
Under review as a conference paper at ICLR 2024

CONT-GRU: FULLY CONTINUOUS GATED RECUR-
RENT UNITS FOR IRREGULAR TIME SERIES

Anonymous authors

Paper under double-blind review

ABSTRACT

For a long time, RNN-based models, such as RNNs, LSTMs and GRUs, have been
used to process time series. However, RNN-based models do not fit well with
sporadically (or irregularly) observed real-world data. To this end, some methods
partially continuously model RNNs/GRUs using ordinary differential equations
(ODEs). In this paper, however, we propose Cont-GRU, which models GRUs as
delay differential equations (DDEs). By redefining GRUs as DDEs, we show that
i) all the parts of GRUs (the hidden state, the reset gate, the update gate, and the
update vector) can be interpreted fully continuously, and ii) our method does not
inherit the limitations of ODEs. In our experiments using 5 real-world datasets
and 17 baselines, Cont-GRU outperforms all baselines by non-trivial margins.

1 INTRODUCTION

Real-world time series datasets are frequently irregular since some observations can be missing (due
to malfunctioning sensors and/or communication channels) and/or observations are collected in an
event-driven manner (Brockwell & Davis, 2002; Shumway et al., 2000). However, recurrent neural
networks (RNNs), such as long short-term memory (LSTMs (Hochreiter & Schmidhuber, 1997))
and gated recurrent units (GRUs (Cho et al., 2014)), are limited in processing irregular time series.
In Figure 1 (a), for instance, GRUs process regularly sampled time series in a discrete manner.

To this end, there are various enhancements for GRUs/RNNs, e.g., GRU-ODE-Bayes, ODE-RNN,
NJODE, and so on (Herrera et al., 2021; Lukoševičius & Uselis, 2022; Schirmer et al., 2021;
Brouwer et al., 2019; Rusch et al., 2022). These models make fundamental and unique contri-
butions in continuously generalizing GRUs and therefore, they have a strong point in processing
irregular time series. ODE-RNN, GRU-ODE-Bayes, and others have used the neural ordinary dif-
ferential equation (NODE)-based technology to process irregular time series {(xi, ti)}N�1

i=0 , where
the inter-arrival time ti�ti�1 is not fixed. However, these approaches have, in general, the following
limitations:

1. Only the hidden state is continuous on time and other gates are still discrete, which is a
half-way continuous generalization of GRUs (cf. Figure 1 (b)).

2. There exists a discontinuity in reading xi at time ti — the discontinuity point is called as
jump since the hidden state h(ti) jumps to a different location h0(ti) = j(h(ti),xi;✓j)
suddenly. They need an auxiliary neural network j to perform the jump operation.

3. The trajectory from h0(ti�1) to h(ti) is modeled by a NODE and determined only by
h0(ti�1) (and other gates at time ti�1).

4. Moreover, the topologies of h0(ti�1) and h(ti) are identical — simply speaking, large
updates are not made from h0(ti�1) to h(ti). In fact, this is the well-known homeomorphic
limitation of NODEs. There exists a countermeasure for this limitation (Dupont et al.,
2019). However, this countermeasure is not as effective as our method since it does not
make substantial changes to NODEs.

In this paper, we redefine GRUs as delay differential equations (DDEs) that reflect past observations
to the current hidden state for processing irregular time series and fully continuously generalize
GRUs (cf. Figure 1 (c)). Our method does not have the aforementioned limitations of NODE-based
methods. First, we consider the following general form of GRUs, including the reset gate, the update

1

Under review as a conference paper at ICLR 2024

(a) GRU (b) NODE-based GRU with jumps (c) Our fully continuous Cont-GRU

Figure 1: Existing methods vs. Cont-GRU. ‘Gates’ means the various gates of GRUs. In the first
two methods, those gates are not continuous.

gate, and the update vector:

h(t) := z(t)� h(t� ⌧) + (1� z(t))� g(t),

z(t) := �
�
Wzx(t) +Uzh(t� ⌧) + bz

�

g(t) := �
�
Wgx(t) +Ug

�
r(t)� h(t� ⌧)

�
+ bg

�
,

r(t) := �
�
Wrx(t) +Urh(t� ⌧) + br

�
,

(1)

where ⌧ > 0 is a delay factor. In our continuous GRU regime, ⌧ adaptively changes for a down-
stream task (see the discussion in Section. 3.3).

We later calculate the time derivative terms of h(t), z(t), g(t), and r(t) in Section. 3.2 to convert
the general form into a DDE. To our knowledge, our model, called Continuous GRU (Cont-GRU),
is the first fully continuous interpretation of GRUs. Our method can be summarized as follows:

1. We calculate the time derivatives of the hidden state h(t), the reset gate r(t), the update
gate z(t), and the update vector g(t) of GRUs in Section. 3.2.

2. We then define an augmented delay differential equation (DDE) in Eq. equation 6 after
combining all those time derivative terms. The advantages of our model are as follows:
(a) DDEs share the same base philosophy as that of GRUs, which is past information

influences current output. DDEs are for modeling these time-delay systems. In partic-
ular, the delay factor ⌧ dynamically changes over time whereas ⌧ = 1 in the original
GRU design.

(b) Using an interpolation algorithm, we convert the discrete time series sample
{(xi, ti)}N�1

i=0 into a continuous path x(t), where x(ti) = (xi, ti) at each observa-
tion time point ti and for other non-observed time points, the interpolation algorithm
fills out appropriate values.

