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ABSTRACT

Parameter-efficient fine-tuning aims to reduce the computational cost of adapt-
ing foundational models to downstream tasks. Low-rank matrix based adaptation
(LoRA) techniques are popular for this purpose. We propose XoRA, an efficient
fine-tuning scheme, which sparsifies the low-rank matrices even further using ex-
pander masks. The mask is generated using extremal expander graphs (Ramanujan
graphs) to maintain high edge connectivity even at a very high sparsity. Experi-
mental results demonstrate that this method has comparable performance with the
LoRA fine-tuning method while retaining much fewer number of parameters.

1 INTRODUCTION

Large language models are often fine-tuned for improving their performance on downstream tasks.
Computational and memory requirement of such retraining is reduced by using parameter-efficient
fine-tuning (PEFT) (Ding et al., 2023b; Lialin et al., 2023; Han et al., 2024). Most popular among
them are the reparameterization based techniques, pioneered by the Low-Rank Adaptation (LoRA)
algorithm (Hu et al., 2021). It adapts the original set of weights (W0) using a rank constrained
decomposition of the weight update (∆W = BA) matrix into up and down projection matrices A
and B. Various modifications to LoRA has been recently suggested in literature (Mao et al., 2024).

It has been observed that the LoRA low-rank matrices has a considerable redundancy. They can
be sparsified further (Wu et al., 2024) without significant loss of performance. Sparsification of the
LoRA up and down projection matrices has been attempted in LoRA-Prune (Zhang et al., 2023b),
and Bonsai (Dery et al., 2024). Robust sparse regularizers has been applied during the low-rank
matrix decomposition process in RoSA (Nikdan et al., 2024a) to reduce the number of non-zero
parameters. The LoTA algorithm (Panda et al., 2024) utilises iterative magnitude pruning to identify
sparse winning lottery tickets for the transformers during fine-tuning in LoRA. Random selection of
trainable weights have also been shown to be effective for fine-tuning (Xu & Zhang, 2024).

Masking or parameter selection is a popular parameter-efficient fine-tuning method which updates
only a subset of the parameters of the original network (Ploner & Akbik, 2024), while keeping the
large majority of weights unchanged. This is usually done by applying a binary mask on the weight
update matrix. The mask is designed using various criteria like Fisher information (Das et al., 2023),
weight magnitudes (Liao et al., 2023), or the change in weight magnitude (Ansell et al., 2021) etc.
However, many of the sophisticated weight pruning algorithms are difficult to use for this purpose
because of the high computational requirements. Similarly, iterative pruning is time consuming
for very large models. Random masks are experimentally found to be less effective at a very high
sparsity. This motivates the need for effective structural sparsification algorithms that can be applied
on the LoRA low-rank matrices.

Expander graphs are sparse but well connected graphs that are useful in designing resilient network
structures (Lubotzky, 1994). They have been found to be useful in designing sparse neural networks
(Pal et al., 2022; Laenen, 2023) which can be trained to achieve a performance close to that of a
dense network.

In this study, we propose an expander graph based structural masking technique on the LoRA pro-
jection matrices (XoRA). A block diagram of the proposed approach is shown in Figure 1. We
experimentally observe that the LoRA low-rank matrices (A and B) can be further sparsified while
maintaining the performance. The masking needs to preserve the network connectivity even at a
very high sparsity. This can be achieved using a expander graph based mask generation techniques.
A significantly higher parameter efficiency is experimentally observed as compared to LoRA.
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Figure 1: Schematic of the proposed XoRA adaptation algorithm.

1.1 CONTRIBUTIONS

The contributions of the article are as follows:

• We propose a methodology for efficiently sparsifying LoRA matrices for finetuning. This
establishes the presence and indentification of winning lottery tickets in LoRA matrices.

• It provides a method of reducing the number of parameters in LoRA without reducing the
rank further. Related methods like VeRA, which learns scaling vectors, reduces the rank
by deleting entire columns in the matrices.

• The proposed method may be combined with other adaptation techniques to achieve further
parameter efficiency.

• We can reduce both the training time and the memory requirement from classical LoRA
finetuning, see section 5.2.4 for details.

2 RELATED WORK

Parameter-efficient fine-tuning (PEFT) of transformers has been widely studied in literature (Ding
et al., 2023b; Lialin et al., 2023; Han et al., 2024). Major approaches can be categorized as additive,
selective, and reparameterized. While additive techniques use additional parameters for fine-tuning
to newer tasks, the selective method fine-tune only a subset of the model parameters. Reparameter-
ized methods transform the parameters into equivalent low dimensional forms that are fine-tuned for
downstream tasks. Hybrid schemes combine the above approaches.

Low-rank adaptation (LoRA) (Hu et al., 2021) is perhaps the most popular reparameterization based
technique. Numerous modifications of LoRA has been suggested in literature (Mao et al., 2024). The
strategies include quantization, scaling, and singular value decomposition of the low rank matrices.
The VeRA method (Kopiczko et al., 2023) uses a trainable random scaling vector for the shared
weights across the layers to achieve a high degree of parameter efficiency. Modifying the low rank
matrices by transforming their eigenvectors has been found to be useful for attaining extremely
low number of trainable parameters (Bałazy et al., 2024). Spectral adaptation is also used for this
purpose (Zhang & Pilanci, 2024). Other modifications of LoRA include (Nikdan et al., 2024b; Ding
et al., 2023a; Zhang et al., 2023c) etc.

