness in VTR. It leverages two key components: a Hubness Suppression Memory
to refine similarity scores, and multi-granular losses to enforce temporal feature
consistency. Extensive experiments demonstrate that HAT-VTR substantially im-
proves robustness, consistently outperforming prior methods across diverse query
shift scenarios, and enhancing model reliability for real-world applications. Code
is available at https://github.com/bingqingzhang/vtr_tta.git.

1 INTRODUCTION

Driving in Heavy Fog

Panda Partly Occluded by a Box

Figure 1: Real-world videos
illustrating diverse spatio-
temporal complexities that
challenge VTR models.

While Video-Text Retrieval (VTR) models (Luo et al., 2022; Gorti
et al., 2022) have achieved remarkable success, their performance
hinges on a fragile assumption: that inference data are drawn
from the same distribution as the training data. This assumption
is frequently violated in real-world applications, leading to a phe-
nomenon known as query shift, where the incoming data distribu-
tion deviates from the source. The problem is particularly acute for
video input, as these distributional shifts introduce perturbations
with a unique temporal dimension. For instance, real-world chal-
lenges like persistent fog or dynamic object occlusions (Fig. 1) in-
troduce complex spatio-temporal domain shifts, corrupting not just
static appearances but temporal consistency across frames and caus-
ing a sharp degradation in retrieval accuracy.

This vulnerability has spurred research into test-time robustness, yet efforts have so far been confined
to the image-text domain. The first systematic study (Qiu et al., 2024) introduced a comprehensive
image-text benchmark with controlled perturbations, revealing that even top-performing models are
highly sensitive to distribution shifts. More recently, online Test-Time Adaptation (TTA) meth-
ods (Wang et al., 2021; Lee et al., 2024) have emerged to address this fragility. Notably, TCR (Li
et al., 2025b) pioneered TTA for image-text query-shift retrieval by enforcing representation uni-
formity during inference. However, these pioneering works—both in benchmarking and adapta-
tion—overlook the unique temporal challenges inherent to video. Their focus on static, frame-level
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Figure 2: An overview of the motivation, solution, and performance of our proposed HAT-VTR
method. (a) We first observe that the performance of representative video-to-text retrieval models
collapses under Gaussian perturbations. (b) To diagnose this failure, we analyze the k-occurrence
distribution (the number of times a gallery item is retrieved as the top-15 result), which is relatively
balanced on original data. (c) When the query is corrupted, the distribution becomes heavy-tailed,
highlighting a worsened hubness phenomenon where a few videos dominate retrieval rankings. (d)
Applying the existing TTA method (TCR) partially mitigates the hubness problem. (e) To address
this root cause, we propose HAT-VTR, a TTA method that uses a Hubness Suppression Memory
and multi-granular losses to directly counteract hubness. (f) Our approach is highly effective, suc-
cessfully restoring a balanced k-occurrence distribution. (g) Consequently, HAT-VTR significantly
improves performance over corrupted baselines and prior art.

artifacts is insufficient for the dynamic nature of video perturbations. This makes test-time adap-
tation for VTR a unique challenge that requires spatio-temporal reasoning. However, to properly
study this challenge, we need a benchmark designed for video dynamics, which is currently absent.

To fill this critical gap, we develop MLVP (Multi-Level Video Perturbations), an extended video
perturbation benchmark that moves beyond the static image perturbations of prior work to probe
the unique spatio-temporal and semantic vulnerabilities of VTR models. The MLVP benchmark
encompasses perturbations across three hierarchical levels: (i) low-level perturbations that affect
pixel values while maintaining temporal consistency (e.g., Gaussian noise), (ii) mid-level perturba-
tions targeting object motion and spatial relationships (e.g., object occlusion), and (iii) high-level
shifts that alter the core semantic or temporal structure (e.g., style transfer). In total, our benchmark
comprises 12 distinct types of video perturbation approaches, each with five severity degrees, result-
ing in 60 controlled test scenarios. This systematic approach provides a principled foundation for
analyzing VTR robustness and developing the next generation of resilient models.

Leveraging our benchmark, we uncover a striking vulnerability: the retrieval performance of VTR
models collapses under video perturbations (Fig. 2(a)). We attribute this failure to an exacerbated
hubness phenomenon, where a small subset of gallery items become “hubs” that disproportionately
dominate nearest-neighbor rankings (Jian & Wang, 2023). Our analysis of the k-occurrence distri-
butions provides clear evidence for this, as shown in Fig. 2(b-c), the distribution dramatically shifts
from a relatively balanced state on clean data to a heavy-tailed one under perturbation. Crucially,
we find that applying TCR partially alleviates this hubness (Fig. 2(d)); however, it is not equipped
to handle this severe amplification directly, motivating the need for a targeted solution.

Motivated by our findings, we propose HAT-VTR (Hubness Alleviation for Test-time Video-Text
Retrieval), a straightforward yet effective framework designed to directly counteract this failure
mode and establish a strong new baseline for robust test-time VTR. As conceptualized in Fig. 2(e),
our framework enhances the TTA paradigm with two complementary innovations to systematically
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mitigate hubness. First, a novel Hubness Suppression Memory (HSM) explicitly targets hubs at the
similarity score level. Drawing inspiration from DSL (Cheng et al., 2021), this module maintains a
dynamic history of retrieval patterns and performs real-time similarity refinement to demote overly
popular gallery items, ensuring a more balanced neighbor distribution. Second, we adapt the core
supervision signals of TCR (Li et al., 2025b) for the video domain by introducing multi-granular
losses that leverage video’s temporal hierarchy. Together, these components provide a direct and
effective solution to the hubness problem. As visually demonstrated in Fig. 2(f-g), our approach
successfully restores a balanced neighbor distribution and delivers robust retrieval performance that
outperforms existing TTA methods. In summary, our contributions are threefold:

• To the best of our knowledge, this work introduces the first comprehensive multi-level video
perturbation (MLVP) benchmark for evaluating test-time robustness of VTR, featuring a
multi-level suite of spatio-temporal perturbations tailored for the video modality.

• We propose HAT-VTR, a straightforward yet effective framework that directly counteracts
amplified hubness in test-time VTR. It introduces a Hubness Suppression Memory and
multi-granular losses, establishing a strong new baseline for the field.

• Extensive experiments on different VTR TTA scenarios show that HAT-VTR consistently
outperforms existing TTA methods under both query- and query-gallery-shift scenarios,
enhancing model robustness and offering new insights into real-world VTR challenges.

2 RELATED WORK

Video-Text Retrieval. The dominant paradigm in VTR is the dual-encoder architecture (Radford
et al., 2021; Luo et al., 2022), which learns a shared embedding space for videos and texts. Re-
search in this area has focused on improving alignment strategies (Gorti et al., 2022), handling noisy
correspondences in the training set (Huang et al., 2024), and mitigating the intrinsic hubness phe-
nomenon—where a few items dominate retrieval results—through training objectives (Liu et al.,
2020) or post-hoc score normalization (Cheng et al., 2021). However, these methods all operate un-
der the standard i.i.d. assumption, presupposing that test data comes from the same clean distribution
as the training data. Our work reveals that input corruptions at test time dramatically exacerbate the
hubness problem and offers an online adaptation solution specifically for this failure mode.

Test-Time Adaptation. Test-Time Adaptation (TTA) aims to adapt a pre-trained model to a tar-
get domain using only unlabeled test data. The online setting, pioneered by TENT (Wang et al.,
2021) through entropy minimization, adapts the model on a data stream without access to the source
training data. This paradigm has since been extended to cross-modal retrieval, with methods like
TCR (Li et al., 2025b) enforcing representation uniformity to handle query shifts. Nevertheless,
these foundational works are designed for and evaluated on image-text tasks. They do not address
the unique challenges of the video domain, such as the spatio-temporal nature of corruptions and the
resulting amplification of the hubness phenomenon. Our work adheres to the strict online TTA set-
ting, distinguishing it from paradigms like Unsupervised Domain Adaptation (UDA) (Hao & Zhang,
2023) or Test-Time Training (TTT) (Sun et al., 2020) that relax these constraints.

Vision Corruption Benchmarks. The systematic evaluation of model robustness was established
by image-centric benchmarks like ImageNet-C (Hendrycks & Dietterich, 2019). While this has in-
spired efforts in the video domain, a comprehensive benchmark for VTR robustness against complex
spatio-temporal corruptions has been lacking. The most related prior work (Schiappa et al., 2022)
introduced a VTR-C benchmark, but its corruptions were primarily frame-wise extensions of image
artifacts. In contrast, our benchmark is fundamentally different in two ways: 1) it introduces pertur-
bations that explicitly target the dynamic, inter-frame properties of video, 2) it is the first designed
not just for evaluating intrinsic robustness but for systematically comparing TTA methods in VTR.

Data-driven Style Robustness. Another line of research explicitly trains models on curated multi-
style datasets (e.g., sketches, art) to achieve robustness against a known set of styles (Li et al., 2024b;
Yanhao et al., 2025; Wu et al., 2025). This is fundamentally different from our online Test-TTA
setting. Our method is trained only on clean data and adapts on-the-fly to unforeseen query shifts
using only the unlabeled test stream, without requiring a pre-built style dataset.

Further literature discussions and their relation to our work are available in Appendix A.
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Figure 3: Overview of our proposed Multi-level Video Perturbations benchmark. We categorize 12
perturbations into a three-level hierarchy: low-level (pixel-based), mid-level (motion/object-aware),
and high-level (semantic/temporal). Representative examples from each category are shown.

3 MLVP: MULTI-LEVEL VIDEO PERTURBATIONS BENCHMARK

As established in Sec. 2, existing robustness benchmarks are not well-suited for the video domain as
they primarily apply static, image-level corruptions. To systematically investigate the vulnerabilities
of VTR models to dynamic query shifts and provide a standard for evaluating adaptation methods,
a benchmark tailored for video’s spatio-temporal nature is essential. To this end, we extend the
successful paradigm of systematic image-text robustness evaluation (Qiu et al., 2024) to the video
domain, proposing our benchmark: MLVP (Multi-Level Video Perturbations). Our benchmark in-
troduces 12 perturbation types across 5 severity degrees, creating 60 controlled scenarios. These
scenarios are instantiated across the test sets of five standard VTR datasets (MSRVTT, ActivityNet,
LSMDC, MSVD and DiDeMo), creating a comprehensive evaluation suite with over 8,500 unique
perturbed videos. These perturbations are organized into a three-level hierarchy probing distinct
model failures: from low-level pixel modifications and mid-level object/motion attributes to high-
level alterations of the core semantic and temporal structure. (See Fig. 3.)

Low-level video perturbations modify pixel values while preserving temporal structure. Our suite
simulates common degradations from hardware (Gaussian and impulse noise), weather (fog, snow),
and digital processing (elastic distortion, H.264 compression). Critically, these perturbations are
rendered with temporal consistency by applying the same realization (e.g., shared noise pattern)
across frames of a video, distinguishing them from independent image corruptions.

Mid-level perturbations target object-centric and motion-based attributes to simulate more com-
plex real-world degradations. To model camera artifacts, our motion blur and video defocus imple-
mentations use inter-frame motion vectors to apply a spatially varying blur, where the degradation
is stronger in faster-moving regions. To simulate the obstruction of semantically critical elements,
our main object occlusion employs a novel identification pipeline, providing a more challenging and
realistic test than random occlusion. This pipeline first uses Qwen2.5-VL-7B (Bai et al., 2025a) to
generate a video caption, then leverages key nouns from the caption as open-vocabulary queries for
OWLv2 (Minderer et al., 2023) to locate and track the main object for occlusion.

High-level video perturbations alter the core semantic and temporal structure of a video to chal-
lenge its high-level understanding. Our style transfer perturbation tests a model’s style invari-
ance—its ability to recognize semantic content across diverse visual renderings. For efficiency,
we follow the approach of Qiu et al. (2024) and employ AdaIN (Huang & Belongie, 2017), ensur-
ing temporal consistency by applying a single style image and a fixed set of parameters across all
frames. Event insertion challenges contextual understanding by using a retrieval model to select
a semantically similar video snippet from a database and splice it into the original video. Finally,
temporal scrambling simulates network streaming issues like packet loss and out-of-order delivery
by trimming and reordering video chunks, disrupting the narrative flow and causal relationships.

Further details about datasets and MLVP benchmark are available in Appendix B.1 and E.
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4 HAT-VTR: THE TEST-TIME ADAPTATION METHOD FOR VTR

4.1 NOTATIONS AND PROBLEM FORMULATION

In video-text retrieval (VTR), the setup consists of a query set XQ and a gallery set XG. VTR
encompasses two sub-tasks: video-to-text (v2t) and text-to-video (t2v) retrieval, where the modality
of the query and gallery sets are swapped. A dual-encoder model, comprising a query encoder fθQ

and a gallery encoder fθG , maps these inputs into a shared embedding space. This is represented as:

ZQ = {fθQ(x) | x ∈ XQ}, ZG = {fθG(x) | x ∈ XG}, (1)

where ZQ and ZG are the sets of query and gallery embeddings. Retrieval is then based on a
similarity matrix computed between these embeddings:

SQ,G = gθ(Z
Q, ZG). (2)

The function gθ varies with the alignment strategy, ranging from a parameter-free cosine similarity
for coarse-grained alignment to learnable modules like cross-attention transformers for fine-grained
alignment. Finally, the scores in SQ,G are used to rank gallery items for each query and return
the top results. This process is typically asymmetric in practice: the gallery embeddings ZG are
pre-computed offline, whereas query embeddings ZQ are computed online upon request.

The standard VTR paradigm operates on the assumption that the evaluation dataset, DE , shares
the same distribution as the finetuning dataset, DF , i.e., P(DF ) ∼ P(DE). Online Test-Time
Adaptation (TTA) addresses the setting where this assumption is violated by a distribution shift.
In the cross-modal TTA setting, the adaptation is formulated as a self-supervised query prediction
task. For an online batch of query embeddings ZQb ∈ RB×D and the full gallery embeddings
ZG ∈ RNG×D, the correspondence probabilities are modeled as:

p = Softmax(ZQb(ZG)T /τ), (3)

where τ is a temperature hyperparameter. A primary objective of TTA is to increase the model’s
prediction confidence on the target data by minimizing the softmax entropy η(·):

min
θ∈Θs

LTTA(p) = min
θ∈Θs

η(p), (4)

where Θs are the adaptable source model parameters. Following Li et al. (2025b), this framework
addresses two primary scenarios: Query-Shift (QS), where a query distribution shift (P(XQ

E ) ≁
P(XQ

F )) requires adapting the query encoder; and more challenging Query-Gallery-Shift (QGS),
where the gallery distribution also shifts. QGS includes cases such as (a) Cross-dataset adaptation,
involving a DF → DE transfer under the shift P(DF ) ≁ P(DE); and (b) Zero-shot adaptation,
involving a direct transfer from pretraining to evaluation (P → E) with the shift P(DP ) ≁ P(DE).

4.2 HUBNESS SUPPRESSION MEMORY (HSM)

The Hubness Suppression Memory (HSM) is a dynamic module designed to counteract the amplified
hubness phenomenon at test time. Inspired by DSL (Cheng et al., 2021), HSM’s core mechanism
is an adaptive, bilateral normalization of similarity scores, which leverages a memory bank to track
recent query-gallery interaction patterns from the online data stream.

For the current batch of query embeddings ZQb
t at time step t, we first compute its similarity matrix

St = gθ(Z
Qb
t , ZG). The HSM leverages a memory bank, Mt−1, which stores the K − 1 most

recent similarity matrices {St−K+1, . . . , St−1}. Together with the current matrix St, these are used
to form an aggregated similarity matrix S̄ ∈ R(B·K)×NG :

S̄ = Concat(St, St−1, . . . , St−K+1). (5)

Based on this aggregated history, we compute two distinct weight matrices. First, a gallery-centric
weight matrix, Wgallery = softmaxcol(αS̄), captures the “popularity” of each gallery item across
recent queries. Second, a query-centric matrix, Wquery = softmaxrow(βS̄), captures the tendency of
each query to concentrate on a few items. α and β are temperature hyperparameters. The final hub-
suppressed similarity matrix Ŝ is then calculated as a weighted combination of these components:

Ŝ = m(S̄ ⊙Wgallery) + (1−m)(S̄ ⊙Wquery), (6)
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Figure 4: The pipeline of HAT-VTR. It operates via two parallel components: Hubness Suppression
Memory (HSM) refines similarity scores to counteract hubness, while the query encoder is continu-
ously updated using multi-granular losses to adapt to the target domain.

where ⊙ denotes the element-wise product, and m is a balancing parameter in [0, 1]. The refined
score for the current batch, Ŝt, is extracted from the first B rows of Ŝ. To maintain temporal
relevance, the memory M is managed as a first-in, first-out (FIFO) queue of size K. This queue
mechanism ensures the hubness statistics are always based on the most recent data, allowing for
rapid adaptation. HSM is integrated into the TTA pipeline at two stages. First, for Hubness-Aware
Target Selection, we use the refined scores Ŝt instead of raw, hub-biased similarities to select pseudo-
positives for building the Reliable Memory (RM) in our adaptation loss (Sec. 4.3), stabilizing the
learning process by preventing error accumulation. Second, for Posterior Similarity Reranking, we
apply HSM to the adapted similarity scores to produce the final output. The bilateral re-weighting
in Eq. 6 suppresses the spurious, low-consensus scores that hubs attract while preserving high-
consensus matches, directly improving retrieval accuracy.

4.3 MULTI-GRANULAR TCR LEARNING

Our adaptation framework extends TCR’s (Li et al., 2025b) learning principles by introducing multi-
granular supervision for the video domain. We formulate our objectives for the v2t task without loss
of generality; for the inverse t2v task, the uniformity loss simply omits its intra-video component.
The entire process is stabilized by a Reliable Memory (RM), a memory of reliable query-gallery
pairs selected by HSM, providing stable historical targets to prevent catastrophic forgetting.

Multi-Granular Uniformity Loss (LMGUNI ). To prevent representation collapse, we adapt TCR’s
uniformity principle for video structure. Our loss comprises two terms: an inter-video term scatter-
ing the global representation of each query in a batch (ZQb

i ) from the batch’s mean Z̄Qb ,

Linter =
1

B

B∑
i=1

exp(−∥ZQb

i − Z̄Qb∥2/t), (7)

and an intra-video term scattering a video’s frame-level features (ZQb

i,f ) from their per-video global
representation (i.e. mean pooling in TTA) ZQb

i to preserve temporal diversity:

Lintra =
1

B

B∑
i=1

 1

T

T∑
f=1

exp(−∥ZQb

i,f − ZQb

i ∥2/t)

 . (8)

The total loss, LMGUNI = Linter + Lintra, promotes multi-granular diversity.

