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ABSTRACT

Feature selection (FS) is assumed to improve predictive performance and highlight
meaningful features. We systematically evaluate this across 30 diverse datasets,
including RNA-Seq, mass spectrometry, and imaging. Surprisingly, tiny random
subsets of features (0.02 — 1%) consistently match or outperform both full fea-
ture sets and selected features from published studies (wherever available) in 27
of 30 datasets. In short, any arbitrary set of features is as good as any other (with
surprisingly low variance in results) - so how can a particular set of selected fea-
tures be “important” if they perform no better than an arbitrary set? These results
indicate the failure of the null hypothesis implicit in claims across many FS pa-
pers, challenging the assumption that computationally selected features reliably
capture meaningful signals. They also underscore the need for rigorous validation
before interpreting selected features as actionable, particularly in computational
genomics.

1 INTRODUCTION

Feature selection (FS) is considered a critical part of nearly all machine learning research on high-
dimensional datasets. Beyond just computational efficiency, FS is often used to identify features
deemed “important” to a given outcome, especially in fields such as computational genomics. Some
highly cited, influential studies which do this include Golub et al.|(1999); Guyon et al.|(2002; [2004));
Li et al.|(2017); Lall & Bandyopadhyay|(2019); Cilia et al.|(2019); |(Chen & Dhahbil (2021)); Zanella
et al.| (2022). As of September 2025, a Google Scholar search for “feature selection on high di-
mensional datasets” lists about 2,790,000 results - it is beyond doubt that large resources are being
invested in this area.

The aim of such work is typically to identify a small subset of features which, if used to train
a machine-learning model, results in high accuracy (sometimes surpassing that of the full feature
set). These cleverly-selected features are also often deemed to be important to the underlying task.
Strikingly, we found that a critical baseline is almost always missing: a simple null hypothesis,
comparing the results against a random subset of features of the same size. Without this comparison,
it is unclear whether sophisticated FS methods truly outperform chance.

In this work, we systematically investigate this null hypothesis across multiple datasets varying
in sample size, feature dimensionality, number of classes, and datatype. In many cases, the perfor-
mance of models trained on features selected by published methods can be matched by using random
subsets of similar sizeﬂ That is, testing the null hypothesis of random feature selection — given the
claim of clever feature selection — routinely fails. Our results show that in many biological datasets,
any arbitrary set of features is as good as any other (with surprisingly low variance in results). Le.,
small random subsets often match and even outperform cleverly selected subsets of features.

Across 27 out of 30 diverse datasets that we tested, including microarray, RNA-Seq (bulk and single-
cell), mass spectrometry, imaging, and other modalities, we find that extremely small, random sub-
sets of features (0.02 — 1% of all features) match or outperform the predictive performance of both
full feature sets and published FS (wherever such studies are available). The only three cases where

!'Using ensembles further improves performance when constituent models are trained with different random
subsets of features.
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FS does better than chance are in journalistic text categorization, drug activity prediction, and syn-
thetic data. Results for all 30 datasets are shown in Table [T}

We also find that, for a given dataset, the accuracy (or AUC) derived from a randomly sampled
subset stabilizes and becomes asymptotic after a while, with surprisingly low variance. In fact, sam-
pling with or without replacement seems to make little difference. We propose a metric, Minimum
Sufficient Random Sample Size (MSRSS - see section [3.3.2), to capture the “elbow” at which the
information provided by random subsets saturates.

In our analysis, for each dataset, we compare model performance when trained on:

1. all features.
2. randomly selected subsets of features

 of the same size as in the published feature selection (FS) studies, for all datasets
where FS results are available,

* across various subset sizes ranging from 1 to 2000 features
3. an ensemble trained on all features

4. an ensemble trained on different random subsets of features, each subset of the same size
as in the published FS studies.

This emphasizes the importance of rigorous validation before interpreting selected features as bio-
logically or functionally significant. The work carries broad implications across genomics, neuro-
science, imaging, and other fields that rely on high-dimensional data for discovery and prediction.

We realize that this is a very strong claim to make; as such, all of our code and sample datasets are
provided at the following anonymous GitHub link: https://anonymous.4open.science/
r/Feature_Selection_HD-D853/. All the datasets used in our experiments are publicly
available and their original sources are cited in appendix [A]

This work makes the following contributions:

1. We present a large-scale empirical study across 30 high-dimensional datasets to evaluate
the effectiveness of randomly selected feature subsets for classification tasks, comparing
FS results against random subsets.

2. We find that randomly selected subsets, sometimes comprising as little as 0.02% — 1%
of features, can match or exceed the performance of models trained on all features or on
features selected by published studies, indicating that features selected via FS methods may
not bear much significance.

3. We discuss the broader implications of these findings, including discussing possible metrics
(MSRSS) for evaluating datasets and FS methods, understanding variance in model per-
formance and interpreting computational results in genomics and other high-dimensional
domains.

2 RELATED WORK

Early work on feature selection in genomics laid the foundation for much of the field. Seminal
studies showed how gene expression data could support molecular cancer classification (Golub
et al.,[1999), how SVM-based gene selection could be applied to high-dimensional biology (Guyon
et al., |2002). Gene expression profiles were also applied to predict breast cancer outcomes (West
et al., [2001), underscoring the clinical promise of FS. More recent methods include manifold-
preserving FS for detecting rare cell types in single-cell data (Liang et al., |2021) and WX, a neu-
ral network-based FS algorithm for transcriptomic datasets (Park et al., [2019). Applied studies
have used overlapping FS to distinguish lung cancer subtypes (Chen & Dhahbil 2021)) and ¢;-norm
copula-based FS for microarray data (Lall & Bandyopadhyayl, 2019), and pan-cancer classification
of TCGA expression data (Li et al.,[2017).