Selection methods use structured or unstructured masking to determine a subset of the parameters
for fine-tuning. The subset is commonly selected using pruning techniques based on the weight
magnitude or other information criteria (Liao et al., 2023; Das et al., 2023). Regularization is used
during training to obtain a sparse wright distribution in some of these approaches Guo et al. (2021).
Structurally selecting some of the parameters like the bias terms also shows benefit for PEFT (Zaken
et al., 2021). Recently, neural architecture search is being employed to find the optimum set of
parameters to be selected (Zhou et al., 2024).
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Graph structure of the underlying network is analysed by few of the fine-tuning techniques. It has
been observed that maintaining connectivity is an important factor in fine-tuning process of a neural
network (Liu et al., 2023). Connectivity patterns are found to encode a particular task and may be
useful for successful fine-tuning (Xi et al., 2023). Expander graphs have been recently utilized in
efficient transformer models. The Diffuser architecture (Feng et al., 2023) uses the expander graph
structure to develop sparse attention models over long sequences.

There exist complementary recent finetuning techniques such as IA3, OFT, BOFT, prompt-based
methods etc. Input-Aware Parameterization (IA3) (Liu et al., 2022) shifts the focus from weight
updates to activation scaling, introducing task-specific learned vectors that scale key, value, and
feedforward network activations. Orthogonal Fine-Tuning (OFT) (Qiu et al., 2023) introduces a
novel perspective by preserving the hyperspherical energy of pretrained models, ensuring that the
semantic consistency of model representations remains intact during fine-tuning. Building upon
OFT, Butterfly Orthogonal Fine-Tuning (BOFT) (Liu et al., 2024a) employs sparse butterfly matrix
structures inspired by fast Fourier transform algorithms to achieve dense orthogonal transformations
with reduced parameter complexity. Complementing these weight-based approaches, prompt-based
methods such as in (Liu et al., 2024b; Li & Liang, 2021) etc. leverage learned embeddings concate-
nated to input sequences or activations. These methods allow task-specific adaptation by modifying
the input or internal representations of the model rather than altering its weights, resulting in negli-
gible computational overhead during inference.

3 BACKGROUND

3.1 LOW-RANK ADAPTATIONS

Low-rank adaptations (LoRA) reduces the number of trainable parameters in large models by inject-
ing low-rank matrices into the model’s architecture (Hu et al., 2021). Specifically, it decomposes the
weight matrices W into a sum of a frozen pre-trained matrix W0 and a learnable low-rank matrix
∆W = BA.

LoRA defines the weight update for a pre-trained weight matrix W0 ∈ Rd×k, as:

W = W0 +∆W = W0 +BA, (1)

where B ∈ Rd×r and A ∈ Rr×k are low-rank matrices, and r ≪ min(d, k) is the rank.

A low-rank matrix ∆W ∈ Rm×n, with r ≪ min(m,n), can be expressed as ∆W = UΣV ⊤,
where U ∈ Rm×r, V ∈ Rr×n, and Σ ∈ Rr×r is a diagonal matrix with non-singular values.
LoRA is inspired from the studies in Li & Liang (2018) and Aghajanyan et al. (2020) which showed
over-parameterized models reside on a low intrinsic dimension. LoRA further hypothesized that the
changes in weight ∆W also has low intrinsic dimension during the model adaptation. Consequently,
it uses two learned low-rank matrices B ∈ Rd×r and A ∈ Rr×k to approximate the weight change
∆W during adaptation (∆W = BA). This technique has been exceptionally effective in allowing
fine-tuning on low-cost GPU configurations. The optimal dimension r is dependent on the data and
determines the number of trainable parameters. Lower the value of r lesser the number of trainable
parameters. In our work, XoRA, we experimentally show that the LoRA’s low-rank matrices (B and
A), for a given dimensionality, can be further sparsified while maintaining the performance.

3.2 EXPANDER GRAPHS

An expander graph is a sparse graph that has strong connectivity properties, quantified using vertex,
edge or spectral expansion. Intuitively, it is is a finite, undirected multigraph in which every subset
of the vertices that is not “too large” has a “large” boundary. This can be quantified using the notion
of Cheeger constants.

Definition 3.1 (Expander and Cheeger constant). A graph Γ = (V,E) is an ϵ-vertex expander if for
every non-empty subset X ⊂ V with |X| ≤ |V |

2 , we have |δ(X)|
|X| ≥ ϵ, where δ(X) denotes the outer

vertex boundary of X i.e., the set of vertices in Γ which are connected to a vertex in X but do not
lie in X . As X runs over all subsets of V , the infimum of |δ(X)|

|X| satisfying the conditions above is
known as the vertex Cheeger constant and is denoted by hV (Γ).
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Given a graph with a large Cheeger constant, it is difficult to “separate,” meaning that it is hard to
isolate any subset of vertices from the rest of the graph without cutting many edges. This property
facilitates the free flow of information across the entire network that the graph models. Such con-
nectivity is highly desirable in applications ranging from network design to theoretical computer
science. This is also known as expansion of a graph and the best expanders are the Ramanujan
graphs. Due to space constraints, a detailed review of expanders and Ramanujan graphs is reserved
for the appendix, see Appendix A. We shall use Ramanujan graphs to sparsify the LoRA matrices,
as can be seen in the next section.

4 PROPOSED METHODOLOGY

We first generate bipartite expander graphs with desired number of edges for each of the layers
that would be fine-tuned. Their adjacency matrices are then used to mask low-rank weight update
matrices (A and B) for the corresponding layers of the transformers.