(c) There is no need to use the jump mechanism, and Cont-GRU defines all the gates and
hidden state continuously over time.

(d) Our DDE-based method does not have the limitation of ODEs — DDEs are not home-
omorphic — and therefore, we expect better representation learning capability which
is important for downstream tasks. In addition, our Cont-GRU model is relatively
lightweight in terms of memory footprint. See Appendix A for more discussion.

2 RELATED WORK

Continuous-time time series processing Deep learning models based on differential equations
are commonly utilized for processing time series. Many of them rely on a technology called neural
ordinary differential equations (NODEs (Chen et al., 2018)), which solve the following initial value
problem:

h(ti) = h(ti�1) +

Z ti

ti�1

f(t,h(t),✓f)dt, (2)

2

Under review as a conference paper at ICLR 2024

where f , called ODE function, is a neural network which is parameterized by ✓f and approximates
dh(t)
dt . We can get h(ti) by solving the initial value problem with various ODE solvers. How-

ever, NODEs are homeomorphic. In other words, the mapping from h(ti�1) to h(ti) continuously
changes in a bijective manner, which is too restrictive in some cases for complicated tasks and
therefore, augmenting h(t) with zeros had been proposed in (Dupont et al., 2019). We also consider
this augmentation technique to enhance some baselines for thorough experiments. However, this
increases the model size and computation amount.

NODEs utilize Eq. equation 2 between two observations to model the evolutionary process of the
hidden state h(t) in a continuous time domain. Following this idea, various differential equation-
based time series models have been recently proposed. Most of them use a mechanism called jump.
A jump means that i) the hidden state jumps to a different location after reading a new observation,
aided by an auxiliary jump network and ii) a new initial value problem should be solved (cf. Figure 1
(b)) — in other words, this processing paradigm is able to process irregular time series since the
jumping can happen anytime. ODE-RNN (Rubanova et al., 2019), GRU-ODE-Bayes (Brouwer
et al., 2019), and neural jump ODEs (NJODEs) (Herrera et al., 2021) are representative methods for
this approach.

In (Kidger et al., 2020), neural controlled differential equations (NCDEs) were proposed to process
irregular time series by using the controlled differential equation paradigm. Since NCDEs create a
continuous path by using interpolation methods, they can continuously generalize the hidden state
without any jump mechanism. In other words, NCDEs read a continuous path and evolve the hidden
state h(t) continuously over time.

Delay differential equations Delay differential equations (DDEs) are a type of differential equa-
tion in mathematics that uses the value of a function from a previous time to determine the derivative
of the function at a given time. Considering the characteristics of DDEs, a time-delay RNN model
suitable for temporal correlation and volatile financial time series was also proposed in (Kim, 1998).
DDEs overcome the limitations of NODEs. In particular, it overcomes the limitations of NODEs
well in physical or physiological systems where the effect of time delay cannot be avoided. In this
context, two interesting papers (Zhu et al., 2021; 2022) have been published. In those papers, the
simplest form of neural delay differential equations (NDDEs) can be written as follows:

h(ti) = h(ti�1) +

Z ti

ti�1

f(t,h(t),h(t� ⌧),✓f)dt, (3)

where ⌧ is a delay effect. The difference between Eq. equation 2 and Eq. equation 3 is that NDDEs
consider the hidden state of past times.

3 PROPOSED METHOD

In this section, we describe our proposed fully continuous GRU concept. First, we redefine GRUs as
DDEs. Applying the DDE to the GRU is particularly suitable for capturing time-dependent correla-
tions and predicting for time series. Unlike existing RNN-based models where the time-delay factor
⌧ is fixed to 1, our proposed model, Cont-GRU, has the flexibility to dynamically control the delay
term ⌧ . After redefining GRUs as DDEs, Cont-GRU generalizes all the gates, including the update
gate, the update vector and the reset gate, continuously. Generalizing all the gates continuously en-
ables accurate understanding the flow of time series when performing downstream tasks, especially
for time series classification and forecasting. In addition, we do not need an jump network.

3.1 OVERALL WORKFLOW

Figure 1.(c) shows the overall workflow diagram of our method, Cont-GRU, which is defined as
follows:

1. A continuous path x(t) is created from a discrete time series sample by an interpolation
algorithm — one can choose any interpolation method, e.g., natural cubic spline.

2. All the reset gate r(t), the update gate z(t), the update vector g(t), and the hidden state
h(t) of GRUs are modeled as an augmented DDE of Eq. equation 6, which means that they
are all continuous in our framework.

3

Under review as a conference paper at ICLR 2024

3. After that, there is one more fully connected layer to further process h(t) for a downstream
task, i.e., output layer.

3.2 FULLY CONTINUOUS GRUS

In order to continuously generalize GRUs, we need to calculate the time derivatives of GRU’s various
parts. Considering Eq. equation 1, we can define them as an augmented DDE in Eq. equation 6.