Multi-Granular Cross-Modal Loss (LMGCM ). We evolve TCR’s modality gap alignment into a
multi-granular loss with two components. The global alignment loss aligns the modality gap of the
current batch (between query batch’s mean Z̄Qb and selected pseudo-positive galleries mean Z̄Gb )
with a stable target gap, ∥Z̄Q

RM − Z̄G
RM∥2, computed from mean features in RM:

Lglobal = (∥Z̄Qb − Z̄Gb∥2 − ∥Z̄Q
RM − Z̄G

RM∥2)2. (9)

Concurrently, the frame-level alignment loss aligns the cross-covariance of the batch’s frame-level
query features (ZQb

f ) and the corresponding gallery pseudo-positives (ZGb ) with a target from RM:

Lframe = MSE(Cov(ZQb

f , ZGb),Cov(ZQ
RM, ZG

RM)). (10)
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Table 1: Comparisons v2t results on the MSRVTT-1kA with severity degree 5, regarding the Re-
call@1 (%) metric. The best results are in bold, and ours are highlighted.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 8.7 5.2 26.7 14.9 10.1 26.2 24.6 5.2 22.5 4.8 22.2 32.8 17.0
• Tent 5.0 2.7 27.8 16.1 10.8 26.2 25.6 4.6 22.4 4.2 22.9 33.1 16.8
• READ 9.5 6.7 26.7 13.8 9.8 25.9 22.6 5.8 22.2 5.8 22.1 32.7 17.0
• SAR 7.2 3.1 27.9 16.5 11.7 26.4 25.8 5.2 22.8 4.3 22.7 33.0 17.2
• EATA 16.2 0.7 30.0 17.3 18.5 27.5 28.7 6.4 24.5 2.1 23.2 34.0 19.1
• TCR 17.3 11.6 32.9 21.9 20.1 28.4 28.7 9.0 25.2 6.7 22.7 32.0 21.4
• Ours 23.1 13.5 38.1 29.6 29.6 30.6 32.6 15.7 30.1 12.1 26.3 33.1 26.2

Xpool 10.3 7.1 27.8 17.2 17.0 28.8 25.4 6.2 30.2 6.6 30.3 33.6 20.0
• Tent 7.4 3.7 29.0 19.1 18.2 29.5 27.0 6.7 31.0 5.9 30.5 34.1 20.2
• READ 11.5 8.9 27.7 17.0 16.3 28.3 23.6 6.3 29.8 7.6 30.3 33.7 20.1
• SAR 10.0 3.9 28.7 19.3 18.2 29.5 27.5 7.7 30.9 6.3 30.8 34.0 20.6
• EATA 18.2 0.9 33.9 21.8 23.1 30.9 30.6 9.3 30.6 3.5 31.4 35.0 22.4
• TCR 17.5 16.7 33.6 22.4 21.5 31.0 30.0 9.8 31.4 9.2 30.8 34.1 24.0
• Ours 26.2 22.3 41.4 30.9 33.7 35.6 35.3 17.8 35.5 14.4 35.2 34.7 30.3

Table 2: Comparisons on v2t R@1 on the ActivityNet dataset with the highest severity degree.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 4.90 5.13 19.58 10.19 7.36 33.54 14.81 2.95 13.02 3.66 9.80 24.02 12.41
• Tent 4.60 0.92 10.78 4.98 9.48 33.58 18.73 0.63 4.17 0.79 9.88 24.16 10.23
• READ 2.70 4.07 15.62 8.72 4.88 31.71 7.42 1.65 14.83 3.88 9.86 23.77 10.76
• SAR 8.87 1.26 18.97 12.53 11.06 33.94 18.45 1.36 6.24 1.32 10.01 24.30 12.36
• EATA 3.88 0.28 13.28 13.89 8.87 31.95 21.58 1.10 3.95 1.48 8.20 24.32 11.07
• TCR 5.45 11.61 27.17 17.51 18.67 18.22 11.73 7.46 7.44 4.27 7.20 17.61 12.86
• Ours 18.26 18.81 32.54 23.90 27.58 36.47 26.87 12.75 20.42 8.42 17.94 23.45 22.28

Xpool 6.06 5.08 18.81 10.13 8.24 29.27 13.00 3.15 16.76 4.21 22.60 23.35 13.39
• Tent 7.77 1.14 16.37 6.28 9.27 29.45 14.97 1.08 6.45 2.07 22.86 23.23 11.75
• READ 3.62 4.03 18.61 7.67 6.22 28.86 8.07 2.20 16.88 4.37 22.01 23.10 12.14
• SAR 8.48 1.53 19.52 10.45 10.84 29.43 14.85 1.99 14.64 2.79 22.84 23.35 13.39
• EATA 7.75 0.39 10.09 3.68 10.72 28.66 16.70 0.43 6.10 1.50 22.55 22.98 10.96
• TCR 9.21 9.92 23.65 16.19 14.54 27.21 15.76 6.10 10.88 4.05 18.79 17.65 14.50
• Ours 14.60 14.64 28.41 20.64 23.04 31.99 22.35 10.66 19.02 7.61 27.80 23.39 20.35

The total loss, LMGCM = Lglobal +Lframe, ensures alignment at both coarse and fine-grained levels.

Noise-Robust Adaptation and Total Loss. Finally, we retain TCR’s core noise-robust entropy
minimization, which is a weighted entropy over the batch’s correspondence probabilities p:

LNA =
1∑

i I{S(pi)>0}

B∑
i=1

S(pi)η(pi), where S(pi) = max(1− η(pi)/Em, 0). (11)

The self-adaptive weight S(pi) filters out unreliable samples by assigning zero weight to any query
whose prediction entropy η(pi) exceeds a threshold Em derived from the Reliable Memory. Our
final adaptation objective is a sum of all components:

Ltotal = LMGUNI + LMGCM + LNA. (12)

Pipeline. Finally, the HAT-VTR pipeline is depicted in Fig. 4. For each incoming query batch, an
initial similarity matrix St is computed against gallery features. This matrix serves two parallel pur-
poses: for model adaptation, it is used to compute Ltotal (Eq. 12) which updates the query encoder;
for retrieval, it is concurrently refined by the HSM into a hub-alleviated matrix Ŝt for the final
ranking. This dual-path mechanism allows the framework to adapt representations while directly
mitigating hubness in the similarity space, leading to robust online test-time video-text retrieval.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS AND EXPERIMENT SETTINGS

Models, Datasets, and Baselines. Our experiments are based on two representative VTR models,
CLIP4Clip (Luo et al., 2022) and X-Pool (Gorti et al., 2022), covering coarse- and fine-grained
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Table 3: Comparisons on t2v Recall@1 (%) on the MSRVTT-1kA dataset under text perturbations.

Query
Shift

Character-Level Word-Level Sentence-Level
OCR CI CR CS CD SR WI WS WD IP Backtrans. Formal Casual Passive Active Avg.

CLIP4Clip 21.5 12.8 12.2 15.7 11.2 38.9 39.0 39.7 39.5 39.7 38.5 40.9 39.7 40.6 41.8 31.4
• Tent 21.5 12.6 11.9 15.9 11.1 38.6 39.0 39.9 39.7 39.5 38.3 41.4 40.1 41.0 41.6 31.5
• READ 21.5 12.9 12.4 15.8 11.0 38.8 39.1 39.7 39.2 39.5 38.6 41.0 39.9 40.4 41.6 31.4
• SAR 21.4 12.8 12.1 15.7 11.1 38.6 38.9 39.9 39.8 39.5 38.3 41.3 40.2 40.0 41.7 31.4
• EATA 21.6 12.5 12.2 15.1 10.5 38.6 39.3 39.7 40.2 39.8 38.4 41.2 39.6 40.2 41.5 31.4
• TCR 21.7 12.8 13.0 14.9 11.0 39.1 39.4 39.4 39.8 39.8 37.8 40.9 39.8 40.1 41.7 31.4
• Ours 24.5 13.8 14.1 16.7 12.8 40.7 41.6 41.2 42.9 42.9 39.8 43.6 42.3 42.4 43.7 33.5

Xpool 25.0 12.5 13.2 16.9 12.1 43.4 44.1 42.3 45.3 46.2 43.1 46.6 45.3 44.9 47.0 35.2
• Tent 25.5 12.4 13.1 17.0 12.3 43.2 43.8 42.2 45.2 46.2 42.9 46.7 44.9 44.6 46.7 35.1
• READ 25.1 12.4 13.3 17.0 12.0 43.1 43.9 42.2 45.7 46.3 43.1 46.6 45.5 45.1 47.2 35.2
• SAR 25.6 12.7 13.2 17.1 12.2 43.4 43.7 42.3 45.3 46.2 43.3 46.7 45.2 44.7 47.0 35.2
• EATA 25.2 12.4 13.2 17.1 12.2 42.8 44.1 42.1 45.3 45.4 42.1 45.7 44.9 45.0 46.2 34.9
• TCR 25.7 12.8 13.2 16.4 12.2 43.6 43.9 41.5 45.2 46.0 42.7 46.1 44.5 44.8 46.8 35.0
• Ours 26.9 14.8 14.4 18.5 14.7 44.8 43.8 44.4 46.6 47.3 42.6 48.7 46.1 46.1 48.1 36.5

alignment. We evaluate on five standard benchmarks, reporting results on MSRVTT-1kA (Xu et al.,
2016) (Video-Text Dataset) and ActivityNet (Fabian & Niebles, 2015) (Video-Paragraph Dataset) in
the main paper (see Appendix D for full results). We compare HAT-VTR against five TTA baselines:
TENT (Wang et al., 2021), READ (Yang et al., 2024), SAR (Niu et al., 2023), EATA (Niu et al.,
2022) and the most relevant method TCR (Li et al., 2025b).

TTA Scenarios and Implementation. We evaluate both video-to-text (v2t) and text-to-video (t2v)
tasks under two primary domain shift scenarios. The first is Query-Shift (QS), where only queries
are corrupted using the 12 video perturbations from our benchmark for v2t and 15 text perturba-
tions (Qiu et al., 2024) for t2v. The second, more challenging scenario is Query-Gallery-Shift
(QGS), which includes both cross-dataset and zero-shot adaptation settings. Our framework is built
upon the X-Pool codebase, and all baselines are adapted from their official repositories for fairness.
Following standard TTA practice (Li et al., 2025b; Wang et al., 2021), we use the AdamW opti-
mizer Loshchilov & Hutter (2017) to adapt only the Layer Normalization (LN) parameters of the
query encoder. All experiments run on a single NVIDIA RTX 4090 GPU. We report the standard
Recall@K (R@K) metric and use a batch size of 16 for all online inference. Key hyperparameters
(τ = 0.02, t = 10) follow TCR (Li et al., 2025b) to ensure a fair comparison.

5.2 COMPARISON RESULTS ON QUERY-SHIFT

Table 4: Comparisons on Cross-dataset Adaptation of QGS.
QGS Cross
Dataset

MSRVTT→ActivityNet ActivityNet→MSRVTT
v2t t2v v2t t2v

Metrics R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑
CLIP4Clip 32.64 60.28 28.70 57.58 35.50 60.20 35.00 57.50
• Tent 32.80 60.55 28.19 57.07 35.40 60.50 34.90 58.30
• READ 26.38 52.45 27.98 57.25 35.20 59.80 34.90 57.80
• SAR 32.89 60.57 28.51 57.01 35.20 60.60 34.80 58.10
• EATA 31.75 58.92 27.70 55.26 36.40 60.80 36.30 59.30
• TCR 19.28 40.37 26.30 52.49 35.20 60.00 35.00 58.40
• Ours 36.10 64.21 36.53 65.43 38.00 64.70 38.60 62.60

Xpool 29.79 57.76 30.61 57.92 35.80 62.80 38.10 61.80
• Tent 29.92 57.94 30.53 57.94 36.30 62.20 38.00 62.10
• READ 29.14 57.31 30.14 56.46 36.20 62.60 37.80 61.40
• SAR 29.98 57.8 30.69 57.96 36.30 62.70 38.00 62.00
• EATA 28.11 56.21 29.98 57.64 36.60 62.80 38.60 61.90
• TCR 29.45 56.17 29.81 57.25 37.60 62.90 38.50 62.20
• Ours 33.62 62.21 34.13 61.85 40.30 64.80 39.50 64.50

We first evaluate HAT-VTR under QS
scenarios, where only the queries are
corrupted at test time. This setup
mimics common real-world prob-
lems, such as using a noisy video or
a text query with typos to search a
clean database.

As shown in Tab. 1, 2, the perfor-
mance of baseline VTR models col-
lapses under our MLVP benchmark.
Most existing TTA methods, which
are not designed for video’s complex-
ities, struggle to adapt and offer lim-
ited benefits. While TCR shows mod-
est recovery, our HAT-VTR demon-
strates consistently superior robust-
ness. By directly targeting the ampli-
fied hubness, it substantially outper-
forms all competitors on both ActivityNet and MSRVTT-1kA datasets, setting a new strong baseline
for robust v2t retrieval.

For the reverse t2v task (Tab. 3), we observe a similar trend where HAT-VTR again achieves the best
average performance against text corruptions. Overall, these results validate our core strategy of
targeting the hubness phenomenon. However, We also note that our method’s advantage diminishes
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(a) Impact of 𝛼, 𝛽  in HSM (b) Impact of 𝑚 in HSM (c) t-SNE of Multi-granular Learning

Figure 5: Ablation studies on HSM’s hyperparameters and t-SNE visualization of HAT-VTR.

in specific cases (e.g., Temporal Scrambling for v2t or BackTrans for t2v) where, as analyzed in
Sec. F.1, the hubness problem itself is less severe. On the other hand, this highlights that our MLVP
benchmark is comprehensive and challenging enough to uncover these specific model failure modes.

5.3 COMPARISON RESULTS ON QUERY-GALLERY-SHIFT

Table 5: Results of Zero-shot Adaptation.
QGS
Zero-shot

MSRVTT ActivityNet
v2t t2v v2t t2v

Metrics R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑
CLIP 26.50 51.80 30.10 53.40 17.84 41.18 21.17 46.35
• Tent 26.80 52.20 30.30 53.20 16.78 39.19 21.72 46.92
• READ 25.70 49.30 29.80 53.40 9.27 24.36 15.44 36.47
• SAR 26.70 52.50 30.20 53.30 18.43 41.65 21.80 46.86
• EATA 27.20 53.50 30.70 53.10 16.80 36.77 18.32 42.57
• TCR 27.90 54.80 30.50 53.90 18.65 41.65 22.11 48.30
• Ours 35.40 61.40 35.20 58.10 28.92 53.91 29.18 57.23

We further evaluate HAT-VTR in the more challeng-
ing QGS scenarios, where a model fine-tuned on one
dataset is adapted to a completely different dataset at
test time. These include cross-dataset adaptation,
where a model fine-tuned on one dataset is trans-
ferred to another (Tab. 4), and the even more diffi-
cult zero-shot adaptation, where a pre-trained CLIP
model adapts directly to a retrieval task without any
fine-tuning (Tab. 5). In both scenarios, the large
query and gallery domain gaps pose a major chal-
lenge that most TTA methods fail to overcome, providing little to no improvement and sometimes
even hurting performance. In contrast, our method consistently adapts to the new domains effec-
tively, achieving clear and significant performance gains across all transfer settings and on both
retrieval tasks (v2t and t2v). This demonstrates that our hubness-mitigating approach is a powerful
and generalizable solution for handling severe domain shifts.

5.4 ABLATION STUDY

Table 6: Ablation study of the
HSM integration at Target Selec-
tion and Posterior Reranking.

Target Rerank v2t t2v Avg.
23.3 32.6 28.0

✓ 23.6 32.8 28.2
✓ 25.5 34.3 29.9

✓ ✓ 25.8 34.5 30.1

We conduct ablation studies to analyze the contribution of
HAT-VTR’s core components. We first analyze our proposed
HSM module. As shown in Tab. 6, we test how integrat-
ing HSM at two key stages—Target Selection and Posterior
Reranking—affects performance. Using HSM at either stage
alone improves results over the baseline, with reranking pro-
viding a larger boost. Applying HSM at both stages yields
the best performance, confirming that the two mechanisms
are complementary and effective. Furthermore, Fig. 5 (a)(b)
shows the performance across different HSM’s hyperparame-
ters on both the MSRVTT and ActivityNet datasets. The con-
sistent trends observed across both benchmarks validate the stability of our hyperparameter choices.
Based on this analysis, we set (α, β,m) to (100, 10, 0.5).

Next, we study the impact of each component in our multi-granular adaptation loss. Tab. 7 presents
the results of combining different loss terms. We observe that each component contributes positively
to the final performance. Specifically, both the multi-granular uniformity losses (Linter,Lintra) and the
cross-modal alignment losses (Lglobal,Lframe) are beneficial. The noise-robust entropy term (LNA)
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Table 8: Runtime comparison (ms per query) across methods. All measurements are on an RTX
4090 GPU with a batch size of 16.

Method CLIP4Clip Tent READ SAR EATA TCR HAT-VTR
Runtime(ms) 2.25 26.26 26.78 53.41 26.58 26.37 32.27

Table 9: Component-wise runtime breakdown (ms per query) of HAT-VTR.

Process forward backward rm hsm loss calculation total
Runtime(ms) 2.23 21.2 2.45 4.2 2.19 32.27
Percentage 6.9% 65.7% 7.6% 13.0% 6.8% 100%

also provides a clear improvement. The best results are achieved when all components are used
together, validating the design of our adaptation loss.

Visualization To understand the effective nature of multi-granular TCR learning, we visualize the
corrupted query embedding space using t-SNE in Fig. 5(c). Without adaptation, the query embed-
dings suffer from representation collapse and cluster tightly (dashed circle). TCR alleviates this by
enforcing uniformity to spread the embeddings, but some local clustering remains (dashed rectan-
gle). Our HAT-VTR achieves an even more uniform distribution by using fine-grained information.
Crucially, the center of its embeddings also shifts significantly closer to the gallery center, indicating
a better query-gallery alignment that explains its superior retrieval performance.

5.5 EFFICIENCY ANALYSIS

Table 7: Ablation Study of Adaptation Loss.