4.1 GENERATION OF EXPANDER MASKS

Given an (n1, n2) complete bipartite graph, we generate a good expander mask for it. According to
the discussion in the previous section, we wish to ensure that this mask has a low degree (in this case
(d1, d2) bi-degree with n1d1 = n2d2 and high Cheeger constant). This brings us to the notion of
Ramanujan masks. A Ramaunjan graph is an extremal expander graph in the sense that its spectral
gap (and hence also the Cheeger constant) is almost as large as possible. Here, we shall be concerned
with bipartite Ramanujan graphs. Recall that a bi-partite graph is said to be balanced if the number
of vertices in each of the partitions are the same and it is said to be unbalanced otherwise.
Definition 4.1 (Bipartite Ramanujan graphs). Let Γ = (V,E) be a d-regular (d ≥ 3) balanced
bipartite graph. Let the eigenvalues of its adjacency matrix be λn ≤ λn−1 ≤ . . . ≤ λ2 ≤ λ1.
Then Γ is said to be Ramanujan iff |λi| ≤ 2

√
d− 1, for i = 2, . . . , (n − 1). For an unbalanced

(d1, d2)−biregular bipartite graph (d1, d2 ≥ 3), the condition of being Ramanujan changes to |λi| ≤√
d1 − 1 +

√
d2 − 1, for i = 2, . . . , (n− 1).

A detailed description of Ramanujan graphs can be found in (Hoory et al., 2006, sec. 5.3). One can
generate the expander (Ramanujan) masks through the following two approaches.

1. Deterministic generation using LPS construction and Ramanujan r-coverings.
2. Random generation of bi-regular bipartite graphs and checking for Ramanujan criteria.

To generate expander masks deterministically, we employ the Lubotzky–Phillips–Sarnak (LPS) con-
struction, which produces Ramanujan graphs known for their optimal expansion properties. The LPS
method constructs (p + 1)-regular graphs using quaternion algebras over number fields, where p is
a prime satisfying certain congruence conditions. These graphs exhibit excellent spectral character-
istics, making them ideal candidates for our masks. Additionally, Ramanujan r-coverings involve
creating larger Ramanujan graphs from smaller ones through covering projections while preserving
their expansion properties. This approach ensures that the resulting bipartite graphs have the desired
bi-degree (d1, d2) and high Cheeger constant, which is crucial for the effectiveness of the masked
weight matrices in transformers.

Alternatively, the random generation method creates bi-regular bipartite graphs by connecting nodes
from two partitions randomly but adhering to the specified degrees (d1, d2) and the condition
n1d1 = n2d2. After constructing such a graph, we compute its adjacency matrix and examine its
eigenvalues to check if it meets the Ramanujan criteria—that all non-trivial eigenvalues lie within
the bound |λi| ≤

√
d1 − 1 +

√
d2 − 1. This stochastic approach allows for flexibility and ease of

implementation, although it may require multiple iterations to find a graph that satisfies the stringent
spectral conditions of a Ramanujan graph. Once a suitable graph is found, its adjacency matrix
serves as an effective expander mask for the transformer layers.

4.1.1 COMPLEXITY OF MASK GENERATION

Using the notations of the previous section, the computational complexity for generating the Ra-
manujan graph of is O(d1n1n2). For adaptation to language models, when we use the fixed LoRA

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

rank r, we can substitute r = n1, typically d2 = 2, 3, 4 is very small and d1 = d2

n1
n2, to obtain the

complexity O(n2
2).

4.2 XORA: EXPANDER LOW-RANK ADAPTATION

In the proposed method XoRA, structural sparsity is achieved by introducing sparse expander
masked low-rank matrices Ã, B̃, where only the non-masked weights in these matrices are train-
able. During backpropagation, only these weights receive gradient updates.

Using the methodology described in described in Section 4.1, we generate two bipartite expander
graphs GA(VA1

, VA2
, EA) and GB(VB1

, VB2
, EB). For the graphs GA and GB we have the follow-

ing cardinality properties:

GA : |VA1 | = r, |VA2 | = k

GB : |VB1
| = d, |VB2

| = r

EA ⊆ VA1
× VA2

and EB ⊆ VB1
× VB2

(2)

We also ensure that n1× d1 = n2× d2. Where n1 and n2 are the cardinalities of the two vertex sets
VA, VB , and d1 and d2 are their respective degrees.

Two expander masks MA ∈ {0, 1}r×k for matrix A, and MB ∈ {0, 1}d×r for matrix B are used
for adaptation. The expander masks are defined using the expander graphs GA(VA1 , VA2 , EA) and
GB(VB1 , VB2 , EB) as:

MAij
=

{
1 if (i, j) ∈ EA

0 otherwise
, MBij

=

{
1 if (i, j) ∈ EB

0 otherwise
(3)

Sparse trainable low-rank matrices are created by applying the expander masks to the original low-
rank matrices:

B̃ = MB ⊙B, Ã = MA ⊙A, (4)
where ⊙ denotes the Hadamard (element-wise) product. The forward pass use the sparse expander
masked trainable matrices:

h = Wx+ B̃Ãx (5)

Gradients are computed and applied only for the trainable elements as determined by the expander
masks:

∇AijL(θ) =

{
∇Ãij

L(θ) if MAij
= 1

0 if MAij
= 0

, ∇BijL(θ) =

{
∇B̃ij

L(θ) if MBij
= 1

0 if MBij
= 0

(6)

The objective function in XoRA is similar to the original loss function L(θ) (θ represents the base
model parameters), but here update is constrained to the sparse expander masked weights as follows.

Aij ←

{
Aij − η∇Ãij

L(θ) if MAij
= 1

Aij if MAij = 0
, Bij ←

{
Bij − η∇B̃ij

L(θ) if MBij
= 1

Bij if MBij = 0,
(7)

where η is the learning rate and L(θ) is the loss function. The structural sparsity of expander masks
helps XoRA to significantly reduce the number of trainable parameters and improve generalization.

5 EXPERIMENTAL RESULTS

5.1 DATASETS AND EXPERIMENTAL SETUP

Evaluation of the proposed XoRA method is done on the General Language Understanding Eval-
uation (GLUE) benchmark Wang (2018) using RoBERTa base and RoBERTa large models (Liu,
2019). Due to computational limitations we did limited number of experiments on the resource and
time intensive tasks MNLI, QQP and QNLI. The following GLUE benchmark tasks and evaluation
metrics are reported in our study. For each of the metric a higher value is better.