Time derivative of h(t) Since the hidden state h(t) is a composite function of r(t), z(t), and
g(t), the derivative of h(t) can be written as follows:

dh(t)

dt
=

dz(t)

dt
� h(t� ⌧) + z(t)� dh(t� ⌧)

dt
� dz(t)

dt
� g(t) + (1� z(t))� dg(t)

dt
,

=
dz(t)

dt
�
�
h(t� ⌧)� g(t)

�
+ z(t)�

�dh(t� ⌧)

dt
� dg(t)

dt

�
+

dg(t)

dt
,

=
dz(t)

dt
� ⇣(t, t� ⌧) + z(t)� d⇣(t, t� ⌧)

dt
+

dg(t)

dt
,

(4)

where ⇣(t, t� ⌧) = h(t� ⌧)� g(t). So, we can write dh(t)
dt as follows:

dh(t)

dt
=

d(z(t)� ⇣(t, t� ⌧))

dt
+

dg(t)

dt
. (5)

Other derivatives for z(t), g(t), and r(t) are in Appendix I. Finally, the time derivatives of
h(t), r(t), z(t), and g(t) is written as follows :

d

dt

2

64

h(t)
z(t)
g(t)
r(t)

3

75 :=

2

6664

d(z(t)�⇣(t,t�⌧))
dt + dg(t)

dt

�
�
A(t, t� ⌧))(1� �(A(t, t� ⌧))

�dA(t,t�⌧)
dt�

1� �2(B(t, t� ⌧)
�dB(t,t�⌧)

dt

�
�
C(t, t� ⌧))(1� �(C(t, t� ⌧))

�dC(t,t�⌧)
dt

3

7775
. (6)

We note that the above definition becomes a DDE since ⇣,A,B, and C have internally h(t �
⌧). dx(t)

dt contained by the derivatives of A,B, and C can also be calculated since we use an
interpolation method to construct x(t) (see Section 4.5).

3.3 TRAINING METHOD

In Alg. 1, we show our training algorithm. Since our Cont-GRU can be used for various tasks, we
show a brief pseudo-code of the training method in Alg. 1. For a more concrete example, suppose a
time series classification task with ({(xi, ti)}N�1

i=0 ,y), where y is the ground-truth class label of the
discrete time series sample. For this, we first solve the following integral problem:

2

64

h(tN�1)
r(tN�1)
z(tN�1)
g(tN�1)

3

75=

2

64

h(0)
r(0)
z(0)
g(0)

3

75+

Z
tN�1

0

d

dt

2

64

h(t)
r(t)
z(t)
g(t)

3

75dt, (7)

where h(0), r(0), z(0),g(0) are set in the same way as the original discrete GRU.

We then feed h(tN�1) into a following output layer with a softmax activation to predict its class label
ŷ, where the task loss L is a cross-entropy loss between the prediction ŷ and the ground-truth y.
During the process, one can easily calculate the gradients using either the standard backpropagation
or the adjoint sensitivity method (Chen et al., 2018).

Adaptive delay factor In the perspective of solving Eq. equation 7, we can use an ODE solver that
progressively updates the augmented state of [h(t), r(t), z(t),g(t)] from t = 0 to tN�1 by referring
to its time derivative term in Eq. equation 6. During the solving process, we found that h(t� ⌧) can
be approximated by h(t � s), where s is an adaptive step size of DOPRI, a default ODE solver in
many papers. DOPRI internally estimates a step error and determines the step-size s adaptively every

4

Under review as a conference paper at ICLR 2024

step (Dormand & Prince, 1980). In principle, the step error depends on the degree of volatility of the
learned DDE. In other words, it increases s when the augmented state of [h(t), r(t), z(t),g(t)] does
not change notably from t to t + s, i.e., non-volatile DDEs. If not, it decreases s. For complicated
downstream tasks, complicated DDEs should be learned and the volatility increases. Therefore, one
can say that the adaptive step size s varies for a target downstream task.

Algorithm 1: How to train Cont-GRU
Input: Training data Dtrain Validating data Dval,

Maximum iteration numbers max iter
1 Initialize the parameters ✓, e.g., Wh, Uh, etc.;
2 Create a continuous path x(t) for each {(xi, ti)}N�1

i=0 ;
3 i 0; while i < max iter do

4 Train ✓ and using a task loss L;
5 Validate and update the best parameters ✓⇤ with

Dval;
6 i i+ 1;
7 return ✓⇤;

Well-posedness The well-posedness1 of
NDDEs was already proved in (Lyons
et al., 2004, Theorem 1.3) under the mild
condition of the Lipschitz continuity. We
show that our fully continuous GRUs are
also well-posed. Almost all activations,
such as ReLU, Leaky ReLU, Tanh, Sig-
moid, ArcTan, and Softsign, have a Lip-
schitz constant of 1. Other common neu-
ral network layers, such as dropout, batch
normalization, and other pooling meth-
ods, have explicit Lipschitz constant val-
ues. Therefore, the Lipschitz continuity of

dh(t)
dt , dr(t)

dt , dz(t)
dt , and dg(t)

dt can be fulfilled in our case. Accordingly, it is a well-posed problem.
Thus, its training process is stable in practice.

3.4 DISCUSSION

In Figure 1, we compare our proposed method with GRU and GRU-ODE-Bayes, a famous jump-
based method. First, our method does not need to use the jump mechanism since i) the time deriva-
tive of x(t) can be properly defined, and ii) our augmented DDE definition keeps reading the time
derivative. Second, our continuous generalization makes sense mathematically since we consider
the time derivative terms of the reset gate, the update gate, and the update vector in conjunction with
the time derivative term of the hidden state. In fact, calculating the time derivative of the hidden state
requires the time derivatives of other gates, which were ignored in GRU-ODE-Bayes. In addition,
our DDE-based fully continuous GRUs do not have the homeomorphic limitation of ODEs.

Owing to these facts of Cont-GRU, it shows more robust processing for irregular time series. In our
experiments, we compare our method with existing methods in diverse environments.

