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ABSTRACT

Tool-integrated reasoning has emerged as a key focus for enabling agentic appli-
cations. Among these, DeepResearch Agents have gained significant attention
for their strong performance on complex, open-ended information-seeking tasks.
We introduce Fathom-DeepResearch, an agentic system composed of two spe-
cialized models. The first is Fathom-Search-4B, a DeepSearch model trained
from Qwen3-4B and optimized for evidence-based investigation through live web
search and targeted webpage querying. Its training combines three advances: (i)
DUETQA, a 5K-sample dataset generated via multi-agent self-play that enforces
strict web-search dependence and heterogeneous source grounding; (ii) RAPO, a
zero-overhead extension of GRPO that stabilizes multi-turn Reinforcement Learn-
ing with Verifiable Rewards through curriculum pruning, reward-aware advantage
scaling, and per-prompt replay buffers; and (iii) a steerable step-level reward
that classifies each tool call by cognitive behavior and marginal utility, enabling
explicit control over search trajectory breadth, depth, and horizon. These improve-
ments enable reliable extension of tool-calling beyond 20 calls when warranted.
The second is Fathom-Synthesizer-4B, trained from Qwen3-4B, which converts
multi-turn DeepSearch traces into structured, citation-dense DeepResearch Reports
for comprehensive synthesis. Evaluated on DeepSearch benchmarks (SimpleQA,
FRAMES, WebWalker, Seal0, MuSiQue) and DeepResearch-Bench, the system
achieves state-of-the-art performance in the open-weights category while closely
rivaling proprietary closed systems, while also demonstrating strong performance
in general reasoning benchmarks: HLE, AIME-25, GPQA-Diamond, and MedQA.

1 INTRODUCTION

Recent advancements in reasoning capabilities of Large Language Models (LLMs) have enabled a
significant performance advancement across a diverse set of tasks, such as mathematical reasoning,
code generation (Jain et al., 2024; DeepSeek-AI et al., 2025; Singh et al., 2025b;a). We are not only
witnessing expert level performance on academic benchmarks, but are perceiving a paradigm shift
towards agentic intelligence. Owing to tool-integrated reasoning, these models can now autonomously
observe, reason and interact with complex and dynamic environments. Contemporary state-of-
the-art tool-augmented AI systems like DeepResearch (OpenAI, 2025b; Team, 2025a;c), have
exhibited super-human performance in highly sophisticated long-horizon, deep-information retrieval
and synthesis tasks. These agents transcend the limitations of static parametric knowledge by
implementing dynamic reasoning frameworks that autonomously partition multifaceted queries,
coordinate multiple tool interactions, and integrate heterogeneous information sources into unified,
evidence-supported conclusions.

However, a substantial performance gap remains between (OpenAI, 2025b; Team, 2025a;c) and
open-source (Team, 2025b; AI, 2025), making the development of robust DeepResearch architectures
a critical challenge. Current open-source frameworks suffer from two fundamental limitations.
First, they lack proficiency in sustained tool usage required for high-uncertainty reasoning and
synthesis tasks (Wu et al., 2025; Pham et al., 2025; Trivedi et al., 2022; Krishna et al., 2024; Wei
et al., 2024). Efforts to scale DeepResearch capabilities are constrained by (i) the absence of a
high-quality, verifiable, and scalable dataset creation pipeline, (ii) algorithmic instability in multi-turn
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Figure 1: Accuracy vs Response length & Accuracy vs Avg.Tool calls plot comparing open-source
DeepSearch models, clearly demonstrates the higher accuracy and efficient long horizon tool
interaction ability of Fathom-Search models compared to its contemporaries.

reinforcement learning (RL) with tools, and (iii) inefficient tool-calling behavior that undermines
deep information exploration and retrieval. Second, there is an overemphasis on closed-form problem
solving, which comes at the expense of the information synthesis capabilities essential for tackling
open-ended investigative queries. In the next section we discuss the aforementioned issues further.

1.1 MOTIVATION

(1) Training instability of GRPO in multi-turn tool interaction: RLVR (Reinforcement Learning
with verifiable rewards) with GRPO (Shao et al., 2024) has demonstrated early promise in aligning
LLMs with sparse reward signals for single-turn reasoning tasks, particularly in structured domains
like Math/STEM Shao et al. (2024); Yang et al. (2024). However, GRPO struggles to scale to multi-
turn tool-augmented environments, because external tool interaction responses induce distribution
shift in the policy model from its set token generation patterns, this leads to decoding instability and
malformed generations. This cascading of errors causes group-relative advantages to saturate, leading
to extremely unstable gradient updates that breaks the entire training process. (Xue et al., 2025).