5
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• CoLA (Corpus of Linguistic Acceptability): Matthews Correlation Coefficient
• SST-2 (Stanford Sentiment Treebank): Accuracy
• MRPC (Microsoft Research Paraphrase Corpus): Accuracy
• STS-B (Semantic Textual Similarity Benchmark): Pearson correlation
• RTE (Recognizing Textual Entailment): Accuracy

Since we do not fine-tune MNLI, the MNLI initialization trick which involves fine-tuning the model
on the MNLI dataset before fine-tuning on the target task (MRPC , STSB and RTE) is also not
used. For RoBERTa base model, experiments are reported for MRPC, STS-B, and RTE with LoRA
without the MNLI trick (LoRA•) for a fairer comparison with XoRA. Without the MNLI trick,
the performance difference for MRPC and STS-B is less pronounced. However RTE suffers more
without the MNLI trick, likely due to the small training set. For RoBERTa-large, the original LoRA
paper reported metrics both with and without the MNLI trick (LoRA◦ and LoRA•)

We used RoBERTa-base and RoBERTa-large from Hugging Face with the same setup as in the
original LoRA paper for all our experiments. Sparsification is performed only for the LoRA matrices
corresponding to the Query (Q) and Value (V) layers. We perform 5 runs with different random
seeds, recording the best epoch’s outcome for each run. The median and standard deviation of these
values are reported. The same hyperparameters as in the original LoRA paper (Hu et al., 2021) is
used as shown in Table 10.

The expander mask configurations used in our experiments are shown in Table 9. Here, sparsity is
defined as the ratio of number of zero elements in the masked LoRA matrices to the total number of
elements. Note that, the sparsity levels can be varied as we consider LoRA matrices with different
ranks. Maximum sparsity levels achieved by the expander mask generation process for a particular
rank configuration is mentioned in Table 1. XoRA variant with the highest sparsity (75%) is used
for fine-tuning in our experiments for the RoBERTa base and RoBERTa-large (rank-8). In the case
of a rank-8 configuration, this 75% sparsity is the maximum achievable structured sparsity from an
expander. For higher ranks, such as rank 32, the maximum structured sparsity from the expander
mask would be higher (93.75%).

Table 1: Maximum sparsity levels for bipartite expander graphs with varying ranks and expander
sizes. The maximum sparsity is achieved (left degree dL = 2) when number of edges are minimized
while maintaining the expander properties.

Layer Size LoRA Rank Expander Size (dL, dR) Max Sparsity Trainable Param
768 × 768 8 768 × 8 (2, 192) 75% (6/8) 25% (2/8)
768 × 768 16 768 × 16 (2, 96) 87.5% (14/16) 12.5% (2/16)
768 × 768 32 768 × 32 (2, 48) 93.75% (30/32) 6.25% (2/32)
768 × 768 64 768 × 64 (2, 24) 96.88% (62/64) 3.12% (2/64)

1024 × 1024 8 1024 × 8 (2, 256) 75% (6/8) 25% (2/8)
1024 × 1024 16 1024 × 16 (2, 128) 87.5% (14/16) 12.5% (2/16)
1024 × 1024 32 1024 × 32 (2, 64) 93.75% (30/32) 6.25% (2/32)
1024 × 1024 64 1024 × 64 (2, 32) 96.88% (62/64) 3.12% (2/64)

5.2 RESULTS AND DISCUSSION

5.2.1 COMPARISON BETWEEN RANDOM MASKING AND EXPANDER MASKING

Table 2 compares Randomly masked LoRA and XoRA performance on MRPC (Accuracy) and
RTE(Accuracy) tasks for RoBERTa base model. XoRA is shown at different sparsity levels: 50%,
62.5%, and 75%. It is observed that the expander masks outperform the random masks at a high
sparsity level. The random masking method has a high variability of performance for the 5 runs,
whereas the expander mask provides a stable performance over these runs. Especially at higher
sparsity levels the random masked LoRA is unstable and performance drop sharply. XoRA has
consistent and stable performance across all sparsity levels. The XoRA variant with 75% sparsity is
selected for further experiments due to its efficient parameter usage (0.075M trainable parameters)
while maintaining performance close to LoRA. Some key observations from the results are:
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• At 50% sparsity (0.15M parameters), it outperforms LoRA’s MRPC accuracy (89.7±0.6)
and matches RTE accuracy (78.7±0.9).

• At 62.5% sparsity (0.1125M parameters), it has competitive performance with LoRA.
• Even at 75% sparsity (0.075M parameters), it maintains performance close to LoRA on

MRPC (89.5± 0.7) and RTE (76.9± 1.3).
• At all the sparsity levels XoRA outperforms the randomly masked LoRA. Also it has lower

variability than random masking.

Table 2: Comparison of randomly masked LoRA and XoRA for MRPC and RTE tasks using the
RoBERTa base model.

Method Trainable
Parameters

Sparsity
Level

MRPC
(Acc)

RTE
(Acc)

FT 125M - 90.2 91.2
LoRA• 0.3M 0% 89.5±0.8 78.7±1.3
Random 0.15M 50% 87.3±2.5 75.5±2.8
Random 0.075M 75% 85.3±3.4 73.3±2.2
XoRA 0.15M 50% 89.7±0.6 78.7±0.9
XoRA 0.1125M 62.5% 89.2±0.9 77.6±1.3
XoRA 0.075M 75% 89.5±0.7 76.9±1.3

5.2.2 COMPARISON BETWEEN XORA AND OTHER ADAPTATION METHODS

We now compare the performance of XoRA with LoRA and other parameter-efficient fine-tuning
(PEFT) baselines for the RoBERTa models on the GLUE tasks. The methods compared are FT (Full
fine-tuning), BitFit (Zaken et al., 2021), AdptD (Rücklé et al., 2020), AdptH (Houlsby et al., 2019),
AdptP (Pfeiffer et al., 2020), LoRA-FA (Zhang et al., 2023a), and LoRA (Hu et al., 2021).