4 EXPERIMENTS

In this section, we describe our experimental environments and results. We conduct experiments
with time series classification and forecasting. We repeat training and testing procedures with five
different random seeds and report their mean and standard deviation scores.

Experimental environments We list all the hyperparameter settings and our 17 baselines in Ap-
pendix B, D and C. We focus on accuracy in the main paper and all memory usage and runtime are
reported in Appendix M.

4.1 FORECAST WEATHER IN VARIOUS SEQUENCE LENGTHS

Ecosystems and other social systems have long been accustomed to predictable weather charac-
teristics. Unexpected weather conditions, such as global warming or extreme weather, occur fre-
quently from recently. Therefore, predicting these future weather conditions is very important to
society (Salman et al., 2015; Grover et al., 2015). Due to the nature of weather data, it is challenging
to predict long-distance weather conditions, but it is an important issue for our society.

In this paper, we forecast weather conditions with various sequence lengths. We use the United State
Historical Climatology Network (USHCN) daily dataset (Menne & Williams Jr, 2009). USHCN

1A well-posed problem means i) its solution uniquely exists, and ii) its solution continuously changes as
input data changes.

5

Under review as a conference paper at ICLR 2024

data includes five climatic variables (daily temperatures, precipitation, snow, and so on) for 1,218
meteorological stations across the United States over 150 years. We use a subset of 1,114 meteoro-
logical stations over four years from 1996 to 2000 using the cleaning method proposed in (Brouwer
et al., 2019).

Table 1: USHCN

Model Test MSE
16 sequence 32 sequence 64 sequence

RNN 0.25 ± 0.00 0.24 ± 0.04 0.24 ± 0.06
LSTM 0.28 ± 0.01 0.27 ± 0.00 0.26 ± 0.03
GRU 0.26 ± 0.01 0.25 ± 0.02 0.24 ± 0.02
NODE 0.23 ± 0.02 0.25 ± 0.04 0.22 ± 0.05
ODE-RNN 0.21 ± 0.03 0.23 ± 0.05 0.25 ± 0.07
GRU-�t 0.28 ± 0.04 0.30 ± 0.03 0.24 ± 0.06
GRU-D 0.30 ± 0.02 0.30 ± 0.04 0.30 ± 0.04
GRU-ODE 0.27 ± 0.07 0.31 ± 0.07 0.31 ± 0.02
Latent-ODE 0.34 ± 0.00 0.38 ± 0.00 0.36 ± 0.01
Augmented-ODE 0.33 ± 0.01 0.35 ± 0.02 0.33 ± 0.02
ACE-NODE 0.35 ± 0.09 0.38 ± 0.05 0.32 ± 0.04
GRU-ODE-Bayes 0.39 ± 0.08 0.42 ± 0.01 0.47 ± 0.01
NJODE 0.37 ± 0.06 0.39 ± 0.03 0.48 ± 0.06
NCDE 0.24 ± 0.08 0.41 ± 0.09 0.39 ± 0.01
ANCDE 0.22 ± 0.04 0.30 ± 0.07 0.32 ± 0.02
EXIT 0.28 ± 0.01 0.27 ± 0.00 0.27 ± 0.01
SCINet 0.15 ± 0.01 0.11 ± 0.00 0.28 ± 0.01
Cont-GRU 0.06 ± 0.00 0.09 ± 0.01 0.18 ± 0.02

Experimental results Table 1 shows one
of the most extensively used benchmark ex-
periments, i.e., time series forecasting with
the USHCN weather dataset. To create a
challenging task, we evaluate various ex-
perimental settings. We conduct experi-
ments after reading 128 sequences for fore-
casting the next 16, 32, and 64 sequences
— GRU-ODE-Bayes forecasts up to the
next 3 sequences and our settings are much
more challenging. Cont-GRU shows the
best accuracy in various output sequence
lengths. Jump-based models, i.e., GRU-
ODE-Bayes and NJODE, show poor ac-
curacy, which shows that their piece-wise
continuous concepts do not effectively pro-
cess weather data. Exceptionally, ODE-
RNN, whose jump mechanism is based on
RNN cells, shows good performance. Since
GRU-based models are typically used for
time series forecasting, some of them show
reasonable results with small standard de-

viations. We visualize the prediction results of Cont-GRU and the top-2 baseline models for 32
sequences in Appendix E.

4.2 PREDICT PATIENT CONDITIONS WITH HIGHLY IRREGULAR TIME SERIES

Table 2: PhysioNet Sepsis

Model AUROC
NODE 0.53 ± 0.04
ODE-RNN 0.87 ± 0.02
GRU-�t 0.88 ± 0.01
GRU-D 0.87 ± 0.02
GRU-ODE 0.85 ± 0.01
Latent-ODE 0.79 ± 0.01
Augmented-ODE 0.83 ± 0.02
ACE-NODE 0.80 ± 0.01
GRU-ODE-Bayes 0.52 ± 0.01
NJODE 0.53 ± 0.01
NCDE 0.88 ± 0.01
ANCDE 0.90 ± 0.00
EXIT 0.91 ± 0.00
Cont-GRU 0.93 ± 0.04

Sepsis (Reyna et al., 2019; Reiter, 2005) is a life-threatening condi-
tion caused by bacteria or bacterial toxins in the blood. About 1.7
million people develop sepsis in the U.S., and 270,000 die from sep-
sis in a year. More than a third of people who die in U.S. hospitals
have sepsis. Early sepsis prediction could potentially save lives, so
this experiment is especially meaningful. The dataset used in this
paper consists of data from 40,335 patients in intensive care units
(ICU). The data consists of 5 static variables that do not change over
time, such as gender and age, and 34 non-static variables, such as
the respiratory rate or partial pressure of carbon dioxide from arterial
blood (PaCO2). This data can be described as an irregular time se-
ries dataset with 90% of values removed from the original full data
to protect the privacy of patients. To classify the onset of sepsis, we
consider the first 72 hours of the patient’s hospitalization.