Linter Lintra Lglobal Lframe LNA v2t t2v Avg.
22.6 34.1 28.3

✓ 23.9 34.1 29.0
✓ ✓ 24.3 34.3 29.3

✓ 23.5 34.1 28.8
✓ ✓ 23.9 34.2 29.0

✓ 24.1 34.2 29.2
✓ ✓ ✓ 25.3 34.4 29.8

✓ ✓ ✓ 25.0 34.3 29.6
✓ ✓ ✓ ✓ ✓ 25.8 34.5 30.1

We analyze the computational overhead of HAT-
VTR to demonstrate its practical applicability. As
shown in Table 8, our HAT-VTR (32.27ms per
query) remains highly competitive with other TTA
methods like TCR (26.37ms) and EATA (26.58ms)
when run on an NVIDIA RTX 4090 (batch size 16).
This is a minimal and justifiable cost considering
the substantial robustness gains observed across all
query-shift and query-gallery-shift scenarios.

To pinpoint this overhead, Table 9 provides a
component-wise breakdown. The gradient compu-
tation for the backward pass, common to most TTA
methods, a standard component common to most TTA methods, is the primary time consumer
(65.7%). Critically, our core contribution, the Hubness Suppression Memory (HSM) module, ac-
counts for only 13.0% of the total runtime (4.2ms). This analysis confirms that HAT-VTR’s sig-
nificant robustness gains are achieved with a minimal and justifiable computational cost, primarily
through an efficient hubness suppression mechanism.

Additional implementation details are available in Appendix B, ablation studies in C, comparative
results under QS and QGS settings with more datasets in D, and limitations and future work in F.

6 CONCLUSION

In this work, we address the vulnerability of VTR models to real-world, spatio-temporal query shifts.
We introduce the MLVP benchmark to diagnose this failure and uncover an amplified hubness phe-
nomenon as the primary cause. To mitigate this, we propose HAT-VTR, a test-time adaptation frame-
work that directly counteracts hubness using a Hubness Suppression Memory and multi-granular
losses. Extensive experiments show HAT-VTR substantially improves robustness, consistently out-
performing prior methods across diverse test scenarios. Our work thus contributes both a principled
benchmark for systematic evaluation and a strong, hubness-aware solution, paving the way for VTR
systems that are significantly more robust and reliable in real-world applications.
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A LITERATURE REVIEW

A.1 VIDEO-TEXT RETRIEVAL

Video-Text Retrieval (VTR) is a fundamental cross-modal task that aims to match visual content
with natural language descriptions. It encompasses two reciprocal subtasks: video-to-text retrieval
(v2t), where a video query retrieves the best matching textual description and text-to-video retrieval
(t2v), where a text query is used to find the most relevant video from a large gallery. The dominant
paradigm for this task has evolved significantly. Early approaches often employed single-stream,
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unified models (Gabeur et al., 2020; Patrick et al., 2021; Bain et al., 2021) that fed concatenated
video and text features into a shared transformer for joint reasoning, but these were often computa-
tionally intensive. Propelled by the success of CLIP (Radford et al., 2021) and BLIP (Li et al., 2022),
the field has largely converged on dual-encoder architectures (Luo et al., 2022; Gorti et al., 2022;
Ma et al., 2022; Deng et al., 2023; Wang et al., 2023b; Shen et al., 2025; Bai et al., 2025b; Zhang
et al., 2025b). These models learn a shared embedding space by independently encoding the video
and text modalities and then aligning their representations using a contrastive learning objective.
This process, typically conducted via large-scale pre-training on web data followed by downstream
fine-tuning, is highly efficient for retrieval as gallery embeddings can be pre-computed. However,
the success of these models hinges on a critical assumption: that test data is clean and shares the
same distribution as the training data, overlooking their vulnerability to real-world domain shifts.

Alignment Strategies in VTR. To compute similarity within the shared embedding space, VTR
models employ alignment strategies at different granularities. Coarse-grained alignments (Luo
et al., 2022; Xue et al., 2022b; Deng et al., 2023) are more efficient approachs, where frame-level
features are pooled into a single global vector to represent the entire video. This global video
representation is then matched against the global text representation. While highly efficient for
large-scale retrieval, these methods can miss nuanced temporal details. Conversely, fine-grained
alignments (Gorti et al., 2022; Ma et al., 2022; Wang et al., 2023b; Liu et al., 2022; Li et al., 2023;
Zhao et al., 2022; Zhang et al., 2025a) seek to capture more detailed interactions by comparing lo-
cal features, such as frame-word or clip-word pairs, often using cross-attention mechanisms before
aggregating the local similarity scores. Although these strategies offer a more detailed compari-
son, they define the mechanics of similarity computation under the ideal condition that the features
themselves are robust and the training pairs are correctly matched.

Noisy Correspondence in VTR. A distinct line of research focuses on enhancing model robustness
against noisy correspondences (NC) within the training set (Huang et al., 2024; Liu et al., 2024; Ma
et al., 2024a; Lai et al., 2025; Dang et al., 2025). The web-crawled datasets (Miech et al., 2019;
Xue et al., 2022a; Bain et al., 2021) used for pre-training often contain mismatched video-text pairs
(i.e., label noise). NC methods aim to mitigate the impact of this noise during the training phase, for
instance, by identifying and down-weighting corrupted samples or by using robust loss functions,
thereby improving generalization to a clean test set. This focus is orthogonal to our work. While
NC methods address label noise during training, we tackle the challenge of adapting a pre-trained
model to handle input corruptions at test time, a scenario where the model is already trained on clean
data but deployed in a shifted domain.

Hubness in VTR. A key challenge inherent to high-dimensional nearest neighbor search is the hub-
ness phenomenon (Radovanovic et al., 2010; Jian & Wang, 2023), where a few gallery items—the
“hubs”—become the nearest neighbors for a disproportionately large number of queries, thereby
harming retrieval accuracy. Existing solutions aim to mitigate this intrinsic bias through two pri-
mary approaches. The first is training-time regularization, which modifies the contrastive loss func-
tion to encourage a more uniform or isotropic embedding space, thus preventing hubs from form-
ing (Liu et al., 2020; Liu & Ye, 2019; Lin et al., 2025; Cheng et al., 2021). The second approach
involves inference-time post-processing, which adjusts similarity scores after retrieval. Methods like
CLIP-ViP with DSL (Xue et al., 2022b) and query-bank normalization (Bogolin et al., 2022; Wang
et al., 2023a; Xue et al., 2022b) re-rank results by analyzing neighborhood statistics to demote over-
popular items. While effective in standard settings, these methods were not designed to handle the
drastic distributional changes caused by test-time corruptions.

A critical limitation of all prior work—spanning alignment strategies, noisy correspondence, and
hubness mitigation—is its focus on the standard i.i.d. setting. These approaches assume that test
data shares the same clean distribution as the training data. While Test-Time Adaptation (TTA)
has emerged as a promising solution for domain shifts, its application in cross-modal retrieval (Li
et al., 2025b) has so far been limited to static images and has not addressed the hubness problem.
In contrast, we are the first to reveal that real-world video corruptions dramatically exacerbate the
hubness phenomenon and propose a TTA framework specifically designed to counteract this critical
failure mode in VTR.
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A.2 TEST-TIME ADAPTATION

Test-Time Adaptation (TTA) aims to adapt a pre-trained source model to a target domain using
only unlabeled test data, enhancing robustness against distribution shifts encountered during infer-
ence. The dominant paradigm, named online or fully test-time adaptation, operates on a stream of
test data without access to the source training set. A pioneering work in this area, TENT (Wang
et al., 2021), introduced entropy minimization as a self-supervised objective, updating batch nor-
malization parameters to increase the model’s prediction confidence on target data. Building on
this principle, subsequent research has focused on improving the stability and efficiency of adap-
tation. For instance, some methods employ active sample selection to update the model only on
reliable, low-entropy samples, thereby preventing error accumulation and reducing computational
overhead (Niu et al., 2022). Others address the inherent instability of TTA in challenging real-world
scenarios—such as mixed domains or small batch sizes—by proposing techniques like sharpness-
aware minimization to find flatter minima that are more robust to noisy updates (Niu et al., 2023).
The limitations of entropy as a sole confidence metric have also been explored, leading to novel self-
supervision signals, such as using object-destructive transformations to better disentangle features
and guide adaptation (Lee et al., 2024).

While most TTA research has focused on unimodal classification, recent efforts have started to
extend these ideas to multi-modal and retrieval tasks. READ (Yang et al., 2024) was the first to tackle
TTA for multi-modal scenarios, identifying a unique reliability bias across modalities and proposing
an adaptive fusion mechanism to counteract it. More directly related to our work, TCR (Li et al.,
2025b) pioneered TTA for cross-modal retrieval by addressing the query shift problem. It enforces
representation uniformity during inference to stabilize the shared embedding space. However, these
foundational works primarily address static image-text retrieval and focus on specific issues like
modality alignment or query distribution, without investigating the distinct failure modes, such as
exacerbated hubness, that emerge in the video domain under spatio-temporal corruptions.

Relation to Other Adaptation Paradigms. It is crucial to distinguish our online TTA setting
from other adaptation paradigms. Unsupervised Domain Adaptation (UDA) (Liu et al., 2021; Li
et al., 2024a; Chen et al., 2021; Hao & Zhang, 2023), for example, also aims to adapt models to
an unlabeled target domain but typically assumes offline access to the entire target dataset, allow-
ing for global distribution alignment. This setting is less practical for real-time applications where
data arrives as a stream. Another line of research involves non-standard TTA settings that relax
the strict online assumption. For instance, Test-Time Training (TTT) (Sun et al., 2020; Gandels-
man et al., 2022) and its variants require modifying the pre-training phase to include an auxiliary
self-supervised task, which is then leveraged for adaptation at test time. Other approaches rely on
external memory banks or retrieval mechanisms (Zancato et al., 2023; Ma et al., 2024b) to source
relevant samples for adaptation. In contrast, our work operates under the challenging yet practical
online TTA setting, where the model must adapt on-the-fly without any modifications to the origi-
nal training pipeline or reliance on external data sources, a scenario that closely mirrors real-world
deployment.

A.3 VISION CORRUPTION BENCHMARKS

The systematic evaluation of model robustness is built upon a strong foundation of corruption bench-
marks, though this field has historically been dominated by image-level analysis. The seminal
work on ImageNet-C (Hendrycks & Dietterich, 2019) established a standard for evaluating image
classifier resilience by introducing a comprehensive suite of 15 algorithmically generated corrup-
tions (e.g., noise, blur, weather) at varying severity levels. This principled approach was subse-
quently extended to other vision tasks like object detection with benchmarks such as COCO-C and
Cityscapes-C (Michaelis et al., 2019), and was further adapted to probe the texture versus shape bias
of CNNs (Geirhos et al., 2018). Later, with the rise of Large Multimodal Models (LMMs) (OpenAI,
2023), benchmarks like R-Bench (Li et al., 2025a), MMCBench (Zhang et al., 2024), and the multi-
modal robustness benchmark by Qiu et al. (2024) have emerged to assess their resilience. A unifying
characteristic of these influential works is their focus on static images. Perturbations are typically
applied on a frame-by-frame basis, neglecting the temporal dimension and inter-frame dependencies
that are fundamental to video.
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Recently, research has begun to address this gap by extending robustness analysis to the video do-
main. One line of work introduced TemRobBench to specifically evaluate LMMs against temporal
inconsistencies, revealing that models often disregard motion dynamics (Liang et al., 2025).

The work most related to ours introduced MSRVTT-P and YouCook2-P, the first large-scale bench-
marks for evaluating VTR robustness against both visual and textual perturbations (Schiappa et al.,
2022). However, our work differs in several crucial aspects.

• First, their visual perturbations are largely extensions of image-based corruptions applied
frame-wise, leading to the inclusion of artifacts like JPEG compression that do not holis-
tically capture the dynamic nature of video degradation. In contrast, our benchmark is
designed to model perturbations that affect inter-frame relationships, such as object motion
and semantic consistency.

• Second, their primary goal is to evaluate the intrinsic robustness of various VTR models,
whereas our benchmark is specifically designed to facilitate the study and comparison of
test-time adaptation methods under these challenging conditions.

In addition, the official code and data for this earlier work are no longer accessible, precluding direct
comparison and further research on its foundation. Therefore, to create a reproducible and more
ecologically valid standard, we extend the principles established by image-centric benchmarks (Qiu
et al., 2024) to the video domain, proposing a new suite of 12 perturbations that explicitly account
for spatio-temporal complexities.

B MORE IMPLEMENTATION DETAILS

B.1 MORE DETAILS ON DATASETS

We conduct our experiments on five standard video-text retrieval benchmarks: MSRVTT, Activi-
tyNet, LSMDC, MSVD and DiDeMo. Due to space constraints in the main paper, we only report
the results for the first two datasets. Below we provide further details on all five datasets and our
specific experimental setup.

MSRVTT The MSR-VTT (Microsoft Research Video-to-Text) dataset (Xu et al., 2016) is a large-
scale benchmark for video-text retrieval, consisting of 10,000 YouTube clips and a total of 200,000
natural language captions. Each clip, approximately 10–32 seconds in duration, covers a wide range
of real-world scenarios. For our experiments, we adhere to the most widely adopted evaluation
protocol and use the MSRVTT-1kA test split, which contains 1,000 video-text pairs for testing (Yu
et al., 2018).

ActivityNet The ActivityNet dataset Fabian & Niebles (2015) is a large-scale benchmark designed
for high-level video understanding, containing around 20,000 YouTube videos. It is particularly
used for the task of video-paragraph retrieval. Following standard practices Gabeur et al. (2020);
Luo et al. (2022), all individual sentence descriptions for a given video are concatenated into a single
paragraph. This setup allows for evaluation at the video-paragraph level. We report our results on
the official ‘val1’ split which contains 4,917 video-paragraph pairs.

LSMDC The LSMDC (Large Scale Movie Description Challenge) dataset (Rohrbach et al., 2017)
is a benchmark composed of 118,081 video clips extracted from 202 different movies. Each clip
ranges from 2 to 30 seconds. The cinematic and narrative complexity of the content makes it a
challenging dataset for video-language research. For evaluation, we align with the data processing
of prior works (Gorti et al., 2022) and report results on the official test set of 999 video clips.

MSVD The MSVD (Microsoft Research Video Description) dataset Chen & Dolan (2011) is a
widely-used benchmark containing 1,970 short video clips sourced from YouTube, covering a broad
set of open-domain, everyday activities. While the dataset provides rich annotations of approxi-
mately 40 English sentences per video, we form the video-text evaluation pairs by selecting the first
official caption for each video. Our evaluation is conducted on the standard test partition, which
consists of 670 such pairs.

DiDeMo The DiDeMo dataset (Hendricks et al., 2018) contains 10K long-form videos from Flickr.
For each video, approximately 4 short sentences are annotated in temporal order. We follow existing
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works to concatenate these short sentences and evaluate ’paragraph-to-video’ retrieval on this bench-
mark. Our evaluation is conducted on the official test split, which consists of 1,004 video-paragraph
pairs (concatenated from 4,021 short captions).

B.2 MORE DETAILS ON TEST-TIME DOMAIN SHIFT SCENARIOS

In our work, we evaluate model robustness under two primary test-time query domain shift scenarios,
which are designed to simulate common real-world challenges.

Query-Shift (QS) This is the most fundamental and common scenario, where only the query dis-
tribution deviates from the training domain. This setup is designed to measure a VTR model’s
robustness against the diverse and often imperfect inputs from online users.

• In the video-to-text (v2t) task, query shifts can arise from user-provided videos that vary
widely in quality or are affected by real-world perturbations such as adverse weather or
compression artifacts. We simulate this using the 12 video perturbations from our MLVP
benchmark.

• In the text-to-video (t2v) task, shifts can originate from user search queries containing gram-
matical errors, typos, or different stylistic expressions (e.g., formal vs. casual tone, active
vs. passive voice). Following TCR (Li et al., 2025b), we simulate this using 15 standard
text perturbations from Qiu et al. (2024).

Query-Gallery-Shift (QGS) This is a more challenging scenario where the distributions of both the
query and the gallery data shift simultaneously. This setup models situations where a pre-existing
system is deployed to an entirely new environment. We investigate two distinct and practical settings
under QGS:

• Cross-Dataset Adaptation. This setting simulates the deployment of a model that was fine-
tuned on a specific dataset (e.g., Dataset A) to a new application domain that is related but
different. To emulate this, we evaluate the model’s ability to transfer from one benchmark
dataset to another at test time.

• Zero-Shot Adaptation. This represents an even more difficult scenario where a model must
be deployed without any task-specific fine-tuning. It corresponds to a real-world case where
only a general pre-trained model (e.g., CLIP) is available to serve a new collection of data
where user query patterns are unknown. We simulate this by directly adapting the pre-
trained model on a new downstream retrieval task without it having been fine-tuned on any
related data.

B.3 MORE EXPERIMENT DETAILS

Our framework is implemented on top of the official codebase of X-Pool 1. The implementations
of TTA baselines are adapted from the official repositories of TCR and EATA for fair comparison.
During inference, all methods process queries online with a fixed batchsize of 16. Retrieval results
are computed and recorded immediately after each batch in a single evaluation pass. For the learning
rate, we set it to 3 × 10−5 for TENT, READ, and SAR in all scenarios. For EATA and TCR, we
use a learning rate of 3 × 10−4. For our HAT-VTR, the learning rate is set to 3 × 10−4 for the v2t
task. For the t2v task, we use a slightly lower learning rate of 3× 10−5 due to the adjustment of the
LMGUNI objective. For the hyperparameters in our HSM module, we set the temperature values
(α, β) to (100, 10) and the balancing term m to 0.5.

Ablation and Visualization Settings. Without loss of generality, all ablation studies and visualiza-
tions presented in the main paper were conducted on the MSRVTT-1kA dataset under the Query-
Shift (QS) scenario, using CLIP4Clip as the base model . To ensure a comprehensive yet efficient
evaluation, we selected a representative subset of perturbations. For video perturbations (v2t), we
report the average results across six types: Gaussian, H.264 Compression, Motion Blur, Main Object
Occlusion, Style Transfer, and Event Insertion. Similarly, for text perturbations (t2v), we selected six
types: OCR, CD, SR, WI, Formal, and Active. This selection was designed to cover perturbations
from different hierarchical levels while accelerating the experimental process.

1https://github.com/layer6ai-labs/xpool
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B.4 DETAILS ON TEXT PERTURBATIONS

For the text-to-video (t2v) query-shift experiments, we adopted the comprehensive suite of 15 text
perturbations proposed by Qiu et al. (2024). (See Tab. 10) These perturbations are categorized into
three hierarchical levels: character-level, word-level, and sentence-level. The original benchmark
defines severity degrees from 1 to 7 for character- and word-level perturbations, while sentence-
level perturbations have a single degree. In our experiments, we used a fixed severity degree for
each level to ensure consistency: severity 7 for character-level, severity 2 for word-level, and the
default degree 1 for sentence-level perturbations.

