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ABSTRACT

Molecular design and synthesis planning are two critical steps in the process
of molecular discovery that we propose to formulate as a single shared task of
conditional synthetic pathway generation. We report an amortized approach to
generate synthetic pathways as a Markov decision process conditioned on a target
molecular embedding. This approach allows us to conduct synthesis planning
in a bottom-up manner and design synthesizable molecules by decoding from
optimized conditional codes, demonstrating the potential to solve both problems of
design and synthesis simultaneously. The approach leverages neural networks to
probabilistically model the synthetic trees, one reaction step at a time, according to
reactivity rules encoded in a discrete action space of reaction templates. We train
these networks on hundreds of thousands of artificial pathways generated from a
pool of purchasable compounds and a list of expert-curated templates. We validate
our method with (a) the recovery of molecules using conditional generation, (b)
the identification of synthesizable structural analogs, and (c) the optimization of
molecular structures given oracle functions relevant to drug discovery.

1 INTRODUCTION

Designing new functional materials, such as energy storage materials (Hachmann et al., 2011; Janet
et al., 2020), therapeutic molecules (Zhavoronkov et al., 2019; Lyu et al., 2019), and environmentally
friendly materials (Zimmerman et al., 2020; Yao et al., 2021), is key to many societal and technological
challenges and is a central task of chemical science and engineering. However, traditional molecular
design processes are not only expensive and time-consuming, but also rely heavily on chance and
brute-force trial and error (Sanchez-Lengeling & Aspuru-Guzik, 2018). Thus, a systematic approach
to molecular design that can leverage data and minimize the number of costly experiments is of great
interest to the field and is a prerequisite for autonomous molecular discovery (Coley et al., 2020a;b).

The core of computer-aided molecular discovery is molecular design. The objective of the task is to
identify novel molecules with desirable properties through de novo generation or to identify known
molecules through virtual screening. There has been a growing interest in applying machine learning
methods to tackle this task in recent years (Gómez-Bombarelli et al., 2018; Jin et al., 2018; You
et al., 2018; Bradshaw et al., 2019; 2020; Jin et al., 2020; Fu et al., 2021), which has been the subject
of many reviews (Elton et al., 2019; Schwalbe-Koda & Gómez-Bombarelli, 2020; Vanhaelen et al.,
2020). Despite the large number of models developed, there are few examples that have proceeded
to experimental validation or been used in a realistic discovery scenario (Zhavoronkov et al., 2019;
Schneider & Clark, 2019). One major barrier to the deployment of these algorithms is that they lack
considerations of synthesizability (Gao & Coley, 2020; Huang et al., 2021); Gao & Coley (2020)
have demonstrated that when applied to goal-directed optimization tasks, de novo molecular design
algorithms can propose a high proportion of molecules for which no synthetic plan can be found
algorithmically.
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Planning and executing a practical synthetic route for a hypothetical molecular structure is a bottleneck
that hinders the experimental validation of molecular design algorithms. The goal of computer-
assisted synthesis planning (CASP) is to identify a series of chemically plausible reaction steps
beginning from available starting materials to synthesize a target chemical compound. Machine
learning methods have been applied to improve CASP model performance (Segler et al., 2018; Coley
et al., 2018; 2019b; Schwaller et al., 2020; Genheden et al., 2020), and experimental execution has
validated significant advances in recent years (Klucznik et al., 2018; Coley et al., 2019c). However,
most current algorithms require tens of seconds or minutes to plan a synthetic route for one target
compound due to the combinatorial complexity of the tree search. This cost makes a post hoc filtering
strategy impractical in molecular design workflows that decouple de novo design and synthesis
planning (Gao & Coley, 2020). However, synthesizability-constrained generation has emerged as a
promising alternative to this two-step pipeline (Section 2.1).

In this paper, we report a strategy to generate synthetic pathways as trees conditioned on a target
molecular embedding as a means of simultaneously addressing the problems of design and synthesis.
Proposed pathways are guaranteed to make use of purchasable starting materials and are required
to follow the “rules of chemistry” as codified by expert-curated reaction templates, which can be
made more or less conservative depending on the application. When applied to synthesis planning,
we ask the model to generate synthetic trees conditioned on the target molecule. When applied to
synthesizable molecular design, we optimize the fixed-length embedding vector using a numerical
optimization algorithm; then, we decode the optimized embedding to obtain the corresponding
synthetic tree whose root molecule is the output. The idea builds on the work of Bradshaw et al. (2019)
and Bradshaw et al. (2020); however, these methods failed to recover multi-step synthetic paths for
any target molecules and were thus only applied to the task of synthesizable analog recommendation.
In contrast, the method presented here can successfully recover multi-step retrosynthetic pathways in
an amortized manner, in addition to being used for synthesizable analog recommendation.

The main contributions of this paper can be summarized as:

• We formulate a Markov decision process to model the generation of synthetic trees, allowing
the generation of multi-step and convergent (i.e., nonlinear) synthetic pathways.

• We propose a model that is capable of (1) rapid bottom-up synthesis planning and (2)
constrained molecular optimization that can explore a chemical space defined by a discrete
action space of reaction templates and purchasable starting materials.

• We show the first successful attempt to amortized multi-step synthesis planning of complex
organic molecules, achieving relatively high reconstruction accuracy on test molecules.

• We demonstrate encouraging results on de novo molecular optimization with multiple
objective functions relevant to bioactive molecule design and drug discovery.

