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ABSTRACT

Modern video-text retrieval (VTR) models excel on in-distribution benchmarks
but are highly vulnerable to real-world qguery shifts, where the distribution of query
data deviates from the training domain, leading to a sharp performance drop. Ex-
isting image-focused robustness solutions are inadequate to handle this vulnerabil-
ity in video, as they fail to address the complex spatio-temporal dynamics inherent
in these shifts. To systematically evaluate this vulnerability, we first introduce
a comprehensive benchmark featuring 12 distinct types of video perturbations
across five severity degrees. Analysis on this benchmark reveals that query shifts
amplify the hubness phenomenon, where a few gallery items become dominant
“hubs” that attract a disproportionate number of queries. To mitigate this, we then
propose HAT-VTR (Hubness Alleviation for Test-time Video-Text Retrieval), as
our baseline test-time adaptation framework designed to directly counteract hub-
ness in VTR. It leverages two key components: a Hubness Suppression Memory
to refine similarity scores, and multi-granular losses to enforce temporal feature
consistency. Extensive experiments demonstrate that HAT-VTR substantially im-
proves robustness, consistently outperforming prior methods across diverse query
shift scenarios, and enhancing model reliability for real-world applications. Code
is available at https://github.com/binggingzhang/vtr_tta.git.

1 INTRODUCTION

While Video-Text Retrieval (VTR) models (Luo et al., [2022} |Gorti
et al., |2022) have achieved remarkable success, their performance
hinges on a fragile assumption: that inference data are drawn
from the same distribution as the training data. This assumption g -
. . . . . . . i 7 { s
is frequently violated in real-world applications, leading to a phe- ¥ 0 ¥ .
nomenon known as query shift, where the incoming data distribu- T b R,
tion deviates from the source. The problem is particularly acute for Panda Partly Occluded by a Box
video input, as these distributional shifts introduce perturbations Fjgure 1: Real-world videos
with a unique temporal dimension. For instance, real-world chal- illustrating ~ diverse ~ spatio-
lenges like persistent fog or dynamic object occlusions (Fig. [I) in- temporal complexities that
troduce complex spatio-temporal domain shifts, corrupting not just  challenge VTR models.

static appearances but temporal consistency across frames and caus-

ing a sharp degradation in retrieval accuracy.

Driving in Heavy Fog

This vulnerability has spurred research into test-time robustness, yet efforts have so far been confined
to the image-text domain. The first systematic study (Qiu et al., [2024) introduced a comprehensive
image-text benchmark with controlled perturbations, revealing that even top-performing models are
highly sensitive to distribution shifts. More recently, online Test-Time Adaptation (TTA) meth-
ods (Wang et al., 2021} [Lee et al., 2024) have emerged to address this fragility. Notably, TCR (Li
et al.| [2025b)) pioneered TTA for image-text query-shift retrieval by enforcing representation uni-
formity during inference. However, these pioneering works—both in benchmarking and adapta-
tion—overlook the unique temporal challenges inherent to video. Their focus on static, frame-level
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Figure 2: An overview of the motivation, solution, and performance of our proposed HAT-VTR
method. (a) We first observe that the performance of representative video-to-text retrieval models
collapses under Gaussian perturbations. (b) To diagnose this failure, we analyze the k-occurrence
distribution (the number of times a gallery item is retrieved as the top-15 result), which is relatively
balanced on original data. (¢) When the query is corrupted, the distribution becomes heavy-tailed,
highlighting a worsened hubness phenomenon where a few videos dominate retrieval rankings. (d)
Applying the existing TTA method (TCR) partially mitigates the hubness problem. (e) To address
this root cause, we propose HAT-VTR, a TTA method that uses a Hubness Suppression Memory
and multi-granular losses to directly counteract hubness. (f) Our approach is highly effective, suc-
cessfully restoring a balanced k-occurrence distribution. (g) Consequently, HAT-VTR significantly
improves performance over corrupted baselines and prior art.

artifacts is insufficient for the dynamic nature of video perturbations. This makes test-time adap-
tation for VTR a unique challenge that requires spatio-temporal reasoning. However, to properly
study this challenge, we need a benchmark designed for video dynamics, which is currently absent.

To fill this critical gap, we develop MLVP (Multi-Level Video Perturbations), an extended video
perturbation benchmark that moves beyond the static image perturbations of prior work to probe
the unique spatio-temporal and semantic vulnerabilities of VTR models. The MLVP benchmark
encompasses perturbations across three hierarchical levels: (i) low-level perturbations that affect
pixel values while maintaining temporal consistency (e.g., Gaussian noise), (ii) mid-level perturba-
tions targeting object motion and spatial relationships (e.g., object occlusion), and (iii) high-level
shifts that alter the core semantic or temporal structure (e.g., style transfer). In total, our benchmark
comprises 12 distinct types of video perturbation approaches, each with five severity degrees, result-
ing in 60 controlled test scenarios. This systematic approach provides a principled foundation for
analyzing VTR robustness and developing the next generation of resilient models.

Leveraging our benchmark, we uncover a striking vulnerability: the retrieval performance of VTR
models collapses under video perturbations (Fig. 2Ja)). We attribute this failure to an exacerbated
hubness phenomenon, where a small subset of gallery items become “hubs” that disproportionately
dominate nearest-neighbor rankings (Jian & Wang}, 2023). Our analysis of the k-occurrence distri-
butions provides clear evidence for this, as shown in Fig. 2(b-c), the distribution dramatically shifts
from a relatively balanced state on clean data to a heavy-tailed one under perturbation. Crucially,
we find that applying TCR partially alleviates this hubness (Fig. 2[d)); however, it is not equipped
to handle this severe amplification directly, motivating the need for a targeted solution.

Motivated by our findings, we propose HAT-VTR (Hubness Alleviation for Test-time Video-Text
Retrieval), a straightforward yet effective framework designed to directly counteract this failure
mode and establish a strong new baseline for robust test-time VTR. As conceptualized in Fig. 2]e),
our framework enhances the TTA paradigm with two complementary innovations to systematically
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mitigate hubness. First, a novel Hubness Suppression Memory (HSM) explicitly targets hubs at the
similarity score level. Drawing inspiration from DSL (Cheng et al.,|[2021)), this module maintains a
dynamic history of retrieval patterns and performs real-time similarity refinement to demote overly
popular gallery items, ensuring a more balanced neighbor distribution. Second, we adapt the core
supervision signals of TCR (Li et al., 2025b) for the video domain by introducing multi-granular
losses that leverage video’s temporal hierarchy. Together, these components provide a direct and
effective solution to the hubness problem. As visually demonstrated in Fig. 2{f-g), our approach
successfully restores a balanced neighbor distribution and delivers robust retrieval performance that
outperforms existing TTA methods. In summary, our contributions are threefold:

* To the best of our knowledge, this work introduces the first comprehensive multi-level video
perturbation (MLVP) benchmark for evaluating test-time robustness of VTR, featuring a
multi-level suite of spatio-temporal perturbations tailored for the video modality.

* We propose HAT-VTR, a straightforward yet effective framework that directly counteracts
amplified hubness in test-time VTR. It introduces a Hubness Suppression Memory and
multi-granular losses, establishing a strong new baseline for the field.

» Extensive experiments on different VTR TTA scenarios show that HAT-VTR consistently
outperforms existing TTA methods under both query- and query-gallery-shift scenarios,
enhancing model robustness and offering new insights into real-world VTR challenges.

2 RELATED WORK

Video-Text Retrieval. The dominant paradigm in VTR is the dual-encoder architecture (Radford
et al., 2021} |Luo et al.l 2022), which learns a shared embedding space for videos and texts. Re-
search in this area has focused on improving alignment strategies (Gorti et al.,[2022), handling noisy
correspondences in the training set (Huang et al., |2024), and mitigating the intrinsic hubness phe-
nomenon—where a few items dominate retrieval results—through training objectives (Liu et al.,
2020) or post-hoc score normalization (Cheng et al.l 2021)). However, these methods all operate un-
der the standard i.i.d. assumption, presupposing that test data comes from the same clean distribution
as the training data. Our work reveals that input corruptions at test time dramatically exacerbate the
hubness problem and offers an online adaptation solution specifically for this failure mode.

Test-Time Adaptation. Test-Time Adaptation (TTA) aims to adapt a pre-trained model to a tar-
get domain using only unlabeled test data. The online setting, pioneered by TENT (Wang et al.,
2021)) through entropy minimization, adapts the model on a data stream without access to the source
training data. This paradigm has since been extended to cross-modal retrieval, with methods like
TCR (Li et all 2025b) enforcing representation uniformity to handle query shifts. Nevertheless,
these foundational works are designed for and evaluated on image-text tasks. They do not address
the unique challenges of the video domain, such as the spatio-temporal nature of corruptions and the
resulting amplification of the hubness phenomenon. Our work adheres to the strict online TTA set-
ting, distinguishing it from paradigms like Unsupervised Domain Adaptation (UDA) (Hao & Zhang,
2023)) or Test-Time Training (TTT) (Sun et al., [2020) that relax these constraints.

Vision Corruption Benchmarks. The systematic evaluation of model robustness was established
by image-centric benchmarks like ImageNet-C (Hendrycks & Dietterichl [2019). While this has in-
spired efforts in the video domain, a comprehensive benchmark for VTR robustness against complex
spatio-temporal corruptions has been lacking. The most related prior work (Schiappa et al., 2022)
introduced a VTR-C benchmark, but its corruptions were primarily frame-wise extensions of image
artifacts. In contrast, our benchmark is fundamentally different in two ways: 1) it introduces pertur-
bations that explicitly target the dynamic, inter-frame properties of video, 2) it is the first designed
not just for evaluating intrinsic robustness but for systematically comparing TTA methods in VTR.

Data-driven Style Robustness. Another line of research explicitly trains models on curated multi-
style datasets (e.g., sketches, art) to achieve robustness against a known set of styles (Li et al.| [ 2024b;
Yanhao et al., [2025; [Wu et al., |2025). This is fundamentally different from our online Test-TTA
setting. Our method is trained only on clean data and adapts on-the-fly to unforeseen query shifts
using only the unlabeled test stream, without requiring a pre-built style dataset.

Further literature discussions and their relation to our work are available in Appendix [A]
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Perturbations
Gaussian, Impulse, Fog,
Snow, Elastic Distortion,

(Pixel) h.264 compression

Motion Blur,
Video Defocus,

(Object) Main Object Occlusion

Style Transfer,
Event Insertion,

(Semantic) Temporal Scrambling

Figure 3: Overview of our proposed Multi-level Video Perturbations benchmark. We categorize 12
perturbations into a three-level hierarchy: low-Ilevel (pixel-based), mid-level (motion/object-aware),
and high-level (semantic/temporal). Representative examples from each category are shown.

3 MLVP: MULTI-LEVEL VIDEO PERTURBATIONS BENCHMARK

As established in Sec. [2] existing robustness benchmarks are not well-suited for the video domain as
they primarily apply static, image-level corruptions. To systematically investigate the vulnerabilities
of VTR models to dynamic query shifts and provide a standard for evaluating adaptation methods,
a benchmark tailored for video’s spatio-temporal nature is essential. To this end, we extend the
successful paradigm of systematic image-text robustness evaluation 2024) to the video
domain, proposing our benchmark: MLVP (Multi-Level Video Perturbations). Our benchmark in-
troduces 12 perturbation types across 5 severity degrees, creating 60 controlled scenarios. These
scenarios are instantiated across the test sets of five standard VTR datasets (MSRVTT, ActivityNet,
LSMDC, MSVD and DiDeMo), creating a comprehensive evaluation suite with over 8,500 unique
perturbed videos. These perturbations are organized into a three-level hierarchy probing distinct
model failures: from low-level pixel modifications and mid-level object/motion attributes to high-
level alterations of the core semantic and temporal structure. (See Fig.[3])

Low-level video perturbations modify pixel values while preserving temporal structure. Our suite
simulates common degradations from hardware (Gaussian and impulse noise), weather (fog, snow),
and digital processing (elastic distortion, H.264 compression). Critically, these perturbations are
rendered with temporal consistency by applying the same realization (e.g., shared noise pattern)
across frames of a video, distinguishing them from independent image corruptions.

Mid-level perturbations target object-centric and motion-based attributes to simulate more com-
plex real-world degradations. To model camera artifacts, our motion blur and video defocus imple-
mentations use inter-frame motion vectors to apply a spatially varying blur, where the degradation
is stronger in faster-moving regions. To simulate the obstruction of semantically critical elements,
our main object occlusion employs a novel identification pipeline, providing a more challenging and
realistic test than random occlusion. This pipeline first uses Qwen2.5-VL-7B 2025a) to
generate a video caption, then leverages key nouns from the caption as open-vocabulary queries for
OWLV?2 (Minderer et al.| [2023)) to locate and track the main object for occlusion.

High-level video perturbations alter the core semantic and temporal structure of a video to chal-
lenge its high-level understanding. Our style transfer perturbation tests a model’s style invari-
ance—its ability to recognize semantic content across diverse visual renderings. For efficiency,
we follow the approach of and employ AdaIN (Huang & Belongie, [2017), ensur-
ing temporal consistency by applying a single style image and a fixed set of parameters across all
frames. Event insertion challenges contextual understanding by using a retrieval model to select
a semantically similar video snippet from a database and splice it into the original video. Finally,
temporal scrambling simulates network streaming issues like packet loss and out-of-order delivery
by trimming and reordering video chunks, disrupting the narrative flow and causal relationships.

Further details about datasets and MLVP benchmark are available in Appendix [B-1]and [E]




Published as a conference paper at ICLR 2026

4 HAT-VTR: THE TEST-TIME ADAPTATION METHOD FOR VTR

4.1 NOTATIONS AND PROBLEM FORMULATION

In video-text retrieval (VTR), the setup consists of a query set X© and a gallery set X¢. VTR
encompasses two sub-tasks: video-to-text (v2¢) and text-to-video (£2v) retrieval, where the modality
of the query and gallery sets are swapped. A dual-encoder model, comprising a query encoder fyo
and a gallery encoder fyc, maps these inputs into a shared embedding space. This is represented as:

79 ={fpo(z) |z € X}, Z%={fpe(a)|xe€ X}, (1)

where Z9 and Z¢ are the sets of query and gallery embeddings. Retrieval is then based on a
similarity matrix computed between these embeddings:

SC = gy(29,29). )

The function gy varies with the alignment strategy, ranging from a parameter-free cosine similarity
for coarse-grained alignment to learnable modules like cross-attention transformers for fine-grained
alignment. Finally, the scores in S%'¢ are used to rank gallery items for each query and return
the top results. This process is typically asymmetric in practice: the gallery embeddings Z& are
pre-computed offline, whereas query embeddings Z< are computed online upon request.

The standard VTR paradigm operates on the assumption that the evaluation dataset, D, shares
the same distribution as the finetuning dataset, D, i.e., P(Dr) ~ P(Dg). Online Test-Time
Adaptation (TTA) addresses the setting where this assumption is violated by a distribution shift.
In the cross-modal TTA setting, the adaptation is formulated as a self-supervised query prediction
task. For an online batch of query embeddings Z9* € RZ*XPD and the full gallery embeddings
7% € RN6xD the correspondence probabilities are modeled as:

p = Softmax(Z? (Z)T /1), )

where 7 is a temperature hyperparameter. A primary objective of TTA is to increase the model’s
prediction confidence on the target data by minimizing the softmax entropy 7(-):

min Lrra(p) = min n(p), 4)

where O are the adaptable source model parameters. Following [Li et al.|(2025b)), this framework
addresses two primary scenarios: Query-Shift (QS), where a query distribution shift (P (X g) o
P(X g)) requires adapting the query encoder; and more challenging Query-Gallery-Shift (QGS),
where the gallery distribution also shifts. QGS includes cases such as (a) Cross-dataset adaptation,
involving a D — Dp transfer under the shift P(Dg) » P(Dg); and (b) Zero-shot adaptation,
involving a direct transfer from pretraining to evaluation (P — E) with the shift P(Dp) » P(Dg).

4.2 HUBNESS SUPPRESSION MEMORY (HSM)

The Hubness Suppression Memory (HSM) is a dynamic module designed to counteract the amplified
hubness phenomenon at test time. Inspired by DSL (Cheng et al., 2021)), HSM’s core mechanism
is an adaptive, bilateral normalization of similarity scores, which leverages a memory bank to track
recent query-gallery interaction patterns from the online data stream.

For the current batch of query embeddings ZtQ ® at time step ¢, we first compute its similarity matrix
S = gg(Zth, Z©). The HSM leverages a memory bank, M;_1, which stores the K — 1 most

recent similarity matrices {S;— k1, ..., St—1}. Together with the current matrix Sy, these are used
to form an aggregated similarity matrix S € R(EB-K)*Ne:.
S = Concat(S;, S¢_1,...,St_K+1) 5)

Based on this aggregated history, we compute two distinct weight matrices. First, a gallery-centric
weight matrix, Weiery = softmaxcq(aS), captures the “popularity” of each gallery item across
recent queries. Second, a query-centric matrix, Woyery = softmax;oy (08 S ), captures the tendency of
each query to concentrate on a few items. « and § are temperature hyperparameters. The final hub-

suppressed similarity matrix S is then calculated as a weighted combination of these components:

S = m(g © Wgallery) + (1 - m)(g © unery); (6)



Published as a conference paper at ICLR 2026

Optimize e R CE T | mmm——————— J_________.I
ll{q.zl Z? é ! ‘;[—K+1 St—”k:+2 i i /NLM-Gra:J; Umfc:rrnf" Loss !
Z;Z 2 ! f’f” _; 5 o ~MGUNI =~ ~inter intra !
Query vr g ! Update t=1 X : (Eq. 7+ Eq. 8) :
Encoder ;o & o mw S .
1 Zp 5 1 Multi-Granular Cross-modal Loss !
1_’_ Eq5 ¥ i T T . i !
@ N (”7;“” | 22 2 ! Lymeem = Lglobal t Lframe !
£ B ) G CaE

G 3 . ! f
Gallery™ s B e (g L |
Encoder G a 3 :Reliable Memory: : (Eq. 11) :
“Ne % Retrieval Results \Multi-Granular TCR Learning (Fq. 12)

Figure 4: The pipeline of HAT-VTR. It operates via two parallel components: Hubness Suppression
Memory (HSM) refines similarity scores to counteract hubness, while the query encoder is continu-
ously updated using multi-granular losses to adapt to the target domain.

where ® denotes the element-wise product, and m is a balancing parameter in [0, 1]. The refined

score for the current batch, S't, is extracted from the first B rows of S. To maintain temporal
relevance, the memory M is managed as a first-in, first-out (FIFO) queue of size K. This queue
mechanism ensures the hubness statistics are always based on the most recent data, allowing for
rapid adaptation. HSM is integrated into the TTA pipeline at two stages. First, for Hubness-Aware

Target Selection, we use the refined scores S, instead of raw, hub-biased similarities to select pseudo-
positives for building the Reliable Memory (RM) in our adaptation loss (Sec. d.3)), stabilizing the
learning process by preventing error accumulation. Second, for Posterior Similarity Reranking, we
apply HSM to the adapted similarity scores to produce the final output. The bilateral re-weighting
in Eq. [6] suppresses the spurious, low-consensus scores that hubs attract while preserving high-
consensus matches, directly improving retrieval accuracy.