These methods, detailed in Qiu et al. (2024), simulate a wide range of common errors and stylistic
variations in user-generated text queries. For instance, the sentence-level perturbation ‘Back Trans-
lation’ (Backtrans.) involves translating a sentence into another language (e.g., German) and then
translating it back to the original language (English) via Ng et al. (2019), a process which often
introduces grammatical or stylistic variations while preserving the core meaning.

Table 10: Overview of the 15 text perturbation methods from Qiu et al. (2024), illustrated with an
example from the MSRVTT-1kA dataset where perturbed segments are highlighted.

Perturbation Method Abbr. Example

Original

Clean Text – a person is connecting something to system

Character Level

Optical Character Recognition OCR a person is connecting something t0 system
Character Insertion CI a Qperso(n is connecting something to syˆsteum
Character Replacement CR a peGsen is connecting something to qysoem
Character Swap CS a person is ocnnectngi soemthngi to system
Character Deletion CD a person is connec[t]i[n]g something to [s]yste[m]

Word Level

Synonym Replacement SR a somebody is connecting something to system
Word Insertion WI a person is group a connecting something to system
Word Swap WS a person is connecting to something system
Word Deletion WD a person is connecting [something] to system
Insert Punctuation IP ! a person is connecting something to system

Sentence Level

Back Translation Bracktrans. a person connects something to the system;
Formal Style Formal A person is connecting something to a system.
Casual Style Casual a person is connecting something to system
Passive Voice Passive something is connected by a person to system
Active Voice Active a person connects something to system

C MORE ABLATION STUDY RESULTS

In this part, we provide a more detailed analysis of our model’s hyperparameters and offer additional
qualitative results to further validate the effectiveness and efficiency of our proposed HAT-VTR
framework.

C.1 MORE HYPERPARAMETERS ANALYSIS

We conduct a thorough hyperparameter sensitivity analysis in Fig. 6 to determine the optimal set-
tings for our method. Our investigation into the temperature parameter t from Eq. 7 8 reveals that

22



Published as a conference paper at ICLR 2026

(a) Hyperparameter 𝑡 (b) Ablation on 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 (c) Ablation on 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒

Figure 6: Ablation study on parameter t from Eq. 7 8; batchsize and LearningRate of our method.

performance peaks at t = 10, which we adopt for our experiments. The model demonstrates re-
markable stability across various batch sizes B. To ensure a fair comparison, we fix the batch size
to 16 for all TTA methods. Consequently, we set the learning rate to 3× 10−4 for v2t and 3× 10−5

for t2v, as these values yield the best performance for each respective direction.

Fig. 7 illustrates the impact of other key hyperparameters,showing results across both MSRVTT
and ActivityNet to demonstrate stability.Fig. 7 (a) analyzes τ Eq. 3), with optimal performance
observed around r = 0.02, which we use in our experiments. Fig. 7(b) and (c) study the memory
bank sizes for the Hubness Suppression Memory (HSM) and the Reliable Memory (RM). For the
HSM size K , performance is highly stable across the tested range of 50 to 300 on both datasets.
This contrasts with the previous figure and confirms that the model is not sensitive to this choice.
Considering the computational overhead, we set K = 100, which provides an excellent balance
between performance and efficiency. For the RM , performance also remain stable across the tested
range from 8 to 32, demonstrating robustness to this hyperparameter. We select a size of 16 for all
experiments. These results highlight that our model achieves stable performance with reasonable
parameter settings while being practical for deployment.

(b) Impact on Size of HSM 𝐾 (c) Impact on Size of Reliable Memory (a) Analysis of 𝜏 in Eq.3

Figure 7: Ablation study of τ , the memory bank size from HSM and Reliable Memory.
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Figure 8: Loss Convergence of HAT-VTR under Different Perturbations.
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Loss Convergence We validate our adaptation stability in Figure 8, which plots the total adapta-
tion loss convergence in MSRVTT dataset. The loss is shown over test-time iterations under three
diverse perturbations: (a) Gaussian, (b) Style Transfer, and (c) OCR. In all scenarios, the loss rapidly
converges to a stable value, demonstrating the robustness and efficiency of our test-time adaptation
framework.

Table 11: Stability analysis of HAT-VTR across various random seeds.

MSRVTT ActivityNet
seed v2t t2v v2t t2v
42 25.8 34.5 21.4 32.3
0 25.8 34.6 21.2 32.5
100 25.9 34.7 21.3 32.3
200 25.5 34.4 21.4 32.4
512 25.6 34.4 21.4 32.3

Seed Analysis To verify that our method’s performance is stable and not sensitive to random
initialization, we conduct experiments using five different random seeds (0, 42, 100, 200, and 512).
Our main experiments follow the default seed 42 from the X-Pool codebase, which ensures our
results are fully reproducible. We report the average R@1 on the same ablation subsets of MSRVTT
and ActivityNet used in the main paper. As shown in Table 11, the performance metrics for both
v2t and t2v tasks across both datasets show negligible variance. For example, the MSRVTT v2t
score only varies between 25.5% and 25.9%, and the ActivityNet t2v score ranges from 32.3% to
32.5%. This high consistency strongly demonstrates the stability and reliability of our HAT-VTR
framework.

Table 12: Sensitivity analysis for HSM’s α and β hyperparameters across MSRVTT and ActivityNet.

MSRVTT ActivityNet
α, β v2t t2v v2t t2v

10, 10 24.7 32.1 20.2 31.7
10, 100 24.7 32.0 20.5 31.9
10, 500 24.8 34.2 20.6 31.9
100,10 25.8 34.5 21.4 32.3

100, 100 25.5 34.4 21.4 32.4
100, 500 25.6 33.7 21.3 32.1
500,10 24.3 33.0 20.8 31.8

500, 100 24.3 33.0 20.9 31.5
500,500 24.4 32.9 20.1 31.5

Sensitivity Analysis of α, β Table 12 provides the detailed ablation data for the HSM hyperpa-
rameters α and β, supplementing the visualization in Fig. 5(a). The analysis is conducted on both
MSRVTT and ActivityNet. The results show that our chosen setting, (α, β) = (100, 10), consis-
tently yields the best performance for both v2t and t2v tasks across both datasets. This comprehen-
sive validation confirms the stability and robustness of this hyperparameter choice.

C.2 VISUALIZATION OF HUBNESS PHENOMENON AND EFFECTIVENESS OF HSM

To provide a qualitative understanding of our method’s ability to mitigate hubness, we visualize the
video-text similarity matrices on the MSRVTT-1kA dataset in Fig. 9. The visualization clearly shows
that under Gaussian noise, the original similarity matrix (b) suffers from significant off-diagonal
noise, where incorrect pairs exhibit high similarity scores—a direct manifestation of the hubness
problem. While the baseline TTA method, TCR, partially reduces this noise (c), our HAT-VTR
method (d) achieves a substantially more effective suppression of these spurious similarities. This
significant improvement is primarily driven by our novel Hubness Suppression Memory (HSM),
which greatly suppresses the hubness phenomenon by directly targeting and refining the similarity
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scores. The resulting matrix features a much cleaner diagonal pattern, indicating that our approach
successfully reinforces the ground-truth video-text correspondences while effectively reducing the
hubness effect that plagues baseline models.

(a) Original Similarities (b) Original + Gaussian

(c) TCR + Gaussian (d) HAT-VTR (Ours) + Gaussian
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Figure 9: Visualization of similarity matrices for video-text retrieval on MSRVTT-1kA dataset. We
show the first 250 v2t samples across four methods: (a) Original similarities, (b) Original + Gaussian
noise, (c) TCR + Gaussian noise, and (d) Our HAT-VTR method. The diagonal represents ground
truth video-text correspondences. Our HAT-VTR method demonstrates significantly reduced hub-
ness effect with cleaner diagonal patterns and suppressed off-diagonal noise compared to baseline
methods.

Fig. 10 further validates the superiority of our framework by analyzing the accuracy of the Reliable
Memory (RM) during the dynamic test-time adaptation process. Across three distinct and chal-
lenging perturbation scenarios—Gaussian Noise, Motion Blur, and Style Transfer—our HAT-VTR
consistently maintains a higher RM accuracy compared to the TCR baseline. This demonstrates that
our Hubness-Aware Target Selection mechanism is more effective at identifying and storing truly
reliable query-gallery pairs, even under severe distribution shifts. This robust memory update pro-
cess is crucial for preventing catastrophic forgetting and ensuring stable adaptation, which in turn
leads to superior retrieval performance.

C.3 FURTHER ANALYSIS OF HUBNESS EFFECT ON QUERY SHIFT

To quantitatively assess hubness, we utilize distribution-based metrics (skew-
ness(skew) (Radovanovic et al., 2010), truncated skewness(trunc) (Tomašev, 2014), Atkinson
index(akinson) (Fischer & Lundtofte, 2020), Robin Hood index(robin) (Feldbauer et al.,
2018)) and occurrence-based metrics (antihub(anti) (Radovanović et al., 2014) and hub occur-
rence(hub) (Radovanovic et al., 2010)), following prior work (Lin et al., 2025)

Table 13 presents a detailed comparison of these metrics. The results confirm our hypothesis: query
shifts (e.g., Gaussian noise) dramatically exacerbate the hubness phenomenon, leading to high skew-
ness and hub occurrence in the baseline model. While TCR offers partial mitigation, our HAT-VTR
framework consistently and significantly reduces hubness across all tested video and text perturba-
tions, restoring a much more balanced retrieval distribution.
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Figure 10: Reliable Memory (RM) accuracy during dynamic updates across different perturbation
scenarios on MSRVTT-1kA. The x-axis represents the number of RM update steps during test-time,
and the y-axis shows the RM accuracy between video-text pairs. Our HAT-VTR consistently out-
performs TCR across all perturbation scenarios, demonstrating superior robustness in maintaining
reliable memory accuracy during dynamic updates.

Table 13: Comparaison of Hubeness Metrics on Different Perturbations.
gaussian motion blur temporal scrambling ocr backtrans

Metrics CLIP4Clip4 TCR Ours CLIP4Clip4 TCR Ours CLIP4Clip4 TCR Ours CLIP4Clip4 TCR Ours CLIP4Clip4 TCR Ours
skew ↓ 9.09 5.07 0.97 16.27 5.25 0.86 2.19 1.8 1.15 1.95 1.84 0.39 1.36 1.19 1.12
trunc ↓ 5.05 2.12 0.63 2.22 1.55 0.6 1.11 1.18 0.53 1.19 1.04 0.34 0.72 0.8 0.5
atkinson ↓ 0.6 0.27 0.05 0.23 0.15 0.05 0.08 0.1 0.06 0.12 0.11 0.05 0.08 0.07 0.06
robin ↓ 0.64 0.41 0.18 0.38 0.31 0.18 0.38 0.31 0.18 0.27 0.26 0.18 0.22 0.21 0.19
anti ↓ 0.19 0.04 0 0.02 0 0 0.02 0.004 0 0 0 0 0 0 0
hub ↓ 10.25 6.58 0.94 6.11 4.54 1.07 2.78 3.32 1.24 3.74 3.16 0.59 2.63 1.88 1.15

This superior hubness suppression translates directly to performance gains. As shown in Table 14,
our TTA-based optimization outperforms prior training-based hubness suppression methods like
NeighborRetr (Lin et al., 2025) and QBNorm (Bogolin et al., 2022) on both CLIP4Clip and Xpool.
This demonstrates that an adaptive, test-time solution like HAT-VTR is essential for achieving robust
retrieval under query shifts.

C.4 MORE COMPUTATIONAL EFFICIENCY ANALYSIS
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Figure 11: GPU Memory Usage during Test-time Adaptation on MSRVTT-1kA. (a) Peak memory
usage comparison between HAT-VTR and TCR. (b) Memory footprint of the HSM and Reliable
Memory (RM) components in HAT-VTR, demonstrating their low and stable consumption.

The memory overhead of HAT-VTR primarily stems from the HSM module, which maintains a
queue of recent similarity matrices. As shown in Fig. 11(a), the peak memory usage of HAT-VTR
is only negligibly higher (approx. 17MB) than the TCR baseline. Fig. 11(b) further details the
memory consumption of our new components, showing the HSM and Reliable Memory (RM) are
highly efficient, consuming less than 0.4MB and 0.1MB, respectively. The memory usage scales
linearly with the queue size rather than the total dataset size, ensuring that our method remains
practical for large-scale retrieval scenarios.
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Table 14: Video Perturbations with Different Hubness-suppression Methods.
v2t type gaussian h264 compression motion blur main object occlusion style transfer event insertion Avg.
CLIP4Clip ori - 8.7 26.2 24.6 22.5 4.8 22.2 18.2
NeighborRetr Training-based 18.5 28.1 26.4 29.9 10.9 26.5 23.4
HSM+QBNorm Training-free 22.5 28.6 31.2 29.3 11.8 25.6 24.8
CLIP4Clip+ours TTA-Optimization 23.1 30.6 32.6 30.1 12.1 26.3 25.8
Xpool+ours TTA-Optimization 26.2 35.6 35.3 35.5 14.4 35.2 30.4
t2v type ocr char delete synonym replace word insert formal active Avg.
CLIP4Clip ori - 21.5 11.2 38.9 39.0 40.9 41.8 32.2
NeighborRetr Training-based 23.8 12.8 40.2 40.8 45.4 46.2 34.9
HSM+QBNorm Training-free 23.6 12.1 40.4 39.8 42.7 42.8 33.6
CLIP4Clip+ours TTA-Optimization 24.5 12.8 40.7 41.6 43.6 43.7 34.5
Xpool+ours TTA-Optimization 26.9 14.7 44.8 43.8 48.7 48.1 37.8

Table 15: Wall-clock time (in seconds) for different TTA methods to process the entire MSRVTT-
1kA test set on NVIDIA RTX 4090 and RTX A6000 GPUs.

RTX4090 RTX A6000
v2t t2v v2t t2v

Tent 36.27s 14.27s 62.05s 24.11s
READ 36.73s 14.85s 62.72s 24.51s
SAR 63.09s 16.54s 113.27s 28.61s
EATA 36.58s 14.58s 62.6s 24.44s
TCR 36.38s 14.52s 62.34s 24.36s
ours 37.06s 14.77s 65.41s 24.76s

We further report the total wall-clock time to process the entire MSRVTT-1kA test set in Table 15.
The experiments are conducted on both NVIDIA RTX 4090 and RTX A6000 GPUs. Our method
(HAT-VTR) demonstrates comparable efficiency to other TTA baselines like TCR and EATA. For
instance, on the RTX 4090, our method incurs only a minor computational overhead (37.06s vs.
36.38s for TCR in the v2t task), confirming that the substantial robustness gains come at a very low
cost in terms of inference speed.

These analyses confirm that HAT-VTR achieves substantial performance improvements with min-
imal computational and memory overhead, making it a practical solution for real-world video-text
retrieval applications.

D MORE COMPARISON RESULTS

D.1 GENERALIZABILITY ACROSS FOUNDATION MODELS

To validate the generalizability of our framework, we apply TTA to four different foundation mod-
els, with results shown in Tab. 16. We conduct experiments on MSRVTT-1Ka (v2t) using CLIP-
ViT-B/32, the stronger CLIP-ViT-B/16, the vision-language model BLIP-ViT-B/16, and the recent
universal embedding model, LanguageBind Zhu et al. (2024). The results clearly demonstrate that
HAT-VTR consistently and substantially outperforms all baselines across all architectures. Notably,
our method improves the average R@1 score over the strongest baseline (TCR) from 14.4% to
21.3% on CLIP-ViT-B/32, from 16.5% to 23.6% on BLIP-ViT-B/16, and from 22.6% to 27.7%
on LanguageBind. This confirms that amplified hubness is a common failure mode and that our
hubness-aware adaptation is a generalizable solution for enhancing the robustness of diverse VTR
models.

D.2 MIXED VIDEO PERTURBATIONS IN MLVP

While our MLVP benchmark systematically evaluates robustness under controlled single-type per-
turbations with fixed severity degrees, real-world scenarios present a more complex challenge where
multiple perturbations of varying severities occur simultaneously. To assess the practical robustness
of HAT-VTR under such realistic conditions, we conduct additional experiments with mixed video
perturbations that better reflect the complexity of real-world deployment scenarios.