2 RELATED WORK

2.1 SYNTHESIZABLE MOLECULAR DESIGN

While most molecular generative models focus on the generation of valid molecules with desired
properties, there is growing interest in the generation of synthesizable molecules, as not all chemically
valid molecules are synthetically accessible. MoleculeChef (Bradshaw et al., 2019) was one of
the first neural models to cast the problem of molecular generation as the generation of one-step
synthetic pathways, thus ensuring synthesizability, by selecting a bag of purchasable reactants and
using a data-driven reaction predictor to enumerate possible product molecules. ChemBO (Korovina
et al., 2020) extends constrained generation to the multi-step case, but is a stochastic algorithm that
generates synthetic pathways iteratively using random selections of reactants as input to another
data-driven reaction predictor. While MoleculeChef and ChemBO use neural models for reaction
outcome prediction as the ground truth for chemical reactivity (Coley et al., 2019b; Schwaller
et al., 2019), reaction templates provide an alternate means of defining allowable chemical steps,
algorithmically (Coley et al., 2019a) or by hand-encoding domain expertise (Molga et al., 2019).
PGFS (Gottipati et al., 2020) and REACTOR (Horwood & Noutahi, 2020) both use discrete reaction
templates and formulate the generation of multi-step synthetic pathways as a Markov decision process
and optimize molecules with reinforcement learning. Both are limited to linear synthetic pathways,
where intermediates can only react with purchasable compounds and no reaction can occur between

2



Published as a conference paper at ICLR 2022

two intermediates. Their inability to design convergent syntheses limits the chemical space accessible
to the model. It is worth noting that there also exist previously reported methods for non-neural
synthesizability-constrained molecular design, such as SYNOPSIS (Vinkers et al., 2003) and DOGS
(Hartenfeller et al., 2012), which pre-date deep molecular generation.

Most recently, Bradshaw et al. (2020) introduced the DoG-AE/DoG-Gen model, which treats synthetic
pathways as directed acyclic graphs (DAGs). DoG-Gen serializes the construction of the DAGs and
uses a recurrent neural network for autoregressive generation. Dai Nguyen & Tsuda (2021) also
employ an autoencoder (AE) framework, jointly trained with a junction tree variational autoencoder
(JT-VAE) (Jin et al., 2018). However, none of the previous methods for synthesizable molecular
generation have succeeded in achieving high reconstruction accuracy.

2.2 SYNTHESIS PLANNING

Algorithms and models for synthesis planning have been in development since the 1960s when
retrosynthesis was first formalized (Corey & Wipke, 1969). Various data-driven approaches have
been introduced in recent years (Segler et al., 2018; Coley et al., 2018; 2019b; Schwaller et al., 2020;
Genheden et al., 2020), although expert methods with human-encoded “rules of chemistry” have
arguably achieved greater success in practice (Klucznik et al., 2018; Mikulak-Klucznik et al., 2020).
The primary distinction between these methods is how allowable single-step chemical transformations
are defined to mimic physical reality as closely as possible; they can all make use of similar tree search
algorithms. While these tools can be used to plan routes to target molecules and filter compounds
from de novo generation for which no pathway is found, none of them can be directly used for
molecular generation. Moreover, they all approach synthesis planning retrosynthetically, working
recursively from the target molecule towards purchasable starting materials (i.e. in a top-down
manner), whereas we propose a bottom-up approach that has the potential to be more computationally
efficient by mitigating the need for a tree search.

2.3 COMBINING SYNTHESIZABLE DESIGN AND SYNTHESIS PLANNING

Our method can be used for synthesizable molecular design and synthesis planning. While our
approach is most similar to Bradshaw et al. (2020)’s RetroDoG model, their model was only applied
to structural analog generation, and could not demonstrate the successful recovery of target molecules.
Bradshaw et al. (2019) showed some examples of successful recovery, but their formulation restricts
the search to single-step synthetic pathways, which severely limits its practical utility for both tasks.
In contrast, our model can successfully handle multi-step reactions.

3 METHOD

3.1 PROBLEM DEFINITION

We model synthetic pathways as tree structures called synthetic trees (Figure 6A in Appendix A).
A valid synthetic tree has one root node (the final product molecule) linked to purchasable building
blocks via feasible reactions according to a list of discrete reaction templates. A reaction template is a
pattern defining a structural transformation on molecules that is intended to represent a valid chemical
reaction, usually encoded as a SMARTS string (Figure 6B&C). We use a list of reaction templates
to define feasible chemical reactions instead of a data-driven reaction predictor so that the practical
utility of the model can be improved by refining or expanding this set without changing its architecture.
Given a list of reaction templates,R, and a list of purchasable compounds, C, our goal is to generate
a valid synthetic tree, T , that produces a root molecule with a desired structure or function. The
product molecule and intermediate molecules in the tree are not themselves generated by the model,
but are implicitly defined by the application of reaction templates to reactant molecules. Compared to
the generation of molecular graphs, the generation of synthetic trees is more difficult because of the
additional constraints of enforcing chemical reaction rules and the commercial availability of starting
materials.

Synthesis Planning This task is to infer the synthetic pathway to a given target molecule. We
formulate this problem as generating a synthetic tree, T , such that the product molecule it produces
(molecule at the root node), Mproduct, matches the desired target molecule, Mtarget.
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Figure 1: An illustration of the iterative generation procedure. Our model constructs the synthetic tree
in a bottom-up manner, starting from the available building blocks and building up to progressively
more complex molecules. Generation is conditioned on an embedding for a target molecule. If the
target molecule is in the chemical space reachable by our template set and building blocks, the final
root molecule should match or at least be similar to the input target molecule.