4.3 MULTI-GRANULAR TCR LEARNING

Our adaptation framework extends TCR’s (Li et al.| [2025b) learning principles by introducing multi-
granular supervision for the video domain. We formulate our objectives for the v2¢ task without loss
of generality; for the inverse f2v task, the uniformity loss simply omits its intra-video component.
The entire process is stabilized by a Reliable Memory (RM), a memory of reliable query-gallery
pairs selected by HSM, providing stable historical targets to prevent catastrophic forgetting.

Multi-Granular Uniformity Loss (L ;cu nvr1). To prevent representation collapse, we adapt TCR’s
uniformity principle for video structure. Our loss comprises two terms: an inter-video term scatter-

ing the global representation of each query in a batch (ZiQ ®) from the batch’s mean Z%v,

B
1 _
»Cinter - E Zexp(_”Zin - ZQb”Q/t)v (7)

i=1
and an intra-video term scattering a video’s frame-level features (ZZQ}?) from their per-video global
representation (i.e. mean pooling in TTA) ZiQ ® to preserve temporal diversity:

B T
1 1
. I § — E 7@ _ »Q
Lmtra = B — T fﬁlexp( ||Zl,]lc) Zi b”?/t) . (8)

The total loss, Ly;gunt = Linter + Lintra>, promotes multi-granular diversity.

Multi-Granular Cross-Modal Loss (Ly;gonr). We evolve TCR’s modality gap alignment into a
multi-granular loss with two components. The global alignment loss aligns the modality gap of the
current batch (between query batch’s mean Z%* and selected pseudo-positive galleries mean Z*)

with a stable target gap, || Z22 ., — ZS »4||2, computed from mean features in RM:
Laona = (129" = 2% = |1 ZR 11 = ZRoall2)* ©)

Concurrently, the frame-level alignment loss aligns the cross-covariance of the batch’s frame-level
query features (Z?b ) and the corresponding gallery pseudo-positives (Z<*) with a target from RM:

Litame = MSE(Cov(Z 2", Z9), Cov(Z g5 ZR 1)) (10)
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Table 1: Comparisons v2¢ results on the MSRVTT-1kA with severity degree 5, regarding the Re-
call@1 (%) metric. The best results are in bold, and ours are highlighted.

Query Low-Level Mid-Level High-Level

Shift Gauss. Impul. Fog Snow Elastic. H264. | Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIP4Clip| 8.7 52 267 149 101 262 | 24.6 52 225 | 48 222 328 |17.0
e Tent 5.0 27 278 161 108 262 | 256 4.6 224 | 42 229 331 |16.8

e READ 9.5 6.7 2677 13.8 9.8 259 | 226 5.8 222 | 58 221 327 |17.0
e SAR 72 3.1 279 165 11.7 264 | 258 52 228 | 43 227 33.0 |172
o EATA 16.2 0.7 300 173 185 275 | 28.7 6.4 245 | 21 232 340 |19.1
e TCR 173 11.6 329 219 201 284 | 287 9.0 252 | 67 227 320 |214
e Ours 231 135 381 296 296 30.6 32.6 15.7 30.1 | 121 263 331 |26.2
Xpool 10.3 7.1 278 172 170 288 | 254 6.2 302 | 6.6 303 33.6 (200
o Tent 7.4 37 290 191 182 295 | 27.0 6.7 310 | 59 305 341 |20.2
e READ | 115 89 277 170 163 283 | 23.6 6.3 298 | 7.6 303  33.7 |20.1
e SAR 10.0 39 287 193 182 295 | 275 7.7 309 | 63 30.8 34.0 [20.6
e EATA 18.2 09 339 218 231 309 | 30.6 9.3 306 | 3.5 314 350 (224
¢ TCR 175 167 33.6 224 215 31.0 | 30.0 9.8 314 | 92 308 341 |24.0
o Ours 262 223 414 309 337 356 353 17.8 355 | 144 352 347 [30.3

Table 2: Comparisons on v2¢t R@1 on the ActivityNet dataset with the highest severity degree.

Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264.| Motion Defocus Occlu. | Style Event Tempo.| Avg.
CLIP4Clip| 490 5.13 19.58 10.19 7.36 33.54 | 14.81 295 13.02 | 3.66 9.80 24.02 |12.41]
o Tent 460 092 10.78 498 9.48 33.58 | 18.73 0.63 4.17 | 079 9.88 24.16 |10.23
eREAD | 2.70 4.07 1562 872 488 31.71| 742 1.65 14.83 | 3.88 9.86 23.77 |10.76
e SAR 887 126 1897 1253 11.06 33.94 | 1845 1.36 6.24 | 1.32 10.01 2430 |12.36
o EATA 388 0.28 13.28 13.89 8.87 31.95| 21.58 1.10 395 | 148 820 2432 |11.07
e TCR 545 11.61 27.17 17.51 18.67 1822 11.73 7.46 744 | 427 720 17.61 |12.86
o Ours 18.26 18.81 32.54 2390 27.58 36.47 26.87 12.75 2042|842 17.94 2345 |22.28
Xpool 6.06 5.08 18.81 10.13 824 29.27| 13.00 3.15 16.76 | 421 22.60 23.35 |13.39
o Tent 777 114 1637 6.28 9.27 2945 14.97 1.08 6.45 | 2.07 2286 2323 |11.75
eREAD | 3.62 403 1861 7.67 622 2886| 8.07 220 16.88 | 437 22.01 23.10 |12.14
e SAR 848 1.53 19.52 1045 10.84 29.43 | 14.85 1.99 14.64 | 279 22.84 23.35 |13.39
e EATA 7775 039 10.09 3.68 10.72 28.66 | 16.70 043 6.10 | 1.50 22.55 2298 |10.96
¢ TCR 921 992 23.65 16.19 14.54 2721 | 1576  6.10 10.88 | 4.05 18.79 17.65 |14.50
o Ours 14.60 14.64 28.41 20.64 23.04 31.99 2235 10.66 19.02 | 7.61 27.80 23.39 |20.35

The total loss, Largom = Lglobal + Lirame, €nsures alignment at both coarse and fine-grained levels.

Noise-Robust Adaptation and Total Loss. Finally, we retain TCR’s core noise-robust entropy
minimization, which is a weighted entropy over the batch’s correspondence probabilities p:

B
1
Ly = ST Z S(pi)n(pi), where S(p;) = max(1 — n(p;)/Em,0). (11)
> lspi>0 =
The self-adaptive weight S(p;) filters out unreliable samples by assigning zero weight to any query
whose prediction entropy 7(p;) exceeds a threshold F,, derived from the Reliable Memory. Our
final adaptation objective is a sum of all components:

Liotat = Lycunt + Lyvgem + Lna. (12)

Pipeline. Finally, the HAT-VTR pipeline is depicted in Fig. 4] For each incoming query batch, an
initial similarity matrix .S; is computed against gallery features. This matrix serves two parallel pur-
poses: for model adaptation, it is used to compute L, (Eq. which updates the query encoder;
for retrieval, it is concurrently refined by the HSM into a hub-alleviated matrix S, for the final
ranking. This dual-path mechanism allows the framework to adapt representations while directly
mitigating hubness in the similarity space, leading to robust online test-time video-text retrieval.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS AND EXPERIMENT SETTINGS

Models, Datasets, and Baselines. Our experiments are based on two representative VTR models,
CLIPAClip (Luo et al.l 2022) and X-Pool (Gorti et al.l [2022), covering coarse- and fine-grained
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Table 3: Comparisons on #2v Recall@1 (%) on the MSRVTT-1kA dataset under text perturbations.

Query Character-Level Word-Level Sentence-Level
Shift OCR CI CR CS CD|SR WI WS WD IP |Backtrans. Formal Casual Passive Active | Avg.
CLIP4Clip | 21.5 12.8 122 15.7 11.2|38.9 39.0 39.7 39.5 39.7 38.5 409 397 406 418 |314
o Tent 21.5 12.6 11.9 159 11.1|38.6 39.0 39.9 39.7 39.5 38.3 414  40.1 410 416 | 315
e READ | 21.5 129 124 158 11.0|38.8 39.1 39.7 39.2 395 38.6 41.0 399 404 416 (314
e SAR 21.4 12.8 12.1 15.7 11.1|38.6 38.9 39.9 39.8 395 38.3 413 402 40.0 417 314
e EATA |21.6 125 122 15.1 10.5|38.6 39.3 39.7 40.2 39.8 38.4 412 396 402 415 314
¢ TCR 21.7 12.8 13.0 149 11.0|39.1 39.4 39.4 39.8 39.8 37.8 409 398  40.1 417 314
o Ours 24.5 13.8 14.1 16.7 12.8 40.7 41.6 41.2 429 429 39.8 436 423 424 437 | 335
Xpool 25.0 125 132 169 12.143.4 441 423 453 46.2 43.1 46.6 453 449 470 (352
o Tent 255 124 13.1 17.0 12.3 432 438 422 452 46.2 429 46.7 449 446 467 |35.1
e READ | 25.1 124 133 17.0 12.0(43.1 439 422 457 46.3 43.1 46.6 455 451 472 352
e SAR 25.6 12.7 132 17.1 122434 437 423 453 46.2 43.3 46.7 452 447 470 (352
e EATA | 252 124 132 17.1 12.2|42.8 44.1 42.1 453 454 42.1 457 449 450 462 | 349
¢ TCR 257 12.8 132 164 12.2|43.6 439 415 452 46.0 42.7 46.1 445 448 468 |35.0
e Ours 269 14.8 144 185 14.7 448 43.8 444 46.6 47.3 42.6 48.7 46.1 46.1  48.1 | 36.5

alignment. We evaluate on five standard benchmarks, reporting results on MSRVTT-1kA (Xu et al.,
2016)) (Video-Text Dataset) and ActivityNet (Fabian & Niebles, 2015) (Video-Paragraph Dataset) in
the main paper (see Appendix [D|for full results). We compare HAT-VTR against five TTA baselines:
TENT (Wang et al.| [2021), READ (Yang et al.| [2024), SAR (Niu et al., 2023)), EATA (Niu et al.,
2022) and the most relevant method TCR (L1 et al., [2025b).

TTA Scenarios and Implementation. We evaluate both video-to-text (v2r) and text-to-video (£2v)
tasks under two primary domain shift scenarios. The first is Query-Shift (QS), where only queries
are corrupted using the 12 video perturbations from our benchmark for v2¢ and 15 text perturba-
tions (Qiu et al} 2024) for r2v. The second, more challenging scenario is Query-Gallery-Shift
(QGS), which includes both cross-dataset and zero-shot adaptation settings. Our framework is built
upon the X-Pool codebase, and all baselines are adapted from their official repositories for fairness.
Following standard TTA practice (Li et al.| [2025b; [Wang et al., [2021), we use the AdamW opti-
mizer [Loshchilov & Hutter| (2017) to adapt only the Layer Normalization (LN) parameters of the
query encoder. All experiments run on a single NVIDIA RTX 4090 GPU. We report the standard
Recall@K (R@K) metric and use a batch size of 16 for all online inference. Key hyperparameters
(r = 0.02,¢t = 10) follow TCR (L1 et al.,[2025b) to ensure a fair comparison.

5.2 COMPARISON RESULTS ON QUERY-SHIFT

We first evaluate HAT-VTR under QS
scenarios, where only the queries are  Taple 4: Comparisons on Cross-dataset Adaptation of QGS.

corrupted at test time. This setUp oG5 MSRVIT +ActivityNet ActivityNet >MSRVTT
mimics common real-world prob-  Dataset V2t 12y V2t 2v
lems, such as using a noisy video or ~ Merrics  |R@1T R@5t R@1T R@51|R@1T R@5T R@IT R@5T
~ CLIPACIip | 32.64 6028 2870 57.58 | 3550 6020 3500 57.50
a text query with typos to search a  “"p I3 e0 (055 350 57.07| 3540 6050 3490 5830

clean database. eREAD | 2638 5245 27.98 5725|3520 59.80 3490 57.80
. eSAR | 3289 6057 2851 5701|3520 60.60 3480 58.10

As shown in Tab. the perfor-  (EATA |31.75 5892 2770 5526 | 3640 60.80 3630 5930
mance of baseline VTR models col-  eTCR | 1928 4037 2630 5249 | 3520 60.00 3500 58.40
lapses under our MLVP benchmark. _*Ous 3610 6421 3653 6543 | 3800 6470 3860 6260
- ; Xpool 2979 5776 3061 57.92| 3580 6280 38.10 61.80

Most existing TTA methods, which — “Jroy 12902 5794 3053 5794 | 3630 6220 3800 6210
are not designed for video’s complex- eREAD |29.14 57.31 30.14 5646|3620 62.60 37.80 61.40
ities, struggle to adapt and offer lim-  *SAR | 2998 578 3069 5796|3630 6270 3800 6200

. ; «EATA | 2811 5621 2998 57.64 | 36.60 62.80 38.60 61.90
ited benefits. While TCR showsmod-  [yop™ | 2945 5617 2081 5725 | 3760 6290 3850 6220

est recovery, our HAT-VTR demon-  ¢ours  33.62 6221 3413 61.85 | 4030 64.80 39.50 64.50
strates consistently superior robust-
ness. By directly targeting the ampli-
fied hubness, it substantially outper-
forms all competitors on both ActivityNet and MSRVTT-1kA datasets, setting a new strong baseline
for robust v2¢ retrieval.

For the reverse r2v task (Tab. E]) we observe a similar trend where HAT-VTR again achieves the best
average performance against text corruptions. Overall, these results validate our core strategy of
targeting the hubness phenomenon. However, We also note that our method’s advantage diminishes
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Figure 5: Ablation studies on HSM’s hyperparameters and t-SNE visualization of HAT-VTR.

in specific cases (e.g., Temporal Scrambling for v2¢ or BackTrans for #2v) where, as analyzed in
Sec. the hubness problem itself is less severe. On the other hand, this highlights that our MLVP
benchmark is comprehensive and challenging enough to uncover these specific model failure modes.

5.3 COMPARISON RESULTS ON QUERY-GALLERY-SHIFT

We further evaluate HAT-VTR in the more challeng-
1ng QGS scenarios, where a model ﬁne-tuned onone  Table 5: Results of Zero-shot Adaptation.
dataset is adapted to a completely different dataset at g MSRVTT ActviNet
1 1 _ 4 Zero-shot v2t 2v v2t 2v
test time. These include cross-dataset adqptatzon, T NG RO T RS RO RGeS NG T RGST
Where a model ﬁne-tuned on one dataset 1S trans- CLIP 26.50 51.80 30.10 53.40 | 17.84 41.18 21.17 46.35
. o Tent 26.80 5220 30.30 53.20 | 16.78 39.19 21.72 46.92
ferred to another (Tab. EI), and the even more diffi- «READ | 2570 4930 20.80 5340 | 927 2436 1544 3647
; H eSAR | 2670 52.50 3020 53.30 | 1843 41.65 21.80 46.86
CUIt ZerO_ShOt a'daptatl()n, Whe.re a pre-tral.ned CLIP e EATA | 27.20 53.50 30.70 53.10 | 16.80 36.77 18.32 42.57
model adapts directly to a retrieval task without any =~ ¢TCR [2790 5450 3050 5390 1865 41.65 2211 4830
. . eOurs 3540 61.40 3520 58.10 28.92 5391 29.18 57.23
fine-tuning (Tab. [5). In both scenarios, the large
query and gallery domain gaps pose a major chal-
lenge that most TTA methods fail to overcome, providing little to no improvement and sometimes
even hurting performance. In contrast, our method consistently adapts to the new domains effec-
tively, achieving clear and significant performance gains across all transfer settings and on both
retrieval tasks (v2¢ and #2v). This demonstrates that our hubness-mitigating approach is a powerful

and generalizable solution for handling severe domain shifts.

5.4 ABLATION STUDY

We conduct ablation studies to analyze the contribution of Table 6: Ablation study of the
HAT-VTR’s core components. We first analyze our proposed HSM integration at Target Selec-
HSM module. As shown in Tab. [6] we test how integrat- fion and Posterior Reranking.

ing HSM at two key stages—7Target Selection and Posterior
Reranking—affects performance. Using HSM at either stage
alone improves results over the baseline, with reranking pro-
viding a larger boost. Applying HSM at both stages yields
the best performance, confirming that the two mechanisms
are complementary and effective. Furthermore, Fig. E] (a)(b)
shows the performance across different HSM’s hyperparame-
ters on both the MSRVTT and ActivityNet datasets. The con-
sistent trends observed across both benchmarks validate the stability of our hyperparameter choices.
Based on this analysis, we set (o, 5, m) to (100, 10, 0.5).

Target Rerank v2r 2v Avg.
233 32.6 28.0

v 23.6 32.8 28.2
v 255 343 299

v v’ 25.8 345 30.1

Next, we study the impact of each component in our multi-granular adaptation loss. Tab.[7]presents
the results of combining different loss terms. We observe that each component contributes positively
to the final performance. Specifically, both the multi-granular uniformity losses (Linter, Linwa) and the
cross-modal alignment losses (Lgiobal, Lirame) are beneficial. The noise-robust entropy term (Lna)
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Table 8: Runtime comparison (ms per query) across methods. All measurements are on an RTX
4090 GPU with a batch size of 16.