>We asked multiple other teams to independently rewrite all code and re-test everything, with similar results.
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Additionally, comparative evaluations have sought to benchmark FS methods. For example, Guyon
et al.| (2004) reported the results of the NIPS 2003 Feature Selection Challenge, providing one of the
earliest systematic benchmarks of FS methods across diverse datasets, Zanella et al.|(2022) evaluated
FS algorithms for cancer phenotype classification, and |Cilia et al.| (2019) provided a systematic
evaluation of FS and classification methods on microarray datasets. Yet, performance has rarely
been compared against a simple null baseline of randomly chosen feature subsets, leaving open a
critical question of whether complex FS methods genuinely outperform chance.

3 METHOD

3.1 DATASETS

We conducted our experiments on a diverse set of 30 high-dimensional datasets, spanning multiple
data modalities: 21 microarray gene expression, 4 RNA-Seq (bulk and single-cell), 1 mass spectrom-
etry, 2 image, and 2 other data types( Table[I] sorted by sample size, with NIPS 2003 FS challenge
datasets listed at the end (Guyon et al., [2004)). We intentionally chose this heterogeneous collec-
tion of datasets spanning multiple cancer types and molecular profiling platforms, varying widely in
tissue origin, sample size, feature dimensionality, datatypes and class distribution. In addition, we
include five benchmark datasets from the NIPS feature selection challenge, covering domains such
as cancer prediction via mass-spectrometry data, handwritten digit recognition, text classification,
and molecular activity prediction along with one synthetically generated dataset. Notably, all five
of these challenge datasets (marked with T in Table[l)) were constructed with random probe features
intentionally added as distractors, making them especially relevant for evaluating the robustness of
feature selection methods. Most of the microarray dataset are sourced from [Feltes et al.| (2019),
which curated them specifically for ML model training. All the datasets are publicly available. For
all the datasets, the original sources are cited in Table[3]in the Appendix [A]

3.2 MODELS

We evaluate a representative set of models covering major learning paradigms: linear (Logistic Re-
gression (LR), Ridge), margin-based (Support Vector Machine (SVM)), Decision Tree (DT), ensem-
ble trees (Random Forest (RF), Gradient Boosting Classifier (GBM), HistGradient Boosting Clas-
sifier (HistGB), eXtreme Gradient Boosting (XGB)), and neural networks (Multilayer Perceptron
(MLP)). This selection balances simple baselines with non-linear models, and overlaps with models
used in prior work, enabling direct comparison. We exclude Naive Bayes, SGD and KNN, which
perform poorly or scale unfavorably in high-dimensional settings, and omit additional boosting vari-
ants (LighGBM, CatBoost) as redundant given XGB, GBM, and HistGB. Our goal is representative,
not exhaustive, coverage.

3.3 EXPERIMENTAL SETUP

All datasets were split into train/test subsets using an 80/20 stratified split. Features were standard-
ized before selection or model training. For each dataset, we compared model performance using

1. All features
2. Random Feature Subsets (baseline)

3. Additionally, for all datasets, where we could find published FS studies, we compare our
results with their results.

3.3.1 RANDOM FEATURE SUBSETS

We sampled features subsets of various sizes (1,2, ..., 50;60, 70, ..., 200; 300, 400, . . ., 2000), re-
sulting in a total of 83 distinct subset sizes. When the total number of features exceeded 20,000,
subsets were drawn without replacement; otherwise, sampling was with replacement. For each
subset size, we generated 20 independent subsets by random sampling and repeated the full train-
ing—evaluation procedure on each. We then trained and evaluated a classifier on every subset, re-
porting mean accuracy and AUC across the 20 runs. The plots in figures[I] [2] (] display these results,
with error bars indicating the standard deviation across runs.
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Table 1: Summary of datasets and random subset size (percentage of full features) required to match
full feature performance within 5%. For 27 out of 30 datasets, randomly selected feature subsets
can match or even outperform models trained on the full feature set.

S Name Classes Samples Features Random Datatype Domain
No Subset  Size
(matching
percentage)
1 Colon 2 62 2000 100 (5%) microarray colon cancer
(Alon)*
2 ALL/AML* 2 72 7129 200 (3%) microarray leukemia
3 GSE6008 4 98 22283 45 (0.2%) microarray ovarian can-
cer
4 GSE18842 2 90 54675 20 (0.04%) microarray lung cancer
5 GSE42743 2 103 54675 200 (0.4%) microarray oral cavity
cancer
6 GSE19804 2 114 54675 100 (0.2%) microarray lung cancer
7 GSE6919_.U95B 2 124 12620 120 (1%) microarray prostate can-
cer
8 GSE3365 3 127 22814 300 (1.5%) microarray bowel disease
9 GSE50161 5 130 54575 60 (0.1%) microarray brain tumours
10  GSE22820 2 139 33579 50 (0.15%) microarray breast cancer
11 GSE53757 2 143 54675 60 (0.1%) microarray kidney cancer
12 GSE30219 2 146 54675 10 (0.02%) microarray lung cancer
13 GSE21510 3 147 54675 60 (0.1%) microarray colorectal
cancer
14  GSEA45827 6 151 54675 60 (0.1%) microarray breast cancer
15  GSE76427 2 165 47322 100 (0.2%) microarray liver cancer
16  GSE4115 2 187 22215 110 (0.5%) microarray lung epithelial
17 GSE44076 2 194 49386 50 (0.1%) microarray colorectal
cancer
18  GSE11223 3 202 40991 200 (0.5%) microarray colon inflam-
mation
19  GSE28497 7 281 22284 110 (0.5%) microarray pediatric
leukemia
20  GSE70947 2 289 35981 110 (0.3%) microarray breast cancer
21 GSE14250 2 357 22277 50 (0.2%) microarray liver cancer
22 TCGA 2 1016 20253 50 (0.3%) bulk RNASeq lung cancer
(LUAD/LUSC)
23  TCGA pan- 33 10223 20253 50 (0.25%) bulk RNASeq pan-cancer
cancer
24 Lung 9 20966 33514 1600 (5.0%) scRNA-Seq lung adeno-
(scRNA- carcinoma
Seq)
25 Lung 2 24421 33514 1200 (3.6%) scRNA-Seq lung adeno-
(scRNA- carcinoma
Seq)
26  Arcenef 2 200 10000 100 (1.0%) mass- ovarian Vs
spectrometry prostate can-
cer
27  Dextert 2 600 20000 20000 (100%) text corporate ac-
quisition
28  Dorotheat 2 1150 100000 100000 (100%) fingerprint drug activity
prediction
29  Madelonf* 2 2600 500 200 (40.0%)  synthetic cluster classi-
fication
30  Gisettef* 2 7000 5000 90 (1.8%) image digit (4 vs 9)