Tab. 17 presents the results under mixed severity degrees, where videos within the same batch are
corrupted with the same perturbation type but with different severity levels ranging from 1 to 5. This
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Table 16: Comparisons on v2t R@1 on the MSRVTT Dataset with Different Foundation Models.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP-ViT-B/32 7.1 4.9 16.1 10.6 7.9 14.2 11.8 3.6 8.7 4.3 16.7 22.8 10.7
• Tent 5.5 4.3 15.3 9.3 7.4 14.4 14.5 3.6 8.5 3.2 17.4 22.8 10.5
• READ 7.4 5.0 17.0 11.1 7.8 14.7 9.9 3.4 8.7 4.4 15.5 22.1 10.6
• SAR 6.4 4.7 16.0 9.9 8.3 14.6 14.2 3.9 8.8 3.6 17.4 22.9 10.9
• EATA 4.1 2.6 17.1 3.2 1.0 15.1 15.6 2.7 10.1 1.8 18.5 23.1 9.6
• TCR 12.0 9.3 21.8 13.3 14.2 17.1 17.5 6.6 12.5 6.3 18.7 23.8 14.4
• Ours 18.4 15.9 29.7 22.7 24.2 25.0 26.1 13.1 22.6 7.6 23.4 27.4 21.3

CLIP-ViT-B/16 5.5 6.8 19.9 15.4 3.7 15.6 14.0 4.0 12.5 3.2 17.8 25.8 12.0
• Tent 3.1 4.9 19.9 15.3 2.9 14.3 15.2 3.2 11.4 2.7 18.1 26.0 11.4
• READ 6.2 7.3 19.8 15.7 4.2 15.5 12.9 4.0 12.2 4.0 15.9 24.6 11.9
• SAR 4.7 6.2 20.2 15.6 3.3 14.5 15.1 3.6 12.4 2.8 18.0 25.8 11.9
• EATA 4.9 3.7 21.1 15.5 1.0 15.7 16.7 1.5 13.6 1.1 18.3 26.7 11.7
• TCR 11.6 11.0 26.5 19.0 12.5 18.1 19.0 8.1 14.2 5.0 17.3 24.8 15.6
• Ours 17.4 18.0 32.6 26.1 19.3 26.6 26.4 15.4 26.4 9.4 25.6 30.6 22.8

BLIP-ViT-B/16 6.7 7.4 20.6 16.3 4.5 17.2 15.1 4.7 12.9 4.5 18.4 26.4 12.9
• Tent 3.6 5.2 20.3 16.2 3.7 15.6 16.1 4.1 12.8 4.1 18.8 26.4 12.2
• READ 6.9 7.8 20.1 16.6 5.0 17.0 15.1 4.8 12.8 4.6 17.9 25.8 12.9
• SAR 5.3 7.0 21.1 16.6 4.1 16.6 16.3 4.5 13.1 3.9 19.2 26.8 12.9
• EATA 5.1 3.9 23.2 16.2 1.5 16.2 17.6 2.2 14.3 1.4 18.4 26.9 12.2
• TCR 11.9 12.5 28.1 19.7 13.0 18.8 20.2 8.5 15.8 5.3 18.8 25.2 16.5
• Ours 17.9 19.2 34.0 26.5 20.2 27.6 26.7 15.3 28.2 10.0 26.1 31.5 23.6

LanguageBind 14.4 15.0 32.9 23.1 11.2 27.6 27.3 5.5 27.5 7.1 23.2 32.6 20.6
• Tent 12.2 11.1 32.0 22.3 8.5 27.5 27.6 3.3 28.0 3.7 24.2 32.6 19.4
• READ 15.3 15.8 33.4 23.0 11.8 27.8 27.4 6.5 26.8 7.7 23.2 33.0 21.0
• SAR 14.1 14.1 33.1 23.7 9.7 27.7 27.4 4.2 28.0 4.9 24.1 32.9 20.3
• EATA 16.5 7.1 35.2 16.5 4.5 29.4 27.6 0.4 30.8 4.3 22.5 32.9 19.0
• TCR 18.4 19.5 32.3 27.1 15.5 29.1 28.5 8.0 28.0 9.9 22.5 31.8 22.6
• Ours 24.7 23.9 39.3 31.9 24.8 32.5 32.3 15.1 33.0 12.5 28.9 33.3 27.7

setting simulates scenarios where environmental conditions vary in intensity across different video
samples. HAT-VTR demonstrates consistent superiority across all perturbation categories, achieving
an average improvement of 3.5% R@1 points over TCR on CLIP4Clip.

Table 17: Comparisons v2t results on the MSRVTT-1kA with mixed severity degrees.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 25.5 13.8 33.6 20.8 29.2 38.7 32.3 18.3 28.2 18.0 23.4 35.6 26.5
• Tent 26.6 10.7 34.8 21.4 29.6 38.9 33.7 18.8 28.7 18.3 23.8 36.4 26.8
• READ 24.5 16.1 33.0 20.2 28.3 38.9 32.0 18.0 27.9 18.1 22.7 37.3 26.4
• SAR 27.0 12.3 35.0 22.0 29.6 39.0 33.6 19.4 28.7 18.9 23.4 38.1 27.3
• EATA 29.7 18.8 36.4 24.3 30.6 38.6 34.5 21.8 30.6 19.6 24.5 37.3 28.9
• TCR 30.7 23.4 35.5 28.4 30.6 38.5 34.1 22.1 30.5 20.1 24.5 37.8 29.7
• Ours 34.8 31.1 39.1 33.3 35.2 39.4 37.0 25.0 35.5 22.2 27.9 38.1 33.2

Xpool 28.3 15.8 36.9 23.2 35.1 40.8 33.3 20.4 34.7 20.1 35.1 36.9 30.1
• Tent 30.3 13.1 38.3 24.4 35.7 41.4 34.4 22.2 35.9 20.4 35.4 36.8 30.7
• READ 27.6 17.2 35.5 23.1 34.3 40.7 32.3 19.7 33.9 20.0 34.9 36.8 29.7
• SAR 30.2 15.5 38.1 24.4 35.8 41.1 34.5 21.9 35.6 20.9 35.5 36.9 30.9
• EATA 34.2 24.0 40.6 30.3 36.3 41.3 35.5 23.8 35.8 23.8 36.0 37.5 33.3
• TCR 32.0 25.4 40.5 28.6 37.2 41.2 35.4 23.3 36.3 22.9 36.4 37.1 33.0
• Ours 38.7 32.5 42.9 34.6 38.2 43.4 38.2 28.3 38.8 27.4 37.3 39.6 36.7

To further challenge the robustness of our method, we evaluate performance under mixed perturba-
tion types, where different percentages of queries in each batch are corrupted with randomly selected
perturbations from our MLVP benchmark. Tab. 18 reports the results across different noise ratios,
from 20% to 80% of queries being corrupted. This setting represents the most realistic deployment
scenario where various types of corruptions occur unpredictably. HAT-VTR maintains superior per-
formance across all noise ratios, achieving an average improvement of 3.5% R@1 points over TCR.
Crucially, our method shows strong resilience even at high corruption ratios, maintaining 27.6%
R@1 when 80% of queries are corrupted compared to TCR’s 21.7%, demonstrating the robustness
of our hubness suppression approach under diverse and unpredictable perturbation patterns.
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Table 18: Performance under mixed perturbation types with varying percentages of corrupted
queries. Results show R@1 (%) on MSRVTT-1kA where different ratios of queries are randomly
corrupted with perturbations from our MLVP benchmark.

Query
Shift

Percentage of Noised Queries
20% 40% 60% 80% Avg.

CLIP4Clip 36.7 31.1 27.2 21.0 29.0
• Tent 36.3 31.1 27.2 21.5 29.0
• READ 36.1 30.7 26.9 21.0 28.7
• SAR 36.4 31.1 27.3 21.4 29.1
• EATA 36.6 31.6 27.7 23.7 29.9
• TCR 36.1 30.5 26.5 21.7 28.7
• Ours 37.4 34.4 29.3 27.6 32.2

Xpool 38.4 33.6 28.8 23.8 31.2
• Tent 39.0 34.1 29.2 23.7 31.5
• READ 38.5 33.7 28.5 23.4 31.0
• SAR 38.9 34.2 29.3 23.8 31.6
• EATA 39.9 34.9 29.3 25.9 32.5
• TCR 38.6 34.1 29.3 24.3 31.6
• Ours 41.6 37.6 32.3 29.0 35.1

D.3 MORE RESULTS ON QUERY-SHIFT

To further validate the effectiveness of our proposed HAT-VTR framework, we conduct additional
experiments on more datasets under query-shift scenarios. The results consistently demonstrate the
superiority of our approach across diverse evaluation settings.

For v2t retrieval, we evaluate on LSMDC and MSVD datasets with MLVP video perturbations. On
the LSMDC dataset (Tab. 19), HAT-VTR achieves substantial improvements over all baselines, with
particularly notable gains on high-level perturbations such as style transfer (7.61% vs. 4.80% for the
best baseline TCR with CLIP4Clip). The challenging MSVD dataset (Tab. 20) reveals even more
pronounced advantages, where our method delivers consistent improvements across all perturbation
categories. Notably, HAT-VTR demonstrates exceptional robustness against low-level corruptions,
achieving 33.28% R@1 on Gaussian noise compared to 28.06% for TCR, highlighting our frame-
work’s ability to effectively counteract the amplified hubness phenomenon under diverse video cor-
ruptions.

We further observe a similar trend for v2t retrieval on the DiDeMo dataset (Tab. 24). On this dataset,
HAT-VTR again demonstrates exceptional robustness. For instance, on the CLIP4Clip benchmark,
our method (23.11%) achieves a significant R@1 improvement of 5.18% over TCR (17.93%). Fi-
nally, we further validate the t2v task performance on Tab. 25. The results consistently show that
HAT-VTR achieves the best average performance across all three perturbation levels (character-,
word-, and sentence-level) on both CLIP4Clip and X-Pool models

For t2v retrieval under text perturbations, we evaluate on ActivityNet, LSMDC, and MSVD datasets.
On ActivityNet (Tab. 21), HAT-VTR consistently outperforms all baselines across character-level,
word-level, and sentence-level perturbations, achieving an average improvement of over 4% com-
pared to the strongest baseline. The LSMDC results (Tab. 22) and MSVD results (Tab. 23) further
confirm this trend, with our method showing particular strength on word-level perturbations where
semantic understanding is crucial. These comprehensive results across multiple datasets and per-
turbation types validate that our hubness-aware adaptation strategy provides robust performance
improvements regardless of the specific corruption mechanism or dataset characteristics.

D.4 MORE RESULTS ON QUERY-GALLERY-SHIFT

D.4.1 QGS IN CROSS-DATASET ADAPTATION SCENARIO

We conduct extensive cross-dataset adaptation experiments across five dataset pairs, each presenting
unique domain shift challenges that test our method’s robustness across diverse video-text domains.
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Table 19: Comparisons on v2t R@1 on the LSMDC dataset with MLVP video perturbations.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 10.61 8.61 3.60 6.11 13.51 0.40 14.01 12.61 5.11 4.40 6.91 11.21 8.09
• Tent 10.91 9.41 2.40 4.90 14.11 0.10 13.71 12.71 4.60 4.40 7.21 11.31 7.98
• READ 10.41 7.91 4.90 6.01 12.91 0.30 13.71 12.31 5.11 4.50 6.51 11.31 7.99
• SAR 11.01 9.61 2.70 5.41 14.01 0.30 13.61 12.61 5.31 4.40 7.31 11.41 8.14
• EATA 12.01 11.11 1.20 6.61 15.22 0.10 14.61 12.61 5.21 5.11 7.11 11.71 8.55
• TCR 11.61 11.51 6.21 7.91 14.21 0.80 13.81 12.71 5.51 4.80 6.41 11.91 8.95
• Ours 13.81 14.21 9.51 11.51 16.62 0.80 16.02 15.12 8.71 7.61 9.91 13.01 11.40

Xpool 9.31 7.21 4.00 5.31 14.51 0.90 13.71 11.81 6.51 4.20 10.21 11.01 8.22
• Tent 9.71 8.01 2.70 5.01 15.22 0.80 13.91 12.21 5.91 4.10 10.31 11.31 8.27
• READ 9.21 6.71 4.20 5.41 13.71 1.00 13.41 11.71 6.61 4.40 9.91 10.71 8.08
• SAR 9.91 8.11 2.70 5.21 15.02 0.90 14.21 12.11 6.31 4.30 10.31 11.21 8.36
• EATA 11.61 11.31 0.60 4.50 14.81 0.30 15.12 13.21 6.11 5.11 10.61 11.01 8.69
• TCR 11.51 9.81 5.51 7.01 14.31 1.10 14.81 12.41 7.71 5.51 10.61 11.31 9.30
• Ours 14.31 13.61 9.71 10.81 16.52 1.30 16.32 15.42 7.81 8.71 13.21 12.41 11.68

Table 20: Comparisons on v2t R@1 on the MSVD dataset with MLVP video perturbations.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 23.88 19.40 37.01 20.15 26.27 21.04 41.04 20.75 20.75 14.48 26.87 48.36 26.67
• Tent 25.07 21.04 37.91 20.75 27.46 22.24 41.49 21.19 21.04 14.03 27.01 47.61 27.24
• READ 23.28 17.76 36.42 20.00 25.97 21.94 40.30 19.85 20.30 14.78 27.31 48.51 26.37
• SAR 24.48 21.04 37.01 21.34 27.61 22.24 41.49 21.34 21.04 14.48 27.01 48.21 27.27
• EATA 27.76 25.52 40.90 24.78 32.39 25.37 45.37 24.33 22.09 16.27 28.66 47.76 30.10
• TCR 28.06 25.07 42.69 24.93 32.84 23.43 44.78 23.88 22.24 17.76 28.96 47.46 30.18
• Ours 33.28 34.78 46.57 34.93 37.46 28.21 49.10 29.25 25.97 22.09 36.12 49.70 35.62

Xpool 26.42 21.34 41.94 25.07 32.84 25.52 41.49 24.48 28.21 20.15 43.43 49.70 31.72
• Tent 28.21 22.54 42.69 24.93 33.58 25.07 42.09 25.22 27.61 20.75 43.73 49.85 32.19
• READ 25.67 21.34 41.64 25.07 32.39 25.52 41.94 23.73 28.51 20.00 44.03 49.85 31.64
• SAR 28.21 23.28 42.39 25.37 33.13 25.97 42.09 25.37 28.06 20.45 43.58 50.15 32.34
• EATA 30.00 28.21 42.84 28.36 36.12 26.27 43.28 25.97 28.66 22.09 44.18 49.85 33.82
• TCR 32.09 26.72 43.58 28.06 34.78 24.93 43.88 26.42 28.96 20.90 45.37 49.40 33.76
• Ours 36.57 35.37 46.42 35.22 43.13 30.00 45.82 30.45 31.34 26.72 48.66 48.96 38.22

The MSRVTT→LSMDC and LSMDC→MSRVTT transfers (Tab. 26) represent a shift between
general YouTube content and cinematic movie clips. HAT-VTR achieves substantial improvements,
with 17.42% R@1 compared to 14.41% for TCR on MSRVTT→LSMDC, and an even more pro-
nounced gain of 36.60% versus 32.60% on the reverse direction. This asymmetric performance
reflects the semantic complexity difference between everyday YouTube videos and narrative-driven
movie scenes.

The MSRVTT→MSVD and MSVD→MSRVTT transfers (Tab. 27) involve two YouTube-based
datasets with different scales and annotation styles. Our method demonstrates consistent superiority,
achieving 55.67% R@1 on MSRVTT→MSVD versus 52.69% for TCR, and a remarkable 37.50%
versus 33.10% on MSVD→MSRVTT. The larger gains on the MSVD→MSRVTT direction suggest
our hubness mitigation is particularly effective when adapting from smaller to larger-scale datasets.

The ActivityNet→LSMDC and LSMD→ActivityNet transfers (Tab. 28) represent perhaps the most
challenging domain gap, spanning from paragraph-level activity descriptions to cinematic narratives.
HAT-VTR shows exceptional performance improvements, achieving 18.02% R@1 versus 14.81%
for TCR on ActivityNet→LSMDC, and a dramatic 31.69% versus 14.34% on the reverse direction,
highlighting our method’s ability to handle severe semantic distribution shifts.

The ActivityNet→MSVD and MSVD→ActivityNet transfers (Tab. 29) involve adapting between
paragraph-level and sentence-level video descriptions. Our method consistently outperforms base-
lines, with particularly strong performance on MSVD→ActivityNet (34.76% vs. 17.06% for TCR),
demonstrating effective adaptation from simple activity descriptions to complex paragraph-level un-
derstanding.
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Table 21: Comparisons on t2v Recall@1 (%) on the ActivityNet dataset under text perturbations.

Query
Shift

Character-Level Word-Level Sentence-Level
OCR CI CR CS CD SR WI WS WD IP Backtrans. Formal Casual Passive Active Avg.

CLIP4Clip 26.52 17.53 18.20 21.50 19.79 29.81 32.03 31.65 32.19 33.35 26.83 31.42 32.11 25.24 26.42 26.97
• Tent 26.87 18.39 18.55 21.84 19.50 29.94 31.87 31.34 31.79 33.23 27.13 31.04 31.97 25.63 26.48 27.04
• READ 24.79 14.93 15.50 20.66 18.69 29.33 31.36 30.75 31.81 32.15 26.01 31.10 31.14 24.57 25.48 25.88
• SAR 26.72 18.30 18.70 21.82 19.83 30.04 32.09 31.38 32.03 33.44 27.11 31.34 32.21 25.63 26.32 27.13
• EATA 25.87 18.55 19.06 21.29 19.28 28.41 30.97 30.73 30.95 31.95 26.99 30.00 30.69 24.73 25.71 26.35
• TCR 26.44 18.30 18.47 20.68 19.52 28.80 31.12 30.45 31.60 30.81 26.48 31.22 29.69 25.08 26.01 26.31
• Ours 30.95 20.42 21.29 25.02 23.14 35.33 37.18 36.85 37.87 39.58 32.13 36.87 37.20 29.06 30.59 31.57

Xpool 25.46 16.86 17.63 20.52 18.77 28.53 30.02 30.14 30.77 32.01 26.85 30.40 30.26 25.67 26.83 26.05
• Tent 25.24 17.84 18.45 20.83 19.12 28.29 29.79 29.59 30.36 31.42 26.87 30.36 30.22 25.81 26.32 26.03
• READ 24.16 14.50 14.99 19.73 17.88 28.37 30.24 29.90 30.51 31.50 26.03 30.34 30.38 25.56 26.50 25.37
• SAR 25.14 17.75 18.41 20.81 19.08 28.51 30.02 29.96 30.59 31.60 26.93 30.43 30.34 25.61 26.38 26.10
• EATA 25.16 17.82 18.10 20.89 18.63 28.00 29.14 28.90 29.25 30.77 27.01 30.18 29.90 24.93 26.19 25.66
• TCR 25.06 17.88 17.63 20.26 18.91 26.99 29.96 29.20 29.92 29.65 26.09 29.57 29.94 25.40 26.26 25.51
• Ours 28.25 19.20 20.34 23.63 21.42 31.24 33.48 33.33 33.31 34.74 29.53 33.39 33.52 27.25 28.05 28.71

Table 22: Comparisons on t2v Recall@1 (%) on the LSMCD dataset under text perturbations.

Query
Shift

Character-Level Word-Level Sentence-Level
OCR CI CR CS CD SR WI WS WD IP Backtrans. Formal Casual Passive Active Avg.