Method | CLIPAClip Tent READ SAR EATA TCR HAT-VTR
Runtime(ms) | 225 2626 26778 53.41 2658 26.37 32.27

Table 9: Component-wise runtime breakdown (ms per query) of HAT-VTR.

Process forward backward rm hsm loss_calculation  total
Runtime(ms) 2.23 21.2 2.45 4.2 2.19 32.27
Percentage 6.9% 65.7% 7.6% 13.0% 6.8% 100%

also provides a clear improvement. The best results are achieved when all components are used
together, validating the design of our adaptation loss.

Visualization To understand the effective nature of multi-granular TCR learning, we visualize the
corrupted query embedding space using t-SNE in Fig. [5[c). Without adaptation, the query embed-
dings suffer from representation collapse and cluster tightly (dashed circle). TCR alleviates this by
enforcing uniformity to spread the embeddings, but some local clustering remains (dashed rectan-
gle). Our HAT-VTR achieves an even more uniform distribution by using fine-grained information.
Crucially, the center of its embeddings also shifts significantly closer to the gallery center, indicating
a better query-gallery alignment that explains its superior retrieval performance.

5.5 EFFICIENCY ANALYSIS

We analyze the computational overhead of HAT-  Typle 7: Ablation Study of Adaptation Loss.
VTR to demonstrate its practical applicability. As
shown in Table our HAT-VTR (32.27ms per  Liner Linva Loobal Lorme Lna | V21 12v Avg.
query) remains highly competitive with other TTA 22.6 34.1 28.3

. 23. 4.1 29.
methods like TCR (26.37ms) and EATA (26.58ms) S aa

when run on an NVIDIA RTX 4090 (batch size 16). v 235 34.1 288
This is a minimal and justifiable cost considering v v 239 342 29.0
the substantial robustness gains observed across all P 5 24.1 342 292
uery-shift and query-gallery-shift scenarios. 253 344 29.8
quety query-g vy v v v 25.0 343 29.6
To pinpoint this overhead, Table [ provides a v vV v v 258 345 301

component-wise breakdown. The gradient compu-

tation for the backward pass, common to most TTA

methods, a standard component common to most TTA methods, is the primary time consumer
(65.7%). Critically, our core contribution, the Hubness Suppression Memory (HSM) module, ac-
counts for only 13.0% of the total runtime (4.2ms). This analysis confirms that HAT-VTR’s sig-
nificant robustness gains are achieved with a minimal and justifiable computational cost, primarily
through an efficient hubness suppression mechanism.

Additional implementation details are available in Appendix [B] ablation studies in [C] comparative
results under QS and QGS settings with more datasets in @ and limitations and future work in

6 CONCLUSION

In this work, we address the vulnerability of VTR models to real-world, spatio-temporal query shifts.
We introduce the MLVP benchmark to diagnose this failure and uncover an amplified hubness phe-
nomenon as the primary cause. To mitigate this, we propose HAT-VTR, a test-time adaptation frame-
work that directly counteracts hubness using a Hubness Suppression Memory and multi-granular
losses. Extensive experiments show HAT-VTR substantially improves robustness, consistently out-
performing prior methods across diverse test scenarios. Our work thus contributes both a principled
benchmark for systematic evaluation and a strong, hubness-aware solution, paving the way for VTR
systems that are significantly more robust and reliable in real-world applications.

10
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A LITERATURE REVIEW

A.1 VIDEO-TEXT RETRIEVAL

Video-Text Retrieval (VTR) is a fundamental cross-modal task that aims to match visual content
with natural language descriptions. It encompasses two reciprocal subtasks: video-to-text retrieval
(v2r), where a video query retrieves the best matching textual description and text-to-video retrieval
(t2v), where a text query is used to find the most relevant video from a large gallery. The dominant
paradigm for this task has evolved significantly. Early approaches often employed single-stream,
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unified models (Gabeur et al.l [2020; [Patrick et al., 2021} Bain et al.l [2021) that fed concatenated
video and text features into a shared transformer for joint reasoning, but these were often computa-
tionally intensive. Propelled by the success of CLIP (Radford et al.,[2021)) and BLIP (L1 et al.,|2022),
the field has largely converged on dual-encoder architectures (Luo et al. 2022} |Gorti et al., 2022}
Ma et al.| 2022} Deng et al., 2023; |Wang et al., [2023b; [Shen et al., 2025} |Bai et al., 2025b; [Zhang
et al., |2025b). These models learn a shared embedding space by independently encoding the video
and text modalities and then aligning their representations using a contrastive learning objective.
This process, typically conducted via large-scale pre-training on web data followed by downstream
fine-tuning, is highly efficient for retrieval as gallery embeddings can be pre-computed. However,
the success of these models hinges on a critical assumption: that test data is clean and shares the
same distribution as the training data, overlooking their vulnerability to real-world domain shifts.

Alignment Strategies in VIR. To compute similarity within the shared embedding space, VTR
models employ alignment strategies at different granularities. Coarse-grained alignments (Luo
et al.l 2022} Xue et al., 2022b; Deng et al., [2023) are more efficient approachs, where frame-level
features are pooled into a single global vector to represent the entire video. This global video
representation is then matched against the global text representation. While highly efficient for
large-scale retrieval, these methods can miss nuanced temporal details. Conversely, fine-grained
alignments (Gorti et al., 2022 Ma et al., [2022; Wang et al.| 2023b; [Liu et al.| [2022; [Li et al., [2023;
Zhao et al., [2022; Zhang et al., 2025a)) seek to capture more detailed interactions by comparing lo-
cal features, such as frame-word or clip-word pairs, often using cross-attention mechanisms before
aggregating the local similarity scores. Although these strategies offer a more detailed compari-
son, they define the mechanics of similarity computation under the ideal condition that the features
themselves are robust and the training pairs are correctly matched.

Noisy Correspondence in VTR. A distinct line of research focuses on enhancing model robustness
against noisy correspondences (NC) within the training set (Huang et al., 2024; |Liu et al.| [2024; Ma
et al., 2024a; Lai et al., |2025; Dang et al., |2025). The web-crawled datasets (Miech et al., 2019;
Xue et al.| [2022a} [Bain et al.,[2021)) used for pre-training often contain mismatched video-text pairs
(i.e., label noise). NC methods aim to mitigate the impact of this noise during the training phase, for
instance, by identifying and down-weighting corrupted samples or by using robust loss functions,
thereby improving generalization to a clean test set. This focus is orthogonal to our work. While
NC methods address label noise during training, we tackle the challenge of adapting a pre-trained
model to handle input corruptions at zest time, a scenario where the model is already trained on clean
data but deployed in a shifted domain.

Hubness in VTR. A key challenge inherent to high-dimensional nearest neighbor search is the hub-
ness phenomenon (Radovanovic et al.| 2010; Jian & Wang] 2023)), where a few gallery items—the
“hubs”—become the nearest neighbors for a disproportionately large number of queries, thereby
harming retrieval accuracy. Existing solutions aim to mitigate this intrinsic bias through two pri-
mary approaches. The first is training-time regularization, which modifies the contrastive loss func-
tion to encourage a more uniform or isotropic embedding space, thus preventing hubs from form-
ing (Liu et al.l 2020; Liu & Ye, 2019; |Lin et al., 2025} |Cheng et al., 2021). The second approach
involves inference-time post-processing, which adjusts similarity scores after retrieval. Methods like
CLIP-ViP with DSL (Xue et al.l 2022b) and query-bank normalization (Bogolin et al.,2022; Wang
et al.}2023a; | Xue et al.,|2022b) re-rank results by analyzing neighborhood statistics to demote over-
popular items. While effective in standard settings, these methods were not designed to handle the
drastic distributional changes caused by test-time corruptions.

A critical limitation of all prior work—spanning alignment strategies, noisy correspondence, and
hubness mitigation—is its focus on the standard i.i.d. setting. These approaches assume that test
data shares the same clean distribution as the training data. While Test-Time Adaptation (TTA)
has emerged as a promising solution for domain shifts, its application in cross-modal retrieval (L1
et al., 2025b) has so far been limited to static images and has not addressed the hubness problem.
In contrast, we are the first to reveal that real-world video corruptions dramatically exacerbate the
hubness phenomenon and propose a TTA framework specifically designed to counteract this critical
failure mode in VTR.
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A.2 TEST-TIME ADAPTATION

Test-Time Adaptation (TTA) aims to adapt a pre-trained source model to a target domain using
only unlabeled test data, enhancing robustness against distribution shifts encountered during infer-
ence. The dominant paradigm, named online or fully test-time adaptation, operates on a stream of
test data without access to the source training set. A pioneering work in this area, TENT (Wang
et al., [2021), introduced entropy minimization as a self-supervised objective, updating batch nor-
malization parameters to increase the model’s prediction confidence on target data. Building on
this principle, subsequent research has focused on improving the stability and efficiency of adap-
tation. For instance, some methods employ active sample selection to update the model only on
reliable, low-entropy samples, thereby preventing error accumulation and reducing computational
overhead (Niu et al.|[2022). Others address the inherent instability of TTA in challenging real-world
scenarios—such as mixed domains or small batch sizes—by proposing techniques like sharpness-
aware minimization to find flatter minima that are more robust to noisy updates (Niu et al., [2023).
The limitations of entropy as a sole confidence metric have also been explored, leading to novel self-
supervision signals, such as using object-destructive transformations to better disentangle features
and guide adaptation (Lee et al., [2024).

While most TTA research has focused on unimodal classification, recent efforts have started to
extend these ideas to multi-modal and retrieval tasks. READ (Yang et al.,[2024) was the first to tackle
TTA for multi-modal scenarios, identifying a unique reliability bias across modalities and proposing
an adaptive fusion mechanism to counteract it. More directly related to our work, TCR (Li et al.,
2025b) pioneered TTA for cross-modal retrieval by addressing the query shift problem. It enforces
representation uniformity during inference to stabilize the shared embedding space. However, these
foundational works primarily address static image-text retrieval and focus on specific issues like
modality alignment or query distribution, without investigating the distinct failure modes, such as
exacerbated hubness, that emerge in the video domain under spatio-temporal corruptions.

Relation to Other Adaptation Paradigms. It is crucial to distinguish our online TTA setting
from other adaptation paradigms. Unsupervised Domain Adaptation (UDA) (Liu et al.| 2021 [Li
et al.| [2024a; [Chen et al., [2021; [Hao & Zhang| [2023), for example, also aims to adapt models to
an unlabeled target domain but typically assumes offline access to the entire target dataset, allow-
ing for global distribution alignment. This setting is less practical for real-time applications where
data arrives as a stream. Another line of research involves non-standard TTA settings that relax
the strict online assumption. For instance, Test-Time Training (TTT) (Sun et al., [2020} (Gandels-
man et al.| |2022) and its variants require modifying the pre-training phase to include an auxiliary
self-supervised task, which is then leveraged for adaptation at test time. Other approaches rely on
external memory banks or retrieval mechanisms (Zancato et al., 2023; [Ma et al., 2024b)) to source
relevant samples for adaptation. In contrast, our work operates under the challenging yet practical
online TTA setting, where the model must adapt on-the-fly without any modifications to the origi-
nal training pipeline or reliance on external data sources, a scenario that closely mirrors real-world
deployment.

A.3 VISION CORRUPTION BENCHMARKS

The systematic evaluation of model robustness is built upon a strong foundation of corruption bench-
marks, though this field has historically been dominated by image-level analysis. The seminal
work on ImageNet-C (Hendrycks & Dietterich, 2019)) established a standard for evaluating image
classifier resilience by introducing a comprehensive suite of 15 algorithmically generated corrup-
tions (e.g., noise, blur, weather) at varying severity levels. This principled approach was subse-
quently extended to other vision tasks like object detection with benchmarks such as COCO-C and
Cityscapes-C (Michaelis et al., 2019), and was further adapted to probe the texture versus shape bias
of CNNs (Geirhos et al.L|2018). Later, with the rise of Large Multimodal Models (LMMs) (OpenAl,
2023)), benchmarks like R-Bench (Li et al.,[2025a), MMCBench (Zhang et al.,|2024)), and the multi-
modal robustness benchmark by |Qiu et al.| (2024) have emerged to assess their resilience. A unifying
characteristic of these influential works is their focus on static images. Perturbations are typically
applied on a frame-by-frame basis, neglecting the temporal dimension and inter-frame dependencies
that are fundamental to video.
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Recently, research has begun to address this gap by extending robustness analysis to the video do-
main. One line of work introduced TemRobBench to specifically evaluate LMMs against temporal
inconsistencies, revealing that models often disregard motion dynamics (Liang et al., 2025)).

The work most related to ours introduced MSRVTT-P and YouCook?2-P, the first large-scale bench-
marks for evaluating VTR robustness against both visual and textual perturbations (Schiappa et al.,
2022). However, our work differs in several crucial aspects.

* First, their visual perturbations are largely extensions of image-based corruptions applied
frame-wise, leading to the inclusion of artifacts like JPEG compression that do not holis-
tically capture the dynamic nature of video degradation. In contrast, our benchmark is
designed to model perturbations that affect inter-frame relationships, such as object motion
and semantic consistency.

* Second, their primary goal is to evaluate the intrinsic robustness of various VTR models,
whereas our benchmark is specifically designed to facilitate the study and comparison of
test-time adaptation methods under these challenging conditions.

In addition, the official code and data for this earlier work are no longer accessible, precluding direct
comparison and further research on its foundation. Therefore, to create a reproducible and more
ecologically valid standard, we extend the principles established by image-centric benchmarks (Qiu
et al.; [2024) to the video domain, proposing a new suite of 12 perturbations that explicitly account
for spatio-temporal complexities.

B MORE IMPLEMENTATION DETAILS

B.1 MORE DETAILS ON DATASETS

We conduct our experiments on five standard video-text retrieval benchmarks: MSRVTT, Activi-
tyNet, LSMDC, MSVD and DiDeMo. Due to space constraints in the main paper, we only report
the results for the first two datasets. Below we provide further details on all five datasets and our
specific experimental setup.

MSRVTT The MSR-VTT (Microsoft Research Video-to-Text) dataset (Xu et al., 2016)) is a large-
scale benchmark for video-text retrieval, consisting of 10,000 YouTube clips and a total of 200,000
natural language captions. Each clip, approximately 10-32 seconds in duration, covers a wide range
of real-world scenarios. For our experiments, we adhere to the most widely adopted evaluation
protocol and use the MSRVTT-1kA test split, which contains 1,000 video-text pairs for testing (Yu
et al., [2018)).

ActivityNet The ActivityNet dataset|Fabian & Niebles| (2015) is a large-scale benchmark designed
for high-level video understanding, containing around 20,000 YouTube videos. It is particularly
used for the task of video-paragraph retrieval. Following standard practices |Gabeur et al.| (2020);
Luo et al|(2022), all individual sentence descriptions for a given video are concatenated into a single
paragraph. This setup allows for evaluation at the video-paragraph level. We report our results on
the official ‘vall’ split which contains 4,917 video-paragraph pairs.

LSMDC The LSMDC (Large Scale Movie Description Challenge) dataset (Rohrbach et al., [2017)
is a benchmark composed of 118,081 video clips extracted from 202 different movies. Each clip
ranges from 2 to 30 seconds. The cinematic and narrative complexity of the content makes it a
challenging dataset for video-language research. For evaluation, we align with the data processing
of prior works (Gorti et al.| [2022) and report results on the official test set of 999 video clips.

MSVD The MSVD (Microsoft Research Video Description) dataset |Chen & Dolan| (2011)) is a
widely-used benchmark containing 1,970 short video clips sourced from YouTube, covering a broad
set of open-domain, everyday activities. While the dataset provides rich annotations of approxi-
mately 40 English sentences per video, we form the video-text evaluation pairs by selecting the first
official caption for each video. Our evaluation is conducted on the standard test partition, which
consists of 670 such pairs.

DiDeMo The DiDeMo dataset (Hendricks et al.l 2018)) contains 10K long-form videos from Flickr.
For each video, approximately 4 short sentences are annotated in temporal order. We follow existing

20



Published as a conference paper at ICLR 2026

works to concatenate these short sentences and evaluate ’paragraph-to-video’ retrieval on this bench-
mark. Our evaluation is conducted on the official test split, which consists of 1,004 video-paragraph
pairs (concatenated from 4,021 short captions).

B.2 MORE DETAILS ON TEST-TIME DOMAIN SHIFT SCENARIOS

In our work, we evaluate model robustness under two primary test-time query domain shift scenarios,
which are designed to simulate common real-world challenges.

Query-Shift (QS) This is the most fundamental and common scenario, where only the query dis-
tribution deviates from the training domain. This setup is designed to measure a VTR model’s
robustness against the diverse and often imperfect inputs from online users.

* In the video-to-text (v2t) task, query shifts can arise from user-provided videos that vary
widely in quality or are affected by real-world perturbations such as adverse weather or
compression artifacts. We simulate this using the 12 video perturbations from our MLVP
benchmark.

* In the fext-to-video (t2v) task, shifts can originate from user search queries containing gram-
matical errors, typos, or different stylistic expressions (e.g., formal vs. casual tone, active
vs. passive voice). Following TCR (Li et al., 2025b), we simulate this using 15 standard
text perturbations from |Qiu et al.| (2024)).

Query-Gallery-Shift (QGS) This is a more challenging scenario where the distributions of both the
query and the gallery data shift simultaneously. This setup models situations where a pre-existing
system is deployed to an entirely new environment. We investigate two distinct and practical settings
under QGS:

* Cross-Dataset Adaptation. This setting simulates the deployment of a model that was fine-
tuned on a specific dataset (e.g., Dataset A) to a new application domain that is related but
different. To emulate this, we evaluate the model’s ability to transfer from one benchmark
dataset to another at test time.

» Zero-Shot Adaptation. This represents an even more difficult scenario where a model must
be deployed without any task-specific fine-tuning. It corresponds to a real-world case where
only a general pre-trained model (e.g., CLIP) is available to serve a new collection of data
where user query patterns are unknown. We simulate this by directly adapting the pre-
trained model on a new downstream retrieval task without it having been fine-tuned on any
related data.