1 NIPS 2003 FS Challenge datasets, all five datasets contain random probes, ranging from 30% (Arcene)

~50% (Dexter, Gisette, Dorothea) to 96% (Madelon).
* indicates subsets sampled with replacement (datasets with < 20, 000 features).

4
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3.3.2 EVALUATION METRICS

We present our results with Area Under the ROC Curve (AUC-ROC) and Accuracy as the primary
metrics. For random subsets, we report the mean performance over 20 runs. For each subset size,
standard deviation is shown with an error bar. Each plot has three horizontal reference lines: for
AUC (or Accuracy) with all features; for within-2%; and within-5% AUC (or Accuracy).

One interesting metric to explore would be the minimum subset size of randomly-selected features
which contain enough information to perform as well at the task as any larger subset - that is, the
accuracy becomes asymptotic after that point, indicating a “saturation” of information provided
by these random subsets. Interestingly, we notice that this is model-independent, remarkably low
in performance variance (across different random selections), and almost always matching full-
feature set performance (after all, this is the random subset size with maximum cardinality). We
call the random subset feature size at which this happens the Minimum Sufficient Random Subset
Size (MSRSS); graphically, this captures the “elbow” at which the information provided by random
subsets saturates, resulting in asymptotic, flat performance thereon. We believe that exploring this
metric could provide interesting insights into various datasets, especially in computational genomics.
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Figure 1: RF results on lung cancer microarray datasets (A) Training on GSE18842 and testing
on GSE19804 shows that random subsets of only 400 features (~0.8% of all features) achieve AUC
comparable to using all features. (B) Training on GSE19804 and testing on GSE18842 shows similar
performance with just 200 (~0.4%) randomly selected features. (C—-D) PCA and t-SNE visualiza-
tions illustrating class separation in GSE18842 and GSE19804, respectively. (E-F) With an 80:20
train-test split, subsets of only 20 features (~0.04%) for GSE18842 and 100 features (~0.2%) for
GSE19804 match the performance of the full feature set.

4 RESULTS

We being by showing Random Forest (RF) results on one representative dataset (or pair, if different
datasets exist for train and test) from each type—microarray, bulk RNA-Seq, single-cell RNA-Seq,
and imaging—chosen to illustrate breadth. Across 27 out of 30 datasets tested, we find that very
small, randomly selected subsets of features (0.02 — 5% of all features) match or even outperform
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the predictive performance of both full feature sets and published FS (wherever such studies are
available). A full summary appears in table [I] with complete plots for all datasets in appendix
(and additional model runs in appendix [C).
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Figure 2: RF results on Gisette image dataset. (A) Randomly selected subsets of only 90 fea-
tures ( 1.8% of all features) achieve AUC comparable to using the full feature set when training on
the Gisette training data and evaluating on the validation set. (B-D) Low-dimensional visualizations
(PCA, t-SNE, UMAP) of the Gisette training data, illustrating class separation.

4.1 RANDOM FOREST RESULTS WITH CROSS-DATASET EVALUATION

We start with two independent microarray datasets of lung disease, each measured on an identical
set of features. To assess model performance under a strict train-test separation, one dataset was
designated as the training set and the other as the external test set. This design avoids overfitting
to dataset-specific noise and provides a rigorous test of generalization. Model performance was
quantified primarily by the Area Under the ROC Curve (AUC); classification accuracy is reported in
appendix Bl To ensure robustness and rule out dataset-specific biases, we repeated the experiment
after swapping the roles of the two datasets (i.e., training on the second dataset and testing on the
first), and we report results for both directions.