CLIP4Clip 9.71 3.70 4.00 5.41 4.00 13.71 14.51 14.71 15.02 14.51 12.71 14.91 14.51 15.12 15.32 11.46
• Tent 9.51 3.60 4.00 5.41 4.10 14.01 14.41 14.71 15.52 15.02 12.71 15.02 14.91 15.02 15.52 11.56
• READ 9.61 3.80 4.10 5.31 3.90 13.71 14.51 14.51 15.22 14.61 13.01 15.02 14.61 15.22 15.32 11.50
• SAR 9.61 3.60 3.90 5.31 4.20 13.91 14.61 14.71 15.52 14.81 12.71 15.02 14.81 14.91 15.42 11.54
• EATA 9.41 3.00 3.50 5.11 4.00 13.81 14.61 14.21 15.82 14.61 12.81 15.32 15.12 14.61 15.52 11.43
• TCR 9.71 3.00 4.10 5.31 4.20 14.01 14.71 14.61 15.42 14.91 12.91 15.22 14.81 15.32 15.12 11.56
• Ours 10.11 3.20 3.70 5.21 3.80 15.22 16.12 15.52 15.42 15.72 14.31 16.22 15.62 16.02 16.42 12.17

Xpool 10.81 4.10 4.10 5.81 4.30 14.81 16.22 15.52 16.52 16.02 15.02 16.52 16.02 16.72 16.72 12.61
• Tent 10.71 3.90 4.20 5.81 4.10 14.71 16.02 15.42 16.72 16.42 14.71 16.52 16.12 15.52 16.72 12.51
• READ 10.51 4.40 4.00 5.71 4.10 15.02 16.22 15.42 16.42 16.12 14.81 16.22 16.12 16.52 16.72 12.55
• SAR 10.71 4.10 4.20 5.91 4.20 14.81 16.02 15.42 16.72 16.42 14.71 16.52 16.12 16.52 16.62 12.60
• EATA 11.01 3.50 4.20 5.91 4.30 14.41 16.42 15.52 16.52 17.12 14.31 16.62 16.12 16.52 16.32 12.59
• TCR 10.81 4.20 4.30 5.71 3.90 14.41 16.52 15.12 16.52 16.32 14.51 16.32 15.82 16.62 16.62 12.51
• Ours 11.31 3.80 4.70 5.31 4.20 15.42 16.32 15.72 16.62 16.92 15.62 16.32 16.72 15.42 17.42 12.79

Finally, the LSMDC→MSVD and MSVD→LSMDC transfers (Tab. 30) span from cinematic con-
tent to everyday activities. HAT-VTR maintains its advantage across both directions, achieving
51.94% R@1 versus 46.72% for TCR on LSMDC→MSVD, confirming that our hubness-aware
adaptation strategy provides robust cross-domain transfer capabilities regardless of the specific
dataset characteristics or domain gap magnitude.

D.4.2 QGS IN ZERO-SHOT ADAPTATION SCENARIO

The zero-shot adaptation scenario represents the most challenging setting, where models must adapt
directly from pre-training to downstream tasks without any fine-tuning. Tab. 31 presents results
on LSMDC and MSVD datasets, revealing that HAT-VTR maintains its effectiveness even in this
extreme domain gap scenario.

On the challenging LSMDC dataset, HAT-VTR achieves 15.22% R@1 compared to 10.61% for
TCR, representing a remarkable 4.61% improvement in the zero-shot setting. This substantial gain
highlights our method’s ability to rapidly adapt to new domains without prior exposure to task-
specific data. The consistent improvements across both datasets and retrieval directions confirm that
our hubness suppression mechanism provides robust adaptation capabilities even when facing the
largest possible domain shifts encountered in practical deployment scenarios.

D.5 COMPARISON RESULTS WITH DIFFERENT SEVERITY DEGREES

D.5.1 RESULTS ON MLVP

To examine robustness progression across perturbation intensities, we evaluate HAT-VTR and base-
line methods on MSRVTT-1kA across severity degrees 1-4, complementing the main paper’s sever-
ity degree 5 results.
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Table 23: Comparisons on t2v Recall@1 (%) on the MSVD dataset under text perturbations.

Query
Shift

Character-Level Word-Level Sentence-Level
OCR CI CR CS CD SR WI WS WD IP Backtrans. Formal Casual Passive Active Avg.

CLIP4Clip 32.54 13.73 12.54 22.24 12.09 52.69 54.93 54.33 55.52 55.37 51.79 56.42 54.48 53.58 55.37 42.51
• Tent 32.84 13.88 12.54 22.24 12.24 52.84 54.48 54.03 55.22 54.93 51.79 56.27 54.48 53.28 55.37 42.43
• READ 32.39 13.73 12.54 21.94 12.09 52.84 54.48 54.18 55.37 55.37 51.79 56.57 54.48 53.43 55.52 42.45
• SAR 32.99 13.88 12.69 22.24 12.24 52.84 54.63 54.03 55.37 54.93 51.79 56.42 54.48 52.99 55.52 42.47
• EATA 32.24 14.03 12.54 21.64 12.69 52.09 54.78 53.43 54.93 54.48 51.19 55.07 54.48 52.99 54.93 42.10
• TCR 32.54 13.43 12.54 22.09 12.24 53.13 54.93 53.58 54.93 55.07 52.09 55.37 55.07 53.13 55.07 42.35
• Ours 34.18 14.33 12.24 20.90 12.99 55.07 56.27 56.87 56.87 56.27 53.88 58.36 57.01 56.27 58.36 43.99

Xpool 32.39 16.27 13.73 20.90 13.58 51.94 54.93 53.43 54.48 56.42 52.69 56.12 55.52 51.94 55.67 42.67
• Tent 32.69 16.57 14.18 21.19 13.58 51.34 55.07 53.43 54.48 56.27 52.54 56.12 55.67 51.94 55.82 42.73
• READ 32.39 16.12 13.88 20.90 13.43 51.79 54.93 53.73 54.33 56.42 52.69 56.12 55.37 51.94 55.82 42.66
• SAR 32.69 16.57 14.03 21.19 13.58 51.49 55.07 53.43 54.48 56.42 52.54 56.27 55.52 51.94 55.82 42.74
• EATA 33.58 16.72 14.78 21.49 14.18 50.60 54.48 53.73 53.58 55.22 52.24 55.37 55.37 52.39 55.82 42.64
• TCR 33.43 15.97 14.18 22.09 12.84 50.45 55.07 52.84 53.58 55.07 52.84 56.27 55.22 51.94 55.97 42.52
• Ours 35.07 16.57 13.43 22.39 14.63 54.33 56.42 56.42 57.61 57.91 55.37 59.10 57.76 56.87 58.51 44.83

Table 24: Comparisons on v2t R@1 on the DiDeMo dataset with the highest severity degree.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 6.08 6.67 21.61 12.15 11.16 32.87 22.21 5.88 13.65 4.88 1.69 30.18 14.09
• Tent 4.28 4.38 20.72 10.86 12.75 32.87 23.21 4.48 11.25 4.58 1.49 29.88 13.40
• READ 6.87 7.67 22.91 12.65 10.66 32.67 20.02 5.88 14.24 4.78 1.79 29.68 14.15
• SAR 4.58 4.78 22.31 11.85 12.55 33.17 23.01 5.08 13.25 5.08 1.79 30.18 13.97
• EATA 5.68 2.29 24.90 10.66 16.93 33.57 25.30 6.67 14.94 5.98 1.59 29.98 14.87
• TCR 13.15 14.54 27.29 18.73 18.03 33.76 23.80 10.76 16.33 6.77 2.79 29.18 17.93
• Ours 20.32 19.12 35.26 25.00 25.20 37.55 29.48 16.73 22.91 8.17 5.58 31.97 23.11

Xpool 9.36 10.56 25.20 15.64 15.24 37.25 24.20 6.37 18.73 7.87 29.88 30.98 19.27
• Tent 8.67 9.16 23.51 15.64 16.73 36.95 25.80 5.98 15.24 7.57 30.38 30.98 18.88
• READ 10.16 10.76 27.19 15.84 14.34 36.85 22.91 6.57 20.32 7.97 29.58 31.08 19.46
• SAR 9.86 10.16 24.50 16.14 16.73 36.95 25.50 6.08 18.23 7.97 30.38 31.08 19.47
• EATA 13.75 9.96 26.59 12.75 19.42 37.75 26.89 7.47 21.02 6.47 31.47 31.08 20.39
• TCR 16.93 14.84 32.37 23.21 20.02 38.05 27.79 10.76 23.61 7.57 30.28 30.68 23.01
• Ours 20.32 22.21 37.75 27.69 30.78 39.74 33.17 17.53 26.39 11.55 33.96 33.37 27.87

Tables 32 33 34 35 reveal consistent patterns: HAT-VTR maintains superior performance across
all severity levels, with improvement margins typically increasing as perturbations intensify. At
severity degree 1 (Tab. 32), our method achieves 39.8% average R@1 versus 36.5% for TCR with
CLIP4Clip, demonstrating effectiveness even under mild corruptions. The performance gap widens
progressively—at severity degree 4 (Tab. 35), HAT-VTR reaches 32.2% compared to 27.0% for
TCR, representing a 5.2% improvement.

We acknowledge certain exceptions, such as temporal scrambling at severity degree 1, where EATA
scores 39.3% compared to our 38.8%. This highlights a need for further exploration in addressing
mild temporal disruptions (see Sec. F.1 for more details). Nonetheless, our method clearly excels
across various perturbation types and intensities overall.

D.5.2 RESULTS ON TEXT PERTURBATIONS

To comprehensively evaluate text-to-video (t2v) retrieval robustness, we examine HAT-VTR perfor-
mance across different severity levels of text perturbations on MSRVTT-1kA. Following the hier-
archical text perturbation framework from Qiu et al. (2024), we test character-level (OCR, CI, CR,
CS, CD) and word-level (SR, WI, WS, WD, IP) corruptions across severity degrees 1-7.

Fig. 12 demonstrates HAT-VTR’s consistent superiority across all perturbation types. HAT-VTR
achieves 45.3% average R@1 compared to 43.3% for TCR, with the most significant improvements
observed on word-level perturbations such as synonym replacement (SR) and word insertion (WI),
where our method reaches over 40% R@1. Character-level perturbations (OCR, CI, CR, CS, CD)
show more modest improvements but consistent gains, with performance around 23-28% R@1. The
results indicate that HAT-VTR’s hubness mitigation strategy is particularly effective for semantic-
preserving word-level transformations while maintaining robustness across all perturbation cate-
gories.

32



Published as a conference paper at ICLR 2026

Table 25: Comparisons on t2v Recall@1 (%) on the DiDeMo dataset under text perturbations.
Query
Shift

Character-Level Word-Level Sentence-Level
OCR CI CR CS CD SR WI WS WD IP Backtrans. Formal Casual Passive Active Avg.

CLIP4Clip 28.39 19.72 20.82 21.12 21.51 34.56 36.35 35.26 35.76 37.75 27.79 34.46 35.76 34.46 34.46 30.54
• Tent 28.09 19.42 21.31 21.41 21.71 34.06 36.16 35.36 35.46 37.75 27.99 34.36 35.86 34.56 34.36 30.52
• READ 28.88 19.82 20.92 20.92 21.91 34.76 36.06 35.66 35.46 37.95 28.09 34.46 35.56 34.46 34.26 30.61
• SAR 28.19 19.52 21.22 21.41 21.91 34.26 36.16 35.26 35.66 37.75 27.89 34.46 35.56 34.76 34.06 30.54
• EATA 27.09 19.72 20.72 21.81 20.82 33.47 35.16 34.46 34.26 37.65 27.29 34.26 34.36 33.96 33.86 29.93
• TCR 27.79 18.43 21.02 22.61 20.62 33.76 35.26 35.06 34.56 38.25 27.19 34.26 34.66 33.96 33.67 30.07
• Ours 28.89 21.51 21.91 23.31 21.81 36.25 38.15 36.75 37.35 38.55 30.58 36.46 37.55 34.26 35.46 31.92

Xpool 31.37 22.01 24.00 25.70 24.30 39.74 40.14 41.83 41.24 42.03 30.78 38.25 39.74 37.45 39.24 34.52
• Tent 31.47 22.41 24.60 26.10 24.50 39.64 40.44 41.73 41.04 42.33 30.98 38.94 39.84 37.75 38.75 34.70
• READ 31.37 22.01 22.91 26.00 23.80 39.74 40.24 41.73 40.94 41.63 30.58 38.45 39.74 37.45 39.14 34.38
• SAR 31.47 22.71 24.30 26.20 24.50 39.54 40.64 42.13 41.33 42.43 30.78 38.84 39.84 37.55 38.75 34.73
• EATA 31.67 23.61 23.41 26.00 24.60 40.04 40.04 41.14 40.24 41.24 30.68 38.55 39.34 37.95 39.04 34.50
• TCR 31.87 22.61 24.00 25.60 24.00 38.65 40.24 40.04 40.34 40.94 29.38 38.65 38.45 37.75 37.65 34.01
• Ours 32.17 24.30 24.60 27.49 24.60 40.24 43.23 42.73 43.23 44.42 32.17 40.44 41.04 37.95 39.94 35.90

Table 26: Comparisons on QGS Cross-dataset Adaptation between MSRVTT and LSMDC.

Cross
Dataset

MSRVTT→LSMDC LSMDC→MSRVTT
v2t t2v v2t t2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP4Clip 14.91 28.43 36.84 15.12 30.03 38.94 30.30 57.10 66.90 29.60 57.20 67.20
• Tent 15.12 28.83 37.24 15.42 29.93 38.84 30.90 56.80 67.30 30.30 57.50 66.80
• READ 14.51 28.43 36.44 15.32 30.23 38.74 29.10 56.40 66.60 29.60 57.30 67.60
• SAR 15.32 29.23 37.44 15.32 29.93 38.94 30.80 56.80 67.30 30.50 57.80 67.20
• EATA 15.82 29.83 38.74 15.52 29.93 39.34 31.60 58.50 68.40 31.70 58.30 68.00
• TCR 14.41 30.23 38.04 15.22 30.23 38.94 32.60 58.60 68.60 31.10 58.60 68.60
• Ours 17.42 33.13 40.04 16.32 32.83 40.94 36.60 61.70 72.00 36.70 61.10 72.30

Xpool 16.82 33.33 41.24 16.82 33.33 41.24 29.80 54.00 65.20 32.60 57.00 67.00
• Tent 17.02 33.33 41.24 17.02 33.33 41.24 29.70 53.90 65.30 32.90 57.20 67.20
• READ 16.82 32.93 40.94 16.82 32.93 40.94 30.20 54.10 65.10 32.50 56.90 66.90
• SAR 16.92 33.33 41.14 16.92 33.33 41.14 29.90 53.90 65.40 32.80 57.20 67.50
• EATA 16.92 33.53 40.84 16.92 33.53 40.84 30.20 54.50 65.80 33.40 57.80 69.20
• TCR 16.82 33.53 41.04 16.82 33.53 41.04 30.10 54.50 65.60 33.00 57.20 67.70
• Ours 17.32 33.53 42.14 17.32 33.53 42.14 35.30 60.20 69.60 36.10 61.50 71.20

Table 27: Comparisons on QGS Cross-dataset Adaptation between MSRVTT and MSVD.

Cross
Dataset

MSRVTT→MSVD MSVD→MSRVTT
v2t t2v v2t t2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP4Clip 54.03 83.43 90.90 54.63 80.90 90.90 32.00 57.90 68.50 35.30 60.10 70.50
• Tent 54.03 83.58 90.90 54.48 80.90 90.90 32.50 58.50 69.30 35.70 60.00 70.80
• READ 53.58 83.28 90.90 54.63 80.90 90.90 31.70 57.20 68.40 35.70 60.30 70.70
• SAR 53.73 83.28 90.75 54.48 80.90 90.90 32.20 58.50 69.60 35.60 60.10 70.80
• EATA 53.88 82.99 90.90 54.63 81.19 90.45 33.70 60.10 71.40 35.30 60.40 70.20
• TCR 52.69 83.88 91.04 54.18 80.90 90.45 33.10 57.80 69.30 34.80 59.70 69.90
• Ours 55.67 82.99 91.49 54.78 84.33 90.45 37.50 64.40 74.10 34.00 63.20 74.00

Xpool 54.48 85.22 91.49 55.97 85.37 91.79 35.50 61.80 73.20 38.10 63.00 72.80
• Tent 54.63 85.22 91.79 55.97 85.52 91.79 35.70 62.80 73.60 38.10 62.60 72.80
• READ 54.18 85.37 91.64 55.97 85.22 91.79 35.20 61.20 73.10 37.80 63.00 72.70
• SAR 54.33 85.22 91.64 55.97 85.52 91.79 35.80 62.60 73.70 38.00 62.80 72.80
• EATA 54.48 85.97 91.79 55.97 85.22 91.79 36.60 62.90 75.20 38.00 62.50 73.10
• TCR 54.33 84.93 92.39 55.37 85.67 91.34 36.80 62.30 74.30 38.00 62.60 72.90
• Ours 57.91 85.97 92.39 57.46 85.97 92.84 40.40 65.60 77.30 38.70 65.20 75.10
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Table 28: Comparisons on QGS Cross-dataset Adaptation between ActivityNet and LSMDC.

Cross
Dataset

ActivityNet→LSMDC LSMDC→ActivityNet
v2t t2v v2t t2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP4Clip 13.41 27.13 34.83 16.12 28.63 35.74 21.35 46.21 59.87 20.28 44.91 58.71
• Tent 14.41 27.13 35.04 15.92 28.43 35.74 21.50 47.02 59.96 21.58 47.24 60.48
• READ 13.41 26.23 34.63 16.32 28.23 35.64 11.78 29.37 41.12 17.84 39.35 53.12
• SAR 14.71 27.03 34.83 15.92 28.43 35.84 21.56 46.94 60.38 21.94 47.41 60.85
• EATA 14.41 26.73 35.24 15.92 29.33 36.84 18.95 42.02 54.91 22.45 46.82 60.85
• TCR 14.81 27.93 37.44 16.02 29.03 36.14 14.34 33.66 44.86 22.05 47.14 61.93
• Ours 18.02 32.93 40.44 15.72 31.33 39.64 31.69 57.51 70.73 31.40 58.71 70.55

Xpool 14.31 28.43 36.74 15.72 31.03 37.64 18.53 40.33 54.02 19.83 44.30 56.74
• Tent 14.81 28.73 36.94 16.22 31.53 37.94 17.82 39.45 52.59 21.21 46.45 59.43
• READ 14.21 27.93 36.44 15.62 30.93 37.54 15.29 36.04 49.26 17.84 39.60 51.60
• SAR 14.61 28.73 36.84 15.92 31.43 38.04 18.32 40.21 53.30 22.01 47.28 60.32
• EATA 15.22 29.03 36.54 15.72 32.23 38.04 14.72 34.86 46.04 23.55 49.40 63.11
• TCR 15.32 29.43 36.74 15.82 31.01 37.84 18.69 40.23 53.02 21.82 47.41 60.42
• Ours 17.72 33.33 41.84 16.72 31.93 40.84 28.23 53.47 67.01 26.80 53.39 65.87

Table 29: Comparisons on QGS Cross-dataset Adaptation between ActivityNet and MSVD.