(2) Reward hacking and inefficient tool calling (a) Correctness-only sparse rewards do not scale
to long-horizon tool calling. When training with only a single end of episode correctness signal,
the agent shows early improvements achieving format adherence and basic tool-calling competence
in the beginning, however, as training progresses, tool usage increases sharply while both training
reward and validation performance deteriorate (Nguyen et al., 2025). This degradation stems from
reward hacking: the agent collapses into repetitive, identical tool calls because the vanilla RLVR
objective provides no incentive for efficiency or diversity in tool use. (b) RL amplifies SFT priors,
limiting control over the cognitive behaviors developed by the policy (Gandhi et al., 2025): Tool-use
RL typically relies on an SFT cold start to elicit basic tool competence (Li et al., 2025a); (Dong
et al., 2025) RL then amplifies pre-existing cognitive behaviors seeded by SFT. Standard RLVR
affords limited control over the exploration and verification strategies developed by the policy model,
consequently the quality of cold-start trajectories disproportionately shape the policy model’s tool-use
behavior and provides no steerability.

(3) Limited training data characterized by high and hard-to-reduce intrinsic information
uncertainty: Training datasets such as TriviaQA (Joshi et al., 2017), and multi-hop variants like
2WIKI(Ho et al., 2020), and HotpotQA (Yang et al., 2018) represent problems where solutions
can often be found through minimal set queries or even from a model’s parametric knowledge
alone. These datasets do not expose models to the real-world retrieval challenges posed by noisy,
heterogeneous data sources on the internet. Recent synthetic efforts (Sun et al., 2025a; Li et al.,
2025a; Sun et al., 2025b) attempt to bridge this gap by simulating realistic search behavior. For
instance, WebSailor’s(Li et al., 2025a) SailorFog-QA constructs ambiguous queries using obfuscated
subgraphs of entity graphs, while SimpleDeepResearcher (Sun et al., 2025b) issues multi-stage
search-summarize-generate tool calls over raw HTML. Despite their innovation, these pipelines
remain expensive, brittle, and time-consuming. They rely on handcrafted heuristics, graph expansion,
or multi-stage LLM orchestration, limiting scalability, topical diversity, and adaptability to new
domains.
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(4) Challenges in handling open-ended queries Recent work largely targets closed-ended queries
with well-defined objectives (Dao & Vu, 2025; Internet, 2025; Li et al., 2025a). In contrast, many real-
world tasks are open-ended: they lack a single definitive answer and require multi-turn exploration,
retrieval of diverse perspectives, and synthesis of evidence-grounded conclusions. Addressing these
challenges, demands strong information-synthesis and verification capabilities, gaps that current
open-source approaches largely leave unfilled.

1.2 OUR CONTRIBUTIONS

To this end, we present an end-to-end DeepSearch system centered on Fathom-Search-4B (search en-
abled reasoning) and Fathom-Synthesizer-4B (synthesis & report-generation). Our key contributions:

• RL Zero framework for DeepSearch training. We present a novel two-stage RL-Zero
framework that helps to steer cognitive behaviors developed by the policy model like
exploration & verification during the training.

• RAPO: Reward Aware Policy Optimization. We introduce a zero-overhead modification
of GRPO with dataset pruning, advantage scaling, and replay buffers, and a steerable
step-level reward that stabilizes multi-turn RL and enables long-horizon tool use.

• DUETQA. We release a 5K sample dataset created through our novel multi-agent self-play
pipleline, which has verifiable question-answer pairs, impossible to answer without live web
search, for DeepSearch model training.

• DEEPRESEARCH-SFT. A synthetic SFT corpus for converting downstream search/investi-
gation traces of DeepSearch enabled models into comprehensive citation-backed DeepRe-
search reports via an explicit plan then write protocol.

2 FATHOM-SEARCH-4B

We describe the methodology underlying Fathom-Search-4B, a tool-using LLM that leverages live
web-search capabilities to do evidence based reasoning in a multi-turn tool interaction setting,
unlocking long-horizon tool use (> 20 calls) ability. These capabilities arise from a combined
approach of: (i) a curated synthetic data pipeline tailored to search-tool augmented reasoning, (ii)
targeted upgrades to GRPO to effectively adapt it to multi-turn tool interaction, and (iii) a two-stage
training regimen with reward shaping to expand the tool-use horizon in a steerable manner.