To illustrate, we first train a model using GSE18842 (Feltes et al., 2019) (90 samples, 54,765 fea-
tures) and test it using GSE19804 (Feltes et al.,[2019)(114 samples, 54,765 features). As shown in
figure A), randomly selected subsets of just 200 features ( 0.4% of all features), selected without
replacement, achieve AUC comparable to using all features. figure [T(B) shows the reverse setting,
where the model is trained on GSE19804 and tested on GSE18842. Both plots show similar re-
sults. The 2D projections of these two datasets using PCA and t-SNE show that GSE18842 exhibits
better class separability than GSE19804. We hypothesize that such low-dimensional separability
enables models trained on small random subsets of features to perform well. Accuracy plots for this
dataset pair show similar trends in the appendix [Bf even very small random subsets can match the
performance of models using all features.
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Results with another dataset pair, Gisette, with cross-dataset evaluation are shown in Figure@ The
Gisette image dataset is from NIPS 2003 FS challenge (Guyon et all,2004). The task is to discrim-
inate between two confusable handwritten digits: the four and the nine. The challenge organisers
provided a separate training and validation set. We find that with 90 (1.8%) randomly selected fea-
tures, models could match the AUC with all features. As there are 30% spurious features in this
dataset, the results are even more significant — effectively any random subset of size 60 is enough to
discriminate between the two classes in this dataset.
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Figure 3: RF results on bulk and single-cell RNA-Seq datasets. (A) On the TCGA-LUAD-
LUSC bulk RNA-Seq dataset (80:20 split), a random subset of only 50 features(~0.3% of the
total) achieves AUC comparable to the full feature set. (B-D) PCA, t-SNE and UMAP visual-
izations illustrating class separation in the bulk dataset. (E) On the lung cancer single-cell RNA-Seq
dataset (80:20 split), random subsets of 1200 features (~3.6%) achieve AUC within 5% of the full-
feature set. (F~H) PCA, t-SNE, and UMAP visualizations showing class separation in the single-cell
dataset.

4.2 RANDOM FOREST RESULTS WITH INTRA-DATASET SPLITS

In addition to cross-dataset evaluation, we assessed model performance using standard intra-dataset
train—test splits of 80:20. For each dataset, we randomly divided the samples into 80% for training
and 20% for testing, while ensuring class balance was preserved. For example, figures[T[(E) and[I(F)
show that for GSE19804 and GSE18842, with a random subset we can match the performance of all
features.

Figure 3|summarizes results for bulk and Single-cell RNA-Seq datasets. For the bulk RNA-Seq data,
(Figurelzzilg’kA)), Random Forest models trained with just 50 randomly selected features (~0.22% of
all features) achieves performance comparable to the full feature set. For the Single-cell RNA-Seq
dataset(Figure[3[E)), subsets of about 1200 (~3.6% of all features) results in AUC within 5% of the
full-feature set. We hypothesize that better low-dimensional separability for TCGA_LUAD_LUSC
(bulk RNA-Seq dataset) enables random subsets to perform better. Even for a bulk RNA-Seq dataset
with 33 classes (TCGA), random subsets can match the performance of all features as shown in

figure 26)in appendix
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Table 2: Comparing our results with published studies. Accuracy (%) with number of features in
parentheses.

Publication Dataset (A) Pub- (B)RFac- (C) En- (D) RF (E) En- (F)E-A (D-A)
(sample lished curacy (all semble accuracy semble
count) accuracy features) LR, RF, (same LR, REF,
(selected XGB ac- number of XGB
features) curacy (all randomly  accuracy
features) selected (same
features) number of
randomly
selected
features)
Chen & TCGA 94.2 (500) 94.8 95.8 93.6 (500) 95.6 (500) 1.4 (-0.6)
Dhahbi 2021 (LUAD/LUSC) (20253) (20253)
(1016)
Lietal. 2017 TCGA 95.6 (50) 94.6 96.6 87.2 (50) 92.8 (50) -2.8 (-8.4)
(10223) (20253)
Lall & ALL/AML 86.0 (35) 94.3 98.6 80.0 (35) 90.1 (35) 4.1 (-6.0)
Bandyopad- (72) (7129) (7129)
hyay 2020
Golub et al. ALL/AML 98.6 (51) 94.3 98.6 86.0 (51) 90.1 (51) -8.5(-12.6)
1999 (72) (7129) (7129)
Cilia et al. ALL/AML 99.4 (51) 94.3 98.6 86.0 (51) 90.1 (51) -9.3 (-13.4)
2019 (72) (7129) (7129)
Zanella et al. GSE4115 67.9 (5) 68.9 72.7 57.9 (5) 64.7 (5) -3.2(-10.0)
2022 (187) (22215) (7129)

We observe similar patterns in three of the five benchmark datasets from the NIPS 2003 Feature
Selection Challenge (Guyon et al., 2004)). Consistent with the cross-dataset results, we found that
models trained on extremely small subsets of randomly selected features often outperformed those
trained on the full feature set. In several cases, using just 0.02% - 0.1% of the available features
led to improved accuracy and AUC, with performance saturating well before reaching the full di-
mensionality. Table 1 summarises the results across all 30 datasets, showing that for 28 datasets this
pattern holds consistently across diverse data types, including microarray, single-cell RNA-seq, bulk
RNA-Seq and benchmarks datasets from NIPS FS challenge.

The only three cases where FS does better than chance are in journalistic text categorization, drug
activity prediction, and synthetic data. Results for these datasets (Dexter, Dorothea and Madelon)

are shown in Figure [29] [30]and 28]

4.3 COMPARISON WITH PUBLISHED STUDIES ON FEATURE SELECTION

Table 2] provides a comparison of RF results for selected datasets and related published studies. The
first column lists the published study followed by the dataset name and sample count. The next
5 columns list accuracy with (A) selected features from the published study; (B) all features; (C)
ensemble of LR, RF, and XGB trained on all features; (D) randomly selected features of the same
size as the published study; and, (E) ensemble of LR, RF, and XGB trained on different random
subsets of features of same size as the published study. The last column (F) reports the difference
between published results and random subsets. These results suggest that randomly selected subsets
can capture as much discriminatory signal as all features or those deemed “important” by established
feature selection methods.

ALL/AML (Golub et al.,[1999)) has just 72 samples, which makes it difficult to handle with machine
learning methods; this also means that standard deviation is high across runs (figure[§). Surprisingly,
despite this severe limitation, random subsets show reasonable performance.
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5 CONCLUSION AND FUTURE WORK

Our findings challenge the intuitive assumption that more features, and cleverly selected features
lead to better classification performance in high-dimensional settings. Across 27 out of 30 diverse
datasets, we observe that small, randomly selected feature subsets—sometimes comprising as little
as 0.02% of all features—can match or even outperform models trained on the full feature set or
on FS sets. Table [Tl summarizes these results. This result holds across both cross-dataset and intra-
dataset validation and spans multiple data types.