Synthesizable Molecular Design This task is to optimize a molecular structure with respect to
an oracle function, while ensuring the synthetic accessibility of the molecules. We formulate this
problem as optimizing the structure of a synthetic tree, T , with respect to the desired properties of
the product molecule it produces, Mproduct.

3.2 SYNTHETIC TREE GENERATION AS A MARKOV DECISION PROCESS

We propose an amortized approach to tackle the probabilistic modeling of synthetic trees. In this
approach, we model the construction of a synthetic tree as a Markov decision process (MDP),
which requires that the state transition satisfies the Markov property: p(S(t+1)|S(t), . . . , S(0)) =
p(S(t+1)|S(t)). This property is naturally satisfied by synthetic trees: upon obtaining a specific
compound (an intermediate in a synthetic route), subsequent reaction steps can be inferred entirely
from the intermediate compound, and do not depend on the pathway used to get to said compound
when conditioned on the target molecule. Below, we first introduce an MDP framework for synthetic
tree generation, and then introduce the model to solve it. In our framework, we only allow uni- and
bi-molecular reactions.

At a high level, we construct a synthetic tree one reaction step at a time in a bottom-up manner. Figure
1 illustrates a generation process for synthesis planning purposes. We enforce that the generation
process happens in a reverse depth-first order, and that no more than two disconnected sub-trees are
generated simultaneously.

State Space We define the state, S(t), as the root molecule(s) of an intermediate synthetic tree, T (t)

at step t. Because we enforce that at most two sub-trees can occur simultaneously, there can be at
most two root molecules. All root nodes are generated in a reverse depth-first fashion; additionally,
we enforce that the synthetic tree always expands from the most recently added node (Mmost_recent),
and that any merging always happens between two root nodes. The state embedding of a synthetic
tree is thus computed by concatenating the embeddings for the two root molecules.

Action Space We decompose the action taken at each iteration into four components: (1) the action
type, aact, which samples from possible actions “Add”, “Expand”, “Merge”, and “End”; (2) the first
reactant, art1, which samples from either C or Mmost_recent; (3) the reaction template, arxn, which
samples fromR; and (4) the second reactant, art2, which samples from C.

(a) If aact = “Add”, one or two new reactant nodes will be added to T (t), as well as a new node
corresponding to their product given a specific reaction template. This is always the first action used
in building a synthetic tree and leads to an additional sub-tree.
(b) If aact = “Expand”, the most recent molecule, Mmost_recent, is used as the first reactant, and
a second reactant is selected if arxn is a bi-molecular reaction template. If arxn is a uni-molecular
reaction template, only a new product node is added to T (t). If arxn is a bi-molecular reaction template,
both a new product node and a new reactant node are added.
(c) If aact = “Merge”, the two root nodes are used as the reactants in a bi-molecular reaction. In this
case, a new product node is added to T (t) and the two sub-trees are joined to form one sub-tree.
(d) If aact = “End”, T = T (t) and the synthetic tree is complete. The last product node is Mproduct.
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State Transition Dynamics Each reaction represents one transition step. To ensure that each reaction
step is chemically plausible and has a high likelihood of experimental success, we incorporate
domain-specific reaction rules encoded as reaction templates inR. Once a valid action is selected,
the transition is deterministic; infeasible actions that do not follow a known template are rejected.
Importantly, the structure generated by template application is explicitly incorporated into the new
state, whereas the RNN model in Bradshaw et al. (2020) had to implicitly learn the dynamics of the
environment (i.e., the outcome of the reaction predictor).

Reward For synthesis planning, the reward is the similarity of the product to the target molecule,
with a similarity of 1.0 being the highest reward and indicating a perfect match. For molecular design,
the reward is determined by how well the product properties match the desired criteria.

3.3 CONDITIONAL GENERATION FOR SYNTHESIS PLANNING

We model synthesis planning as a conditional synthetic tree generation problem. To solve this MDP,
we train a model to predict the action, a(t), based on the state embedding, z(t)state, at step t, condi-
tioned on Mtarget. Concretely, at each step, our model, f , estimates a(t) = (a

(t)
act , a

(t)
rt1 , a

(t)
rxn, a

(t)
rt2 ) ∼

p(a(t)|S(t),Mtarget).

As summarized in Figure 2, our model consists of four modules: (1) an Action Type selection function,
fact, that classifies action types among the four possible actions (“Add”, “Expand”, “Merge”, and
“End”); (2) a First Reactant selection function, frt1, that predicts an embedding for the first reactant.
A candidate molecule is identified for the first reactant through a k-nearest neighbors (k-NN) search
from the potential building blocks, C (Cover & Hart, 1967). We use the predicted embedding as a
query to pick the nearest neighbor among the building blocks; (3) a Reaction selection function, frxn,
whose output is a probability distribution over available reaction templates, from which inapplicable
reactions are masked (based on reactant 1) and a suitable template is then sampled using a greedy
search; (4) a Second Reactant selection function, frt2, that identifies the second reactant if the sampled
template is bi-molecular. The model predicts an embedding for the second reactant, and a candidate
is then sampled via a k-NN search from the masked building blocks, C′.
Formally, these four modules predict the probability distributions of actions within one reaction step:

a
(t)
act ∼ fact(S

(t),Mtarget) = σ(MLPact(z
(t)
state ⊕ ztarget))

a
(t)
rt1 ∼ frt1(S

(t),Mtarget) = k-NNC(MLPrt1(z
(t)
state ⊕ ztarget))

a(t)rxn ∼ frxn(S
(t), a

(t)
rt1 ,Mtarget) = σ(MLPrxn(z

(t)
state ⊕ ztarget ⊕ z(t)rt1 ))

a
(t)
rt2 ∼ frt2(S

(t), a
(t)
rt1 , a

(t)
rxn,Mtarget) = k-NNC′(MLPrt2(z

(t)
state ⊕ ztarget ⊕ z(t)rt1 ⊕ z

(t)
rxn))