B.3 MORE EXPERIMENT DETAILS

Our framework is implemented on top of the official codebase of X-Pool [ﬂ The implementations
of TTA baselines are adapted from the official repositories of TCR and EATA for fair comparison.
During inference, all methods process queries online with a fixed batchsize of 16. Retrieval results
are computed and recorded immediately after each batch in a single evaluation pass. For the learning
rate, we set it to 3 x 1072 for TENT, READ, and SAR in all scenarios. For EATA and TCR, we
use a learning rate of 3 x 10~%. For our HAT-VTR, the learning rate is set to 3 x 10~ for the v2¢
task. For the #2v task, we use a slightly lower learning rate of 3 x 10~° due to the adjustment of the
Lyqun objective. For the hyperparameters in our HSM module, we set the temperature values
(c, B) to (100, 10) and the balancing term m to 0.5.

Ablation and Visualization Settings. Without loss of generality, all ablation studies and visualiza-
tions presented in the main paper were conducted on the MSRVTT-1kA dataset under the Query-
Shift (QS) scenario, using CLIP4Clip as the base model . To ensure a comprehensive yet efficient
evaluation, we selected a representative subset of perturbations. For video perturbations (v2¢), we
report the average results across six types: Gaussian, H.264 Compression, Motion Blur, Main Object
Occlusion, Style Transfer, and Event Insertion. Similarly, for text perturbations (#2v), we selected six
types: OCR, CD, SR, WI, Formal, and Active. This selection was designed to cover perturbations
from different hierarchical levels while accelerating the experimental process.

"https://github.com/layer6ai-labs/xpool
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B.4 DETAILS ON TEXT PERTURBATIONS

For the text-to-video (#2v) query-shift experiments, we adopted the comprehensive suite of 15 text
perturbations proposed by [Qiu et al.| (2024). (See Tab. [I0) These perturbations are categorized into
three hierarchical levels: character-level, word-level, and sentence-level. The original benchmark
defines severity degrees from 1 to 7 for character- and word-level perturbations, while sentence-
level perturbations have a single degree. In our experiments, we used a fixed severity degree for
each level to ensure consistency: severity 7 for character-level, severity 2 for word-level, and the
default degree 1 for sentence-level perturbations.

These methods, detailed in [Qiu et al.| (2024), simulate a wide range of common errors and stylistic
variations in user-generated text queries. For instance, the sentence-level perturbation ‘Back Trans-
lation’ (Backtrans.) involves translating a sentence into another language (e.g., German) and then
translating it back to the original language (English) via Ng et al.| (2019), a process which often
introduces grammatical or stylistic variations while preserving the core meaning.

Table 10: Overview of the 15 text perturbation methods from Qiu et al.| (2024), illustrated with an
example from the MSRVTT-1kA dataset where perturbed segments are highlighted.

Perturbation Method Abbr. Example
Original
Clean Text - a person is connecting something to system

Character Level

Optical Character Recognition OCR a person is connecting something t0 system
Character Insertion CI a Operso(n is connecting something to sy steum
Character Replacement CR a peGsen is connecting something to gysoem
Character Swap CS a person is ocnnectngi socmthngi to system
Character Deletion CDh a person is connec g something to |s|yste
Word Level
Synonym Replacement SR a is connecting something to system
Word Insertion WI a person is a connecting something to system
Word Swap WS a person is connecting
Word Deletion WD a person is connecting to system
Insert Punctuation 1P a person is connecting something to system

Sentence Level

Back Translation Bracktrans.  a person something system
Formal Style Formal person is connecting something to a system
Casual Style Casual a person is connecting something to system
Passive Voice Passive system
Active Voice Active a person something to system

C MORE ABLATION STUDY RESULTS
In this part, we provide a more detailed analysis of our model’s hyperparameters and offer additional

qualitative results to further validate the effectiveness and efficiency of our proposed HAT-VTR
framework.

C.1 MORE HYPERPARAMETERS ANALYSIS

We conduct a thorough hyperparameter sensitivity analysis in Fig. [6]to determine the optimal set-
tings for our method. Our investigation into the temperature parameter ¢ from Eq. reveals that
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Figure 6: Ablation study on parameter ¢ from Eq. batchsize and LearningRate of our method.

performance peaks at ¢ = 10, which we adopt for our experiments. The model demonstrates re-
markable stability across various batch sizes B. To ensure a fair comparison, we fix the batch size
to 16 for all TTA methods. Consequently, we set the learning rate to 3 x 10~ for v2t and 3 x 10~°
for 12v, as these values yield the best performance for each respective direction.

Fig. [7] illustrates the impact of other key hyperparameters,showing results across both MSRVTT
and ActivityNet to demonstrate stability.Fig. [7] (a) analyzes 7 Eq. [3), with optimal performance
observed around r = 0.02, which we use in our experiments. Fig.[/(b) and (c) study the memory
bank sizes for the Hubness Suppression Memory (HSM) and the Reliable Memory (RM). For the
HSM size K , performance is highly stable across the tested range of 50 to 300 on both datasets.
This contrasts with the previous figure and confirms that the model is not sensitive to this choice.
Considering the computational overhead, we set K = 100, which provides an excellent balance
between performance and efficiency. For the RM , performance also remain stable across the tested
range from 8 to 32, demonstrating robustness to this hyperparameter. We select a size of 16 for all
experiments. These results highlight that our model achieves stable performance with reasonable
parameter settings while being practical for deployment.
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Figure 7: Ablation study of 7, the memory bank size from HSM and Reliable Memory.
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Figure 8: Loss Convergence of HAT-VTR under Different Perturbations.
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Loss Convergence We validate our adaptation stability in Figure [§| which plots the total adapta-
tion loss convergence in MSRVTT dataset. The loss is shown over test-time iterations under three
diverse perturbations: (a) Gaussian, (b) Style Transfer, and (c) OCR. In all scenarios, the loss rapidly
converges to a stable value, demonstrating the robustness and efficiency of our test-time adaptation
framework.

Table 11: Stability analysis of HAT-VTR across various random seeds.

MSRVTT ActivityNet
seed | v2t 12v v2t  t2v

42 258 345 | 214 323
0 25.8 346 | 21.2 325
100 | 259 347 | 21.3 323
200 | 255 344 | 214 324
512 | 25.6 344 | 214 323

Seed Analysis To verify that our method’s performance is stable and not sensitive to random
initialization, we conduct experiments using five different random seeds (0, 42, 100, 200, and 512).
Our main experiments follow the default seed 42 from the X-Pool codebase, which ensures our
results are fully reproducible. We report the average R@1 on the same ablation subsets of MSRVTT
and ActivityNet used in the main paper. As shown in Table [T} the performance metrics for both
v2t and t2v tasks across both datasets show negligible variance. For example, the MSRVTT v2t
score only varies between 25.5% and 25.9%, and the ActivityNet t2v score ranges from 32.3% to
32.5%. This high consistency strongly demonstrates the stability and reliability of our HAT-VTR
framework.

Table 12: Sensitivity analysis for HSM’s « and 8 hyperparameters across MSRVTT and ActivityNet.

MSRVTT ActivityNet
a, 8 v2t  12v v2t  12v
10, 10 247 321 | 20.2  31.7

10,100 | 24.7 32.0 | 20.5 31.9
10,500 | 24.8 34.2 | 20.6 31.9
100,10 | 25.8 345 | 214 323
100, 100 | 25.5 344 | 214 324
100,500 | 25.6 33.7 | 21.3 32.1
500,10 | 243 33.0 | 20.8 31.8
500, 100 | 24.3 33.0 | 209 31.5
500,500 | 244 329 | 20.1 31.5

Sensitivity Analysis of o, 5 Table [12] provides the detailed ablation data for the HSM hyperpa-
rameters « and 3, supplementing the visualization in Fig. [5(a). The analysis is conducted on both
MSRVTT and ActivityNet. The results show that our chosen setting, («, 3) = (100, 10), consis-
tently yields the best performance for both v2t and t2v tasks across both datasets. This comprehen-
sive validation confirms the stability and robustness of this hyperparameter choice.

C.2 VISUALIZATION OF HUBNESS PHENOMENON AND EFFECTIVENESS OF HSM

To provide a qualitative understanding of our method’s ability to mitigate hubness, we visualize the
video-text similarity matrices on the MSRVTT-1KkA dataset in Fig.[9} The visualization clearly shows
that under Gaussian noise, the original similarity matrix (b) suffers from significant off-diagonal
noise, where incorrect pairs exhibit high similarity scores—a direct manifestation of the hubness
problem. While the baseline TTA method, TCR, partially reduces this noise (c), our HAT-VTR
method (d) achieves a substantially more effective suppression of these spurious similarities. This
significant improvement is primarily driven by our novel Hubness Suppression Memory (HSM),
which greatly suppresses the hubness phenomenon by directly targeting and refining the similarity
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scores. The resulting matrix features a much cleaner diagonal pattern, indicating that our approach
successfully reinforces the ground-truth video-text correspondences while effectively reducing the
hubness effect that plagues baseline models.

_(a) Original Similarities (b) Original + Gaussian

0.25

r0.20

24005 Ajuuejiwis

(c) TCR + Gaussian (d) HAT-VTR (Ours) + Gaussian

=0.05

Figure 9: Visualization of similarity matrices for video-text retrieval on MSRVTT-1kA dataset. We
show the first 250 v2¢ samples across four methods: (a) Original similarities, (b) Original + Gaussian
noise, (¢c) TCR + Gaussian noise, and (d) Our HAT-VTR method. The diagonal represents ground
truth video-text correspondences. Our HAT-VTR method demonstrates significantly reduced hub-
ness effect with cleaner diagonal patterns and suppressed off-diagonal noise compared to baseline
methods.

Fig. [I0| further validates the superiority of our framework by analyzing the accuracy of the Reliable
Memory (RM) during the dynamic test-time adaptation process. Across three distinct and chal-
lenging perturbation scenarios—Gaussian Noise, Motion Blur, and Style Transfer—our HAT-VTR
consistently maintains a higher RM accuracy compared to the TCR baseline. This demonstrates that
our Hubness-Aware Target Selection mechanism is more effective at identifying and storing truly
reliable query-gallery pairs, even under severe distribution shifts. This robust memory update pro-
cess is crucial for preventing catastrophic forgetting and ensuring stable adaptation, which in turn
leads to superior retrieval performance.

C.3 FURTHER ANALYSIS OF HUBNESS EFFECT ON QUERY SHIFT

To quantitatively assess hubness, we utilize distribution-based metrics (skew-
ness(skew) (Radovanovic et al) 2010), truncated skewness(trunc) 2014), Atkinson
index(akinson) (Fischer & Lundtofte, [2020), Robin Hood index(robin) (Feldbauer et all
[2018)) and occurrence-based metrics (antihub(anti) (Radovanovié et all and hub occur-
rence(hub) (Radovanovic et al.,[2010)), following prior work

Table T3] presents a detailed comparison of these metrics. The results confirm our hypothesis: query
shifts (e.g., Gaussian noise) dramatically exacerbate the hubness phenomenon, leading to high skew-
ness and hub occurrence in the baseline model. While TCR offers partial mitigation, our HAT-VTR
framework consistently and significantly reduces hubness across all tested video and text perturba-
tions, restoring a much more balanced retrieval distribution.
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Figure 10: Reliable Memory (RM) accuracy during dynamic updates across different perturbation
scenarios on MSRVTT-1kA. The x-axis represents the number of RM update steps during test-time,
and the y-axis shows the RM accuracy between video-text pairs. Our HAT-VTR consistently out-
performs TCR across all perturbation scenarios, demonstrating superior robustness in maintaining
reliable memory accuracy during dynamic updates.

Table 13: Comparaison of Hubeness Metrics on Different Perturbations.

gaussian motion_blur temporal_scrambling ocr backtrans

Metrics | CLIP4Clip4 TCR Ours | CLIP4Clip4 TCR Ours | CLIP4Clip4 TCR Ours | CLIP4Clip4 TCR Ours | CLIP4Clip4 TCR Ours
skew | 9.09 5.07 097 16.27 525 0.86 2.19 1.8 115 1.95 1.84 0.39 1.36 1.19 112
trunc | 5.05 2.12 0.63 2.22 1.55 0.6 1.11 1.18 0.53 1.19 1.04 0.34 0.72 08 0.5
atkinson | 0.6 0.27 0.05 0.23 0.15 0.05 0.08 0.1 0.06 0.12 0.11 0.05 0.08 0.07 0.06
robin | 0.64 041 0.18 0.38 031 0.18 0.38 031 0.18 0.27 0.26 0.18 0.22 021 0.19
anti | 0.19 004 0 0.02 0 0 0.02 0.004 0 0 0 0 0 0 0
hub | 10.25 6.58 0.94 6.11 454 1.07 2.78 332 1.24 3.74 3.16 0.59 2.63 1.88 1.15

This superior hubness suppression translates directly to performance gains. As shown in Table [T4]
our TTA-based optimization outperforms prior training-based hubness suppression methods like
NeighborRetr (Lin et al., 2025) and QBNorm (Bogolin et al., | 2022)) on both CLIP4Clip and Xpool.
This demonstrates that an adaptive, test-time solution like HAT-VTR is essential for achieving robust
retrieval under query shifts.

C.4 MORE COMPUTATIONAL EFFICIENCY ANALYSIS
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Figure 11: GPU Memory Usage during Test-time Adaptation on MSRVTT-1kA. (a) Peak memory
usage comparison between HAT-VTR and TCR. (b) Memory footprint of the HSM and Reliable
Memory (RM) components in HAT-VTR, demonstrating their low and stable consumption.

The memory overhead of HAT-VTR primarily stems from the HSM module, which maintains a
queue of recent similarity matrices. As shown in Fig.[T1|a), the peak memory usage of HAT-VTR
is only negligibly higher (approx. 17MB) than the TCR baseline. Fig. [TT(b) further details the
memory consumption of our new components, showing the HSM and Reliable Memory (RM) are
highly efficient, consuming less than 0.4MB and 0.1MB, respectively. The memory usage scales
linearly with the queue size rather than the total dataset size, ensuring that our method remains
practical for large-scale retrieval scenarios.
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Table 14: Video Perturbations with Different Hubness-suppression Methods.

v2t type gaussian h264_compression ~ motion_blur  main_object_occlusion style_transfer event_insertion | Avg.
CLIP4Clip_ori - 8.7 26.2 24.6 225 48 222 182
NeighborRetr Training-based 18.5 28.1 26.4 29.9 10.9 26.5 234
HSM+QBNorm Training-free 225 28.6 31.2 29.3 11.8 25.6 24.8
CLIP4Clip+ours | TTA-Optimization ~ 23.1 30.6 32,6 30.1 12.1 26.3 25.8
Xpool+ours TTA-Optimization ~ 26.2 35.6 353 35.5 14.4 35.2 30.4
2v type ocr char_delete synonym_replace word_insert formal active Avg.
CLIP4Clip_ori - 21.5 11.2 389 39.0 40.9 41.8 322
NeighborRetr Training-based 23.8 12.8 40.2 40.8 45.4 46.2 349
HSM+QBNorm Training-free 23.6 12.1 40.4 39.8 42.7 42.8 33.6
CLIP4Clip+ours | TTA-Optimization ~ 24.5 12.8 40.7 41.6 43.6 437 345
Xpool+ours TTA-Optimization ~ 26.9 14.7 44.8 43.8 48.7 48.1 37.8

Table 15: Wall-clock time (in seconds) for different TTA methods to process the entire MSRVTT-
1kA test set on NVIDIA RTX 4090 and RTX A6000 GPUs.

RTX4090 RTX A6000
v2t t2v v2t t2v
Tent 36.27s 14.27s | 62.05s 24.11s
READ | 36.73s 14.85s | 62.72s 24.51s
SAR 63.09s 16.54s | 113.27s 28.61s
EATA | 36.58s 14.58s 62.6s 24.44s
TCR 36.38s  14.52s | 62.34s  24.36s
ours 37.06s 14.77s | 65.41s 24.76s

We further report the total wall-clock time to process the entire MSRVTT-1kA test set in Table
The experiments are conducted on both NVIDIA RTX 4090 and RTX A6000 GPUs. Our method
(HAT-VTR) demonstrates comparable efficiency to other TTA baselines like TCR and EATA. For
instance, on the RTX 4090, our method incurs only a minor computational overhead (37.06s vs.
36.38s for TCR in the v2f task), confirming that the substantial robustness gains come at a very low
cost in terms of inference speed.

These analyses confirm that HAT-VTR achieves substantial performance improvements with min-
imal computational and memory overhead, making it a practical solution for real-world video-text
retrieval applications.

D MORE COMPARISON RESULTS

D.1 GENERALIZABILITY ACROSS FOUNDATION MODELS

To validate the generalizability of our framework, we apply TTA to four different foundation mod-
els, with results shown in Tab. [I6] We conduct experiments on MSRVTT-1Ka (v2r) using CLIP-
ViT-B/32, the stronger CLIP-ViT-B/16, the vision-language model BLIP-ViT-B/16, and the recent
universal embedding model, LanguageBind [Zhu et al|(2024). The results clearly demonstrate that
HAT-VTR consistently and substantially outperforms all baselines across all architectures. Notably,
our method improves the average R@1 score over the strongest baseline (TCR) from 14.4% to
21.3% on CLIP-ViT-B/32, from 16.5% to 23.6% on BLIP-ViT-B/16, and from 22.6% to 27.7%
on LanguageBind. This confirms that amplified hubness is a common failure mode and that our
hubness-aware adaptation is a generalizable solution for enhancing the robustness of diverse VTR
models.

D.2 MIXED VIDEO PERTURBATIONS IN MLVP

While our MLVP benchmark systematically evaluates robustness under controlled single-type per-
turbations with fixed severity degrees, real-world scenarios present a more complex challenge where
multiple perturbations of varying severities occur simultaneously. To assess the practical robustness
of HAT-VTR under such realistic conditions, we conduct additional experiments with mixed video
perturbations that better reflect the complexity of real-world deployment scenarios.

Tab. [17] presents the results under mixed severity degrees, where videos within the same batch are
corrupted with the same perturbation type but with different severity levels ranging from 1 to 5. This
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Table 16: Comparisons on v2t R@1 on the MSRVTT Dataset with Different Foundation Models.