2.1 DUETQA: A DEEPSEARCH DATASET, GENERATED VIA MULTI-AGENT SELF PLAY

To address the aforementioned dataset challenges in (Sec. 1.1), we develop a self-supervised dataset
construction framework designed to yield verifiable, search-dependent, multi-hop QA pairs. This
pipeline serves as the basis for generating DUETQA, a dataset tailored for training agentic deepsearch
models. The design goals are: Live web-search dependency: for each QA pair (q, a), the question
is unanswerable without search by enforcing that at least one hop contains information post–2024
(i.e., for a model M, P (a | q,Mno-search) ≪ P (a | q,Msearch)); Diverse source domains: questions
require querying hetrogeneous web-sources beyond Wikipedia ; and Steerable theme control: each
example is grounded in k∈ [5, 7] sampled themes from T , a manually curated taxonomy of 200 +
themes covering a broad range of topics. We generate questions using two frontier web search enabled
LRMs, M1 (O3) and M2 (O4-mini) (OpenAI, 2025a), acting as proxy web-crawling agents that
produce QA pairs and as independent verifiers to that ensure question solvability; a third model, M3

(GPT-4o), is a non-search model used for controlled paraphrasing/obfuscation of questions and as a
baseline verifier without search. Refer to (Appendix A.2 for more details on the dataset)

Data Generation. We adopt two strategies to synthesize multi-hop, search-dependent question-
answer pairs. In both, we sample a set of themes Tsample ∼ Uniform(T ) with |Tsample| = k,
k ∈ {5, 6, 7}. In the Mixture of Themes setting, for each t ∈ Tsample, the generator (M1 or M2)
issues live queries to retrieve recent and/or obscure facts, and composes a multi-hop pair (q, a) by
chaining a subset of them into a coherent reasoning path. In the Seeded Question setting, we maintain
a seed bank of 100 questions. (50 % manually curated and 50% sampled from BrowseComp (Wei
et al., 2025); given a seed q0, the generator rewrites it into a new question q by integrating one or

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Distribution of number of search-calls issued by o3(OpenAI, 2025a) over correctly
answered questions comparing DuetQA to other prominent benchmarks. DuetQA shows strict
live-web-search dependence and multi-hop reasoning as evident from the long-tailed distribution
(unlike simpleQA (Wei et al., 2024)) and ≥ 1 search call(s) required to answer all DuetQA questions
correctly (unlike FRAMES (Krishna et al., 2024), Musique(Trivedi et al., 2022)).

more sampled facts while preserving the multi-hop scaffold of q0. In both settings, we enforce that at
least one incorporated fact references information after 2024. Refer to (Fig. 5 & Fig. 6) in Appendix
for examples.

Data obfuscation. To remove surface cues that enable short-circuiting the multi-hop reasoning, we
run an obfuscation pass, using M3 (GPT-4o) with in-context examples, we paraphrase questions,
masking intermediate hops. Specifically, M3 attenuates exact anchors by (i) coarsening dates (e.g.,
“March 2025” → “early 2025”), (ii) mapping precise numerics to qualitative magnitudes (e.g., “1%”
→ “negligible”), (iii) replacing named entities with indirect descriptors (e.g., “University of Florida”
→ “a major southeastern university”).

Multi-agent Verification. We retain a candidate pair (q, a) only if two independent search-enabled
LRMs M1 and M2 produce the same correct answer while a strong non-search baseline M3 fails.
This filter enforces correctness through cross-model agreement and certifies that web retrieval is
indispensable, ensuring the non-triviality of the question while guarding against overlap of information
with the model’s parametric knowledge.

2.2 AGENTIC REINFORCEMENT LEARNING

In this section, we formulate multi-turn, tool-augmented RL with LLM policies. Let x∈X be an
input from distribution D and T the set of available tools. The policy πθ generates a reasoning
trajectory R interleaved with tool feedback, followed by a final textual answer y. A reference policy
πref is used for KL regularization, and a verifiable reward function rϕ (LLM-as-judge) provides
supervision. The joint rollout can be written as:

Pθ(R, y | x; T ) =
[ tR∏
t=1

Pθ(Rt | R<t, x; T )
]
·
[ ty∏
t=1

Pθ(yt | y<t,R, x; T )
]
, Rt = (φt, ct, ot),

(1)
where φt is a latent “think” segment, ct ∈ T a tool call (with arguments), and ot the tool response,
all expressed in a ReAct-style template. We optimize the policy model with a token-level clipped loss
defined as follows:

LGRPO =
1

G

G∑
i=1

1

Ti

Ti∑
t=1

min
[
ri,t Âi,t, clip

(
ri,t, 1− ϵ, 1 + ϵ

)
Âi,t

]
, ri,t =

πθ(oi,t | x,Ht−1)

πθold(oi,t | x,Ht−1)

(2)

The trajectory-level scalar reward combines a format score and an answer score (Li et al., 2025a):
ri = 0.1 ∗Rformat

i + 0.9 ∗ Ranswer
i (3)

Here, Rformat
i verifies that rollout follows the ReAct template (i.e., all steps are correctly wrapped in

<think>, <tool_call>, <tool_response> tags). Meanwhile, Ranswer
i = 1[a

(i)
pred = agt],

where correctness of the final answer is judged by an LLM-as-judge against the ground truth.
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For a group of G sampled rollouts with scalar rewards {ri}, group-relative advantages defined as:

Âi,t =
ri − µR

σR
, µR = 1

G

G∑
j=1

rj , σR =

√√√√ 1
G

G∑
j=1

(rj − µR)2. (4)

2.3 RAPO: REWARD-AWARE POLICY OPTIMIZATION

RAPO is a lightweight extension of GRPO designed to stabilize multi-turn, tool-augmented training
by addressing the issues outlined in Sec. 1.1. In GRPO, the per-prompt (group) reward variance
σR (Eq. 4) determines the strength of the advantage signal. Let σR denote the within-group reward
standard deviation; a group is Good if σR > 0 and Bad if σR = 0. Bad groups arise under both
prompt saturation (all rollouts succeed) and cascading errors (all fail). In both cases, no advantage
signal is produced, shrinking gradient norms and destabilizing updates. (Fig. 7 in Appendix). RAPO
counters these effects through three modifications applied on top of GRPO, all at zero additional
rollout cost:

Dataset pruning. We prune prompts solved at epoch end using SolveRate(q) = 1
G

∑G
i=1 1[Ri > 0]

and drop q when SolveRate(q) ≥ 0.9. This prevents training batches from being dominated by
saturated groups that provide negligible variance, while implicitly yielding a curriculum in which the
active set concentrates on harder prompts.

Advantage scaling. To counter gradient dilution when only a few groups in a batch are informative,
we rescale token-level advantages for Good groups inversely with their batch frequency : Ãi,t =
G

Ggood
Âi,t with Ggood = #{groups with σR > 0}. This adjustment preserves effective gradient

magnitude without requiring costly re-sampling as in DAPO (Yu et al., 2025), ensuring that updates
remain stable even when informative groups are sparse.

Replay buffer. We maintain a per-prompt buffer B containing the most recent successful trajectory
o⋆ with R(q,o⋆)>0.5. If all rollouts for a prompt fail in the current epoch, one trajectory is randomly
replaced with o⋆ from B. This reintroduces variance (σR>0) into otherwise collapsed groups, restores
group-relative advantages, and anchors updates to a high-quality, low-entropy reference that curbs
uncontrolled trajectory growth.

2.4 STEERABLE STEP-LEVEL REWARD DESIGN FOR SEARCH TOOLS

We design our novel Steerable Step-Level Reward that alleviates the reward-hacking challenge faced
by RLVR training in the multi-turn, tool-interaction setting using vanilla reward (Eq. 3) as described
in (Sec. 1.1). Our reward function enables us to steer (i) how much the agent uses tools and (ii) how it
allocates cognition to exploration and verification. Starting from the vanilla RLVR objective in (Eq.
3), we make the correctness branch Ranswer

i depend on cognitive behaviors and marginal utility aware
labels assigned to each call ct in the rollout R = {(φt, ct, ot)}Tt=1 by a GPT-4.1 LLM-as-judge as
follows. Refer to (Appendix. A.1) for exact details on the search & browsing tool implementation.

search_urls ∈ {
UNIQUESEARCH: (semantically new query about previously unseen entities/facts),
REDUNDANTSEARCH: (Highly similar to a prior query; overlapping results)}

query_url ∈ {
EXPLORATION: (first query of a new URL),
VERIFICATION: (cross-source check on a new URL for an existing query; allowed Bv times),
REDUNDANTQUERY: (further checks for a query/fact on new URLs beyond Bv)}

From the LLM-as-Judge tool call classification we form tallies 1 and define the following aggregates:

ρ =
nredS + nredQ

T
, ∆S = nuniqS − nredS, ∆Q = nuniqQ − nredQ. (5)

1nuniqS ↔# UNIQUESEARCH calls; nredS ↔# REDUNDANTSEARCH calls;
nexplore ↔# EXPLORATION calls; nverify ↔# VERIFICATION calls; nuniqQ = nexplore + nverify;
nredQ ↔# REDUNDANTQUERY calls;

5
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Using these aggregates we define our Steerable Step-Level Reward as:

ri =

0.1 ∗ Rformat
i + max

(
(1− ρ), 0.5

)
, if a(i)pred = agt,

0.1 ∗ Rformat
i + c1 ∗ min

(
1, ∆S

CS

)
+ c2 ∗ min

(
1,

∆Q

CQ

)
, if a(i)pred ̸= agt.