Experimental results Table 2 shows our experimental results of
the time series classification with PhysioNet Sepsis. We conduct the

time series classification task with observation intensity (OI) as an additional variable, which was
used in (Kidger et al., 2020). We report AUROC rather than accuracy because the dataset is signifi-
cantly imbalanced. Cont-GRU shows the best performance and the model size is small in compari-
son with other differential equation-based models. In this dataset, however, more than 90% of values
are missing to protect the privacy of patients. For this reason, GRU-ODE-Bayes and NJODE do not
show good performance. They can process irregular time series, but their accuracies are worse than
others. We consider that this is because they piece-wise continuously generalize the hidden state
only. However, all NCDE-based models, i.e., NCDE, ANCDE, and EXIT, show reasonable results
since they fully continuously generalize the hidden state.

6

Under review as a conference paper at ICLR 2024

4.3 FORECAST VOLATILE STOCK PRICES AND VOLUMES

Table 3: Google Stock

Model Test MSE
30% dropped 50% dropped 70% dropped

NODE 0.057 ± 0.006 0.054 ± 0.005 0.052 ± 0.013
ODE-RNN 0.116 ± 0.018 0.145 ± 0.006 0.129 ± 0.011
GRU-�t 0.145 ± 0.002 0.146 ± 0.001 0.145 ± 0.002
GRU-D 0.143 ± 0.002 0.145 ± 0.002 0.146 ± 0.002
GRU-ODE 0.064 ± 0.009 0.057 ± 0.003 0.059 ± 0.004
Latent-ODE 0.052 ± 0.005 0.053 ± 0.001 0.054 ± 0.007
Augmented-ODE 0.045 ± 0.004 0.051 ± 0.005 0.057 ± 0.002
ACE-NODE 0.044 ± 0.002 0.053 ± 0.008 0.056 ± 0.003
GRU-ODE-Bayes 0.175 ± 0.001 0.185 ± 0.022 0.197 ± 0.013
NJODE 0.185 ± 0.002 0.191 ± 0.012 0.181 ± 0.031
NCDE 0.056 ± 0.015 0.054 ± 0.002 0.056 ± 0.007
ANCDE 0.048 ± 0.012 0.047 ± 0.001 0.049 ± 0.004
EXIT 0.042 ± 0.020 0.045 ± 0.001 0.046 ± 0.002
SCINet 0.021 ± 0.004 0.027 ± 0.003 0.031 ± 0.004
Cont-GRU 0.007 ± 0.001 0.006 ± 0.001 0.007 ± 0.002

Stock prices are the results of the
combination of social conditions and
people’s psychological factors (An-
dreassen, 1987; Wäneryd, 2001).
Thus, accurate stock price forecasting
is a very challenging task. Particularly,
forecasting stock prices, including the
duration of COVID-19, makes our
task more challenging and can prop-
erly evaluate time series forecasting
models. We use the Google Stock
data (Alphabet, 2021), which has six
variables, i.e., the trading volumes of
Google in conjunction with its high,
low, open, close, and adjusted closing
prices. We use the period from 2011 to
2021 of Google stock data, purposely
including the COVID-19 period. The
goal is, given the past 20 days of the

time series values, to forecast the high, low, open, close, adjusted closing price, and volumes at the
very next 10 days.

Experimental results The experimental results on Google Stock are in Table 3. We conduct
experiments after randomly dropping 30 %, 50%, and 70% of observations in each time series
sample. Overall, our model, Cont-GRU, shows the best accuracy. One impressive outcome of our
method is that it is not greatly affected by the dropping ratio. ODE-based models, except ODE-
RNN, show reasonable results and CDE-based models show better results than ODE-based models.
Various visualizations of the forecasting results are in Appendix F.

Figure 2 shows the difference between the reset gates of Cont-GRU and GRU-ODE-Bayes. The role
of the reset gate is to determine how much of the previous hidden state is reflected. The red line in
Figure 2 shows the stock market price for the 20-day period from April 30 to May 28, 2019. One can
see that the reset gate of GRU-ODE-Bayes does not fluctuate much, but the reset gate of Cont-GRU
captures meaningful information. More visualizations of values in the reset gate are in Appendix G.

��
��
�

�	
�

��
��
��
�

��
��
��
��

��
��
��
��
�

��
��
��
��
�

����

��	�

��
�

����

����

���

����

����
����������

���

��

���

���

���

���

(a) GRU-ODE-Bayes

��
��
�

�	
�

��
��
��
�

��
��
��
��

��
��
��
��
�

��
��
��
��
�

����

��	�

��
�

����

����

���

����

����
����������

����

����

����

����

����

����

(b) Cont-GRU

Figure 2: Values in the reset gate. Our method gives higher weights to recent observations whereas
GRU-ODE-Bayes gives almost equal weights to all observations, which shows the correctness of
our method.