Query Low-Level Mid-Level High-Level

Shift Gauss. Impul. Fog Snow Elastic. H264.| Motion Defocus Occlu. | Style Event Tempo. | Avg.

CLIP-ViT-B/32| 7.1 49 161 106 79 142 | 11.8 3.6 87 | 43 167 228 |10.7
o Tent 55 43 153 93 74 144 | 145 3.6 85 | 32 174 228 |105
e READ 74 50 17.0 11.1 7.8 14.7 9.9 34 87 | 44 155 221 |10.6
e SAR 6.4 47 160 9.9 8.3 146 | 142 3.9 88 | 36 174 229 |109
o EATA 4.1 26 17.1 32 1.0 15.1 | 15.6 2.7 10.1 | 1.8 185 23.1 | 9.6
¢ TCR 120 93 218 133 142 17.1 | 175 6.6 125 | 6.3 187 238 |144
o Ours 184 159 29.7 227 242 250 | 26.1 13.1 226 | 7.6 234 274 213

CLIP-ViT-B/16 | 5.5 68 199 154 37 156 | 14.0 4.0 125 | 32 178 258 [12.0
o Tent 3.1 49 199 153 29 143 | 152 32 114 | 27 181 260 |11.4
e READ 6.2 73 198 157 42 155 | 129 4.0 122 | 40 159 246 |119
e SAR 4.7 62 202 156 33 145 | 15.1 3.6 124 | 2.8 180 258 |11.9
o EATA 49 37 21.1 155 1.0 157 | 16.7 1.5 136 | 1.1 183 267 |11.7
¢ TCR 1.6  11.0 265 190 125 18.1 | 19.0 8.1 142 | 50 173 248 |156
o Ours 174 180 32.6 261 193 26.6 | 264 154 264 | 94 256 306 228

BLIP-ViT-B/16 | 6.7 74 206 163 45 172 | 15.1 4.7 129 | 45 184 264 |129
o Tent 3.6 52 203 162 37 15.6 | 16.1 4.1 128 | 41 188 264 |122
¢ READ 6.9 78 20.1 166 5.0 17.0 | 15.1 4.8 128 | 46 179 258 |129
e SAR 53 7.0 21.1 166 4.1 16.6 | 163 4.5 13.1 | 39 192 268 |129
o EATA 5.1 39 232 162 1.5 162 | 17.6 2.2 143 | 14 184 269 |122
e TCR 119 125 281 197 13.0 188 | 20.2 8.5 158 | 53 188 252 |16.5
o Ours 179 192 34.0 265 202 27.6 | 26.7 15.3 282 | 10.0 26.1 315 23.6

LanguageBind | 144 150 329 23.1 112 276 | 273 5.5 275 | 7.1 232 326 |206
o Tent 122 11.1 320 223 85 275 | 27.6 33 28.0 | 3.7 242 326 |194
¢ READ 153 158 334 230 11.8 278 | 274 6.5 268 | 7.7 232 330 |21.0
e SAR 141 141 331 237 97 277 | 274 4.2 280 | 49 241 329 |203
o EATA 16.5 7.1 352 165 45 294 | 27.6 0.4 308 | 43 225 329 |19.0
¢ TCR 184 195 323 27.1 155 29.1 | 285 8.0 280 | 99 225 318 |226
o Ours 247 239 393 319 248 325 | 323 15.1 33.0 | 125 289 333 277

setting simulates scenarios where environmental conditions vary in intensity across different video
samples. HAT-VTR demonstrates consistent superiority across all perturbation categories, achieving
an average improvement of 3.5% R@1 points over TCR on CLIP4Clip.

Table 17: Comparisons v2¢ results on the MSRVTT-1kA with mixed severity degrees.

Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264. | Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIP4AClip| 255 13.8 33.6 208 292 387 | 323 18.3 282 | 18.0 234 356 |26.5
e Tent 266 107 348 214 296 389 | 337 18.8 28.7 | 183 238 364 |268
eREAD | 245 161 330 202 283 389 | 320 18.0 279 | 18.1 227 373 |264
e SAR 270 123 350 220 296 39.0 | 33.6 194 287 | 189 234 381 |273
o EATA 29.7 18.8 364 243 306 38.6 | 345 21.8 306 | 19.6 245 373 | 289
¢ TCR 30.7 234 355 284 306 385 | 341 22.1 30.5 [ 20.1 245 37.8 |29.7
e Ours 348 311 391 333 352 394 370 25.0 355 | 222 279 381 |332
Xpool 283 158 369 232 351 408 | 333 20.4 347 120.1 351 369 |[30.1
o Tent 303  13.1 383 244 357 414 | 344 222 359 204 354 36.8 |30.7
eREAD | 27.6 172 355 23.1 343 407 | 323 19.7 339 (200 349 36.8 |29.7
e SAR 30.2 155 38.1 244 358 411 34.5 21.9 356 1209 355 369 |309
o EATA 342 240 40.6 303 363 413 | 355 23.8 358 | 238 360 375 |333
¢ TCR 320 254 405 286 372 412 | 354 233 363 | 229 364 37.1 |33.0
e Ours 38.7 325 429 346 382 434 382 28.3 388 | 274 373 39.6 |36.7

To further challenge the robustness of our method, we evaluate performance under mixed perturba-
tion types, where different percentages of queries in each batch are corrupted with randomly selected
perturbations from our MLVP benchmark. Tab. [I8|reports the results across different noise ratios,
from 20% to 80% of queries being corrupted. This setting represents the most realistic deployment
scenario where various types of corruptions occur unpredictably. HAT-VTR maintains superior per-
formance across all noise ratios, achieving an average improvement of 3.5% R@1 points over TCR.
Crucially, our method shows strong resilience even at high corruption ratios, maintaining 27.6%
R@1 when 80% of queries are corrupted compared to TCR’s 21.7%, demonstrating the robustness
of our hubness suppression approach under diverse and unpredictable perturbation patterns.
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Table 18: Performance under mixed perturbation types with varying percentages of corrupted
queries. Results show R@1 (%) on MSRVTT-1kA where different ratios of queries are randomly
corrupted with perturbations from our MLVP benchmark.

Query Percentage of Noised Queries
Shift 20% 40% 60% 80% Avg.
CLIP4Clip | 36.7 31.1 272 21.0 29.0
o Tent 363 31.1 272 215 290
e READ | 36.1 30.7 269 210 287
e SAR 364 31.1 273 214 29.1
e EATA 36.6 31.6 27.7 237 299
e TCR 36.1 305 265 21.7 287
e Ours 374 344 293 27.6 32.2
Xpool 384 336 28.8 238 312
o Tent 39.0 341 292 237 315
eREAD | 385 337 285 234 310
e SAR 389 342 293 238 31.6
e EATA 399 349 293 259 325
¢ TCR 386 341 293 243 316
e Ours 41.6 37.6 323 29.0 351

D.3 MORE RESULTS ON QUERY-SHIFT

To further validate the effectiveness of our proposed HAT-VTR framework, we conduct additional
experiments on more datasets under query-shift scenarios. The results consistently demonstrate the
superiority of our approach across diverse evaluation settings.

For v2t retrieval, we evaluate on LSMDC and MSVD datasets with MLVP video perturbations. On
the LSMDC dataset (Tab. @]), HAT-VTR achieves substantial improvements over all baselines, with
particularly notable gains on high-level perturbations such as style transfer (7.61% vs. 4.80% for the
best baseline TCR with CLIP4Clip). The challenging MSVD dataset (Tab. 20) reveals even more
pronounced advantages, where our method delivers consistent improvements across all perturbation
categories. Notably, HAT-VTR demonstrates exceptional robustness against low-level corruptions,
achieving 33.28% R@1 on Gaussian noise compared to 28.06% for TCR, highlighting our frame-
work’s ability to effectively counteract the amplified hubness phenomenon under diverse video cor-
ruptions.

We further observe a similar trend for v2¢ retrieval on the DiDeMo dataset (Tab. @I) On this dataset,
HAT-VTR again demonstrates exceptional robustness. For instance, on the CLIP4Clip benchmark,
our method (23.11%) achieves a significant R@1 improvement of 5.18% over TCR (17.93%). Fi-
nally, we further validate the 2v task performance on Tab. [25] The results consistently show that
HAT-VTR achieves the best average performance across all three perturbation levels (character-,
word-, and sentence-level) on both CLIP4Clip and X-Pool models

For 2v retrieval under text perturbations, we evaluate on ActivityNet, LSMDC, and MSVD datasets.
On ActivityNet (Tab. 21), HAT-VTR consistently outperforms all baselines across character-level,
word-level, and sentence-level perturbations, achieving an average improvement of over 4% com-
pared to the strongest baseline. The LSMDC results (Tab. 22)) and MSVD results (Tab. [23)) further
confirm this trend, with our method showing particular strength on word-level perturbations where
semantic understanding is crucial. These comprehensive results across multiple datasets and per-
turbation types validate that our hubness-aware adaptation strategy provides robust performance
improvements regardless of the specific corruption mechanism or dataset characteristics.

D.4 MORE RESULTS ON QUERY-GALLERY-SHIFT

D.4.1 QGS IN CROSS-DATASET ADAPTATION SCENARIO

We conduct extensive cross-dataset adaptation experiments across five dataset pairs, each presenting
unique domain shift challenges that test our method’s robustness across diverse video-text domains.
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Table 19: Comparisons on v2t R@1 on the LSMDC dataset with MLVP video perturbations.

Query Low-Level Mid-Level High-Level

Shift Gauss. Impul. Fog Snow Elastic. H264.| Motion Defocus Occlu. | Style Event Tempo. | Avg.

CLIP4Clip | 10.61 8.61 3.60 6.11 13.51 040 | 1401 12,61 511 | 440 691 1121 | 8.09
o Tent 1091 941 240 490 14.11 0.10 | 13.71 1271 460 | 440 721 1131 | 7.98
e READ | 1041 791 490 6.01 1291 0.30 | 13.71 1231 5.11 | 450 6.51  11.31 | 7.99
e SAR 11.01 9.61 270 541 1401 030 | 13.61 1261 531 |440 731 1141 |8.14

e EATA | 12.01 11.11 120 6.61 1522 0.10 | 14.6] 12.61 521 | 511 7.11 11.71 | 855
¢ TCR 11.61 11.51 621 791 1421 0.80 | 13.81 1271 551 | 480 641 1191 | 895
o Ours 13.81 14.21 9.51 11.51 16.62 0.80 16.02 1512 871 7.61 991 13.01 |11.40
Xpool 931 721 400 531 1451 090 | 13.71 11.81 6.51 |4.20 1021 11.01 | 8.22
o Tent 9.71 801 270 501 1522 0.80 | 1391 1221 591 |4.10 1031 1131 | 827
eREAD | 921 6.71 420 541 1371 1.00 | 1341 11.71 6.61 | 440 991 10.71 | 8.08
e SAR 991 811 270 521 1502 090 | 1421 1211 631 | 430 1031 11.21 | 836
e EATA | 11.61 1131 0.60 450 1481 030 | 1512 1321 6.11 |5.11 10.61 11.01 | 8.69
o TCR 11.51 981 551 7.01 1431 1.10 | 1481 1241 7.71 | 551 10.61 11.31 | 9.30
® Ours 1431 13.61 9.71 10.81 16.52 130 1632 1542 7.81 871 13.21 1241 |11.68

Table 20: Comparisons on v2¢t R@1 on the MSVD dataset with MLVP video perturbations.

Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264. | Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIPAClip | 23.88 19.40 37.01 20.15 2627 21.04| 41.04 20.75 20.75 | 14.48 26.87 48.36 |26.67
e Tent 25.07 21.04 3791 20.75 27.46 2224 | 4149 21.19 21.04 | 14.03 27.01 47.61 |27.24
e READ | 23.28 17.76 3642 20.00 2597 21.94| 4030 19.85 20.30 | 14.78 27.31 48.51 |26.37
e SAR 2448 21.04 37.01 2134 27.61 2224| 4149 2134 21.04 |1448 27.01 4821 |27.27
e EATA | 27.76 2552 40.90 24.78 3239 2537 | 4537 2433 22.09 |16.27 28.66 47.76 |30.10
¢ TCR 28.06 25.07 42.69 2493 32.84 2343 | 4478 23.88 2224 |17.76 28.96 47.46 |30.18
o Ours 3328 34.78 46.57 3493 37.46 2821 | 49.10 29.25 2597 |22.09 36.12 49.70 35.62
Xpool 26.42 21.34 4194 25.07 32.84 2552 | 41.49 2448 28.21 [20.15 43.43 49.70 |31.72
e Tent 2821 22.54 42.69 2493 33.58 25.07| 42.09 2522 27.61 [20.75 43.73 49.85 |32.19
e READ | 25.67 21.34 41.64 25.07 3239 2552 | 41.94 2373 28.51 |20.00 44.03 49.85 |31.64
e SAR 28.21 2328 4239 2537 33.13 2597 | 42.09 2537 28.06 |20.45 43.58 50.15 |32.34
e EATA | 30.00 2821 42.84 2836 36.12 26.27 | 43.28 2597 28.66 |22.09 44.18 49.85 |33.82
¢ TCR 32.09 26.72 43.58 28.06 34.78 2493 | 43.88 2642 28.96 |20.90 4537 49.40 |33.76
e Ours 36.57 35.37 46.42 3522 43.13 30.00 | 45.82 3045 31.34 |26.72 48.66 4896 38.22

The MSRVTT—LSMDC and LSMDC—MSRVTT transfers (Tab. represent a shift between
general YouTube content and cinematic movie clips. HAT-VTR achieves substantial improvements,
with 17.42% R@1 compared to 14.41% for TCR on MSRVTT—LSMDC, and an even more pro-
nounced gain of 36.60% versus 32.60% on the reverse direction. This asymmetric performance
reflects the semantic complexity difference between everyday YouTube videos and narrative-driven
movie scenes.

The MSRVTT—MSVD and MSVD—MSRVTT transfers (Tab. involve two YouTube-based
datasets with different scales and annotation styles. Our method demonstrates consistent superiority,
achieving 55.67% R@1 on MSRVTT—MSVD versus 52.69% for TCR, and a remarkable 37.50%
versus 33.10% on MSVD—MSRVTT. The larger gains on the MSVD—MSRVTT direction suggest
our hubness mitigation is particularly effective when adapting from smaller to larger-scale datasets.

The ActivityNet—LSMDC and LSMD— ActivityNet transfers (Tab. represent perhaps the most
challenging domain gap, spanning from paragraph-level activity descriptions to cinematic narratives.
HAT-VTR shows exceptional performance improvements, achieving 18.02% R@1 versus 14.81%
for TCR on ActivityNet—LSMDC, and a dramatic 31.69% versus 14.34% on the reverse direction,
highlighting our method’s ability to handle severe semantic distribution shifts.

The ActivityNet—MSVD and MSVD— ActivityNet transfers (Tab. 29) involve adapting between
paragraph-level and sentence-level video descriptions. Our method consistently outperforms base-
lines, with particularly strong performance on MSVD— ActivityNet (34.76% vs. 17.06% for TCR),
demonstrating effective adaptation from simple activity descriptions to complex paragraph-level un-
derstanding.
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Table 21: Comparisons on 2v Recall@1 (%) on the ActivityNet dataset under text perturbations.

Query Character-Level Word-Level Sentence-Level
Shift OCR CI CR CS CD| SR WI WS WD [IP |Backtrans. Formal Casual Passive Active| Avg.
CLIP4Clip | 26.52 17.53 18.20 21.50 19.79|29.81 32.03 31.65 32.19 33.35| 26.83 31.42 3211 2524 2642|2697
o Tent 26.87 18.39 18.55 21.84 19.50|29.94 31.87 31.34 31.79 33.23| 27.13 31.04 3197 25.63 2648 |27.04
e READ [24.79 1493 15.50 20.66 18.69|29.33 31.36 30.75 31.81 32.15| 26.01 31.10 31.14 2457 2548 |25.88
e SAR 26.72 18.30 18.70 21.82 19.83|30.04 32.09 31.38 32.03 33.44| 27.11 31.34 3221 25.63 2632 |27.13
e EATA |[25.87 18.55 19.06 21.29 19.28|28.41 30.97 30.73 30.95 31.95| 26.99 30.00 30.69 2473 25.71 |26.35
¢ TCR 26.44 18.30 18.47 20.68 19.52|28.80 31.12 30.45 31.60 30.81| 26.48 31.22  29.69 25.08 26.01 |26.31
e Ours 30.95 20.42 21.29 25.02 23.14|35.33 37.18 36.85 37.87 39.58| 32.13 36.87 37.20 29.06 30.59 | 31.57
Xpool 25.46 16.86 17.63 20.52 18.77 |28.53 30.02 30.14 30.77 32.01| 26.85 30.40 30.26 25.67 26.83 |26.05
o Tent 2524 17.84 18.45 20.83 19.12|28.29 29.79 29.59 30.36 31.42| 26.87 3036 30.22 25.81 26.32 |26.03
e READ [24.16 14.50 14.99 19.73 17.88|28.37 30.24 29.90 30.51 31.50| 26.03 30.34  30.38 25.56 26.50 |25.37
e SAR 25.14 17.75 18.41 20.81 19.08|28.51 30.02 29.96 30.59 31.60| 26.93 30.43 3034 25.61 2638 |26.10
e EATA [25.16 17.82 18.10 20.89 18.63|28.00 29.14 28.90 29.25 30.77| 27.01 30.18  29.90 2493 26.19 |25.66
¢ TCR 25.06 17.88 17.63 20.26 18.91|26.99 29.96 29.20 29.92 29.65| 26.09 29.57 29.94 2540 26.26 |25.51
® Ours 28.25 19.20 20.34 23.63 21.42|31.24 33.48 33.33 33.31 34.74| 29.53 3339 3352 27.25 28.05|28.71

Table 22: Comparisons on 2v Recall@1 (%) on the LSMCD dataset under text perturbations.