Tables 3 and 4 presents GLUE benchmark results for the RoBERTa base and RoBERTa large models
respectively. Results of all methods except XoRA are sourced from prior work (Hu et al. (2021);
Zhang et al. (2023b)). For RoBERTa base model, we repeated the LoRA experiments for MRPC,
STS-B, and RTE without the MNLI trick (LoRA•) for a fairer comparison with XoRA.

Table 3: Performance comparison of XoRA and other adaptation methods on the GLUE benchmark
for RoBERTa base.

Method Trainable
Parameters

SST-2
(Acc)

CoLA
(MCC)

MRPC
(Acc)

STS-B
(Pear)

RTE
(Acc) Avg.

FT 125M 94.8 63.6 90.2 91.2 78.7 83.7
BitFit 0.1M 93.7 62.0 92.7 90.8 81.5 84.1
AdptD 0.3M 94.2±0.1 60.8±0.4 88.5±1.1 89.7±0.3 71.5±2.7 80.9
AdptD 0.9M 94.7±0.3 62.6±0.9 88.4±0.1 90.3±0.1 75.9±2.2 82.4
LoRA◦ 0.3M 95.1±0.2 63.4±1.2 89.7±0.7 91.5±0.2 86.6±0.7 85.3
LoRA• 0.3M 95.1±0.2 63.4±1.2 89.5±0.8 90.1±0.2 78.7±1.3 83.4
VeRA∗ 0.043M 94.6±0.1 65.6±0.8 89.5±0.5 90.7±0.2 78.7±0.7 83.8
XoRA 0.075M 94.8±0.2 62.5±0.9 89.5±0.7 90.1±0.3 76.9±1.3 82.8

1

Using only about 25% of the trainable parameters of LoRA, the proposed method attains comparable
performance across GLUE tasks. At a very high sparsity XoRA’s average score 82.8 and 86.3,
is only 0.6 and 0.1 lower than LoRA for RoBERTa base and RoBERTa large respectively. This
underscores the effectiveness of using structured sparsity from expander graphs. The proposed
method is comparable to the state of the art at high sparsity.

1* For VeRA, we report the scores published in (Kopiczko et al., 2023). Our replication experiments yielded
slightly lower averages: 83.0 for RoBERTa-base and 86.2 for RoBERTa-large. These differences may be
attributed to variations in hyperparameters or seeds in the experiments.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Performance comparison of XoRA and other adaptation methods on the GLUE benchmark
for RoBERTa large.

Method Trainable
Parameters

SST-2
(Acc)

CoLA
(MCC)

MRPC
(Acc)

STS-B
(Pear)

RTE
(Acc) Avg.

FT 355.0M 96.4 68.0 90.9 92.4 86.6 86.9
AdptP 3.0M 96.1±0.3 68.3±1.0 90.2±0.7 92.1±0.7 83.8±2.9 86.1
AdptP 0.8M 96.6±0.2 67.8±2.5 89.7±1.2 91.9±0.4 80.1±2.9 85.2
AdptH 6.0M 96.2±0.3 66.5±4.4 88.7±2.9 91.0±1.7 83.4±1.1 85.2
AdptH 0.8M 96.3±0.5 66.3±2.0 87.7±1.7 91.5±0.5 72.9±0.5 82.9
LoRA-FA 3.7M 96.0 68.0 90.0 92.0 86.1 86.4
LoRA◦ 0.8M 96.2±0.5 68.2±1.9 90.9±1.2 92.6±0.2 87.4±2.5 87.1
LoRA• 0.8M 96.2±0.5 68.2±1.9 90.2±1.0 92.3±0.5 85.2±1.1 86.4
VeRA∗ 0.061M 96.1±0.1 68.0±0.8 90.9±0.7 91.7±0.8 85.9±0.7 86.5
XoRA 0.2M 96.1±0.1 67.8±1.6 90.0±0.6 91.9±0.2 85.6±1.3 86.3

5.2.3 INSTRUCTION TUNING

We performed instruction tuning on the LLaMA 2 7B base model (Touvron et al., 2023) using
the Alpaca dataset (Taori et al., 2023). Alpaca dataset comprises of 52k instruction-response pairs
generated from OpenAI’s text-davinci-003 model following self-instruction techniques introduced
by (Wang et al., 2022). We perform fine-tuning using both XoRA and LoRA. The tuning was applied
across all attention layers (Query, Key, Value and Projection layers). Detailed hyperparameters are
summarized in Table 11.

We evaluate our instruction-finetuned XoRA and LoRA models using EleutherAI’s lm-eval-harness
Gao et al. (2024) to quantitatively assess their factual accuracy and knowledge retention. While
instruction fine-tuning improves instruction-following capabilities, models often overfit to instruc-
tion patterns at the cost of general knowledge and factual accuracy. To assess this trade-off, we use
TruthfulQA to measure factual correctness and MMLU global facts for general knowledge retention.

XoRA demonstrates consistent improvements over LoRA across all metrics - achieving up to 2.3%
gain on TruthfulQA-MC1, 3% gain on TruthfulQA-MC2, and 3% on MMLU global facts while
using only 2.1M parameters (↓ 96.9% parameter reduction at rank r = 64). The performance gains
can be attributed to XoRA’s implicit regularization during fine-tuning, helping preserve model’s
factual knowledge while adapting to instruction following. This is particularly evident in Truth-
fulQA results where XoRA models show consistent improvements across increasing ranks, suggest-
ing better retention of factual knowledge compared to LoRA variants. The improved performance
on MMLU global facts further supports that XoRA helps maintain domain-specific factual knowl-
edge while adapting to instruction following, effectively addressing the common trade-off between
instruction coherence and factual accuracy in instruction fine-tuned models.