(1)

where ⊕ denotes concatenation, MLP∗ denotes a multilayer perceptron (MLP), z∗ denotes the
embedding of the corresponding entity, C′ denotes a subset of C that masks out reactants that do not
match the selected template a(t)rxn, and k-NNX is a k-NN from set X . The k-NN search is based on
the cosine similarity between the query vector and the embeddings of all molecules in X . Whereas
all molecular embeddings (ztarget, zrt1, and zrt2) are molecular fingerprints (see Representations in
Section 4.1), z(t)rxn is a one-hot encoding of a(t)rxn and z(t)state is a concatenation of molecular fingerprints
for the root molecules in T (t). The σ is a softmax masking known invalid actions at each step, such as
inapplicable action types (based on the topology of the intermediate tree T (t)) and reaction templates
(based on the requirement for a subgraph match). Each MLP is trained as a separate supervised
learning problem using a subset of information from the known synthetic routes. For further details
on the model and algorithm, see Appendices D & E.

3.4 GENETIC ALGORITHM FOR MOLECULAR OPTIMIZATION

We approach the problem of synthesizable molecular design by optimizing the molecular embedding,
ztarget, on which tree generation is conditioned, with respect to the desired properties in Mproduct. We
adopt a genetic algorithm (GA) to perform the numerical optimization on ztarget. This approach is
procedurally simpler than reinforcement learning to solve the MDP and biases generation toward
high-performing molecules, enabled by our conditional generation model. The mating pool is defined
as a list of molecular embedding vectors and the fitness function is the desired properties of produced
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Figure 2: Overview of our model. Within each step, at most two root molecules (most recent and
another) and the target molecule as a conditional code fully describe the state. The networks take
the embedding of the state and predict the action type, first reactant, reaction template, and second
reactant, successively. Those results are used to update the synthetic tree for one reaction step.

product molecules. Within each generation, an offspring pool is constructed from crossover of two
vectors randomly sampled from the mating pool as parents. A crossover is defined as inheriting
roughly half of the bits from one parent and the remaining bits from another. Mutation can happen
to each offspring vector with a small probability, and we decode them to synthetic trees to evaluate
the fitness function. The top-performing vectors are selected to form the mating pool for the next
generation, and we repeat this process until the stop criteria are met. See Figure 7 for an illustration.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Reaction Templates We use a set of reaction templates based on two publicly available template
sets from Hartenfeller et al. (2011) and Button et al. (2019). We combine the two sets, removing
duplicate and rare reactions, and obtain a final set of 91 reaction templates. This set contains 13
uni-molecular and 78 bi-molecular reactions. 63 are mainly used for skeleton formation, 23 are
used for peripheral modifications, and the remaining 5 can be used for either. Within the skeleton
formation reactions, we include 45 ring formation reactions, comprising 37 heterocycle formations
and 8 carbocycle formations.

Purchasable Building Blocks The set of purchasable compounds comprises 147,505 molecules
from Enamine Building Blocks (US stock; accessed on May 12, 2021) that match at least one reaction
template in our set.

Dataset Preparation To prepare a dataset of synthetic pathways obeying these constraints, we
applied a random policy to the MDP described in Section 3.2. After filtering by the QED of the
product molecules, we obtain 208,644 synthetic trees for training, 69,548 trees each for validation
and testing after a random split. We refer to Appendix E for further detail.

Representations We use Morgan circular molecular fingerprints of length 4096 and radius 2 to
represent molecules as inputs to the MLPs, and Morgan fingerprints of length 256 and radius 2 as
inputs to the k-NN module. Additional experiments with other molecular representations showed
worse empirical results; further analysis is provided in Appendix I.

Genetic Algorithm The GA operates on Morgan fingerprints of 4096 bits and radius 2. The number
of bits to inherit is sampled from N (2048, 410). Mutation is defined as flipping 24 bits in the
fingerprint and occurs with probability 0.5. The population size is 128 and the offspring size is 512.
The stop criteria is met when either (a) the model reaches 200 generations, or (b) the increase in the
population mean value is < 0.01 across 10 generations, indicating some degree of convergence.

Optimization Oracle To validate our model, we select several common oracle functions relevant to
bioactivity and drug discovery, including a docking oracle. The heuristic oracle functions include:
quantitative estimate of drug-likeness (QED); octanol-water partition coefficient (LogP); and JNK3,
GSK3β, and DRD2 surrogate models which estimate the response against c-Jun N-terminal kinases-3,
glycogen synthase kinase 3β, and dopamine receptor type 2, respectively. For the docking simulations,
we use AutoDock Vina (Trott & Olson, 2010) to dock against the human dopamine receptor D3

(DRD3, PDB ID: 3PBL), and the main protease, Mpro, of the SARS-Cov-2 virus (PDB ID: 7L11).
We access all oracle functions through the Therapeutic Data Common (TDC) interface (Huang et al.,
2021).
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Figure 3: Examples from ChEMBL used as the target molecule for conditioned generation. (A)
A successfully recovered molecule where the low similarity to any training examples indicates the
generalizability of the model. (B) A molecule that is not recovered as an example of synthesizable
analog recommendation (i.e., a similar product). (C) A molecule that is not recovered but may inspire
route development to the true target. Matched substructures are highlighted.