Query Character-Level Word-Level Sentence-Level
Shift OCR CI CR CS CD| SR WI WS WD IP |Backtrans. Formal Casual Passive Active | Avg.
CLIP4Clip | 9.71 3.70 4.00 5.41 4.00|13.71 14.51 1471 15.02 14.51 12.71 1491 1451 15.12 1532 |11.46
o Tent 9.51 3.60 4.00 541 4.10|14.01 14.41 1471 1552 15.02| 12.71 1502 1491 15.02 1552 |11.56
eREAD | 9.61 3.80 4.10 531 3.90|13.71 14.51 14.51 1522 14.61 13.01 1502 14.61 1522 1532 |11.50
e SAR 9.61 3.60 3.90 531 4.20|13.91 14.61 14.71 1552 14.81 12.71 15.02 1481 1491 1542 |11.54
e EATA | 9.41 3.00 3.50 5.11 4.00|13.81 14.61 1421 15.82 14.61 12.81 1532 1512 14.61 1552 |11.43
¢ TCR 9.71 3.00 4.10 531 4.20|14.01 14.71 14.61 1542 1491 12.91 1522 1481 1532 15.12 |11.56
o Ours 10.11 3.20 3.70 5.21 3.80|15.22 16.12 15.52 1542 15.72| 14.31 16.22 15.62 16.02 16.42 12.17
Xpool 10.81 4.10 4.10 5.81 4.30|14.81 1622 15.52 16.52 16.02| 15.02 1652 16.02 16.72 16.72 | 12.61
o Tent 10.71 3.90 420 5.81 4.10|14.71 16.02 1542 16.72 16.42| 14.71 1652 1612 1552 16.72 | 12.51
e READ |10.51 4.40 4.00 5.71 4.10|15.02 1622 1542 1642 16.12| 14.81 1622 16.12 16.52 16.72 | 12.55
* SAR 10.71 4.10 420 591 4.20|14.81 16.02 1542 16.72 16.42| 14.71 1652 16.12 16.52 16.62 | 12.60
e EATA |11.01 3.50 420 5.91 4.30|14.41 1642 1552 16.52 17.12| 1431 16.62 16.12 1652 16.32 |12.59
¢ TCR 10.81 4.20 4.30 5.71 3.90|14.41 16.52 15.12 16.52 16.32| 14.51 1632 1582 16.62 16.62 |12.51
o Ours 11.31 3.80 4.70 531 4.20|15.42 16.32 15.72 16.62 16.92| 15.62 1632 16.72 1542 17.42 12.79

Finally, the LSMDC—MSVD and MSVD—LSMDC transfers (Tab. [30) span from cinematic con-
tent to everyday activities. HAT-VTR maintains its advantage across both directions, achieving
51.94% R@1 versus 46.72% for TCR on LSMDC—MSVD, confirming that our hubness-aware
adaptation strategy provides robust cross-domain transfer capabilities regardless of the specific
dataset characteristics or domain gap magnitude.

D.4.2 QGS IN ZERO-SHOT ADAPTATION SCENARIO

The zero-shot adaptation scenario represents the most challenging setting, where models must adapt
directly from pre-training to downstream tasks without any fine-tuning. Tab. [31] presents results
on LSMDC and MSVD datasets, revealing that HAT-VTR maintains its effectiveness even in this
extreme domain gap scenario.

On the challenging LSMDC dataset, HAT-VTR achieves 15.22% R@1 compared to 10.61% for
TCR, representing a remarkable 4.61% improvement in the zero-shot setting. This substantial gain
highlights our method’s ability to rapidly adapt to new domains without prior exposure to task-
specific data. The consistent improvements across both datasets and retrieval directions confirm that
our hubness suppression mechanism provides robust adaptation capabilities even when facing the
largest possible domain shifts encountered in practical deployment scenarios.

D.5 COMPARISON RESULTS WITH DIFFERENT SEVERITY DEGREES
D.5.1 RESULTS ON MLVP

To examine robustness progression across perturbation intensities, we evaluate HAT-VTR and base-
line methods on MSRVTT-1KkA across severity degrees 1-4, complementing the main paper’s sever-
ity degree 5 results.
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Table 23: Comparisons on 2v Recall@1 (%) on the MSVD dataset under text perturbations.

Query Character-Level Word-Level Sentence-Level
Shift OCR CI CR CS CD| SR WI WS WD [IP |Backtrans. Formal Casual Passive Active| Avg.
CLIPAClip | 32.54 13.73 12.54 22.24 12.09|52.69 54.93 54.33 55.52 5537| 51.79 56.42 5448 53.58 5537 |42.51
o Tent 32.84 13.88 12.54 22.24 12.24|52.84 54.48 54.03 5522 5493 | 51.79 56.27 54.48 5328 5537 |42.43
e READ [32.39 13.73 12.54 21.94 12.09|52.84 54.48 54.18 5537 55.37| 51.79 56.57 54.48 5343 5552 4245
e SAR 32.99 13.88 12.69 22.24 12.24|52.84 54.63 54.03 55.37 54.93| 51.79 56.42 54.48 5299 5552 |42.47
e EATA [32.24 14.03 12.54 21.64 12.69|52.09 54.78 53.43 54.93 54.48| 51.19 55.07 5448 5299 5493 |42.10
¢ TCR 32.54 1343 12.54 22.09 12.24|53.13 54.93 53.58 54.93 55.07| 52.09 5537 55.07 53.13 55.07 |42.35
e Ours 34.18 14.33 12.24 20.90 12.99 |55.07 56.27 56.87 56.87 56.27| 53.88 5836 57.01 56.27 58.36 |43.99
Xpool 32.39 16.27 13.73 20.90 13.58|51.94 54.93 53.43 54.48 56.42| 52.69 56.12 5552 51.94 55.67 |42.67
o Tent 32.69 16.57 14.18 21.19 13.58|51.34 55.07 53.43 54.48 56.27| 52.54 56.12 55.67 5194 5582 |42.73
e READ [32.39 16.12 13.88 20.90 13.43|51.79 54.93 53.73 54.33 56.42| 52.69 56.12 5537 5194 5582 |42.66
e SAR 32.69 16.57 14.03 21.19 13.58|51.49 55.07 53.43 54.48 56.42| 52.54 56.27 5552 5194 5582 |42.74
e EATA |[33.58 16.72 14.78 21.49 14.18|50.60 54.48 53.73 53.58 55.22| 5224 55.37 5537 5239 5582 |42.64
¢ TCR 3343 1597 14.18 22.09 12.84|50.45 55.07 52.84 53.58 55.07| 52.84 56.27 5522 5194 5597 |42.52
® Ours 35.07 16.57 13.43 22.39 14.63 | 54.33 56.42 56.42 57.61 57.91| 55.37 59.10 57.76 56.87 58.51 |44.83

Table 24: Comparisons on v2t R@1 on the DiDeMo dataset with the highest severity degree.

Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264.| Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIP4Clip| 6.08 6.67 21.61 12.15 11.16 32.87 | 22.21 588  13.65| 488 1.69 30.18 |14.09
o Tent 428 438 20.72 10.86 12.75 32.87 | 23.21 448  11.25| 458 149 29.88 |13.40
e READ | 6.87 7.67 2291 12.65 10.66 32.67 | 20.02 588 1424 | 478 1.79 29.68 |14.15
e SAR 458 478 2231 11.85 1255 33.17 | 23.01 5.08 1325|508 1.79 30.18 |13.97
e EATA 568 229 2490 10.66 1693 33.57| 2530  6.67 1494 | 598 159 2998 |14.87
¢ TCR 13.15 1454 2729 1873 18.03 33.76| 23.80 10.76 1633 | 6.77 2.79 29.18 |17.93
o Ours 20.32 19.12 35.26 25.00 2520 37.55| 2948 16.73 2291 | 817 5.58 31.97 23.11
Xpool 936 1056 2520 15.64 1524 3725|2420 637 18.73 | 7.87 29.88 30.98 |19.27
o Tent 8.67 9.16 2351 1564 1673 3695 | 25.80 598 1524 | 7.57 3038 30.98 |18.88
e READ | 10.16 10.76 27.19 15.84 14.34 36.85| 2291 6.57 2032 | 797 29.58 31.08 |19.46
e SAR 9.86 10.16 2450 16.14 16.73 36.95| 2550  6.08 1823 | 7.97 30.38 31.08 |19.47
e EATA | 13.75 996 26.59 1275 1942 37.75| 26.89 747 21.02 | 647 3147 31.08 |20.39
e TCR 1693 14.84 3237 2321 20.02 38.05| 27.79 10.76 23.61 | 7.57 30.28 30.68 |23.01
e Ours 20.32 2221 37.75 27.69 30.78 39.74 | 33.17 17.53 26.39 |11.55 33.96 33.37 27.87

Tables reveal consistent patterns: HAT-VTR maintains superior performance across
all severity levels, with improvement margins typically increasing as perturbations intensify. At
severity degree 1 (Tab.[32), our method achieves 39.8% average R@1 versus 36.5% for TCR with
CLIP4Clip, demonstrating effectiveness even under mild corruptions. The performance gap widens
progressively—at severity degree 4 (Tab. [35), HAT-VTR reaches 32.2% compared to 27.0% for
TCR, representing a 5.2% improvement.

We acknowledge certain exceptions, such as temporal scrambling at severity degree 1, where EATA
scores 39.3% compared to our 38.8%. This highlights a need for further exploration in addressing
mild temporal disruptions (see Sec. [FI] for more details). Nonetheless, our method clearly excels
across various perturbation types and intensities overall.

D.5.2 RESULTS ON TEXT PERTURBATIONS

To comprehensively evaluate text-to-video (t2v) retrieval robustness, we examine HAT-VTR perfor-
mance across different severity levels of text perturbations on MSRVTT-1kA. Following the hier-
archical text perturbation framework from |Qiu et al.| (2024), we test character-level (OCR, CI, CR,
CS, CD) and word-level (SR, WI, WS, WD, IP) corruptions across severity degrees 1-7.

Fig. |12] demonstrates HAT-VTR’s consistent superiority across all perturbation types. HAT-VTR
achieves 45.3% average R@1 compared to 43.3% for TCR, with the most significant improvements
observed on word-level perturbations such as synonym replacement (SR) and word insertion (W1),
where our method reaches over 40% R@1. Character-level perturbations (OCR, CI, CR, CS, CD)
show more modest improvements but consistent gains, with performance around 23-28% R@]1. The
results indicate that HAT-VTR’s hubness mitigation strategy is particularly effective for semantic-
preserving word-level transformations while maintaining robustness across all perturbation cate-
gories.
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Table 25: Comparisons on #2v Recall@1 (%) on the DiDeMo dataset under text perturbations.

Query Character-Level Word-Level Sentence-Level

Shift OCR CI CR CS CD| SR WI WS WD [IP |Backtrans. Formal Casual Passive Active| Avg.
CLIP4Clip | 28.39 19.72 20.82 21.12 21.51|34.56 36.35 35.26 35.76 37.75| 27.79 3446 3576 34.46 34.46 |30.54
o Tent 28.09 19.42 21.31 21.41 21.71|34.06 36.16 35.36 35.46 37.75| 27.99 3436 35.86 3456 34.36 |30.52
e READ [28.88 19.82 20.92 20.92 21.91|34.76 36.06 35.66 35.46 37.95| 28.09 3446 35.56 3446 34.26 |30.61
e SAR 28.19 19.52 21.22 21.41 2191|3426 36.16 35.26 35.66 37.75| 27.89 3446 3556 3476 34.06 |30.54
e EATA [27.09 19.72 20.72 21.81 20.82|33.47 35.16 34.46 34.26 37.65| 27.29 3426 3436 3396 33.86 |29.93
¢ TCR 27.79 1843 21.02 22.61 20.62|33.76 3526 35.06 34.56 38.25| 27.19 3426 34.66 3396 33.67 |30.07
e Ours 28.89 21.51 21.91 23.31 21.81)36.25 38.15 36.75 37.35 38.55| 30.58 3646 37.55 34.26 35.46 |31.92
Xpool 31.37 22.01 24.00 25.70 24.30|39.74 40.14 41.83 41.24 42.03| 30.78 38.25 39.74 37.45 39.24 |34.52
o Tent 31.47 2241 24.60 26.10 24.50|39.64 40.44 41.73 41.04 42.33| 30.98 38.94 39.84 37.75 38.75 |34.70
e READ |[31.37 22.01 2291 26.00 23.80|39.74 40.24 41.73 40.94 41.63| 30.58 38.45 39.74 37.45 39.14 |34.38
e SAR 31.47 2271 2430 26.20 24.50|39.54 40.64 42.13 41.33 4243 | 30.78 38.84 39.84 37.55 38.75|34.73
e EATA |31.67 23.61 23.41 26.00 24.60 | 40.04 40.04 41.14 40.24 41.24| 30.68 38.55 39.34 3795 39.04 |34.50
e TCR 31.87 22.61 24.00 25.60 24.00|38.65 40.24 40.04 40.34 40.94| 29.38 38.65 3845 37775 37.65 |34.01
® Ours 32.17 24.30 24.60 27.49 24.60 | 40.24 43.23 42.73 43.23 44.42| 3217 40.44 41.04 3795 39.94 | 3590

Table 26: Comparisons on QGS Cross-dataset Adaptation between MSRVTT and LSMDC.

Cross MSRVTT—LSMDC LSMDC—MSRVTT

Dataset v2t 12v v2t 2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 | R@l R@5 R@10 R@1 R@5 R@10

CLIP4Clip | 1491 2843 36.84 1512 30.03 3894 | 3030 57.10 6690 29.60 5720 67.20
o Tent 15.12 28.83 3724 1542 2993 38.84 | 3090 56.80 67.30 30.30 57.50 66.80
¢ READ 1451 28.43 3644 1532 3023 3874 | 29.10 5640 66.60 29.60 57.30 67.60
e SAR 1532 2923 3744 1532 2993 3894 | 3080 5680 6730 30.50 57.80 67.20
e EATA 15.82 29.83 3874 1552 2993 3934 | 31.60 5850 6840 31.70 58.30 68.00
e TCR 1441 3023 38.04 1522 3023 3894 | 3260 5860 68.60 31.10 58.60 68.60
e Ours 17.42 33.13 40.04 16.32 32.83 4094 | 36.60 61.70 72.00 36.70 61.10 72.30

Xpool 16.82 3333 4124 1682 3333 4124 | 2980 54.00 6520 32.60 57.00 67.00
e Tent 17.02 3333 4124 17.02 3333 4124 | 2970 5390 6530 3290 57.20 67.20
e READ 16.82 3293 4094 1682 3293 4094 | 3020 54.10 65.10 32.50 56.90 66.90
e SAR 1692 3333 41.14 1692 3333 41.14 | 2990 5390 6540 32.80 57.20 67.50
e EATA 1692 3353 4084 1692 33.53 40.84 | 3020 54.50 6580 33.40 57.80 69.20
¢ TCR 16.82 3353 41.04 1682 33.53 41.04 | 30.10 54.50 65.60 33.00 57.20 67.70
e Ours 17.32 3353 42.14 17.32 33,53 42.14 | 3530 60.20 69.60 36.10 61.50 71.20

Table 27: Comparisons on QGS Cross-dataset Adaptation between MSRVTT and MSVD.

Cross MSRVTT—MSVD MSVD—MSRVTT

Dataset v2t 12v v2t 2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 | R@1 R@5 R@10 R@1 R@5 R@I10

CLIP4Clip | 54.03 83.43 9090 54.63 80.90 90.90 | 32.00 57.90 68.50 3530 60.10 70.50
e Tent 54.03 83.58 9090 54.48 80.90 90.90 | 3250 5850 69.30 35.70 60.00 70.80
e READ | 53.58 8328 9090 54.63 8090 90.90 | 31.70 57.20 6840 3570 60.30 70.70
e SAR 53.73 8328 90.75 54.48 80.90 90.90 | 3220 5850 69.60 35.60 60.10 70.80
e EATA 53.88 82.99 9090 54.63 81.19 9045 | 33.70 60.10 7140 3530 60.40 70.20
¢ TCR 52.69 83.88 91.04 54.18 8090 9045 | 33.10 57.80 69.30 34.80 59.70 69.90
e Ours 55.67 8299 9149 54.78 8433 9045 | 37.50 6440 74.10 3400 63.20 74.00

Xpool 5448 8522 9149 5597 8537 91.79 | 3550 61.80 73.20 38.10 63.00 72.80
o Tent 54.63 8522 91.79 5597 8552 91.79 | 3570 62.80 73.60 38.10 62.60 72.80
e READ | 54.18 8537 91.64 5597 8522 91.79 | 3520 61.20 73.10 37.80 63.00 72.70
e SAR 5433 8522 91.64 5597 8552 91.79 | 3580 62.60 73.70 38.00 62.80 72.80
e EATA 5448 8597 91.79 5597 8522 91.79 | 36.60 6290 7520 38.00 62.50 73.10
¢ TCR 5433 8493 9239 5537 85.67 91.34 | 3680 6230 7430 38.00 62.60 72.90
e Ours 5791 8597 9239 5746 8597 92.84 | 4040 65.60 77.30 38.70 65.20 75.10
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Table 28: Comparisons on QGS Cross-dataset Adaptation between ActivityNet and LSMDC.

Cross ActivityNet—LSMDC LSMDC—ActivityNet

Dataset v2t 12v v2t 2v

Metrics R@1 R@5 R@10 R@1 R@5 R@10| R@l R@5 R@10 R@1 R@5 Re@I10

CLIPACIlip | 13.41 27.13 3483 16.12 28.63 3574 | 21.35 4621 59.87 2028 4491 35871
o Tent 1441 2713 3504 1592 2843 3574 | 21.50 47.02 5996 21.58 47.24 60.48
e READ 1341 2623 34.63 1632 2823 35.64 | 11.78 2937 41.12 17.84 3935 53.12
e SAR 1471 27.03 3483 1592 2843 3584 | 21.56 4694 6038 21.94 4741 60.85
o EATA 14.41 26773 3524 1592 2933 36.84 | 1895 42.02 5491 2245 4682 60.85
e TCR 14.81 2793 3744 1602 29.03 36.14 | 1434 33.66 4486 22.05 47.14 6193
e Ours 18.02 3293 4044 1572 3133 39.64 | 31.69 57.51 70.73 3140 58.71 70.55

Xpool 1431 2843 3674 1572 31.03 37.64 | 1853 4033 54.02 19.83 4430 56.74
o Tent 1481 2873 3694 1622 31.53 3794 | 17.82 39.45 5259 2121 4645 59.43
eREAD | 1421 2793 3644 1562 3093 37.54 | 1529 36.04 4926 17.84 39.60 51.60
¢ SAR 1461 2873 36.84 1592 3143 38.04 | 1832 4021 5330 22.01 4728 60.32
e EATA 1522 29.03 3654 1572 3223 38.04 | 1472 3486 46.04 2355 4940 63.11
¢ TCR 1532 29.43 36.74 1582 31.01 37.84 | 18.69 40.23 53.02 21.82 4741 60.42
e Ours 17.72 3333 41.84 16.72 3193 40.84 | 2823 5347 67.01 26.80 53.39 65.87
Table 29: Comparisons on QGS Cross-dataset Adaptation between ActivityNet and MSVD.