Table 5: Comparison of Alpaca Fine-tuned LoRA and XoRA on Llama 2 7B base model across
different ranks (r), and performance on TruthfulQA (TQA) and MMLU Global Fact benchmarks.

Model Params TQA-MC1 TQA-MC2 MMLU
Llama 2 7B base 6.7B 25.3% 39.7% 32.0%
LoRA r=8 8.4M 29.1% 43.6% 26.0%
XoRA r=8 2.1M (↓ 75.0%) 30.4% 44.5% 28.0%
LoRA r=16 16.8M 30.8% 46.0% 27.0%
XoRA r=16 2.1M (↓ 87.5%) 31.6% 46.6% 29.0%
LoRA r=32 33.6M 30.2% 44.1% 30.0%
XoRA r=32 2.1M (↓ 93.8%) 32.1% 47.3% 30.0%
LoRA r=64 67.1M 30.5% 45.4% 29.0%
XoRA r=64 2.1M (↓ 96.9%) 32.8% 48.4% 32.0%
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Figure 2: Performance comparison of Alpaca Fine-tuned Llama 2 7B Base LoRA and XoRA across
different ranks (r) on: (left) TruthfulQA MC1, (middle) TruthfulQA MC2, and (right) MMLU
Global Facts benchmarks.

We further validate XoRA’s effectiveness through MT-Bench (Zheng et al., 2023) evaluation using
GPT-4 (OpenAI, 2023) as judge, which confirms the quantitative improvements translate to better
qualitative performance.

Table 6: Comparison of MT-Bench results for Alpaca fine-tuned Llama 2 7B using LoRA and
XoRA.

Method Number of Parameters MT-Bench Score
LoRA (r=64) 67.1M 5.4
XoRA (r=64) 2.1M 5.7

In instruction fine-tuning evaluations, VeRA exhibits lower performance compared to LoRA across
various model scales as reported in the paper (Kopiczko et al., 2023), see Table 7. In contrast, XoRA
demonstrates superior instruction-following capabilities compared to its LoRA counterpart despite
using significantly fewer parameters as shown in Table 6.

Table 7: Comparison of MT-Bench results for Alpaca fine-tuned Llama 2 7B using LoRA and VeRA.

Method Number of Parameters MT-Bench Score
LoRA 159.9M 5.19
VeRA 1.6M 5.08

5.2.4 IMPACT OF XORA ON MEMORY USAGE AND TRAINING TIME

XoRA introduces expander masked low ranks, meaning that many of the low-rank parameters are
masked out and do not receive gradients during fine-tuning. This significantly reduces the number
of parameters that need to be stored and updated during training. For a rank 64 configuration with
XoRA we can achieve 96.9% parameter reductions. To assess the training time and GPU memory
advantages of our method, we compared LoRA and XoRA while instruction fine-tuning the LLaMA
2 7B model on the Alpaca dataset with the same rank of 64. Our results 8 show a 9.2% reduction
in GPU memory usage with XoRA compared to LoRA, as well as a 3.4% reduction in training
time. In comparison VeRA (Kopiczko et al., 2023) includes more operations than LoRA due to the
additional vector multiplies in the forward pass, and results in a 1.8% increase in training time and
a 7.4% reduction GPU memory.

Table 8: LoRA vs XoRA Memory Usage And Training Time Comparison at Rank 64

Metric LoRA XoRA Reduction
Peak Memory 18.65 GB 16.94 GB 9.2%
Training Time 10522 s 10169 s 3.4%

In XoRA, because many of the parameters are masked and do not participate in the gradient com-
putation, the GPU memory requirement for storing gradients is reduced.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 LIMITATIONS AND DISCUSSIONS

One of the limitations is that, Ramanujan graphs are (rigorously) defined in the regular or biregular
case, with degree ⩾ 2. The degree consideration forces the sparse mask based on it to concen-
trate only in sparsification of edges and not that of vertices (vertex dropout). Further, the regularity
forces a lower bound on the number of parameters. Thus, the method sparsifies the most when
the LoRA rank is large. For instance when r = 64 we can achieve 97% sparsity (as given in ta-
ble 7). Another point is that random generation theoretically always guarantees an expander mask
but not a Ramanujan mask. This is because random biregular bipartite graphs are known to be
expanders but not Ramanujan (the fact that they are ramanujan is a conjecture). That said practi-
cally we do get Ramanujan graphs because it has been shown that will be weakly Ramanujan by
Freidman, in his proof of Alon’s conjecture see (Friedman, 2003). Note that for XoRA, whenever
we generate random expanders, we do an additional check if it is Ramanujan or not and then pro-
ceed. The existence of biregular Ramanujan graphs of all degrees have been shown by the works
of Marcus–Spielman–Srivastava (Marcus et al., 2015; 2018). For the deterministic generation it is
not a problem. Currently we apply the technique of Lubotzky–Phillips–Sarnak (Lubotzky et al.,
1988), and Hall–Pruder–Sawin (Hall et al., 2018) (Ramanujan r-coverings). Another deterministic
construction can be achieved using the technique of Gribinski–Marcus (Gribinski & Marcus, 2021).

7 CONCLUSION

In this work, we introduce XoRA (Expander-based Low-Rank Adaptation), a novel approach that
integrates structural sparsity into the low-rank matrices of the LoRA adaptation method using bi-
partite expander graphs. XoRA effectively addresses the over-parameterization often present in
low-rank update matrices, by masking majority of the elements.