4.2 SYNTHESIS PLANNING RESULTS

We evaluate the model’s ability to reconstruct target molecules that are reachable and unreachable
under our specific choice of reaction templates and available building blocks. We use the testing data
as “reachable” targets (69,548), and a random sample from ChEMBL as predominantly “unreachable”
molecules (20,000). None of the products in the test set are seen in the training and validation stages.
We use k = 3 in the first reactant k-NN search and expand the trees in a greedy manner (k = 1) for
each choice. From the obtained product molecules, we choose the one that is the most similar to the
target molecule as the output as reflected by the Tanimoto similarity using Morgan fingerprints.

Table 1: Results of synthetic tree construction for “reachable” and “unreachable” target molecules.

Dataset N Recovery Rate↑ Average Similarity↑ KL Divergence↑ FC Distance↓
Reachable (test set) 69,548 51.0% 0.759 0.995 0.067
Unreachable (ChEMBL) 20,000 4.5% 0.423 0.966 1.944

Results are summarized in Table 1. The recovery rate measures the fraction of molecules that
our model succeeds in reconstructing. Our model can reconstruct 51% of reachable molecules
from the held-out test set. As opposed to the typical top-down approach to synthesis planning (i.e.,
retrosynthesis) that requires tens of seconds or even minutes, our bottom-up approach takes only ∼1
second to greedily construct a tree with k = 1. Our model only recovers 4.5% of ChEMBL molecules,
but we note that a different choice of templates and starting materials can lead to a much higher
ChEMBL recovery rate (Gao & Coley, 2020) without changing the model architecture. Figure 3A
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Figure 4: Correlation between properties of Mtarget and Mproduct molecules.

shows an example where our model successfully reconstructs a molecule dissimilar to all molecules
in the training set. We also assessed the average similarity between target and product molecule
pairs, KL divergence (Brown et al., 2019), and Fréchet ChemNet (FC) distance (Preuer et al., 2018)
between the targets and recovered products. See Appendix F for additional synthesis planning results.

Among the four networks, the most significant error comes from the first reactant network, frt1,
with a validation accuracy of only 30.8% after k-NN retrieval. To compare, frt2 reaches a validation
accuracy of 70.0% without masking out invalid actions. During sampling, we mask out candidate
second reactants that are incompatible with the selected reaction template to achieve a much higher
accuracy. The action and reaction networks reach > 99% and 85.8% validation accuracy, respectively.

4.3 SYNTHESIZABLE ANALOG RECOMMENDATION RESULTS

We observed that in the cases of unrecoverable molecules, the final products could serve as synthe-
sizable structural analogs under the constraints of R and C (see Figure 3B for an example). The
metrics in Table 1 show how the product molecules in the unrecovered cases are still structurally
similar to the input molecules. We illustrate the correlation between the properties of target and
product molecules in Figure 4. We investigated the SA Score (Ertl & Schuffenhauer, 2009b), QED,
CLogP, and molecular weight, and observed that most product properties have a positive correlation
with the corresponding input properties. The least successful case is QED due to its high sensitivity
to structural changes as quantified by the structure-activity landscape index (SALI) (Guha, 2012)
(Table 6 in Appendix G). Overall, our model can suggest reasonable synthesizable analogs for target
molecules, especially when the desired property is highly correlated with molecular structure.

In other cases where the target product is not recovered by the generated pathway, the output synthetic
tree may still provide inspiration for the synthesis of target molecules. Figure 3C highlights an
example where the failure of reconstruction is due to the binary Morgan fingerprint’s inability to
distinguish repeating units. Our model successfully constructed one side of this symmetric molecule.
In this case, a synthetic chemist would likely recognize that replacing 1-isopropylpiperazine (the
reactant added in the second step) with piperazine may lead to synthesis of the target molecule.

4.4 SYNTHESIZABLE MOLECULAR OPTIMIZATION RESULTS

To assess the optimization ability of our algorithm, we first consider common heuristic oracle
functions relevant to bioactivity and drug discovery (Tables 2 and 7). Note that the baseline methods
we compare to do not constrain synthesizability, which means they explore a larger chemical space
and are able to obtain molecules that score higher but are not synthesizable. The results show that
our model consistently outperforms GCPN (You et al., 2018) and MolDQN (Zhou et al., 2019),
and is comparable to GA+D (Nigam et al., 2019) and MARS (Xie et al., 2021) across different
tasks. We highlight the case of GSK3β inhibitor optimization in Figure 5. In this task, our model
proposes a molecule scored marginally worse than DST (Fu et al., 2021) and MARS, but much
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Figure 5: Results of synthesizable molecular design. (A) A comparison between results of our model,
DST, MARS, and GA+D on GSK3β bioactivity optimization. Our model proposes a highly scored
molecule with a much simpler structure than the other baselines. (B) The results of docking score
optimization for Mpro of SARS-Cov-2. Our model successfully proposes multiple molecules with
stronger predicted binding affinity than a known inhibitor.

simpler in structure. Indeed, this molecule can be accessed within one reaction step from purchasable
compounds in C through a simple Suzuki reaction (see Figure 12 for the synthetic pathway). This
makes our model’s recommendation more immediately actionable, i.e., ready for experimental
validation. As an additional quasi-realistic application to structure-based drug design, we optimized
the binding affinity to DRD3 and Mpro of SARS-Cov-2 as an example target protein and successfully
generated multiple molecules with improved docking scores relative to a known inhibitor (see Figure
5). We used the Guacamol filter (Brown et al., 2019) and SA_Score (Ertl & Schuffenhauer, 2009a) to
quantitatively evaluate the top-100 generated molecules against DRD3 and compared them to the
TDC generative benchmark (Huang et al., 2021). Our method is the only one which achieved a high
passing rate and low SA_Score, indicating a better quality of the structures (see Table 8). Additional
molecular optimization results are available in Appendix H.