These results reinforce earlier insights on feature redundancy in high-dimensional data and resonate
with prior work showing that Random Forests are robust to noise and overfitting due to their ensem-
ble nature and internal feature sampling mechanisms (Breiman, 2001; |Diaz-Uriarte & Alvarez de
Andrés, 20006). Interestingly, we observe similar results with other non-tree, non-ensemble models.
Our findings further demonstrate that even explicit external subsampling of features—performed
entirely at random—can yield stable and often superior classification performance. This robustness
is reinforced by our observation that the standard deviation in performance decreases consistently
with increasing random subset size, suggesting the presence of many equally informative, often
non-overlapping, feature combinations.

This phenomenon may have conceptual ties to random subspace methods (Ho, 1998) and the theory
of random projections, particularly the Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss,
1984), which shows that high-dimensional data can be embedded in lower dimensions while pre-
serving pairwise distances. While our method does not perform explicit projections, the empirical
success of randomly selected subspaces suggests that useful structure can be retained without so-
phisticated transformations. Unlike methods such as Principal Component Analysis (PCA), which
apply global, often opaque transformations, random feature selection is both conceptually and com-
putationally simple: the only surprising thing is that it works so well!

Our results also raise critical questions regarding the interpretation of feature importance in gene ex-
pression datasets — especially because such results sometimes guide downstream medical research.
Our findings suggest that computationally derived feature importance may reflect statistical signals
more than underlying biological causality. We do not argue against the search for biologically mean-
ingful genes; on the contrary, we emphasize that identifying causal or mechanistically relevant genes
requires biological validation. Features identified as important by computational models should ide-
ally be corroborated through independent experimental methods, such as perturbation assays or
wet-lab validation.

Investigating the diversity and overlap among high-performing random subsets may be interest-
ing and reveal deeper insights into the intrinsic dimensionality, redundancy, and structure of high-
dimensional biological data. Incorporating random subspace strategies into ensemble learning or
active learning pipelines could enhance both performance and generalization, especially in domains
like genomics where data is high-dimensional and sample sizes are often limited. Additionally, our
MSRSS metric appears to have some interesting properties (e.g., it remains remarkably stable across
totally different models - the reasons for this are unclear). It will be interesting to investigate this
further and possibly quantify its effect on feature selection.
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A DATASETS SOURCE

Table 3: Summary of datasets used in this study. Citations correspond to the original dataset sources.

No. Name (Samples, Fea- Datatype Domain (Citation)
tures, Classes)
1 Colon (Alon) (62,2000, 2) microarray colon cancer (Alon et al.l[1999)
2 ALL/AML (72,7129, 2) microarray leukemia (Golub et al.||1999)
3 GSE6008 (98, 22283, 4) microarray ovarian cancer (Hendrix et al., 2006)
4 GSE18842 (90, 54675, 2) microarray lung cancer (Sanchez-Palencia et al.| 201 1))
5 GSE42743 (103, 54675, 2) microarray oral cavity cancer (Lohavanichbutr et al.,
2013)
6 GSE19804 (114, 54675, 2) microarray lung cancer (Lu et al.,|2010)
7 GSE6919_U95B (124, 12620, 2) microarray prostate cancer (Chandran et al.,[2007)
8 GSE3365 (127, 22814, 3) microarray bowel disease (Burczynski et al.,|2006))
9 GSE50161 (130, 54575, 5) microarray brain tumours (Griesinger et al., [2013)
10 GSE22820 (139, 33579, 2) microarray breast cancer (Liu et al.,|2011)
11 GSES53757 (143, 54675, 2) microarray kidney cancer (Roemeling et al., 2014)
12 GSE30219 (146, 54675, 2) microarray lung cancer (Rousseaux et al.| 2013)
13 GSE21510 (147, 54675, 3) microarray colorectal cancer (T'sukamoto et al.| [2011)
14 GSEA45827 (151, 54675, 6) microarray breast cancer (Gruosso et al., 2016)
15 GSE76427 (165, 47322, 2) microarray liver cancer (Grinchuk et al.| 2018)
16  GSE4115 (187, 22215, 2) microarray lung epithelial cancer (Spira et al., 2007)
17 GSE44076 (194, 49386, 2) microarray colorectal cancer (Solé et al.,[2014)
18 GSE11223 (202, 40991, 3) microarray colon inflammation (Noble et al., [2008)
19  GSE28497 (281, 22284, 7) microarray pediatric leukemia (Coustan-Smith et al.
2011)
20 GSE70947 (289, 35981, 2) microarray breast cancer (Quigley & Kristensen,
2016)
21 GSE14250 (357, 222717, 2) microarray hepatocellular carcinoma (Roessler et al.,
2010)
22  TCGA (1016, 20253,2)  bulk RNA-Seq lung cancer (The Cancer Genome Atlas
(LUAD/LUSC) Research Network, 2014; 2012
23 TCGA pan- (10223, 20253, bulk RNA-Seq pan-cancer (The Cancer Genome Atlas Re-
cancer 33) search Network, 2018)
24 Lung (scRNA- (20966,33514,9) scRNA-Seq lung adenocarcinoma (Bischoff et al.l
Seq) 2021)
25 Lung (scRNA- (24421,33514,2) scRNA-Seq lung adenocarcinoma (Bischoff et al.
Seq) 2021)
26 Arcenet (200, 10000, 2) mass- ovarian vs prostate cancer (Guyon et al.
spectrometry 2004)
27 Dexterf (600, 20000, 2) text corporate acquisition (Guyon et al.| 2004)
28  Dorotheat (1150, 100000, 2)  fingerprint drug activity prediction (Guyon et al.
2004)
29  Madelonf (2600, 500, 2) synthetic cluster classification (Guyon et al.,2004)
30 Gisettet (7000, 5000, 2) image digit classification (4 vs 9) (Guyon et al.