7

Under review as a conference paper at ICLR 2024

Table 4: ETT datasets

Models ETTh1 ETTh2
Horizons 24 48 168 24 48 168
GRU 0.293 ± 0.011 0.355 ± 0.006 0.437 ± 0.006 0.191 ± 0.002 0.224 ± 0.005 0.313 ± 0.001
LSTM 0.304 ± 0.010 0.368 ± 0.018 0.501 ± 0.018 0.212 ± 0.008 0.315 ± 0.008 0.322 ± 0.004
RNN 0.334 ± 0.014 0.394 ± 0.002 0.585 ± 0.002 0.199 ± 0.004 0.284 ± 0.009 0.451 ± 0.003
NODE 0.440 ± 0.004 0.504 ± 0.002 0.918 ± 0.008 0.110 ± 0.005 0.347 ± 0.008 0.963 ± 0.008
ODE-RNN 0.551 ± 0.012 0.473 ± 0.014 0.554 ± 0.004 0.145 ± 0.004 0.281 ± 0.003 0.336 ± 0.004
GRU-�t 0.430 ± 0.002 0.449 ± 0.004 0.576 ± 0.008 0.118 ± 0.004 0.215 ± 0.008 0.271 ± 0.010
GRU-D 0.439 ± 0.004 0.445 ± 0.004 0.572 ± 0.007 0.107 ± 0.004 0.217 ± 0.007 0.283 ± 0.012
GRU-ODE 0.431 ± 0.008 0.515 ± 0.004 1.241 ± 0.014 0.132 ± 0.009 0.210 ± 0.007 2.863 ± 0.041
Latent-ODE 0.487 ± 0.006 0.510 ± 0.006 0.548 ± 0.008 0.198 ± 0.004 0.204 ± 0.001 0.398 ± 0.000
Augmented-ODE 0.462 ± 0.007 0.471 ± 0.011 0.580 ± 0.010 0.213 ± 0.004 0.304 ± 0.002 0.441 ± 0.002
ACE-NODE 0.384 ± 0.009 0.409 ± 0.009 0.499 ± 0.009 0.199 ± 0.006 0.301 ± 0.004 0.357 ± 0.006
GRU-ODE-Bayes 0.511 ± 0.011 0.527 ± 0.002 0.507 ± 0.004 0.304 ± 0.012 0.441 ± 0.008 0.507 ± 0.009
NJODE 0.600 ± 0.020 0.624 ± 0.031 0.701 ± 0.018 0.327 ± 0.021 0.417 ± 0.011 0.513 ± 0.013
NCDE 0.265 ± 0.001 0.457 ± 0.002 0.522 ± 0.001 0.207 ± 0.000 0.548 ± 0.001 0.744 ± 0.009
ANCDE 0.257 ± 0.008 0.331 ± 0.007 0.473 ± 0.009 0.187 ± 0.002 0.233 ± 0.004 0.312 ± 0.006
EXIT 0.244 ± 0.007 0.324 ± 0.006 0.481 ± 0.002 0.176 ± 0.002 0.220 ± 0.006 0.322 ± 0.009
SCINet 0.421 ± 0.004 0.368 ± 0.008 0.451 ± 0.006 0.188 ± 0.007 0.279 ± 0.001 0.505 ± 0.006
Cont-GRU 0.220 ± 0.001 0.302 ± 0.002 0.405 ± 0.004 0.092 ± 0.000 0.119 ± 0.002 0.191 ± 0.004

4.4 FORECAST ELECTRICITY TRANSFORMER TEMPERATURES WITH VERY LONG TIME
SERIES

The electricity transformer temperature (ETT) plays a crucial role in solving the power distribution
problem, which is about distributing electricity to different areas according to their sequential use.
However, it is difficult to predict demand at a location since it varies for various factors. Improving
the accuracy of predicting future electricity usage is a challenging but important problem as incorrect
predictions can damage electrical transformers. Following prior works (Zhou et al., 2021; Liu et al.,
2021), we use the two datasets, ETTh1 and ETTh2, sampled every hour. We forecast the next
24/48/168 observations — the input length is the same as the output length in our settings.

Experimental results The experimental results on ETT datasets are in Table 4. For ETTh1,
NCDE-based models show reasonable results. Conventional time series models, such as GRU,
GRU-�t, GRU-D, LSTM, RNN, and SCINet, also show reasonable performances across all time
sequences. However, jump-based continuous-time models show poor performances in them. For
ETTh2, all baselines show reasonable performances for the sequences of 24 and 48. For 168, how-
ever, most models perform poorly. In particular, NODE-based models show the worst performance
for long sequences. Our model, Cont-GRU, shows the highest accuracy in all cases.

4.5 EMPIRICAL STUDY ON INTERPOLATION METHODS

In this section, we further experiment with several interpolation methods to create a continuous
path x(t) from {(xi, ti)}N�1

i=0 and compare their results. The results are in Table 5. We test with
the natural cubic spline (McKinley & Levine, 1998), linear control (Martin et al., 1995), and cubic
Hermite spline (De Boor et al., 1987) methods. We show that the interpolation method leads to
the continuous derivative of dx(t)

dt in Appendix H, which enables our DDE-based fully continuous
Cont-GRU.

Natural cubic spline The natural cubic spline method must have access to the entire time series
data for this control signal before constructing a continuous path. Changes to one previous data
point do not affect the overall structure. This method can be integrated numerically quickly because
it is relatively smooth and changes slowly.