Table 2: Highest scores of generated molecules for various de novo molecular design tasks. Note that
all baselines other than our method don’t place constraints on synthetic accessibility.

Method JNK3 GSK3β QED
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

GCPN 0.57 0.56 0.54 0.57 0.56 0.56 0.948 0.947 0.946
MolDQN 0.64 0.63 0.63 0.54 0.53 0.53 0.948 0.948 0.948
GA+D 0.81 0.80 0.80 0.79 0.79 0.78 - - -
MARS 0.92 0.91 0.90 0.95 0.93 0.92 0.948 0.948 0.948
DST 0.97 0.97 0.97 0.95 0.95 0.95 0.947 0.946 0.946
Our Method 0.80 0.78 0.77 0.94 0.93 0.92 0.948 0.948 0.948

5 CONCLUSION

In this work, we have introduced an amortized approach to conditional synthetic tree generation which
can be used for synthesis planning, synthesizable analog recommendation, and molecular design
and optimization. Our model bridges molecular generation and synthesis planning by coupling them
together into one rapid step, eliminating the need for two-stage pipelines of generation and filtering.
We have demonstrated promising results for a variety of molecular optimization tasks with relevance
to drug discovery, illustrating how this approach can be used to effectively explore synthesizable
chemical space in pursuit of new functional molecules. Additional outlook is in Appendix C.
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REPRODUCIBILITY STATEMENT

The code repository is given in the supplementary material, including instructions in a README file,
all code used for data preprocessing, and all code used to train and evaluate the model. All the data
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Appendix E describe the experimental setup, implementation details, datasets used, and hardware
configuration.
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APPENDIX

A SYNTHETIC TREE AND REACTION TEMPLATE

Figure 6: Illustration of a synthetic pathway as a synthetic tree (A) and reaction templates (B &
C). (A) is the synthetic tree of remdesivir, a drug authorized for emergency use to treat COVID-19.
Different color box labels indicate different types of chemical nodes. (B) and (C) are examples
of reaction templates for uni- and bi-molecular reactions, where SMARTS is a specific syntax for
encoding reaction transforms.
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B ILLUSTRATION OF GENETIC ALGORITHM

Decoding

Selection

Crossover 
and 

Mutation

Figure 7: Illustration of the genetic algorithm used to optimize the molecules. We use the conditional
synthetic tree generator as a decoder to obtain molecules corresponding to input fingerprints. We
crossover and mutate on the pool of fingerprints to optimize the molecule implicitly.

15



Published as a conference paper at ICLR 2022

C OUTLOOK

While our model shows promising results on the recovery of molecules from generated trees and de
novo molecular optimization performance, there remain multiple challenges to be addressed:

Initial Reactant Selection Our results show that the first reactant selection is the primary bottleneck
to target molecule recovery. We consider two major reasons for this: (1) the input to frt1 is usually
the target molecule only, with no action mask applied. The large action space (i.e., all purchasable
molecules) and the limited input information thus make the problem the most difficult of the four
tasks; (2) during the generation of the synthetic trees, we adopt a depth-first approach that implicitly
introduces a canonical ordering during reactant selection. The implicit ordering is arbitrary and might
harm the training of the network. Allowing the model to predict any valid order or including multiple
orders as a form of data augmentation may improve performance. Further, it may be possible to first
select the action (template) to constrain the space of compatible first reactants, which may improve
performance given that this is a smaller search space.

Reaction Templates and Purchasable Compound Selection The definition of synthesizable used
in this work is that the molecule can be reached with a synthetic pathway only containing starting
materials belonging to our list of purchasable compounds and reactions that follow our list of reaction
templates. Here, we use only 91 templates, which pales in comparison to the∼1,300 reaction families
defined by NameRxn (Sayle & Lowe) the tens of thousands of templates in the expert CASP program
SYNTHIA (Szymkuć et al., 2016), and the hundreds of thousands in the data-driven CASP program
ASKCOS (Coley et al., 2019c). Using a more comprehensive set of reaction templates would enlarge
the chemical space our model can explore. Additional constraints on template applicability could
improve the feasibility of pathways, e.g., to mitigate selectivity concerns (cf. Figure 12).

Molecular Representation and Molecular Similarity Certain results (e.g., Figure 3C) reveal a
limitation of using boolean Morgan fingerprints. As this type of fingerprint only accounts for the
presence or absence of specific substructures, it cannot distinguish molecules with different numbers
of repeated units or other symmetries. Applying a count or summation-based representation, coupled
with development of a similarity measurement based on that representation, would solve this problem.

Beam Search for Decoding Besides tackling the aforementioned challenges, in future work we also
plan to implement beam search with our networks to enhance the model performance for bottom-up
synthesis planning. Improving the sample efficiency of the synthesizable molecular design algorithm
(the GA module), and applying it to more high-fidelity computational oracles would also be of interest.
Those advances could enable faster and more accurate synthesis planning, as well as an even better
tool for de novo molecular design.
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D ALGORITHM

Algorithm 1 Synthetic tree generation

1: Input: List of reaction templates R, List of building blocks C, an input molecule Mtarget,
molecular encoder zM = E(M), an action network MLPact, a reactant1 selection network
MLPrt1, a reaction network MLPrxn, and a reactant2 selection network MLPrt2.