2004)
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B RESULTS WITH RANDOM FOREST FOR ALL DATASETS

Additional figures supporting the main text are provided here (figs. BH30). They include RF results
across datasets.

(A) (B)

Dataset: Lun 'g_GSE19804 (n=114), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement

size 10 Range 300-2000 with step size 100

Range 3002000 with step size

T |

D @
Number of

Figure 4: Random Forest performance with lung microarray dataset pairs (mean and standard de-
viation are reported over 20 runs) (A) RF models trained on GSE18842 and tested on GSE19804
show that randomly selected subsets never achieve accuracy comparable to using all features. (B)
RF models trained on GSE19804 and tested on GSE18842 show that 200 randomly selected fea-
tures ( 0.4% of all features) perform comparable to all features. (C) Model performance with an
80:20 train-test split using randomly selected feature subsets. For GSE18842, just 50 randomly se-
lected features are sufficient to match the accuracy comparable to all features. (D) Similarly, for
GSE19804, 200 features suffice to match accuracy with all features.
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Range 1-50 with step size 1 Range 60-200 with step size 10 Range 300-2000 with step size 100

Accuracy vs Random Features
Train Dataset: Gisette (6000 samples, 5000 features) Test Dataset: Gisette_validation
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Figure 5: Random Forest performance with Gisette image dataset (mean and standard deviation are
reported over 20 runs). The task of GISETTE is to discriminate between two confusable handwritten
digits: the four and the nine. The model is trained on Gisette train dataset and tested on Gisette
validation dataset shows that randomly selected subsets of just 200 achieve accuracy comparable to

using all features.

Accuracy Averaged over 20 Runs.

Accuracy vs Random Gene Set Size

(A) Dataset; TCGA_LUAD_LUSC (1016, 20253)

Range 1-50 with step size 1 Range 60-200 with step size 10 Range 300-2000 with step size 100

. Accuracy with allfeatures (20253)
Daie
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o898
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Accuracy vs Random Features; Lung Single-cell RNA-Seq Dataset (24421 samples, 33514 features)
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0,01

== within 2%: 0.890
== ithin 5%: 0.860

IR > & S & - N I NN
L R T O S S PSS LSS

S
&
Number of randomly selected features

Figure 6: Random Forest performance with bulk RNA-Seq and Single-cell RNA-Seq datasets (mean
and standard deviation are reported over 20 runs). (A) Models trained and tested on TCGA-LUAD-
LUSC bulk RNA-Seq dataset (80:20 split) shows that a random subset of size 50 (<0.3%) is able
to match within-5% accuracy of all features. (B) On the lung cancer single-cell RNA-Seq dataset
(80:20 split), randomly selected subsets of size 2000 achieve accuracy within 5% of the full-feature

model.

15



Under review as a conference paper at ICLR 2026

Accuracy vs Random Features; Colon Dataset (62 samples, 2000 features) AUC vs Random Features; Colon Dataset (62 samples, 2000 features)
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Figure 7: Random Forest performance with Colon microarray dataset (mean and standard deviation
are reported over 20 runs). (A) & (B) models trained and tested on 80:20 split shows that a random
subset of size ~100 is able to match accuracy and AUC with all features, respectively. (C) & (D) &
(E) PCA, t-SNE and UMAP plots showing class separation.
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Figure 8: Random Forest performance with ALL/AML Leukemia microarray dataset (mean and
standard deviation are reported over 20 runs). (A) & (B) models trained and tested on 80:20 split
shows that a random subset of size ~200 is able to match accuracy and AUC with all features,
respectively. (C) & (D) PCA, t-SNE plots showing class separation.
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Figure 9: Random Forest performance with Ovary (GSE6008) microarray dataset (mean and stan-
dard deviation are reported over 20 runs). (A) & (B) models trained and tested on 80:20 split shows
that a random subset is able to match accuracy and AUC with all features, respectively. (C) & (D)
PCA, t-SNE plots showing class separation.
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Figure 10: Random Forest performance with Oral/Throat (GSE42743) microarray dataset (mean
and standard deviation are reported over 20 runs). (A) & (B) models trained and tested on 80:20
split shows that a random subset is able to match within-5% accuracy and AUC with all features,
respectively. (C) & (D) PCA, t-SNE plots showing class separation.
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Figure 11: Random Forest performance with Arcene mass-spectrometry dataset (mean and standard
deviation are reported over 20 runs). The task of ARCENE is to distinguish cancer versus normal
patterns from mass-spectrometric data. (A) Models trained and tested on 80:20 split shows that a
random subset of size ~50 (0.5% of all features) is able to match within-5% Accuracy and AUC of
all features. (B) PCA, t-SNE plots showing class separation.
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Dataset: Prostate_GSE6919_U95B (n=124), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement

Range 1-50 with step size 1 Range 60-200 with step size 10 Range 300-2000 with step size 100
1.0 - -

o
o

0 ey S S I o S IILIEAlIT -

[T

y r-3-F-3-3-3-1 1

__}__ ) hd
A R B e N A -

Accuracy with all features (12619)
1 0.669

e
Y

-
L

¥

[

o
o

T === Accuracy within 2%: 0.649 -
——~- Accuracy within 5%: 0.619

o
=

Mean Accuracy Averaged over 20 Runs
o o
w n

o
N

0.1 - -
0.0
Dataset: Prostate_GSE6919_U95B (n=124), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
Range 1-50 with step size 1 Range 60-200 with step size 10 Range 300-2000 with step size 100
1.0 - -
0.9 - -
208 - -
5
=4
o - - -
oo TrlTlcTe =111 AIIITTALI T A
a ok I s-1-4-1-7J-1 1 11
>
$u gRRESENsES gECE
S ___ Accuracy with all features (12619)
<] 1 0.669
g 0.5 ~ === Accuracy within 2%: 0.649 -
< -~ Accuracy within 5%: 0.619
>
@04 - -
5
o
g
<03 - -
c
&
L
=02 -
0.1
0.0 T v r ) T r T T T T 1 T
10 20 30 40 50 60 80 100 120 140 160 180 200 300 500 700 900 11001300150017001900

Number of genes randomly selected for model training

Figure 12: RF results with Prostate (GSE6919_U95B) dataset. Models trained and tested on 80:20
split shows that a random subset of size ~50 (0.4% of all features) is able to match within-5%
Accuracy and AUC of all features.
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Figure 13: RF results with Bowel (GSE3365) dataset. Models trained and tested on 80:20 split shows
that a random subset of size ~500 (~2.2% of all features) is able to match within-5% Accuracy and
AUC of all features.
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Dataset: Brain_GSE50161 (n=130), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Dataset: Brain_GSE50161 (n=130), Model: RF(D), AUC Averaged over 20 Runs, Random Set without replacement
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Figure 14: Random Forest performance with Brain (GSE50161) dataset (mean and standard devia-
tion are reported over 20 runs). Models trained and tested on 80:20 split shows that a random subset
of size ~50 (~0.09% of all features) is able to match within-5% Accuracy and AUC of all features.
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Dataset: Breast_GSE22820 (n=139), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Dataset: Breast_GSE22820 (n=139), Model: RF(D), AUC Averaged over 20 Runs, Random Set without replacement
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Figure 15: Random Forest performance with Breast (GSE22820) dataset (mean and standard de-
viation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random
subset of size ~50 (~0.14% of all features) is able to match within-5% Accuracy and full AUC of
all features. (The unusually high accuracy with just one feature is because there is a severe class
imbalance in this dataset).
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Dataset: Renal_GSE53757 (n=143), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Figure 16: Random Forest performance with Renal (GSE53757) dataset (mean and standard devia-
tion are reported over 20 runs). Models trained and tested on 80:20 split shows that a random subset
of size ~30 (~0.06% of all features) is able to match full Accuracy and full AUC of all features.

22



Under review as a conference paper at ICLR 2026
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Figure 17: Random Forest performance with Lung Cancer (GSE30219) dataset (mean and standard

deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random
subset is able to match full Accuracy and full AUC of all features.
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Figure 18: Random Forest performance with Breast Cancer (GSE45827) dataset (mean and standard
deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random
subset is able to match within-5% Accuracy and full AUC of all features.
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Dataset: Liver_GSE76427 (n=165), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Figure 19: Random Forest performance with Liver Cancer (GSE76427) dataset (mean and standard
deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random

subset is able to match full Accuracy and full AUC of all features.
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Dataset: GSE4115 (n=187), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement

Range 1-50 with step size 1 Range 60-200 with step size 10 Range 300-2000 with step size 100
1.0 - -

TR
LY

Accuracy with all features (22215)
: 0.689

~ === Accuracy within 2%: 0.669 -
—==- Accuracy within 5%: 0.639

Mean Accuracy Averaged over 20 Runs

0.1 - -
0.0
10 20 30 40 50 60 80 100 120 140 160 180 200 300 500 700 900 11001300150017001900
Number of genes randomly selected for model training
Dataset: GSE4115 (n=187), Model: RF(D), AUC Averaged over 20 Runs, Random Set without replacement
Range 1-50 with step size 1 Range 60-200 with step size 10 Range 300-2000 with step size 100
1.0 - -
0.9 R R
0.8 R R
oy
2 . T = -~ = ®
5 3
<07 -
o
I
-
¢ o6 - B
2 ___ AUC with all features (22215)
17 10.75
gos - ——- AUC within 2%: 0.730 -
g ~—~ AUC within 5%: 0.700
=3 L
© 04 - -
=}
<
S 03 - -
Q
=
0.2 - -
0.1 - -
0.0

10 20 30 40 50 60 80 100 120 140 160 180 200 300 500 700 900 11001300150017001900
Number of genes randomly selected for model training