Cross
Dataset

ActivityNet→MSVD MSVD→ActivityNet
v2t t2v v2t t2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP4Clip 52.99 83.13 89.70 54.18 80.15 88.21 29.00 57.64 70.82 26.36 53.51 67.52
• Tent 53.13 83.28 89.55 54.33 80.75 87.91 29.06 58.61 71.00 26.05 53.04 67.26
• READ 52.99 82.84 89.70 54.33 80.15 88.21 24.45 50.62 63.07 23.82 49.46 63.17
• SAR 53.13 82.99 89.70 54.33 80.45 87.91 29.57 58.71 71.43 26.26 53.04 67.58
• EATA 52.69 83.73 90.00 54.18 80.90 88.06 29.16 57.05 70.43 25.69 52.23 66.81
• TCR 53.28 82.54 88.81 53.73 80.75 88.36 17.06 37.60 49.05 26.46 52.43 67.32
• Ours 55.97 83.43 90.30 56.27 82.39 89.40 34.76 62.13 74.76 34.72 63.21 75.15

Xpool 53.13 82.84 88.81 51.49 80.90 88.96 25.56 52.59 66.50 25.12 52.39 66.22
• Tent 52.69 83.13 88.81 51.64 80.45 88.81 25.36 52.80 66.81 24.93 52.74 66.20
• READ 53.13 82.69 88.81 51.49 80.75 88.96 21.15 46.43 60.12 22.62 48.34 61.93
• SAR 52.54 83.13 88.81 51.64 80.45 88.96 25.40 52.96 66.85 25.14 52.74 66.36
• EATA 52.69 83.43 88.81 51.94 80.60 88.81 24.93 50.99 64.53 25.97 52.72 66.56
• TCR 52.84 82.69 89.25 51.19 81.04 88.81 25.87 53.08 67.07 24.93 52.86 66.34
• Ours 55.37 81.49 90.15 55.67 80.75 88.81 31.10 58.41 70.96 30.53 59.16 72.26

Table 30: Comparisons on QGS Cross-dataset Adaptation between LSMDC and MSVD.

Cross
Dataset

LSMDC→MSVD MSVD→LSMDC
v2t t2v v2t t2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP4Clip 48.36 79.70 87.61 48.21 76.12 86.87 14.91 28.43 36.84 15.12 30.03 38.94
• Tent 48.96 79.85 87.61 47.61 76.12 86.57 15.12 28.83 37.24 15.42 29.93 38.84
• READ 48.66 79.85 87.61 48.06 76.12 86.72 14.51 28.43 36.44 15.32 30.23 38.74
• SAR 48.06 79.85 87.61 47.61 76.12 86.57 15.32 29.23 37.44 15.32 29.93 38.94
• EATA 48.93 81.04 87.61 48.66 75.97 86.42 15.82 29.83 38.74 15.52 29.93 39.34
• TCR 46.72 80.45 88.06 47.91 76.27 86.42 14.41 30.23 38.04 15.22 30.23 38.94
• Ours 51.94 81.64 88.51 51.64 79.85 88.96 17.42 33.13 40.04 16.32 32.83 40.94

Xpool 46.12 78.51 86.57 47.76 77.61 87.91 16.82 33.33 41.24 16.82 33.33 41.24
• Tent 46.87 79.10 86.57 48.21 77.76 88.06 17.02 33.33 41.24 17.02 33.33 41.24
• READ 46.72 78.51 86.57 47.76 77.61 87.91 16.82 32.93 40.94 16.82 32.93 40.94
• SAR 46.57 78.66 86.57 48.06 77.91 88.06 16.92 33.33 41.14 16.92 33.33 41.14
• EATA 47.16 79.55 86.42 50.00 77.91 87.91 16.92 33.53 40.84 16.92 33.53 40.84
• TCR 46.57 78.96 86.57 49.10 77.01 87.91 16.82 33.53 41.04 16.82 33.53 41.04
• Ours 54.03 81.94 89.70 51.49 77.91 86.72 17.32 33.53 42.14 17.32 33.53 42.14
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Table 31: Comparisons on QGS Zero-shot Adaptation using LSMDC and MSVD.

QGS
Zero-shot

LSMDC MSVD
v2t t2v v2t t2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP 7.61 18.62 26.73 13.71 27.43 34.33 44.03 73.73 82.54 47.16 71.64 81.79
• Tent 7.21 19.52 26.43 13.61 27.23 33.93 44.33 74.18 83.88 47.16 71.49 82.09
• READ 8.31 19.22 26.73 13.71 27.33 33.93 43.58 73.28 82.24 47.01 71.79 81.34
• SAR 7.31 19.02 26.53 13.51 27.33 34.03 44.48 73.88 83.43 47.16 71.64 82.09
• EATA 4.40 14.81 22.72 13.51 26.03 35.14 44.78 74.93 84.48 46.57 72.84 83.13
• TCR 10.61 24.92 31.53 13.71 27.53 35.14 47.31 75.67 85.97 47.46 72.99 83.43
• Ours 15.22 30.13 37.64 13.91 29.33 36.74 53.28 79.10 86.27 52.09 77.16 85.82

Table 32: Comparisons v2t results on the MSRVTT-1kA with severity degree 1.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 38.3 26.8 38.3 29.6 39.0 42.0 39.2 32.3 34.9 28.6 37.6 39.0 35.5
• Tent 38.8 27.1 39.4 30.3 39.6 42.0 39.7 33.9 35.1 30.4 37.9 38.8 36.1
• READ 37.3 26.6 37.8 29.4 38.7 41.7 39.0 31.3 34.1 26.5 36.9 38.8 34.8
• SAR 38.5 27.9 39.5 30.6 39.8 42.2 39.7 33.9 35.0 30.5 37.8 38.8 36.2
• EATA 39.0 31.1 40.2 33.2 39.5 42.7 39.4 34.9 36.2 31.5 38.8 39.3 37.2
• TCR 38.8 33.6 38.7 34.2 38.4 40.9 37.6 33.1 36.6 31.3 36.6 38.6 36.5
• Ours 41.1 38.7 41.8 38.9 40.7 42.5 41.9 37.4 39.3 35.6 40.6 38.8 39.8

Xpool 40.5 30.6 41.6 32.1 42.9 45.0 41.7 36.5 39.1 31.3 40.4 39.4 38.4
• Tent 41.1 32.0 41.7 33.8 44.2 45.8 41.9 38.3 40.0 33.4 40.4 40.3 39.4
• READ 40.7 30.0 41.0 31.8 43.0 44.7 41.7 35.5 38.9 29.8 39.8 39.1 38.0

SAR 41.1 32.0 41.7 33.2 44.1 45.5 42.2 37.7 40.3 33.2 40.4 40.2 39.3
• EATA 43.1 35.3 43.5 36.8 42.5 44.8 42.5 38.5 39.7 34.9 39.6 40.5 40.1
• TCR 41.7 33.8 42.5 35.6 42.8 44.6 42.5 37.8 40.2 34.4 40.1 39.5 39.6
• Ours 44.9 40.4 45.7 42.3 44.6 47.9 45.1 41.6 44.0 38.2 42.4 42.6 43.3

Table 33: Comparisons v2t results on the MSRVTT-1kA with severity degree 2.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 33.3 19.8 37.0 21.2 25.9 41.5 35.7 28.3 31.9 24.3 34.2 36.7 30.8
• Tent 35.2 19.2 38.1 21.8 25.9 41.8 36.4 29.8 32.4 26.2 34.1 36.9 31.5
• READ 31.8 21.1 36.4 20.5 25.5 41.3 35.8 27.8 31.5 22.8 33.9 36.8 30.4
• SAR 35.2 20.5 37.6 22.5 26.2 41.6 36.3 29.7 32.7 26.3 34.1 37.1 31.7
• EATA 36.8 26.3 38.8 24.1 27.3 43.3 37.2 31.1 34.7 29.3 36.1 36.6 33.5
• TCR 36.1 28.9 37.7 27.6 27.9 40.9 37.3 30.2 32.8 28.8 32.8 37.5 33.2
• Ours 39.5 35.9 41.3 34.6 31.8 43.0 40.4 34.5 37.6 33.1 39.2 37.2 37.3

Xpool 38.9 22.3 41.4 24.6 31.4 44.9 38.4 31.4 38.3 28.4 37.5 38.9 34.7
• Tent 40.0 22.1 41.9 26.4 32.6 46.0 38.9 33.4 38.4 29.5 37.4 39.1 35.5
• READ 37.4 23.2 40.7 23.8 30.6 44.7 37.6 29.7 37.8 27.2 37.2 38.6 34.0
• SAR 39.6 24.2 42.1 26.4 31.8 45.6 38.9 32.7 38.5 29.7 37.8 39.1 35.5
• EATA 40.4 31.9 44.1 30.5 32.9 45.8 39.5 33.8 38.1 32.0 37.7 38.3 37.1
• TCR 40.6 32.1 43.1 30.2 32.3 44.8 40.0 32.6 38.8 30.6 37.9 38.4 36.8
• Ours 44.2 36.7 44.3 36.4 35.3 47.5 42.1 38.7 42.1 36.0 40.5 40.0 40.3
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Table 34: Comparisons v2t results on the MSRVTT-1kA with severity degree 3.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 27.1 14.8 35.2 20.4 36.5 40.7 34.0 18.9 29.2 18.0 30.1 36.4 28.4
• Tent 29.5 10.8 36.4 21.1 36.5 41.0 35.4 20.1 30.3 17.8 30.6 36.7 28.9
• READ 25.8 16.8 34.3 20.3 35.5 40.5 33.2 17.3 29.5 17.7 30.4 36.0 28.1
• SAR 29.8 14.3 36.6 22.0 36.5 41.0 35.5 20.6 30.3 19.0 30.6 36.7 29.4
• EATA 34.5 22.7 37.4 23.9 36.9 41.9 34.8 23.6 31.7 21.5 31.4 36.1 31.4
• TCR 32.7 26.6 37.1 28.2 37.7 39.8 36.0 22.0 31.6 21.6 29.9 34.9 31.5
• Ours 36.0 34.0 40.3 33.5 40.3 42.6 37.4 28.8 36.8 27.0 35.0 36.9 35.7

Xpool 32.0 17.7 38.6 24.9 40.5 43.6 34.1 21.7 35.6 19.8 35.3 37.0 31.7
• Tent 34.3 15.3 39.5 26.0 41.0 44.1 36.0 23.7 35.6 21.4 34.9 36.9 32.4
• READ 29.8 18.8 37.6 23.8 40.6 43.8 32.8 18.9 35.0 19.4 35.5 37.0 31.1
• SAR 34.3 18.1 39.6 25.8 40.9 43.8 35.7 24.0 35.5 22.4 35.0 37.2 32.7
• EATA 37.7 27.2 42.0 30.2 41.7 43.4 37.2 26.5 35.8 26.1 36.0 36.7 35.0
• TCR 35.2 29.3 41.0 30.5 42.6 43.9 36.1 23.7 36.2 25.7 35.5 36.5 34.7
• Ours 41.0 35.8 44.2 36.2 44.7 46.0 40.9 30.6 39.5 30.3 39.1 38.1 38.9

Table 35: Comparisons v2t results on the MSRVTT-1kA with severity degree 4.

Query
Shift

Low-Level Mid-Level High-Level
Gauss. Impul. Fog Snow Elastic. H264. Motion Defocus Occlu. Style Event Tempo. Avg.

CLIP4Clip 17.8 8.4 32.0 16.4 28.9 37.5 29.3 9.9 25.8 10.9 27.0 34.2 23.2
• Tent 19.0 4.6 33.1 16.6 30.0 37.8 30.3 9.6 26.2 9.6 26.5 34.0 23.1
• READ 18.7 10.7 31.2 16.1 27.3 37.3 28.0 9.7 24.8 12.0 27.2 33.9 23.1
• SAR 21.1 5.6 32.6 17.5 29.7 37.8 30.6 10.5 26.9 10.6 26.7 33.7 23.6
• EATA 25.1 1.9 34.4 20.7 32.1 38.6 31.5 13.0 28.6 13.3 26.8 33.4 25.0
• TCR 26.6 17.3 35.5 22.7 33.6 37.6 31.4 15.4 28.0 15.3 26.7 34.1 27.0
• Ours 31.8 29.1 39.6 29.2 36.9 39.2 35.2 21.9 34.4 21.1 31.6 35.9 32.2

Xpool 21.6 11.1 35.6 19.8 34.4 41.0 29.0 12.4 32.9 12.3 33.7 35.3 26.6
• Tent 24.6 7.0 37.4 21.2 35.7 41.1 31.2 14.6 33.7 12.0 33.8 35.1 27.3
• READ 20.8 13.2 34.6 19.2 33.5 40.6 27.7 11.4 32.5 13.3 33.5 35.2 26.3
• SAR 25.0 8.2 37.6 21.4 35.4 41.0 31.4 14.7 33.5 12.6 34.2 35.2 27.5
• EATA 29.1 2.1 39.2 23.7 37.4 41.4 33.3 16.3 33.6 16.9 34.1 35.7 28.6
• TCR 27.3 21.4 39.2 24.7 38.0 40.6 33.1 15.1 34.6 16.3 34.0 35.7 30.0
• Ours 35.1 30.1 43.7 32.1 41.1 42.5 37.4 23.0 37.4 21.2 37.1 36.8 34.8
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Figure 12: Comparison results of t2v on MSRVTT-1kA with text perturbations at mean severity.
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Table 36: Multi-Level Video Perturbation (MLVP) Benchmark Summary

Category Perturbation Description Severities

Low-level

Gaussian Noise Thermal sensor noise from low-light con-
ditions or high ISO settings.

5

Impulse Noise Salt-and-pepper noise from defective sen-
sor pixels and transmission errors.

5

Fog Atmospheric fog with fractal patterns gen-
erated by diamond-square algorithm.

5

Snow Falling snow with motion blur effects and
temporal scrolling patterns.

5

Elastic Distortion Non-linear spatial deformations from lens
aberrations and camera shake.

5

H.264 Compression Video compression artifacts from bitrate
constraints using FFmpeg encoding.

5

Mid-level
Motion Blur Directional blur from object/camera mo-

tion with adaptive kernel sizing.
5

Video Defocus Circular defocus blur simulating depth-of-
field and autofocus failures.

5

Main Object Occlusion Semantic-aware occlusion targeting main
objects identified by Algo 3.

5

High-level
Style Transfer Artistic style transfer using AdaIN Huang

& Belongie (2017) with temporal consis-
tency.

5

Event Insertion Contextual disruption by splicing semanti-
cally similar video segments.

5

Temporal Scrambling Narrative disruption through temporal
trimming and chunk reordering.

5

Total 12 — 60

E MLVP BENCHMARK IMPLEMENTATION DETAILS

This section provides a comprehensive technical breakdown of our Multi-Level Video Perturba-
tion (MLVP) benchmark, which extends the systematic image-text robustness evaluation paradigm
from Qiu et al. (2024) to the video domain. As outlined in the main paper, our benchmark is de-
signed to systematically probe the spatio-temporal vulnerabilities of VTR models. We provide two
tables for reference:

Tab. 36 offers a high-level summary, organizing the 12 distinct perturbation types into our three-
level hierarchy (Low-level, Mid-level, and High-level) and describing the real-world degradation
each simulates. Tab. 37 presents a more granular view, detailing the specific parameter values that
control the intensity for each of the five severity levels.

The core design of MLVP is to move beyond simple frame-wise image corruptions and introduce
perturbations that are authentic to the video modality. This is governed by two key principles.

• Temporal Consistency: To simulate realistic and continuous phenomena, perturbations
are applied cohesively across a video’s duration. For instance, a single noise pattern, a
fixed geometric transformation, or a consistent artistic style is applied to all frames of a
sequence. This ensures that the challenge posed to the model is inherently spatio-temporal,
rather than a series of independent image-level degradations.

• Principled Severity Scaling: Each perturbation is rendered at five distinct degrees of
severity. The parameters are carefully chosen to create a smooth degradation gradient,
allowing for a fine-grained analysis of model robustness. To ensure comparability and
build upon established standards, for perturbations that have direct counterparts in the orig-
inal image-based benchmark Qiu et al. (2024) (e.g., Gaussian Noise, Impulse Noise), we
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adopt the same severity parameter settings. The following sections detail the motivation
and implementation for each of the 12 perturbation types.

Table 37: Video Perturbation Parameter Specifications by Severity Degree

Method Parameters

Gaussian Noise Apply temporally consistent Gaussian noise with standard deviations of 0.08,
0.12, 0.18, 0.26, 0.38 based on severity levels 1-5

Impulse Noise Apply salt-and-pepper noise with the same spatial mask across frames, affect-
ing 0.03, 0.06, 0.09, 0.17, 0.27 proportion of pixels for severity levels 1-5

Fog Generate plasma fractal using diamond-square algorithm with fog intensity and
wibble decay parameters: (1.5, 2), (2, 2), (2.5, 1.7), (2.5, 1.5), (3, 1.4) for
severity levels 1-5

Snow Create falling snow with parameters (loc, scale, zoom, threshold, blur r, blur s,
blend): (0.1, 0.3, 3, 0.5, 10, 4, 0.8), (0.2, 0.3, 2, 0.5, 12, 4, 0.7), (0.55, 0.3, 4,
0.9, 12, 8, 0.7), (0.55, 0.3, 4.5, 0.85, 12, 8, 0.65), (0.55, 0.3, 2.5, 0.85, 12, 12,
0.55)

Elastic Distortion Apply elastic transformation with (alpha, sigma, affine magnitude): (244×2,
244×0.7, 244×0.1), (244×2, 244×0.08, 244×0.2), (244×0.05, 244×0.01,
244×0.02), (244×0.07, 244×0.01, 244×0.02), (244×0.12, 244×0.01, 244×0.02)

H.264 Compression Encode video using FFmpeg with target bitrates of 500k, 250k, 100k, 50k, 25k
bps for severity levels 1-5

Motion Blur Apply adaptive motion blur with base kernel sizes for low/high motion regions:
(5,9), (7,13), (9,17), (11,21), (13,25) for severity levels 1-5

Video Defocus Apply adaptive defocus blur with base radii scaling by factor of 2 for high-
motion regions: 3, 4, 6, 8, 10 for severity levels 1-5

Main Object Occlusion Occlude main objects with area ratios relative to object size: 30%, 40%, 50%,
60%, 80% for severity levels 1-5

Style Transfer Apply AdaIN style transfer with alpha interpolation parameters: 0.2, 0.4, 0.6,
0.8, 1.0 for severity levels 1-5

Event Insertion Insert semantically similar video segments with insertion ratios: 30%, 40%,
50%, 60%, 70% for severity levels 1-5

Temporal Scrambling Trim video content with retention ratios of 60%, 70%, 80%, 90%, 95% fol-
lowed by chunk scrambling with increasing complexity

E.1 LOW-LEVEL VIDEO PERTURBATIONS

Low-level perturbations modify pixel-level values to simulate common degradations from sensor
noise, environmental conditions, and digital processing. These corruptions are designed to challenge
a model’s foundational visual processing while preserving the underlying temporal structure and
semantic content of the video.