The proposed XoRA method achieves comparable or superior performance to LoRA while utilizing
significantly fewer parameters. This efficiency is particularly valuable in resource-constrained com-
putational environments. Our experiments show that XoRA exhibits robust performance at higher
sparsity levels compared to random masking. The expander graph structure ensures maintained
connectivity of the network despite a high sparsity and thus preserving the performance.

The expander masking inherent in XoRA offers regularization benefits during the fine-tuning pro-
cess. This can improve generalization and reduce overfitting. The XoRA approach shows promise
for integration with other parameter-efficient fine-tuning techniques, potentially leading to even
greater parameter efficiency and adaptability.
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Figure 3: Example of a “cut” achieving the edge Cheeger constant in a 12 by 8 bipartite graph. The
subset S of cardinality 10 is pointed out in orange. The red edges have one vertex is S and the other
in V \ S. The edge Cheeger constant is the number of red edges divided by D|S|.

A APPENDIX: EXPANDER GRAPHS AND RAMANUJAN GRAPHS

Expander graphs are highly connected, sparse graphs defined using the notion of Cheeger constants.
The vertex Cheeger constant has been previously defined.

Cheeger constants can also be defined using the notion of edges or spectrum of adjacency matrices
giving rise to edge expanders, and spectral expanders. When we consider the edge boundary of a
set of vertices, which is defined as the set of edges with one endpoint in a vertex subset X ⊂ V (Γ)
and the other endpoint outside of X , it leads us to the definition of the edge Cheeger constant
hE(Γ). See Figure 3 for a graphical representation of the best cut 2 in a 12 by 8 bipartite graph
which achieves the edge Cheeger constant.

These two constants, which measure edge expansion and vertex expansion, are related by the fol-
lowing inequality:

hV (Γ)

D
≤ hE(Γ) ≤ hV (Γ),

where D represents the maximum degree of the graph. This relationship demonstrates that the
notions of vertex expansion and edge expansion are closely related, allowing us to use them inter-
changeably in many contexts.

In the literature, having a high Cheeger constant is often referred to as possessing high combina-
torial expansion. Intuitively, a graph with a large vertex (or edge) Cheeger constant is difficult to
“separate,” and is a desirable quality for free flow of information. However, it is important to note
that computing the Cheeger constants of graphs is generally an NP-hard problem, which makes it
impractical to directly calculate in most real-world applications.

To overcome the difficulty of computing Cheeger constants, spectral methods are often employed.
These techniques rely on the eigenvalues of the graph’s adjacency matrix, which contain significant
information about the graph’s structural properties, including its expansion capabilities. Given a
finite undirected graph Γ, let the eigenvalues of its adjacency matrix be ordered as λn ≤ λn−1 ≤
· · · ≤ λ1. These eigenvalues are real, and for any graph, λ1 ≤ D, where D is the maximum degree
of the graph. Importantly, equality holds, λ1 = D, if and only if the graph is D-regular, meaning
every vertex in the graph has exactly D edges incident to it.

For a graph to be D-regular implies that all vertices have the same degree, which contributes to
its regular structure. In the special case of bipartite graphs, the graph is said to be D-regular if it

2In graph theory, a cut is a partition of the vertices of a graph into two disjoint subsets. Any cut determines
a cut-set, the set of edges that have one endpoint in each subset of the partition.
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consists of two sets of vertices, where every vertex in each set has exactly D edges connected to
vertices in the other set, maintaining equal degrees across both partitions.

Graphs are said to be spectral expanders if their spectral properties imply strong connectivity and
expansion. Specifically, a graph Γ is considered a spectral expander if the quantities |λ1 − λ2| and
|λ1 − λk| are bounded away from zero, where k = n − 1 for bipartite graphs and k = n other-
wise. These bounds on the spectral gap ensure that the graph exhibits good expansion properties,
as the eigenvalues provide insight into the graph’s ability to resist being “cut” into disconnected
components.

Question A.1. Why Is Strong Spectral Expansion Important?

The significance of spectral expansion lies in its connection to combinatorial expansion. The rela-
tionship between spectral and combinatorial expansion is formalized through the discrete Cheeger-
Buser inequality, which establishes that spectral expansion implies combinatorial expansion.

Suppose Γ is a d-regular graph. The largest eigenvalue is λ1 = d. Then the Cheeger constant hE(Γ)
satisfies the following inequalities known as the discrete Cheeger–Buser inequalities:

1

2
(d− λ2) ≤ hE(Γ) ≤

√
2d(d− λ2).

See Alon (1986); Hoory et al. (2006) for details. These inequalities establish a relationship between
the spectral properties of the graph (through the second largest eigenvalue λ2 of the adjacency ma-
trix) and its combinatorial expansion properties (through the Cheeger constant h(G)). The lower
bound is often referred to as Cheeger’s inequality, while the upper bound is known as Buser’s in-
equality in the discrete setting.

Lower Bound (Cheeger’s Inequality):

h(G) ≥ 1

2
(d− λ2).

This inequality implies that if the second largest eigenvalue λ2 is close to d, then the graph has poor
expansion properties.

Upper Bound (Buser’s Inequality):

h(G) ≤
√

2d(d− λ2).

This indicates that a significant gap between λ2 and d leads to strong expansion properties.

In practice, this means that the larger the spectral expansion, the more difficult it is to isolate subsets
of vertices, which corresponds to greater connectivity and robustness of the graph structure.

Since computing combinatorial expansion directly is NP-hard, leveraging spectral expansion allows
us to sidestep this difficulty. Spectral techniques offer an efficient way to measure and guarantee
expansion properties. Naturally, a key question arises: Is there a limit to how large the spectral
expansion can become, or can it be arbitrarily large?