Linear control The linear control method generates the simplest and most natural control signal
among the interpolation methods. An interpolated path is generated while applying the linear in-

8

Under review as a conference paper at ICLR 2024

terpolation between observations. This linear control defines discrete online control paths for all
observed data across all time, and so has the same online qualities as RNNs.

Cubic Hermite spline The linear control method is discrete, which can be a drawback. However,
the cubic Hermite spline interpolation method smooths out discontinuities. This method achieves
this by combining adjacent observations with a cubic spline. Comparing the cubic Hermite spline
method with the natural cubic spline method, the main difference is that equations are solved inde-
pendently at each point in time.

Sensitivity to interpolation methods For USHCN, the cubic Hermite spline method shows the
best performance. However, all interpolation methods show good results. In Google Stock, the
linear control method and the cubic Hermite spline method show the best performance among the
three interpolation methods. However, all three interpolation results are significantly better than the
existing baselines.

Table 5: Interpolation methods

Interpolation
Methods USHCN Stock

Natural Cubic Spline 0.15 ± 0.03 0.006 ± 0.001

Linear Control 0.16 ± 0.02 0.008 ± 0.001
Cubic Hermite Spline 0.14 ± 0.01 0.006 ± 0.001

Table 6: Perturbing the hidden state (HP) vs. the
continuous data path (DP) in Cont-GRU

Method USHCN Sepsis
Cont-GRU (DP) 0.15 ± 0.01 0.83 ± 0.02
Cont-GRU (HP) 0.17 ± 0.01 0.77 ± 0.01
Cont-GRU 0.14 ± 0.01 0.93 ± 0.04

4.6 DDE VS. INTERPOLATION

In order to enable our proposed DDE-based continuous GRUs, we rely on an interpolation method
to define the continuous path x(t). Therefore, we compare the following two variants to know which
part more contributes to downstream tasks:

1. We perturb the hidden state using h(t)+✏, where ✏ ⇠ N (0,�2) and � is an estimated std.
dev. of the hidden state of Cont-GRU. We denote this perturbation as “Cont-GRU (HP).”

2. We perturb the continuous path using x(t)+ ✏, where ✏ ⇠ N (0,�2) and � is an estimated
std. dev. of data. We denote this perturbation as “Cont-GRU (DP).”

As shown in Table 6, perturbing the hidden state brings more significant influences to the tested
downstream tasks, which means that our DDE-based formulation plays a crucial role in those tasks
in comparison with the interpolated continuous path x(t).

5 CONCLUSIONS AND LIMITATIONS

We present the first fully continuous GRU model. The hidden state h(t) had been continuously
generalized by existing methods. However, to our knowledge, Cont-GRU is the first model to suc-
cessively generalize all the parts (gates) of GRUs, including the hidden state. To this end, we rely
on interpolation methods to reconstruct a continuous path from a discrete time series sample. We
then define a DDE-based model to interpret GRUs in a continuous manner. In our experiment with
5 real-world datasets and 17 baselines, our method consistently shows the best accuracy. Interest-
ingly, other piece-wise continuous models generalizing the hidden state only do not work well in
some cases where our fully continuous model works well. We consider that these experimental
results well prove the efficacy of the fully continuous model.

Limitations Our model shows good performance, but there exists room for improvement. For
example, in the USHCN dataset, our model performs well at forecasting sudden changes, but its
absolute error scale is not always satisfactory. For some test cases, in addition, all GRU-based
models, including GRU-ODE-Bayes and our Cont-GRU, are not successful. We think that GRUs
are not suitable for processing the test cases. However, it is hard to say that this is a limitation for
our model since it is common for all GRU-based models.

9

Under review as a conference paper at ICLR 2024

Reproducibility Statement To ensure the reproducibility and completeness of this pa-
per, we make our code available at https://drive.google.com/drive/folders/
1pPKNlQFznxnFmE0-1ar3o6-k0bQ2sjjd?usp=sharing. We give details on our experi-
mental protocol in the Appendix C.

REFERENCES

Alphabet. Google Stock. https://finance.yahoo.com/quote/GOOG/history?p=
GOOG&guccounter=1, 2021.

Paul B Andreassen. On the social psychology of the stock market: Aggregate attributional effects
and the regressiveness of prediction. Journal of Personality and Social Psychology, 53(3):490,
1987.

Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting. Springer, 2002.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In NeurIPS, 2019.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):1–12,
2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Carl De Boor, Klaus Höllig, and Malcolm Sabin. High accuracy geometric hermite interpolation.
Computer Aided Geometric Design, 4(4):269–278, 1987.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In NeurIPS, 2019.

Aditya Grover, Ashish Kapoor, and Eric Horvitz. A deep hybrid model for weather forecasting.
In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 379–386, 2015.

Calypso Herrera, Florian Krach, and Josef Teichmann. Neural jump ordinary differential equations:
Consistent continuous-time prediction and filtering. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=JFKR3WqwyXR.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:1735–
80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Sheo Yon Jhin, Minju Jo, Taeyong Kong, Jinsung Jeon, and Noseong Park. Ace-node: Attentive
co-evolving neural ordinary differential equations. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 736–745, 2021a.

Sheo Yon Jhin, Heejoo Shin, Seoyoung Hong, Minju Jo, Solhee Park, Noseong Park, Seungbeom
Lee, Hwiyoung Maeng, and Seungmin Jeon. Attentive neural controlled differential equations
for time-series classification and forecasting. In 2021 IEEE International Conference on Data
Mining (ICDM), pp. 250–259. IEEE, 2021b.