2: Output: A rooted binary tree T , representing a synthesis pathway.
3: Encode target molecule, ztarget ← E(Mtarget)
4: Initialize state S ← ∅, tree T ← ∅, Mmost_recent ← None
5: for t = 1, 2, · · · , tmax do
6: Predict and sample action type:

aact ∼ pact = σ(MLPact(zstate ⊕ ztarget))
7: Predict first reactant, art1 = MLPrt1(zstate ⊕ ztarget)
8: if aact = end then
9: break

10: else if aact = add then
11: Mrt1 ← k −NNC(art1)
12: zrt1 ← E(Mrt1)
13: else
14: Mrt1 ←Mmost_recent
15: zrt1 ← E(Mmost_recent)
16: end if
17: Predict and sample reaction template:

arxn ∼ prxn ← σ(MLPrxn(zstate ⊕ ztarget ⊕ zrt1))
18: if arxn is bi-molecular then
19: if aact = merge then
20: Mrt2 ← S/Mrt1
21: zrt2 ← E(Mrt2)
22: else
23: Predict second reactant, art2 ← MLPrt2(zstate ⊕ ztarget ⊕ zrt1 ⊕ arxn)
24: Mrt2 ← k −NNC′(art2)
25: zrt2 ← E(Mrt2)
26: end if
27: end if
28: rxn_tem← R[arxn]
29: Run reaction Mproduct ← rxn_tem(Mrt1(,Mrt2))
30: Update T , S and Mmost_recent ←Mproduct
31: end for
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E ADDITIONAL EXPERIMENTAL DETAILS

Network Setup For all experiments reported in this paper, the four networks, fact, frt1, frxn, and
frt2, use 5 fully connected layers with 1000, 1200, 3000, and 3000 neurons in the hidden layers,
respectively. Batch normalization is applied to all hidden layers before ReLU activation. In fact and
frxn, a softmax is applied after the last layer and cross entropy loss is used, while frt1 and frt2 use a
linear activation in the last layer and mean squared error (MSE) loss. We use the Adam optimizer to
train all networks with a learning rate of 1e-4 and mini-batch size of 64.

Training Each MLP is trained as a separate supervised learning problem using a subset of information
from the known synthetic routes. For instance, frxn is a classification network which learns to select
a discrete action given information on the current state of the tree, the target molecule, and the first
reactant. Similarly, fact is a classification network which learns to select the correct action type given
the state of the tree. On the other hand, frt1 and frt2 learn embeddings (regression) for the first and
second reactant candidates, respectively, followed by a nearest-neighbors search from C and C′.
Dataset Preparation Following the procedure we described in Section 3.2, we applied a random
policy to generate the synthetic trees. We randomly sampled purchasable reactants, and randomly
applied matching reaction templates to them. Doing so, we obtained 550k synthetic trees and filtered
by the QED of the product molecules (QED > 0.5) as well as randomly with a probability 1 - QED/0.5
to increase their drug likeness, in a crude sense. Ultimately, we obtained 208,644 synthetic trees for
training, 69,548 trees for validation, and 69,548 trees for testing after a random split.

Docking Procedure We downloaded the crystal structure of the Mpro of SARS-Cov-2 virus with
PDB ID: 7L11. We removed the water molecules and ions from the file, and estimated the docking
box based on the docked pose with a reported inhibitor, compound 5 in Zhang et al. (2021). For
each ligand generated by our method, we use RDKit to generate molecular conformations (Landrum;
Riniker & Landrum, 2015) and perform docking simulations using AutoDock Vina (Trott & Olson,
2010). We set exhaustiveness as 8 during the generation and recorded the high-scored conformations
for a rescoring with exhaustiveness as 32. The reported values and rank are based on the rescoring.

Hardware Models were trained on a node with double Intel Xeon Gold 6230 20-core 2.1GHz
processors, 512 GB DDR4 RAM, and eight RTX 2080Ti graphics cards with 11GB VRAM. Data
preprocessing and predictions were made on a CPU node with 512 GB RAM and two AMD EPYC
7702 64-core 2GHz processors.
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F ADDITIONAL RESULTS ON SYNTHESIS PLANNING

Table 3: Results of synthesis planning for molecules from training, validation, and test datasets.
Recovery rate indicates the fraction of final product molecules which match the input target molecules.
Average similarity measures the Tanimoto similarity between the fingerprints of the product molecules
and target molecules.

Dataset Recovery Rate↑ Average Similarity↑ Average Similarity (Unrecovered)↑
Train. 92.1% 0.975 0.688
Valid 51.4% 0.761 0.508
Test 51.0% 0.759 0.508

ChEMBL 4.50% 0.423 0.396

Table 4: Analysis of the generated molecules in unrecovered cases. We compare with baseline
generative methods to evaluate the similarity of input and output molecules. Baseline data from
Guacamol (Brown et al., 2019)

Validity↑ Uniqueness↑ Novelty↑ KL Divergence↑ FCD↑
Random Sample 1.000 0.997 0.000 0.998 0.929
SMILES LSTM 0.959 1.000 0.912 0.991 0.913

AAE 0.882 1.000 0.998 0.886 0.526
VAE 0.870 0.999 0.974 0.982 0.863

Our Model (Reachable) 1.000 0.999 1.000 1.000 0.920
Our Model (Unreachable) 1.000 0.988 1.000 1.000 0.684
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G ADDITIONAL RESULTS ON ANALOGS RECOMMENDATION

Figure 8: Correlation between input and output values on ChEMBL molecules.