Figure 20: Random Forest performance with Lung Cancer (GSE4115) dataset (mean and standard
deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random
subset is able to match within-2% Accuracy and AUC of all features.
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Dataset: Colorectal_GSE44076 (n=194), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Figure 21: Random Forest performance with Colorectal Cancer (GSE44076) dataset (mean and
standard deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a
random subset is able to match full Accuracy and full AUC of all features.
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Dataset: GSE11223 (n=202), Model: RF(D), AUC Averaged over 20 Runs, Random Set without replacement
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Figure 22: Random Forest performance with Colon Cancer (GSE11223) dataset (mean and standard
deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random
subset is able to match full AUC of all features.
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Dataset: Leukemia_GSE28497 (n=281), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Dataset: Leukemia_GSE28497 (n=281), Model: RF(D), AUC Averaged over 20 Runs, Random Set without replacement
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Figure 23: Random Forest performance with Leukemia (GSE28497) dataset (mean and standard
deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random
subset is able to match within-2% Accuracy and AUC of all features.
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Figure 24: Random Forest performance with Breast Cancer (GSE70947) dataset (mean and standard
deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a random
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Dataset: BreastCancer (n=289), Model: RF(D), AUC Averaged over 20 Runs, Random Set without replacement
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subset is able to match within-5% Accuracy and AUC of all features.
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Dataset: Liver_GSE14520 (n=357), Model: RF(D), AUC Averaged over 20 Runs, Random Set without replacement
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Figure 25: Random Forest performance with Liver Cancer (GSE14520) dataset (mean and standard
deviation are reported over 20 runs). Models trained and tested on 80:20 split shows that a small
random subset is able to match full Accuracy and AUC of all features.
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Dataset: TCGA (n=10223), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Figure 26: Random Forest performance with bulk RNA-Seq TCGA dataset with 33 classes (mean
and standard deviation are reported over 20 runs). Models trained and tested on 80:20 split shows
that a small random subset is able to match full Accuracy and AUC of all features.
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Dataset: Data_Bischoff2021_Lung (n=20966), Model: RF(D), Accuracy Averaged over 20 Runs, Random Set without replacement
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Figure 27: Random Forest performance with single-cell RNA-Seq Lung dataset with 9 classes (mean
and standard deviation are reported over 20 runs). Models trained and tested on 80:20 split shows
that a small random subset is able to match within-5% Accuracy and AUC of all features.
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Accuracy vs Random Gene Set Size
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Figure 28: Random Forest performance with Madelon dataset (mean and standard deviation are
reported over 20 runs). The task of MADELON is to classify random data. Models trained and
tested on 80:20 split shows that a random subset is able to match within-5% Accuracy and AUC of
all features. (As there are only 500 features in this dataset, there is no result beyond 500).
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Figure 29: Random Forest performance with Dexter dataset (mean and standard deviation are re-
ported over 20 runs). The task of DEXTER is to filter texts about “corporate acquisitions”. Models
trained and tested on 80:20 split shows that a random subset is NOT able to match AUC of all fea-
tures.

Dataset: Dorothea, Model: Random Forest, AUR ROC Averaged over ZU Runs, Random Set without replacement
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Figure 30: Random Forest performance with Dorothea dataset (mean and standard deviation are
reported over 20 runs). The task of DOROTHEA is to predict which compounds bind to Thrombin.
Models trained and tested on 80:20 split shows that a random subset is NOT able to match AUC of
all features.
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C RESULTS WITH OTHER MODELS

Additional figures supporting the main text are provided here (figs. BTH42). Rest of the plots are in
the supplementary material. They include results for different model and datasets.

Accuracy vs Random Features; GSE4115 Dataset (187 samples, 22215 features)
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Figure 31: Logistic Regression results with GSE4115 microarray dataset. Trained and tested on

80:20 split, the plot shows that a random subset is able to match accuracy and AUC with all features,
respectively.
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Accuracy vs Random Features; GSE4115 Dataset (187 samples, 22215 features)
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Figure 32: Decision Tree results with GSE4115 microarray dataset. Trained and tested on 80:20

split, the plot shows that a random subset is able to match accuracy and AUC with all features,
respectively.
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Figure 33: Ridge classifier results with GSE4115 microarray dataset. Trained and tested on 80:20
split, the plot shows that a random subset is able to match accuracy and AUC with all features,

respectively.
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Accuracy vs Random Features; GSE4115 Dataset (187 samples, 22215 features)
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Figure 34: Support Vector Machine (SVM) results with GSE4115 microarray dataset. Trained and
tested on 80:20 split, the plot shows that a random subset is able to match accuracy and AUC with

all features, respectively.
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Accuracy vs Random Features; GSE4115 Dataset (187 samples, 22215 features)
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Figure 35: eXtreme Gradient Boosting (XGB) results with GSE4115 microarray dataset. Trained
and tested on 80:20 split, the plot shows that a random subset is able to match accuracy and AUC

with all features, respectively.
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Accuracy vs Random Features; GSE4115 Dataset (187 samples, 22215 features)
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Figure 36: Multi Layer Perceptron (MLP) results with GSE4115 microarray dataset. Trained and
tested on 80:20 split, the plot shows that a random subset is able to match accuracy and AUC with

all features, respectively.
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Accuracy vs Random Features; ALL_AML Dataset (72 samples, 7129 features)
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Figure 37: Decision Tree results with ALL-AML microarray dataset. Trained and tested on 80:20
split, the plot shows that a random subset is able to match accuracy and AUC with all features,

respectively.
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Figure 38: Gradient Boosting Machine (GBM) results with ALL-AML microarray dataset. Trained
and tested on 80:20 split, the plot shows that a random subset is able to match accuracy and AUC
with all features, respectively.
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Accuracy vs Random Features; ALL_AML Dataset (72 samples, 7129 features)
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Figure 39: HistGradient Boosting classifier (HistGB) results with ALL-AML microarray dataset.

Trained and tested on 80:20 split, the plot shows that a random subset is able to match accuracy and
AUC with all features, respectively.
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Figure 40: Logistic Regression (LR) results with ALL-AML microarray dataset. Trained and tested
on 80:20 split, the plot shows that a random subset is able to match accuracy and AUC with all

features, respectively.
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Accuracy vs Random Features; ALL_AML Dataset (72 samples, 7129 features)
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Figure 41: Multilayer Perceptron (MLP) results with ALL-AML microarray dataset. Trained and
tested on 80:20 split, the plot shows that a random subset is able to match accuracy and AUC with

all features,

respectively.
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Accuracy vs Random Features; ALL_AML Dataset (72 samples, 7129 features)
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Figure 42: Ridge classifier results with ALL-AML microarray dataset. Trained and tested on 80:20
split, the plot shows that a random subset is able to match accuracy and AUC with all features,

respectively.
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