Cross ActivityNet—+MSVD MSVD— ActivityNet

Dataset v2t 12v v2t 12v

Metrics R@1 R@5 R@10 R@1 R@5 R@10 ]| R@Ql R@5 R@10 R@1 R@5 R@I0

CLIP4Clip | 52.99 83.13 89.70 54.18 80.15 8821 [ 29.00 57.64 70.82 2636 5351 67.52
o Tent 53.13 83.28 89.55 5433 80.75 8791 | 29.06 58.61 71.00 26.05 53.04 67.26
e READ | 5299 82.84 89.70 5433 80.15 8821 | 2445 50.62 63.07 23.82 4946 63.17
e SAR 53.13 8299 89.70 5433 80.45 8791 | 2957 5871 7143 2626 53.04 67.58
eEATA | 52,69 83.73 90.00 54.18 80.90 83.06 | 29.16 57.05 70.43 2569 5223 66.81
¢ TCR 53.28 8254 8881 53.73 80.75 8836 | 17.06 37.60 49.05 26.46 5243 67.32
e Ours 5597 8343 9030 56.27 8239 89.40 | 3476 62.13 7476 34.72 63.21 7515

Xpool 53.13 8284 8881 5149 8090 88.96 | 2556 5259 66.50 25.12 5239 66.22
o Tent 52.69 83.13 8881 51.64 8045 8881 | 2536 5280 66.81 2493 5274 66.20
eREAD | 53.13 82.69 88.81 5149 80.75 8896 | 21.15 4643 60.12 22.62 4834 61.93
¢ SAR 5254 83.13 8881 51.64 8045 8896 | 2540 5296 6685 2514 5274 66.36
eEATA | 52.69 8343 8881 5194 80.60 88.81 |2493 5099 6453 2597 5272 66.56
¢ TCR 52.84 82.69 89.25 51.19 81.04 88.81 | 2587 53.08 67.07 2493 52.86 66.34
o Ours 55.37 8149 90.15 55.67 80.75 8881 | 31.10 5841 7096 30.53 59.16 72.26

Table 30: Comparisons on QGS Cross-dataset Adaptation between LSMDC and MSVD.

Cross LSMDC—MSVD MSVD—LSMDC

Dataset v2t 12v v2t 2v

Metrics R@1 R@5 R@10 R@1 R@5 R@I10 | R@l1 R@5 R@10 R@1 R@5 R@10

CLIP4Clip | 48.36 79.70 87.61 4821 76.12 86.87 1491 2843 3684 15.12 30.03 38.94
e Tent 4896 79.85 87.61 47.61 76.12 86.57 15.12 28.83 37.24 1542 2993 38.84
e READ | 48.66 79.85 87.61 48.06 76.12 86.72 | 1451 2843 36.44 1532 30.23 38.74
e SAR 48.06 79.85 87.61 47.61 76.12 86.57 1532 29.23 3744 1532 2993 3894
e EATA 4893 81.04 87.61 48.66 7597 86.42 | 15.82 29.83 3874 1552 2993 39.34
¢ TCR 46.72 80.45 88.06 4791 7627 86.42 1441 3023 38.04 1522 30.23 38.94
e Ours 51.94 81.64 88.51 51.64 79.85 8896 | 1742 33.13 40.04 1632 32.83 40.94

Xpool 46.12 7851 86.57 47776 77.61 87091 16.82 3333 41.24 16.82 3333 41.24
e Tent 46.87 79.10 86.57 4821 77.76 88.06 | 17.02 3333 4124 17.02 3333 41.24
e READ | 46.72 7851 86.57 4776 77.61 87.91 16.82 3293 4094 16.82 3293 40.94
e SAR 46.57 78.66 86.57 48.06 7791 88.06 | 1692 3333 41.14 1692 3333 41.14
e EATA 47.16 79.55 8642 50.00 7791 8791 16.92 33,53 40.84 1692 33.53 40.84
¢ TCR 46.57 7896 86.57 49.10 77.01 87091 16.82 33,53 41.04 16.82 33.53 41.04
e Ours 54.03 8194 89.70 51.49 7791 86.72 | 17.32 33,53 42.14 17.32 33.53 42.14
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Table 31: Comparisons on QGS Zero-shot Adaptation using LSMDC and MSVD.

QGS LSMDC MSVD
Zero-shot v2t 2v v2t 12v
Metrics R@1 R@5 R@I10 R@1 R@5 R@10 | R@1 R@5 R@10 R@1 R@5 R@10
CLIP 7.61 18.62 26773 13771 27.43 3433 | 44.03 73.73 8254 47.16 71.64 81.79
o Tent 721 1952 2643 13.61 2723 3393 | 4433 7418 83.88 47.16 7149 82.09
e READ | 831 1922 2673 13.71 2733 3393 | 43.58 7328 8224 47.01 71.79 81.34
eSAR | 731 19.02 2653 1351 2733 34.03 | 4448 7388 8343 47.16 71.64 82.09
e EATA | 440 1481 2272 1351 26.03 35.14 | 4478 7493 8448 46.57 72.84 83.13
¢ TCR 10.61 2492 3153 13.71 27.53 35.14 | 4731 75.67 8597 4746 7299 8343
e Ours 15.22 3013 37.64 1391 2933 36.74 | 53.28 79.10 86.27 52.09 77.16 85.82
Table 32: Comparisons v2¢ results on the MSRVTT-1kA with severity degree 1.
Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264. | Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIP4Clip | 383 268 383 296 390 420 | 392 323 349 | 286 37.6 39.0 |355
o Tent 388 271 394 303 39.6 420 | 39.7 33.9 35.1 | 304 379 388 |36.1
eREAD | 373 266 378 294 387 41.7 | 39.0 313 341 | 265 369 388 |34.8
¢ SAR 385 279 395 306 398 422 | 397 33.9 35.0 | 305 37.8 388 |362
eEATA | 390 31.1 402 332 395 427 | 394 34.9 36.2 | 315 388 393 |372
¢ TCR 388 336 387 342 384 409 | 37.6 33.1 36.6 | 31.3 36.6 38.6 |36.5
o Ours 41.1 387 418 389 407 425 419 374 393 | 356 40.6 388 |39.8
Xpool 405 30.6 41.6 321 429 450 | 41.7 36.5 39.1 | 31.3 404 394 |384
o Tent 41.1 320 41.7 338 442 458 | 419 383 40.0 | 334 404 403 |394
eREAD | 40.7 300 41.0 31.8 43.0 447 | 417 35.5 389 | 298 39.8 391 |38.0
SAR 41.1 320 417 332 441 455 | 422 37.7 403 | 332 404 402 |393
e EATA | 43.1 353 435 368 425 448 | 425 38.5 39.7 | 349 39.6 405 |40.1
e TCR 417 338 425 356 428 446 | 425 37.8 40.2 | 344 401 395 |39.6
o Ours 449 404 457 423 446 479 451 41.6 44.0 | 382 424 426 |433
Table 33: Comparisons v2¢ results on the MSRVTT-1kA with severity degree 2.
Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264. | Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIP4Clip| 333 19.8 37.0 21.2 259 415 | 357 28.3 319 [ 243 342 367 |30.8
o Tent 352 192 38.1 218 259 418 | 364 29.8 324 262 341 369 |315
eREAD | 31.8 21.1 364 205 255 413 | 358 27.8 315 | 228 339 368 |304
e SAR 352 205 37.6 225 262 416 | 363 29.7 327 | 263 341 371 |31.7
e EATA | 368 263 388 24.1 273 433 | 372 31.1 347 | 293 361 366 |335
¢ TCR 36.1 289 377 276 279 409 | 373 30.2 32.8 | 288 328 375 |332
e Ours 395 359 413 34.6 318 43.0 404 34.5 37.6 | 331 392 372 |373
Xpool 389 223 414 246 314 449 | 384 31.4 383 | 284 375 389 |347
o Tent 400 221 419 264 326 46.0 | 389 334 384 | 295 374 391 |355
eREAD | 374 232 40.7 238 30.6 447 | 37.6 29.7 378 | 272 372 38.6 |34.0
¢ SAR 39.6 242 421 264 318 456 | 389 32.7 385 | 297 378 39.1 |355
e EATA | 404 319 441 305 329 458 | 395 33.8 38.1 | 320 37.7 383 |37.1
e TCR 40.6 321 43.1 302 323 448 | 40.0 32.6 38.8 | 306 379 384 |36.8
o Ours 442 367 443 364 353 475 421 38.7 42.1 | 36.0 40.5 40.0 |40.3
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Table 34: Comparisons v2¢ results on the MSRVTT-1kA with severity degree 3.

Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264. | Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIP4Clip| 27.1 14.8 352 204 365 40.7 | 34.0 18.9 292 | 180 30.1 364 |[284
o Tent 295 108 364 21.1 365 410 | 354 20.1 303 | 17.8 30.6 36.7 |289
eREAD | 258 16.8 343 203 355 405 | 332 17.3 29.5 | 17.7 304 36.0 |28.1
e SAR 298 143 36.6 220 365 410 | 355 20.6 303 | 19.0 30.6 36.7 |294
e EATA | 345 227 374 239 369 419 | 348 23.6 31.7 | 215 314 361 (314
¢ TCR 327 266 371 282 377 39.8 | 36.0 22.0 31.6 | 21.6 299 349 |315
e Ours 360 34.0 403 335 403 426 374 28.8 368 | 27.0 350 369 |35.7
Xpool 320 177 38.6 249 405 43.6 | 34.1 21.7 356 | 19.8 353 37.0 |31.7
o Tent 343 153 395 260 41.0 441 | 360 237 35.6 | 21.4 349 369 |324
eREAD | 29.8 188 37.6 238 40.6 438 | 328 18.9 350 | 194 355 37.0 |31.1
e SAR 343  18.1 39.6 258 409 438 | 357 24.0 355 224 350 372 |327
e EATA | 377 272 420 302 417 434 | 372 26.5 358 | 26.1 36.0 36.7 |350
¢ TCR 352 293 41.0 305 426 439 | 36.1 23.7 36.2 | 2577 355 365 |34.7
o Ours 410 358 442 362 447 46.0 409 30.6 39.5 | 30.3 391 381 | 389

Table 35: Comparisons v2¢ results on the MSRVTT-1kA with severity degree 4.

Query Low-Level Mid-Level High-Level
Shift Gauss. Impul. Fog Snow Elastic. H264. | Motion Defocus Occlu. | Style Event Tempo. | Avg.
CLIP4Clip | 17.8 84 320 164 289 375 | 293 9.9 25.8 | 109 27.0 342 |232
e Tent 19.0 46 331 166 300 378 | 30.3 9.6 262 | 9.6 265 340 |23.1
eREAD | 187 107 312 16.1 273 373 | 28.0 9.7 248 | 120 272 339 |23.1
e SAR 21.1 56 326 175 297 378 | 30.6 10.5 269 | 10.6 26.7 337 |23.6
e EATA 25.1 1.9 344 207 321 38.6 | 315 13.0 286 | 133 268 334 |250
¢ TCR 266 173 355 227 336 376 | 314 15.4 280 | 153 267 341 |27.0
e Ours 31.8 291 396 292 369 392 352 21.9 344 | 211 316 359 |322
Xpool 21.6 11.1 356 19.8 344 410 | 29.0 12.4 329 | 123 337 353 |26.6
o Tent 24.6 70 374 212 357 411 | 312 14.6 337 | 120 338 351 |273
eREAD | 20.8 132 346 192 335 406 | 27.7 11.4 325 | 133 335 352 |263
e SAR 25.0 82 376 214 354 410 | 314 14.7 335 | 126 342 352 |275
e EATA 29.1 2.1 392 237 374 414 | 333 16.3 33.6 | 169 341 357 |28.6
¢ TCR 273 214 392 247 38.0 40.6 | 33.1 15.1 346 | 163 340 357 |30.0
o Ours 351 301 437 321 411 425 374 23.0 374 | 212 371 368 |34.8
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Figure 12: Comparison results of £2v on MSRVTT-1kA with text perturbations at mean severity.
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Table 36: Multi-Level Video Perturbation (MLVP) Benchmark Summary

Category  Perturbation Description Severities
Gaussian Noise Thermal sensor noise from low-light con- 5
ditions or high ISO settings.
L Impulse Noise Salt-and-pepper noise from defective sen- 5
ow-level . .
sor pixels and transmission errors.
Fog Atmospheric fog with fractal patterns gen- 5
erated by diamond-square algorithm.
Snow Falling snow with motion blur effects and 5
temporal scrolling patterns.
Elastic Distortion Non-linear spatial deformations from lens 5
aberrations and camera shake.
H.264 Compression Video compression artifacts from bitrate 5
constraints using FFmpeg encoding.
Motion Blur Directional blur from object/camera mo- 5
Mid-level tion with adaptive kernel sizing.
Video Defocus Circular defocus blur simulating depth-of- 5
field and autofocus failures.
Main Object Occlusion ~ Semantic-aware occlusion targeting main 5
objects identified by Algo[3]
Style Transfer Artistic style transfer using AdaIN |Huang 5
High-level & Belongie| (2017) with temporal consis-
tency.
Event Insertion Contextual disruption by splicing semanti- 5
cally similar video segments.
Temporal Scrambling Narrative disruption through temporal 5
trimming and chunk reordering.
Total 12 — 60

E MLVP BENCHMARK IMPLEMENTATION DETAILS

This section provides a comprehensive technical breakdown of our Multi-Level Video Perturba-
tion (MLVP) benchmark, which extends the systematic image-text robustness evaluation paradigm
from |Qiu et al.| (2024) to the video domain. As outlined in the main paper, our benchmark is de-
signed to systematically probe the spatio-temporal vulnerabilities of VTR models. We provide two
tables for reference:

Tab. [36] offers a high-level summary, organizing the 12 distinct perturbation types into our three-
level hierarchy (Low-level, Mid-level, and High-level) and describing the real-world degradation
each simulates. Tab.[37|presents a more granular view, detailing the specific parameter values that
control the intensity for each of the five severity levels.

The core design of MLVP is to move beyond simple frame-wise image corruptions and introduce
perturbations that are authentic to the video modality. This is governed by two key principles.

* Temporal Consistency: To simulate realistic and continuous phenomena, perturbations
are applied cohesively across a video’s duration. For instance, a single noise pattern, a
fixed geometric transformation, or a consistent artistic style is applied to all frames of a
sequence. This ensures that the challenge posed to the model is inherently spatio-temporal,
rather than a series of independent image-level degradations.

* Principled Severity Scaling: Each perturbation is rendered at five distinct degrees of
severity. The parameters are carefully chosen to create a smooth degradation gradient,
allowing for a fine-grained analysis of model robustness. To ensure comparability and
build upon established standards, for perturbations that have direct counterparts in the orig-
inal image-based benchmark |Qiu et al.| (2024) (e.g., Gaussian Noise, Impulse Noise), we
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adopt the same severity parameter settings. The following sections detail the motivation
and implementation for each of the 12 perturbation types.

Table 37: Video Perturbation Parameter Specifications by Severity Degree

Method Parameters

Gaussian Noise Apply temporally consistent Gaussian noise with standard deviations of 0.08,
0.12, 0.18, 0.26, 0.38 based on severity levels 1-5

Impulse Noise Apply salt-and-pepper noise with the same spatial mask across frames, affect-
ing 0.03, 0.06, 0.09, 0.17, 0.27 proportion of pixels for severity levels 1-5

Fog Generate plasma fractal using diamond-square algorithm with fog intensity and

wibble decay parameters: (1.5, 2), (2, 2), (2.5, 1.7), (2.5, 1.5), (3, 1.4) for
severity levels 1-5

Snow Create falling snow with parameters (loc, scale, zoom, threshold, blur_r, blur_s,
blend): (0.1, 0.3, 3, 0.5, 10, 4, 0.8), (0.2, 0.3, 2, 0.5, 12, 4, 0.7), (0.55, 0.3, 4,
0.9, 12, 8, 0.7), (0.55, 0.3, 4.5, 0.85, 12, 8, 0.65), (0.55, 0.3, 2.5, 0.85, 12, 12,
0.55)

Elastic Distortion Apply elastic transformation with (alpha, sigma, affine_magnitude): (244x2,
244%0.7, 244x0.1), (244x2, 244x0.08, 244x0.2), (244x0.05, 244x0.01,
244%0.02), (244%0.07, 244x0.01, 244%0.02), (244%0.12, 244x0.01, 244x0.02)

H.264 Compression Encode video using FFmpeg with target bitrates of 500k, 250k, 100k, 50k, 25k
bps for severity levels 1-5

Motion Blur Apply adaptive motion blur with base kernel sizes for low/high motion regions:
(5,9), (7,13), (9,17), (11,21), (13,25) for severity levels 1-5
Video Defocus Apply adaptive defocus blur with base radii scaling by factor of 2 for high-

motion regions: 3, 4, 6, 8, 10 for severity levels 1-5
Main Object Occlusion  Occlude main objects with area ratios relative to object size: 30%, 40%, 50%,
60%, 80% for severity levels 1-5

Style Transfer Apply AdalN style transfer with alpha interpolation parameters: 0.2, 0.4, 0.6,
0.8, 1.0 for severity levels 1-5
Event Insertion Insert semantically similar video segments with insertion ratios: 30%, 40%,

50%, 60%, 70% for severity levels 1-5
Temporal Scrambling Trim video content with retention ratios of 60%, 70%, 80%, 90%, 95% fol-
lowed by chunk scrambling with increasing complexity

E.1 Low-LEVEL VIDEO PERTURBATIONS

Low-level perturbations modify pixel-level values to simulate common degradations from sensor
noise, environmental conditions, and digital processing. These corruptions are designed to challenge
a model’s foundational visual processing while preserving the underlying temporal structure and
semantic content of the video.