10

https://drive.google.com/drive/folders/1pPKNlQFznxnFmE0-1ar3o6-k0bQ2sjjd?usp=sharing
https://drive.google.com/drive/folders/1pPKNlQFznxnFmE0-1ar3o6-k0bQ2sjjd?usp=sharing
https://finance.yahoo.com/quote/GOOG/history?p=GOOG&guccounter=1
https://finance.yahoo.com/quote/GOOG/history?p=GOOG&guccounter=1
https://openreview.net/forum?id=JFKR3WqwyXR

Under review as a conference paper at ICLR 2024

Sheo Yon Jhin, Jaehoon Lee, Minju Jo, Seungji Kook, Jinsung Jeon, Jihyeon Hyeong, Jayoung
Kim, and Noseong Park. Exit: Extrapolation and interpolation-based neural controlled differ-
ential equations for time-series classification and forecasting. In Proceedings of the ACM Web
Conference 2022, pp. 3102–3112, 2022.

Ian D Jordan, Piotr Aleksander Sokół, and Il Memming Park. Gated recurrent units viewed through
the lens of continuous time dynamical systems. Frontiers in computational neuroscience, pp. 67,
2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. In NeurIPS, 2020.

Sung-Suk Kim. Time-delay recurrent neural network for temporal correlations and prediction. Neu-
rocomputing, 20(1-3):253–263, 1998.

Minhao Liu, Ailing Zeng, Zhijian Xu, Qiuxia Lai, and Qiang Xu. Time series is a special sequence:
Forecasting with sample convolution and interaction. arXiv preprint arXiv:2106.09305, 2021.

Mantas Lukoševičius and Arnas Uselis. Time-adaptive recurrent neural networks, 2022. URL
https://arxiv.org/abs/2204.05192.

Terry Lyons, M. Caruana, and T. Lévy. Differential Equations Driven by Rough Paths. Springer,
2004. École D’Eté de Probabilités de Saint-Flour XXXIV - 2004.

Clyde Martin, Per Enqvist, John Tomlinson, and Zhimin Zhang. Linear control theory, splines and
interpolation. In Computation and Control iv, pp. 269–287. Springer, 1995.

Sky McKinley and Megan Levine. Cubic spline interpolation. College of the Redwoods, 45(1):
1049–1060, 1998.

Matthew J Menne and Claude N Williams Jr. Homogenization of temperature series via pairwise
comparisons. Journal of Climate, 22(7):1700–1717, 2009.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110, 2017.

P. Jerome Reiter. Using cart to generate partially synthetic, public use microdata. Journal of Official
Statistics, 21:441, 01 2005.

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Bran-
don Westover, Ashish Sharma, Shamim Nemati, and Gari D Clifford. Early prediction of sepsis
from clinical data: the physionet/computing in cardiology challenge 2019. In CinC, pp. Page
1–Page 4, 2019. doi: 10.23919/CinC49843.2019.9005736.

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. In NeurIPS. 2019.

T. Konstantin Rusch, Siddhartha Mishra, N. Benjamin Erichson, and Michael W. Mahoney. Long
expressive memory for sequence modeling. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/forum?id=vwj6aUeocyf.

Afan Galih Salman, Bayu Kanigoro, and Yaya Heryadi. Weather forecasting using deep learning
techniques. In 2015 international conference on advanced computer science and information
systems (ICACSIS), pp. 281–285. Ieee, 2015.

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
series with continuous recurrent units. CoRR, abs/2111.11344, 2021. URL https://arxiv.
org/abs/2111.11344.

Robert H Shumway, David S Stoffer, and David S Stoffer. Time series analysis and its applications,
volume 3. Springer, 2000.

Karl-Erik Wäneryd. Stock-market psychology: How people value and trade stocks. Edward Elgar
Publishing, 2001.

11

https://arxiv.org/abs/2204.05192
https://openreview.net/forum?id=vwj6aUeocyf
https://arxiv.org/abs/2111.11344
https://arxiv.org/abs/2111.11344

Under review as a conference paper at ICLR 2024

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Qunxi Zhu, Yao Guo, and Wei Lin. Neural delay differential equations. arXiv preprint
arXiv:2102.10801, 2021.

Qunxi Zhu, Yifei Shen, Dongsheng Li, and Wei Lin. Neural piecewise-constant delay differential
equations. arXiv preprint arXiv:2201.00960, 2022.

12

	Introduction
	Related work
	Proposed method
	Overall workflow
	Fully continuous GRUs
	Training method
	Discussion

	Experiments
	Forecast weather in various sequence lengths
	Predict patient conditions with highly irregular time series
	Forecast volatile stock prices and volumes
	Forecast electricity transformer temperatures with very long time series
	Empirical study on interpolation methods
	DDE vs. Interpolation

	Conclusions and limitations
	Why should GRUs be formulated as DDEs?
	Baselines
	Hyperparameters
	USHCN
	PhysioNet Sepsis
	Google Stock
	ETT datasets

	Best hyperparameters
	USHCN
	PhysioNet Sepsis
	Google Stock
	ETT

	Visualization on USHCN
	Visualization on Google Stock
	Values in the reset gate
	Detailed descriptions of interpolation methods
	Derivatives of z(t), g(t), r(t)
	Proof of Equation equation 6
	Data preprocessing details
	USHCN
	PhysioNet Sepsis
	Google Stock
	ETT

	Computing infrastructures
	Memory usage and time cost