This leads us to the concept of Ramanujan graphs, which are the optimal spectral expanders.
Ramanujan graphs achieve the best possible trade-off between low degree and high expansion prop-
erties. In fact, these graphs are known to provide the largest possible spectral gap for a given degree,
making them the ideal candidates for networks and systems that require both sparse connectivity
and strong expansion. Figure 4 visualizes a typical bipartite Ramanujan graph.

It is essential to note that disconnected graphs are not considered expanders. The reason for this
is straightforward: in a disconnected graph, the boundary of any connected component is empty,
meaning there is no flow of information between different parts of the graph. The Cheeger constant,
as an expansion parameter, effectively measures how well-connected the graph is, and thus a discon-
nected graph has zero expansion. In contrast, a graph with a high Cheeger constant, or equivalently,
a large spectral gap, exhibits strong expansion, meaning that it remains well-connected even after
the removal of some edges or vertices.

At the extreme, the complete graph represents the best possible expander, as it has the maximum
possible connectivity. However, the complete graph also has the highest possible degree, which
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Figure 4: Example of a 12 by 6 bipartite (3,6) biregular Ramanujan graph.

makes it impractical in many applications that require sparse connections. Therefore, a “good ex-
pander” is one that balances low degree with high expansion properties. Ramanujan graphs serve as
a prime example of such an optimal balance, making them highly valuable in both theoretical and
practical contexts where efficient and robust network structures are needed.

B APPENDIX : HYPERPARAMETERS

Table 9: Bipartite expander mask configuration for rank-8 low-rank matrices in LoRA. Matrices for
the Query and Value layers are sparsified. Expander Size refers to the number of vertices of the
corresponding bipartite expander graphs. The numbers (dL, dR) indicates degrees of the dL-left-
regular and dR-right-regular bipartite graphs.

Model Layer Size Expander Size (dL, dR) Sparsity
RoBERTa Base 768× 768 768× 8 (2, 192) 75.0%
RoBERTa Base 768× 768 768× 8 (3, 288) 62.5%
RoBERTa Base 768× 768 768× 8 (4, 384) 50.0%
RoBERTa Large 1024× 1024 1024× 8 (2, 256) 75.0%
RoBERTa Large 1024× 1024 1024× 8 (3, 384) 62.5%
RoBERTa Large 1024× 1024 1024× 8 (4, 512) 50.0%

Table 10: Hyperparameters for RoBERTa base XoRA / RoBERTa large XoRA, on GLUE bench-
mark.

Task Batch Size Epochs Learning Rate
SST-2 16 / 4 60 / 10 5e-4 / 4e-4
MRPC 16 / 4 30 / 20 4e-4 / 3e-4
STS-B 16 / 4 40 / 10 4e-4 / 2e-4
RTE 32 / 4 80 / 20 5e-4 / 4e-4
CoLA 32 / 4 80 / 20 4e-4 / 2e-4

Optimizer: AdamW
Warmup ratio: 0.06
LR schedule: Linear
Max sequence length: 512 (RoBERTa base) / 128 (RoBERTa large)
LoRA config: rq = rv = 8, α = 8 (base) / 4 (large)
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The hyperparameters used in the alpaca fine-tuning of Llama 2 7B using LoRA and XoRA are
discussed in this section.

Table 11: Hyperparameters for Alpaca Fine-tuning of Llama 2 7B using LoRA and XoRA

Optimization Parameters
Optimizer AdamW
Learning Rate 3e-4
Weight Decay 0.01
Training Schedule
Scheduler Type Cosine
Total Training Examples 50,000 (Alpaca dataset)
Training Iterations 50,000
Training Epoch 1
Warmup Steps 100
Batch Configuration
Global Batch Size 128
Micro-batch Size 1
Gradient Accumulation Steps 128
LoRA and XoRA Configurations
Ranks (r) 8, 16, 32, 64
Alpha Values (α = 2r) 16, 32, 64, 128
LoRA Dropout 0.5
Model Configuration
Base Model Llama 2 7B
Adapted Layers All attention layers (Q, K, V, P)
Quantization Method bnb.nf4 (4-bit Normal Float)
Expander Mask Configuration
Expander Mask Dimensions 4096× r and r × 4096
Left Degree 2
Sparsity (r − 2)/r

C APPENDIX : INSTRUCTION TUNING EXPERIMENTS

In this section we outline the datasets and evaluation metrics used to assess XoRA’s performance in
instruction tuning scenarios as shown in 5.2.3 section presented previously.

We specifically focus on the EleutherAI’s lm-eval-harness and MT-Bench framework and conduct
our experiments using the Alpaca instruction tuning setup, which provides a standardized environ-
ment for comparing parameter-efficient instruction tuning methods.

TruthfulQA consist of diverse MCQ and open ended questions designed to test a model’s knowledge
and resistance to generating false hoods. It includes two main evaluation modes:

• MC1 (Single-true): In this setup, each question is paired with 4-5 answer choices, with only
one correct answer. The model selects an answer by assigning the highest log-probability
of completion to one of the choices. Accuracy is measured as the percentage of questions
for which the model selects the correct answer.

• MC2 (Multi-true): Here, each question is associated with a set of true and false reference
answers. The model assigns probabilities to these answers, and the score is computed as
the normalized total probability assigned to the set of true answers.

TruthfulQA emphasizes challenges in fact-based reasoning and penalizes models for hallucinating
or overconfidently generating incorrect answers.

MT-Bench is a benchmark designed to evaluate large language models on their instruction-following
abilities across 80 tasks covering a wide range of domains, such as coding, math, reasoning, factual
knowledge, creative writing, and open-ended dialogue. Each task consists of two turns:
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• (1) an initial instruction or query that the model must address
• (2) a follow-up question designed to further probe the model’s understanding, reasoning,

or ability to revise its initial response.
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