Gaussian Noise. To simulate the thermal noise inherent in digital camera sensors, a common
artifact in low-light conditions or at high ISO settings, we introduce additive Gaussian noise. To
ensure the degradation is temporally coherent, mirroring a real sensor’s consistent noise profile, a
single noise pattern is sampled from a zero-mean Gaussian distribution and applied identically to
every frame in the sequence. The five degrees of severity are controlled by varying the standard
deviation (o) of this distribution.

Impulse Noise. This perturbation, commonly known as salt-and-pepper noise, models artifacts
arising from defective sensor pixels or digital transmission errors, challenging a model’s robustness
to sparse, high-intensity corruptions. Our implementation maintains temporal consistency by ap-
plying a fixed spatial mask across all frames, where a severity-controlled proportion of pixels are
randomly set to maximum (salt) or minimum (pepper) intensity.

Fog. To simulate the reduced visibility and contrast from atmospheric fog, which exhibits com-
plex, fractal-like density patterns unlike uniform haze, our implementation leverages the diamond-
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square algorithm. A single, temporally consistent plasma fractal is generated to serve as a fog
density map, which is then additively blended with each frame. The intensity of this fog layer is
scaled to adjust the severity.

Snow. Falling snow introduces dynamic, semi-random occlusions that can obscure objects and
motion cues. We simulate this effect by generating an extended ”snow curtain” that scrolls vertically
across the video at a constant velocity, creating a consistent falling motion. To enhance realism, the
particles within the curtain have motion blur applied, simulating the appearance of fast-moving
snowflakes.

Elastic Distortion. This perturbation models the non-linear spatial warping that can result from
lens aberrations, minor camera shake, or atmospheric phenomena like heat haze. To simulate a
persistent distortion, a fixed displacement field is generated using Gaussian-smoothed random noise
and applied to every frame in the video. The magnitude and smoothness of the deformation field are
controlled by the severity degree, testing the model’s invariance to geometric deformations.

Algorithm 1 H.264 Video Compression Perturbation

Require: Video path V, severity level s € {1, 2, 3, 4,5}, output frame count n
Ensure: Compressed video tensor 7" € R”XCXH W

1: bitrates < [500k, 250k, 100k, 50k, 25k]

2: b < bitrates[s — 1] > Select bitrate by severity
3: F,H,W, fps + LOADVIDEO(V) > Extract frames and metadata
4: temp_path <~ CREATETEMPFILE(“temp.mp4”)

5: FFMPEGENCODE(F, temp_path, b, H, W, fps) > Compress with target bitrate
6: Feompressed <— FFMPEGDECODE (temp_path) > Decode compressed video
7: DELETEFILE(temp_path) > Cleanup temporary file
8: indices «+ UNIFORMSAMPLE(|Fcomlf,ress‘,,d\7 n) > Sample frames uniformly
9: Fiampled < [Feompressea[?] for i in indices]
10: if | Fiamplea| < m then > Pad if necessary
11: Fampled < Famplea + [repeat last frame)]
12: end if
13: T' <~ FRAMESTOTENSOR (Fiampled) > Convert to normalized tensor

14: return T

H.264 Compression. Video compression artifacts are nearly ubiquitous in real-world applications
due to storage and bandwidth constraints. To ensure authenticity, we perform actual H.264 encoding
and decoding using FFmpeg, as detailed in Algorithm[I] Each video is compressed to a target bitrate
corresponding to one of five severity degrees, introducing realistic artifacts such as blocking, ringing,
and loss of fine detail into the final decoded frames.

E.2 MID-LEVEL VIDEO PERTURBATIONS

Mid-level perturbations target more complex, object-centric attributes and motion dynamics. They
simulate real-world degradations that are tied to the semantic content and movement within the
scene, posing a greater challenge to a model’s spatio-temporal reasoning.

Motion Blur. Motion blur is a common video artifact where fast-moving objects or camera motion
cause non-uniform, directional blurring. To realistically replicate this, our approach is motion-aware
and adaptive. We first compute motion vectors between frames (see Algorithm [2) and then apply
stronger directional blur kernels to regions with high motion, while leaving static areas less affected.
The blur direction is aligned with the local motion vectors, creating a spatially varying and authentic
effect.

Video Defocus. This perturbation simulates the isotropic blurring from a shallow depth of field
or autofocus failures, common in videography. Our implementation is adaptive, using the motion
vectors same from motion blur to apply a circular disk blur (bokeh) primarily to moving regions of
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Algorithm 2 Motion Vector Extraction for Video Frames

Require: Video frames F' = {f1, f2,..., fn}, frame indices I = {i1,iq,... i}

Ensure: Motion vectors MV = {muwvy, muva, ..., mug}
1: Initialize MV « @

2: Initialize GRAYCACHE < ()
3: if |[I| = 0 then
4: return MV
5: end if
6: for j =1to |I| do
7 idx < I[j]
8: if idx = O then
9: h,w < height and width of F'[idx]
10: MUyero < zeros(h, w, 2)
11: MV.append(mu,ero)
12: continue
13: end if
14: prev_idx < idx — 1
15: curr_idx < idx
16: if prev_idx ¢ GRAYCACHE then
17: GRAYCACHE|prev_idx| + RGBTOGRAY (F'[prev_idx])
18: end if
19: if curr_idx ¢ GRAYCACHE then
20: GRAYCACHE|curr_idx] +~ RGBTOGRAY (F'[curr_idx])
21: end if
22: Iprey < GRAYCACHE prev_idx]
23: I.ure ¢+ GRAYCACHE|curr_idx]
24: mu <~ FARNEBACKOPTICALFLOW (prey, Leurr)
25: MV.append(mv)
26: end for

27: return MV

> Cache for grayscale frames

> First frame has zero motion

> Zero motion vector
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the frame. The radius of the blur kernel is larger for regions with more motion, simulating a frequent
scenario where a camera’s focus fails to track a moving subject.

Main Object Occlusion. The occlusion of semantically critical objects poses a significant chal-
lenge to VTR systems. To create a more realistic and difficult test than simple random occlusion,
this perturbation targets the main subject of the video. Our novel pipeline, detailed in Algorithm [3}
first employs a vision-language model (Qwen2.5-VL-7B (Bai et al., 2025a)) to generate a caption
and identify key semantic nouns. These nouns then serve as open-vocabulary queries for an object
detector (OWLv2 (Minderer et al.,[2023)) to locate and track the main object, which is subsequently
occluded with a black rectangle whose area scales with severity.

Algorithm 3 Main Object Identification for Video Occlusion

Require: Video path V', number of frames n
Ensure: Main object data {video_caption, ranked_objects_per_frame}

1: F < SAMPLEFRAMES(V,n) > Uniformly sample n frames
caption «+— QWEN2.5VL(V) > Generate video caption using Qwen2.5-VL
keywords <~ EXTRACTNOUNS(caption) > Extract noun phrases with spaCy
all_objects « []
for each frame f; € F do

detections <~ OWLV2( f;, keywords) > Open-vocabulary detection

for each detection d € detections do

crop + CROPIMAGE( f;, d.box)
9: d.embedding < VISUALEMBEDDING(crop)

10: d.frame_index < ¢
11: all_objects.append(d)
12: end for
13: end for
14: tracks <~ ASSOCIATEOBJECTS(all_objects) > Group by embedding similarity
15: for each track ¢ € tracks do
16: t.persistence < |t.appearances|/n
17: end for
18: ranked_frames < {}
19: for each object o € all_objects do
20: score <— 0.5 - o.persistence + 0.3 - o.area_ratio 4 0.2 - o.confidence
21: ranked_frames|o.frame_index].append({o.label, o.box, score})
22: end for
23: for each frame index 7 do
24: SORTBYSCORE(ranked_frames|[i]) > Descending order
25: end for
26: return {caption, ranked_frames}

A A o

E.3 HIGH-LEVEL VIDEO PERTURBATIONS

High-level perturbations alter the core semantic and temporal structure of a video. They are designed
to challenge a model’s high-level understanding, including its grasp of style, context, and narrative
causality.

Style Transfer. A robust VTR system should recognize semantic content irrespective of artistic
style. This perturbation tests such invariance by applying style transfer using Adaptive Instance
Normalization (AdaIN) (Huang & Belongie, [2017). To ensure temporal consistency, the style from
a single, randomly selected artistic image is transferred to all frames of a given video. The severity
level controls the o parameter, which dictates the interpolation strength between the original content
and the new style.

Event Insertion. To challenge a model’s contextual understanding, this perturbation simulates
scenarios like ad insertions or video mashups where an unrelated clip disrupts the narrative. For a
given video, we use its CLIP embedding to retrieve a semantically similar (but non-identical) video
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from an external corpus, which is constructed from a diverse base of 3 thousand video clips drawn
from the MSRVTT training set. A segment from this retrieved video is then spliced into the middle
of the original sequence, with the duration of the inserted segment determined by the severity level.

Temporal Scrambling. The chronological order of events is often critical to a video’s narra-
tive. This perturbation simulates network issues like out-of-order packet delivery by disrupting the
video’s temporal sequence. We first trim the video, then divide the remaining clip into several equal-
length chunks which are subsequently reordered. The scrambling complexity scales with severity,
from adjacent swaps to a full random shuffle, directly attacking the model’s reliance on temporal
coherence and causal reasoning.

E.4 FURTHER ANALYSIS OF MLVP BENCHMARK

To validate the effectiveness and design of our MLVP benchmark, we conducted further analysis on
the performance of representative VTR models under its various challenges. As illustrated in Fig.[T3]
which plots the Recall@1 performance of CLIP4Clip and X-Pool against the five severity degrees,
the dominant trend is a clear and consistent negative correlation between perturbation intensity and
retrieval accuracy.

However, we also note some intriguing exceptions. Notably, for H.264 Compression at lower sever-
ities (1 and 2), performance slightly improves over the unperturbed baseline. This suggests that
certain mild perturbations do not necessarily degrade performance and may hint at future directions
for model enhancement. It is also worth noting that our proposed HAT-VTR framework maintains
performance gains even in such scenarios, which further demonstrates its robustness (Tab.[32). An-
other interesting anomaly is observed for Snow and Elastic Distortion, where performance shows a
slight uptick when moving from severity 2 to 3. Since the severity parameters for these perturbations
were adopted from |Qiu et al.| (2024), this finding highlights a valuable direction for future work: de-
veloping a methodology to define a unified set of severity parameters that generalize robustly across
different datasets and data modalities. Despite these minor anomalies, the overall systematic degra-
dation confirms that our principled severity scaling creates a meaningful and measurable gradient for
evaluating model robustness, providing a solid foundation for analyzing the failure points of VTR
systems.

To provide a qualitative understanding of the challenges posed, we visualize the effects of each
perturbation type. Figure |14|showcases the suite of low-level corruptions, demonstrating how per-
turbations like Gaussian noise introduce pixel-level artifacts, Fog reduces contrast, and H.264 Com-
pression creates blocking effects, all while maintaining temporal consistency. Figure [I3]illustrates
the more complex mid- and high-level perturbations. These examples highlight the directional,
motion-aware nature of Motion Blur, the targeted impairment of Main Object Occlusion, the con-
textual disruption caused by Event Insertion, and the narrative incoherence introduced by Temporal
Scrambling, showcasing the diversity of spatio-temporal challenges in our benchmark.

Furthermore, we visualize the direct impact of our severity scaling principle in Figure [T6] Using
three representative perturbations—Gaussian noise, Motion Blur, and Style Transfer—the figure
contrasts the visual outcome at Severity 1 with that at Severity 5. For instance, Gaussian noise
evolves from a fine grain to a heavy, obscuring static. Similarly, Motion Blur intensifies from a
subtle directional softening to a severe blur that renders the object almost unrecognizable, while the
artistic rendering in Style Transfer becomes progressively more dominant. These examples visually
confirm that our parameter adjustments for each severity degree translate into a clear and graduated
increase in the intensity of the perturbation, ensuring a comprehensive test of model robustness.

F LIMITATIONS AND FUTURE WORKS

While HAT-VTR demonstrates substantial improvements across diverse test scenarios, our compre-
hensive analysis reveals specific scenarios where the method’s effectiveness is constrained, provid-
ing valuable insights for future research directions.
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Figure 13: Performance of v2¢ models under different severity degrees in MLVP.
F.1 PERFORMANCE ANALYSIS ON CHALLENGING SCENARIOS

Our method exhibits limited improvements in certain challenging scenarios, as evidenced by Ta-
ble ]2 and 3] Tab. 38| presents the performance breakdown on two representative cases where
HAT-VTR shows modest gains: Temporal Scrambling and Backtranslation. For Temporal Scram-
bling, removing the training component (“w.o. Training”) actually yields slightly better perfor-
mance (33.4 vs 33.1 R@1), suggesting that the TCR-based adaptation may introduce negative opti-
mization in this scenario. Similarly, for Backtranslation, the training component provides minimal
benefit (39.8 vs 39.9 R@1), while the HSM module contributes the majority of the improvement.

Table 38: Ablation study on challenging

To understand this phenomenon, Table [39] analyzes X :
scenarios where HAT-VTR shows lim-

the hubness characteristics across different perturbation

types. The skewness values reveal the underlying cause:
while Gaussian noise induces severe hubness (skew-
ness=9.09 without TTA vs 0.97 with HAT-VTR), Tem-
poral Scrambling exhibits more moderate hubness ampli-
fication (skewness=2.19 vs 1.15). Similarly, in the #2v
setting, OCR perturbation shows limited hubness issues
(skewness=1.95 vs 0.39), while Backtranslation demon-
strates even milder hubness patterns (skewness=1.36 vs
1.12). This analysis explains why HAT-VTR’s hubness-
focused approach yields substantial gains for severe hub-
ness scenarios but offers limited improvements when the
hubness phenomenon is less pronounced.
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ited improvements. “w.o. Training” re-
moves the TCR-based adaptation com-
ponent, while “w.o. HSM” removes the
Hubness Suppression Memory module.

R@1 R@5

Tempo. (HAT-VTR) 331 553
e w.0. Training 334 555
e w.0. HS M 322 534
Backtrans. (HAT-VTR) | 39.8 67.1
e w.0. Training 399 672
e w.0. HS M 377  65.6
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Table 39: Hubness analysis across challenging perturbation types for HAT-VTR. Skewness values
indicate the degree of hubness amplification, with higher values representing more severe hubness
issues.

w.0.TTA v2t Gauss. Temp. | HATVTR v2t Gauss. Temp. | w.o. TTA 2v  OCR Backtrans. | HATVTR 2v OCR Backtrans.
Skewness 1.52 9.09 2.19 - 097 1.15 1.25 1.95 1.36 - 0.39 1.12
R@1 42.5 8.7 328 - 231 331 41.6 21.5 38.5 - 24.5 39.8

F.2 METHOD LIMITATIONS

Based on this analysis, our approach faces three primary limitations. First, although we observe that
perturbations amplify the hubness phenomenon, our work lacks deeper theoretical analysis of the
underlying mechanisms governing how different corruption types induce varying degrees of hubness
amplification. The heterogeneous hubness manifestation across perturbation types necessitates more
nuanced understanding of the relationship between specific corruptions and retrieval failure modes.

Second, our training framework essentially extends TCR learning to the video domain, but extensive
experiments reveal that TCR-based adaptation performs well on low-level perturbations with severe
hubness issues but struggles with scenarios where hubness amplification is moderate. This funda-
mental limitation constrains HAT-VTR’s performance ceiling, particularly evident in cases where
direct HSM reranking without training achieves comparable or better results.

Third, while we explicitly apply HSM for reranking and nearest neighbor selection, integrating hub-
ness suppression directly into the learning loss remains unexplored. This represents a significant
opportunity for developing more principled approaches to hubness-aware adaptation that could po-
tentially address the training limitations identified above.

F.3 MLVP BENCHMARK LIMITATIONS

Our MLVP benchmark, while comprehensive, has inherent limitations that affect evaluation reli-
ability. Following established image-text robustness paradigms, some video perturbations exhibit
non-monotonic severity progression (e.g. Elastic Distortion), necessitating more careful calibration
of severity parameters across different datasets. Additionally, certain perturbations like Main Object
Occlusion and Style Transfer rely heavily on auxiliary model capabilities, potentially limiting the
benchmark’s ability to simulate authentic real-world video corruptions.

F.4 FUTURE RESEARCH DIRECTIONS

These limitations suggest several promising research avenues. Future work should focus on de-
veloping theoretical frameworks that explain perturbation-specific hubness amplification patterns,
potentially leading to adaptive strategies that adjust based on corruption characteristics. The devel-
opment of training paradigms that effectively handle both severe and moderate hubness scenarios
remains crucial, possibly requiring dynamic adaptation mechanisms that activate different compo-
nents based on hubness severity.

Furthermore, investigating direct integration of hubness suppression into learning objectives could
yield more principled adaptation methods. From a benchmarking perspective, developing robust
severity calibration methods and exploring perturbation techniques that better simulate real-world
corruptions would enhance evaluation reliability.

These limitations notwithstanding, our work establishes a solid foundation for hubness-aware video-
text retrieval and provides clear directions for advancing toward more robust cross-modal systems.

G THE USE OF LARGE LANGUAGE MODELS

Large language models were used as a writing assistant to help polish this manuscript. The usage
was limited to improving language clarity, rephrasing sentences, and correcting grammar. LLMs
were not used for generating core ideas, experimental results, or analyses. The authors take full
responsibility for all content presented in this paper.
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g. H.264 Compression

Figure 14: Visualization Examples of Different Low-level Video Perturbations

45



Published as a conference paper at ICLR 2026

c. Video Defocus

d. Main Object Occlusion

g. Temporal Scrambling

Figure 15: Visualization Examples of Different Mid- and High- level Video Perturbations
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g. Style Transfer Severity=5

Figure 16: Visualization Examples of Severity Degree Changes in Multi-level Video Perturbations
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