Gaussian Noise. To simulate the thermal noise inherent in digital camera sensors, a common
artifact in low-light conditions or at high ISO settings, we introduce additive Gaussian noise. To
ensure the degradation is temporally coherent, mirroring a real sensor’s consistent noise profile, a
single noise pattern is sampled from a zero-mean Gaussian distribution and applied identically to
every frame in the sequence. The five degrees of severity are controlled by varying the standard
deviation (σ) of this distribution.

Impulse Noise. This perturbation, commonly known as salt-and-pepper noise, models artifacts
arising from defective sensor pixels or digital transmission errors, challenging a model’s robustness
to sparse, high-intensity corruptions. Our implementation maintains temporal consistency by ap-
plying a fixed spatial mask across all frames, where a severity-controlled proportion of pixels are
randomly set to maximum (salt) or minimum (pepper) intensity.

Fog. To simulate the reduced visibility and contrast from atmospheric fog, which exhibits com-
plex, fractal-like density patterns unlike uniform haze, our implementation leverages the diamond-
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square algorithm. A single, temporally consistent plasma fractal is generated to serve as a fog
density map, which is then additively blended with each frame. The intensity of this fog layer is
scaled to adjust the severity.

Snow. Falling snow introduces dynamic, semi-random occlusions that can obscure objects and
motion cues. We simulate this effect by generating an extended ”snow curtain” that scrolls vertically
across the video at a constant velocity, creating a consistent falling motion. To enhance realism, the
particles within the curtain have motion blur applied, simulating the appearance of fast-moving
snowflakes.

Elastic Distortion. This perturbation models the non-linear spatial warping that can result from
lens aberrations, minor camera shake, or atmospheric phenomena like heat haze. To simulate a
persistent distortion, a fixed displacement field is generated using Gaussian-smoothed random noise
and applied to every frame in the video. The magnitude and smoothness of the deformation field are
controlled by the severity degree, testing the model’s invariance to geometric deformations.

Algorithm 1 H.264 Video Compression Perturbation

Require: Video path V , severity level s ∈ {1, 2, 3, 4, 5}, output frame count n
Ensure: Compressed video tensor T ∈ Rn×C×H×W

1: bitrates← [500k, 250k, 100k, 50k, 25k]
2: b← bitrates[s− 1] ▷ Select bitrate by severity
3: F,H,W, fps← LOADVIDEO(V ) ▷ Extract frames and metadata
4: temp path← CREATETEMPFILE(“temp.mp4”)
5: FFMPEGENCODE(F, temp path, b,H,W, fps) ▷ Compress with target bitrate
6: Fcompressed ← FFMPEGDECODE(temp path) ▷ Decode compressed video
7: DELETEFILE(temp path) ▷ Cleanup temporary file
8: indices← UNIFORMSAMPLE(|Fcompressed|, n) ▷ Sample frames uniformly
9: Fsampled ← [Fcompressed[i] for i in indices]

10: if |Fsampled| < n then ▷ Pad if necessary
11: Fsampled ← Fsampled + [repeat last frame]
12: end if
13: T ← FRAMESTOTENSOR(Fsampled) ▷ Convert to normalized tensor
14: return T

H.264 Compression. Video compression artifacts are nearly ubiquitous in real-world applications
due to storage and bandwidth constraints. To ensure authenticity, we perform actual H.264 encoding
and decoding using FFmpeg, as detailed in Algorithm 1. Each video is compressed to a target bitrate
corresponding to one of five severity degrees, introducing realistic artifacts such as blocking, ringing,
and loss of fine detail into the final decoded frames.

E.2 MID-LEVEL VIDEO PERTURBATIONS

Mid-level perturbations target more complex, object-centric attributes and motion dynamics. They
simulate real-world degradations that are tied to the semantic content and movement within the
scene, posing a greater challenge to a model’s spatio-temporal reasoning.

Motion Blur. Motion blur is a common video artifact where fast-moving objects or camera motion
cause non-uniform, directional blurring. To realistically replicate this, our approach is motion-aware
and adaptive. We first compute motion vectors between frames (see Algorithm 2) and then apply
stronger directional blur kernels to regions with high motion, while leaving static areas less affected.
The blur direction is aligned with the local motion vectors, creating a spatially varying and authentic
effect.

Video Defocus. This perturbation simulates the isotropic blurring from a shallow depth of field
or autofocus failures, common in videography. Our implementation is adaptive, using the motion
vectors same from motion blur to apply a circular disk blur (bokeh) primarily to moving regions of

39



Published as a conference paper at ICLR 2026

Algorithm 2 Motion Vector Extraction for Video Frames

Require: Video frames F = {f1, f2, . . . , fn}, frame indices I = {i1, i2, . . . , ik}
Ensure: Motion vectors MV = {mv1,mv2, . . . ,mvk}

1: Initialize MV ← ∅
2: Initialize GRAYCACHE ← ∅ ▷ Cache for grayscale frames
3: if |I| = 0 then
4: return MV
5: end if
6: for j = 1 to |I| do
7: idx← I[j]
8: if idx = 0 then ▷ First frame has zero motion
9: h,w ← height and width of F [idx]

10: mvzero ← zeros(h,w, 2) ▷ Zero motion vector
11: MV.append(mvzero)
12: continue
13: end if
14: prev idx← idx− 1
15: curr idx← idx
16: if prev idx /∈ GRAYCACHE then
17: GRAYCACHE[prev idx]← RGBTOGRAY(F [prev idx])
18: end if
19: if curr idx /∈ GRAYCACHE then
20: GRAYCACHE[curr idx]← RGBTOGRAY(F [curr idx])
21: end if
22: Iprev ← GRAYCACHE[prev idx]
23: Icurr ← GRAYCACHE[curr idx]
24: mv ← FARNEBACKOPTICALFLOW(Iprev, Icurr)
25: MV.append(mv)
26: end for
27: return MV
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the frame. The radius of the blur kernel is larger for regions with more motion, simulating a frequent
scenario where a camera’s focus fails to track a moving subject.

Main Object Occlusion. The occlusion of semantically critical objects poses a significant chal-
lenge to VTR systems. To create a more realistic and difficult test than simple random occlusion,
this perturbation targets the main subject of the video. Our novel pipeline, detailed in Algorithm 3,
first employs a vision-language model (Qwen2.5-VL-7B (Bai et al., 2025a)) to generate a caption
and identify key semantic nouns. These nouns then serve as open-vocabulary queries for an object
detector (OWLv2 (Minderer et al., 2023)) to locate and track the main object, which is subsequently
occluded with a black rectangle whose area scales with severity.

Algorithm 3 Main Object Identification for Video Occlusion

Require: Video path V , number of frames n
Ensure: Main object data {video caption, ranked objects per frame}

1: F ← SAMPLEFRAMES(V, n) ▷ Uniformly sample n frames
2: caption← QWEN2.5VL(V ) ▷ Generate video caption using Qwen2.5-VL
3: keywords← EXTRACTNOUNS(caption) ▷ Extract noun phrases with spaCy
4: all objects← [ ]
5: for each frame fi ∈ F do
6: detections← OWLV2(fi, keywords) ▷ Open-vocabulary detection
7: for each detection d ∈ detections do
8: crop← CROPIMAGE(fi, d.box)
9: d.embedding← VISUALEMBEDDING(crop)

10: d.frame index← i
11: all objects.append(d)
12: end for
13: end for
14: tracks← ASSOCIATEOBJECTS(all objects) ▷ Group by embedding similarity
15: for each track t ∈ tracks do
16: t.persistence← |t.appearances|/n
17: end for
18: ranked frames← {}
19: for each object o ∈ all objects do
20: score← 0.5 · o.persistence + 0.3 · o.area ratio + 0.2 · o.confidence
21: ranked frames[o.frame index].append({o.label, o.box, score})
22: end for
23: for each frame index i do
24: SORTBYSCORE(ranked frames[i]) ▷ Descending order
25: end for
26: return {caption, ranked frames}

E.3 HIGH-LEVEL VIDEO PERTURBATIONS

High-level perturbations alter the core semantic and temporal structure of a video. They are designed
to challenge a model’s high-level understanding, including its grasp of style, context, and narrative
causality.

Style Transfer. A robust VTR system should recognize semantic content irrespective of artistic
style. This perturbation tests such invariance by applying style transfer using Adaptive Instance
Normalization (AdaIN) (Huang & Belongie, 2017). To ensure temporal consistency, the style from
a single, randomly selected artistic image is transferred to all frames of a given video. The severity
level controls the α parameter, which dictates the interpolation strength between the original content
and the new style.

Event Insertion. To challenge a model’s contextual understanding, this perturbation simulates
scenarios like ad insertions or video mashups where an unrelated clip disrupts the narrative. For a
given video, we use its CLIP embedding to retrieve a semantically similar (but non-identical) video
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from an external corpus, which is constructed from a diverse base of 3 thousand video clips drawn
from the MSRVTT training set. A segment from this retrieved video is then spliced into the middle
of the original sequence, with the duration of the inserted segment determined by the severity level.

Temporal Scrambling. The chronological order of events is often critical to a video’s narra-
tive. This perturbation simulates network issues like out-of-order packet delivery by disrupting the
video’s temporal sequence. We first trim the video, then divide the remaining clip into several equal-
length chunks which are subsequently reordered. The scrambling complexity scales with severity,
from adjacent swaps to a full random shuffle, directly attacking the model’s reliance on temporal
coherence and causal reasoning.

E.4 FURTHER ANALYSIS OF MLVP BENCHMARK

To validate the effectiveness and design of our MLVP benchmark, we conducted further analysis on
the performance of representative VTR models under its various challenges. As illustrated in Fig. 13,
which plots the Recall@1 performance of CLIP4Clip and X-Pool against the five severity degrees,
the dominant trend is a clear and consistent negative correlation between perturbation intensity and
retrieval accuracy.

However, we also note some intriguing exceptions. Notably, for H.264 Compression at lower sever-
ities (1 and 2), performance slightly improves over the unperturbed baseline. This suggests that
certain mild perturbations do not necessarily degrade performance and may hint at future directions
for model enhancement. It is also worth noting that our proposed HAT-VTR framework maintains
performance gains even in such scenarios, which further demonstrates its robustness (Tab. 32). An-
other interesting anomaly is observed for Snow and Elastic Distortion, where performance shows a
slight uptick when moving from severity 2 to 3. Since the severity parameters for these perturbations
were adopted from Qiu et al. (2024), this finding highlights a valuable direction for future work: de-
veloping a methodology to define a unified set of severity parameters that generalize robustly across
different datasets and data modalities. Despite these minor anomalies, the overall systematic degra-
dation confirms that our principled severity scaling creates a meaningful and measurable gradient for
evaluating model robustness, providing a solid foundation for analyzing the failure points of VTR
systems.

To provide a qualitative understanding of the challenges posed, we visualize the effects of each
perturbation type. Figure 14 showcases the suite of low-level corruptions, demonstrating how per-
turbations like Gaussian noise introduce pixel-level artifacts, Fog reduces contrast, and H.264 Com-
pression creates blocking effects, all while maintaining temporal consistency. Figure 15 illustrates
the more complex mid- and high-level perturbations. These examples highlight the directional,
motion-aware nature of Motion Blur, the targeted impairment of Main Object Occlusion, the con-
textual disruption caused by Event Insertion, and the narrative incoherence introduced by Temporal
Scrambling, showcasing the diversity of spatio-temporal challenges in our benchmark.

Furthermore, we visualize the direct impact of our severity scaling principle in Figure 16. Using
three representative perturbations—Gaussian noise, Motion Blur, and Style Transfer—the figure
contrasts the visual outcome at Severity 1 with that at Severity 5. For instance, Gaussian noise
evolves from a fine grain to a heavy, obscuring static. Similarly, Motion Blur intensifies from a
subtle directional softening to a severe blur that renders the object almost unrecognizable, while the
artistic rendering in Style Transfer becomes progressively more dominant. These examples visually
confirm that our parameter adjustments for each severity degree translate into a clear and graduated
increase in the intensity of the perturbation, ensuring a comprehensive test of model robustness.

F LIMITATIONS AND FUTURE WORKS

While HAT-VTR demonstrates substantial improvements across diverse test scenarios, our compre-
hensive analysis reveals specific scenarios where the method’s effectiveness is constrained, provid-
ing valuable insights for future research directions.
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Figure 13: Performance of v2t models under different severity degrees in MLVP.

F.1 PERFORMANCE ANALYSIS ON CHALLENGING SCENARIOS

Our method exhibits limited improvements in certain challenging scenarios, as evidenced by Ta-
ble 1 2 and 3. Tab. 38 presents the performance breakdown on two representative cases where
HAT-VTR shows modest gains: Temporal Scrambling and Backtranslation. For Temporal Scram-
bling, removing the training component (“w.o. Training”) actually yields slightly better perfor-
mance (33.4 vs 33.1 R@1), suggesting that the TCR-based adaptation may introduce negative opti-
mization in this scenario. Similarly, for Backtranslation, the training component provides minimal
benefit (39.8 vs 39.9 R@1), while the HSM module contributes the majority of the improvement.

Table 38: Ablation study on challenging
scenarios where HAT-VTR shows lim-
ited improvements. “w.o. Training” re-
moves the TCR-based adaptation com-
ponent, while “w.o. HSM” removes the
Hubness Suppression Memory module.

R@1 R@5
Tempo. (HAT-VTR) 33.1 55.3
• w.o. Training 33.4 55.5
• w.o. HSM 32.2 53.4

Backtrans. (HAT-VTR) 39.8 67.1
• w.o. Training 39.9 67.2
• w.o. HSM 37.7 65.6

To understand this phenomenon, Table 39 analyzes
the hubness characteristics across different perturbation
types. The skewness values reveal the underlying cause:
while Gaussian noise induces severe hubness (skew-
ness=9.09 without TTA vs 0.97 with HAT-VTR), Tem-
poral Scrambling exhibits more moderate hubness ampli-
fication (skewness=2.19 vs 1.15). Similarly, in the t2v
setting, OCR perturbation shows limited hubness issues
(skewness=1.95 vs 0.39), while Backtranslation demon-
strates even milder hubness patterns (skewness=1.36 vs
1.12). This analysis explains why HAT-VTR’s hubness-
focused approach yields substantial gains for severe hub-
ness scenarios but offers limited improvements when the
hubness phenomenon is less pronounced.
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Table 39: Hubness analysis across challenging perturbation types for HAT-VTR. Skewness values
indicate the degree of hubness amplification, with higher values representing more severe hubness
issues.

w.o.TTA v2t Gauss. Temp. HATVTR v2t Gauss. Temp. w.o. TTA t2v OCR Backtrans. HATVTR t2v OCR Backtrans.
Skewness 1.52 9.09 2.19 - 0.97 1.15 1.25 1.95 1.36 - 0.39 1.12
R@1 42.5 8.7 32.8 - 23.1 33.1 41.6 21.5 38.5 - 24.5 39.8

F.2 METHOD LIMITATIONS

Based on this analysis, our approach faces three primary limitations. First, although we observe that
perturbations amplify the hubness phenomenon, our work lacks deeper theoretical analysis of the
underlying mechanisms governing how different corruption types induce varying degrees of hubness
amplification. The heterogeneous hubness manifestation across perturbation types necessitates more
nuanced understanding of the relationship between specific corruptions and retrieval failure modes.

Second, our training framework essentially extends TCR learning to the video domain, but extensive
experiments reveal that TCR-based adaptation performs well on low-level perturbations with severe
hubness issues but struggles with scenarios where hubness amplification is moderate. This funda-
mental limitation constrains HAT-VTR’s performance ceiling, particularly evident in cases where
direct HSM reranking without training achieves comparable or better results.

Third, while we explicitly apply HSM for reranking and nearest neighbor selection, integrating hub-
ness suppression directly into the learning loss remains unexplored. This represents a significant
opportunity for developing more principled approaches to hubness-aware adaptation that could po-
tentially address the training limitations identified above.

F.3 MLVP BENCHMARK LIMITATIONS

Our MLVP benchmark, while comprehensive, has inherent limitations that affect evaluation reli-
ability. Following established image-text robustness paradigms, some video perturbations exhibit
non-monotonic severity progression (e.g. Elastic Distortion), necessitating more careful calibration
of severity parameters across different datasets. Additionally, certain perturbations like Main Object
Occlusion and Style Transfer rely heavily on auxiliary model capabilities, potentially limiting the
benchmark’s ability to simulate authentic real-world video corruptions.

F.4 FUTURE RESEARCH DIRECTIONS

These limitations suggest several promising research avenues. Future work should focus on de-
veloping theoretical frameworks that explain perturbation-specific hubness amplification patterns,
potentially leading to adaptive strategies that adjust based on corruption characteristics. The devel-
opment of training paradigms that effectively handle both severe and moderate hubness scenarios
remains crucial, possibly requiring dynamic adaptation mechanisms that activate different compo-
nents based on hubness severity.

Furthermore, investigating direct integration of hubness suppression into learning objectives could
yield more principled adaptation methods. From a benchmarking perspective, developing robust
severity calibration methods and exploring perturbation techniques that better simulate real-world
corruptions would enhance evaluation reliability.

These limitations notwithstanding, our work establishes a solid foundation for hubness-aware video-
text retrieval and provides clear directions for advancing toward more robust cross-modal systems.

G THE USE OF LARGE LANGUAGE MODELS

Large language models were used as a writing assistant to help polish this manuscript. The usage
was limited to improving language clarity, rephrasing sentences, and correcting grammar. LLMs
were not used for generating core ideas, experimental results, or analyses. The authors take full
responsibility for all content presented in this paper.
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b. Gaussian

c. Impulse (Salt and Pepper)

a. Original

d. Fog

e. Snow

f. Elastic Distortion

g. H.264 Compression

Figure 14: Visualization Examples of Different Low-level Video Perturbations
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b. Motion Blur

a. Original

c. Video Defocus

d. Main Object Occlusion

e. Style Transfer

f. Event Insertion

g. Temporal Scrambling

Figure 15: Visualization Examples of Different Mid- and High- level Video Perturbations
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b. Gaussian Severity=1

a. Original

c. Gaussian Severity=5

d. Motion Blur Severity=1

e. Motion Blur Severity=5

f. Style Transfer Severity=1

g. Style Transfer Severity=5

Figure 16: Visualization Examples of Severity Degree Changes in Multi-level Video Perturbations
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