Figure 9: Correlation between input and output values on test set molecules.
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Figure 10: Correlation between input and output values on validation set molecules.

Figure 11: Correlation between input and output values on training set molecules.

SALI =
1

N

∑
(i,j)

|di − dj |/range
1− sim(i, j)

(2)
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Table 5: Results of synthesis planning for unrecovered cases in “reachable” and “unreachable”
molecules. Metrics other than recovery rate are measured for unrecovered molecules only.

Dataset N Average Similarity↑ KL Divergence↑ FC Distance↓
Reachable (test set) 69,548 0.508 1.000 0.315
Unreachable (ChEMBL) 20,000 0.396 1.000 2.140

Table 6: SALI of oracle functions we investigated. A higher SALI value means that a small structure
change can lead to a larger property change, such that the function is more sensitive to detailed
structural changes.

SA Score QED LogP Mol. Weight
Reachable 0.139 0.368 0.053 0.127

Unreachable 0.115 0.383 0.013 0.043

H ADDITIONAL RESULTS ON MOLECULAR DESIGN

Table 7: Results of synthesizable molecular optimization on common oracle functions. Seeds are
randomly sampled from the ZINC database (Sterling & Irwin, 2015). Top-n is the average value for
the top n molecules. “Seeds” refers to the mean scores of the initial mating pool we sampled and
“Outputs” refers to the mean scores of the 128 generated molecules.

Best from seeds Top-1 Top-10 Top-100 Seeds Outputs
QED 0.947 0.948 0.948 0.947 0.673±0.289 0.946±0.001
LogP 3.81 25.82 25.05 23.96 1.09±35.18 23.72±0.69
JNK3 0.120 0.800 0.758 0.719 0.032±0.025 0.715±0.017

GSK3β 0.310 0.940 0.907 0.815 0.050±0.051 0.803±0.041
DRD2 0.181 1.000 1.000 0.998 0.007±0.018 0.996±0.003
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Table 8: Leaderboard on TDC DRD3 docking benchmark using ZINC and Docking. Mean and
standard deviation across three runs are reported. Arrows (↑, ↓) indicate the direction of better
performance. The best method is bolded and the second best is underlined. Note in particular the low
SA_Score and high % Pass, which are heuristics for synthetic complexity and drug likeness/quality.

Method Category Domain-Specific Methods State-of-the-Art Methods in ML Ours

Metric Best-in-data # Calls Screening Graph-GA LSTM GCPN MolDQN MARS SynNet

Top100 (↓) -12.080

5000

-10.542±0.035 -14.811±0.413 -13.017±0.385 -10.045±0.226 -8.236±0.089 -9.509±0.035 -11.133
Top10 (↓) -12.590 -11.483±0.056 -15.930±0.336 -14.030±0.421 -11.483±0.581 -9.348±0.188 -10.693±0.172 -12.020
Top1 (↓) -12.800 -12.100±0.356 -16.533±0.309 -14.533±0.525 -12.300±0.993 -9.990±0.194 -11.433±0.450 -12.300
Diversity (↑) 0.864 0.872±0.003 0.626±0.092 0.740±0.056 0.922±0.002 0.893±0.005 0.873±0.002 0.821
Novelty (↑) - - 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000
%Pass (↑) 0.780 0.683±0.073 0.393±0.308 0.257±0.103 0.167±0.045 0.023±0.012 0.527±0.087 0.800
Top1 Pass (↓) -11.700 -10.100±0.000 -14.267±0.450 -12.533±0.403 -9.367±0.170 -7.980±0.112 -9.000±0.082 -12.300
SA_Score (↓) 2.973 3.036±0.014 4.783±1.195 2.611±0.238 6.843±0.210 6.687±0.049 3.103±0.011 2.801

Figure 12: The optimized structures and their corresponding synthetic pathways for various inhibitor
design tasks. The third row is optimizing docking score against the Mpro of SARS-Cov-2.
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I HYPERPARAMETER TUNING
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Figure 13: The validation loss during training with different radius and number of bits as network
input. The validation loss is 1−accuracy, where the accuracies for the reactant networks are the
accuracies of the k-NN searches (k = 1).

Besides Morgan fingerprints, other molecular representations explored during hyperparameter tuning
included Graph Isomorphism Network (GIN) (Xu et al., 2018) embeddings and RDKit 2D descriptors
(Figure 14). Morgan fingerprints of length 256 and radius 2 were found to work best.
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Figure 14: The validation loss during training using different action embeddings to conduct the k-NN
search. The validation loss is 1−accuracy, where the accuracies for the reactant networks are the
accuracies of the k-NN searches (k = 1).

25


	Introduction
	Related Work
	Synthesizable Molecular Design
	Synthesis Planning
	Combining Synthesizable Design and Synthesis Planning

	Method
	Problem Definition
	Synthetic Tree Generation as a Markov Decision Process
	Conditional Generation for Synthesis Planning
	Genetic Algorithm for Molecular Optimization

	Experiments
	Experiment Setup
	Synthesis Planning Results
	Synthesizable Analog Recommendation Results
	Synthesizable Molecular Optimization Results

	Conclusion
	Synthetic tree and reaction template
	Illustration of genetic algorithm
	Outlook
	Algorithm
	Additional experimental details
	Additional results on synthesis planning
	Additional results on analogs recommendation
	Additional results on molecular design
	Hyperparameter Tuning