(6)

Figure 3: Evolution of unique/redundant
tool-calls during Stage-2 training using our
Steerable Step-level Reward (Eq.6)

Here, ρ penalizes redundant tool calls even when the
rollout is correct, pushing for efficiency; whereas
∆S and ∆Q provide credit to incorrect rollouts that
exhibit genuine, non-redundant exploration & infor-
mation seeking behavior.

Monotonocity.. We set c1 = c2 = 0.2, to ensure
any incorrect rollout has ri ≤ 0.5, while any correct
rollout has ri ≥ 0.5, which ensures incorrect trajec-
tories never get rewarded more than the correct ones.
c1=c2 also ensures equal weight to search_urls
(∆S) and query_url (∆Q).

Steerability. We expose three primary knobs: (i) CS

and (ii) CQ set the saturation thresholds for creditable novelty in search_urls and query_url,
respectively. Increasing CS and/or CQ raises the novelty caps, enabling more steps to earn credit
when they introduce genuinely new evidence; decreasing them compresses trajectories. (iii) The
per-claim verification budget Bv controls verification depth: higher Bv permits multiple creditable
cross-checks per claim, promoting verification. For our experiments we set Bv = 1 allowing 1
cross-check per claim, additionally we set CS = 8 and CQ = 16.

2.5 TRAINING RECIPE

We build our reinforcement learning with verifiable rewards (RLVR) framework on top of RE-
CALL (Chen et al., 2025). For web search, we use the Serper API (Serper.dev), and implement a
retrieval toolchain leveraging Jina-AI together with open-source components such as TRAFILTURA
and CRAWL4AI. Training is carried out in two stages. Stage 1. We train with RAPO for 10 epochs on
our curated DUETQA dataset, comprising 4,889 high-quality QA instances. The setup uses a constant
learning rate of 1× 10−6 with the Adam optimizer (β1 = 0.9, β2 = 0.95), batch size 32, mini-batch
size 16, 5 rollouts per group, and top-p = 1.0 sampling. Each rollout is capped at 32 tool-interaction
steps, with each step limited to 8,192 output tokens. The vanilla reward (Eq. 3) with α = 0.1
is used to instill correct tool-calling behavior and strict format adherence. Stage 2. We continue
RLVR training for an additional 2 epochs under the same hyperparameter settings. For Stage 2, we
construct a mixed dataset by combining DUETQA, with math data from S1 dataset (Muennighoff
et al., 2025), and the training split of MUSIQUE (Trivedi et al., 2022) and medical reasoning data from
MedQA (Jin et al., 2021) train split. This combined pool is adversarially filtered against the Stage-1
checkpoint, yielding 5,471 instances. From MUSIQUE, we retain only questions requiring at least
three reasoning hops to ensure sufficient compositional depth. For this stage, we adopt the Steerable
Step-Level Reward (Eq. 6) to extend the tool-use horizon beyond 20 calls in a stable manner. We use
the Qwen3-4B model (Yang et al., 2025) as the base, which supports a maximum context length of
40,960 tokens; we utilize the full window during training. We use GPT-4.1-mini(Temperature=0.) as
the query LLM for training and evaluation unless stated otherwsie. A higher sampling temperature of
1.4 is applied to Qwen3 models, consistent with prior findings (An et al., 2025). All experiments are
conducted on a single node with 8×H100 GPUs.

3 FATHOM-SYNTHESIZER-4B

Fathom-Synthesizer-4B is a planning and synthesis model built on Qwen3-4B via supervised fine-
tuning (SFT). It converts multi-hop DeepSearch traces from Fathom-Search-4B into decision-grade,
citation-dense DeepResearch Reports. Following a Plan-then-Write protocol, the model first de-
composes the question into sub-goals, defines the report structure, maps evidence to sections, and
specifies strategies for insight generation; only then does it produce the public report with citations
drawn strictly from URLs explored by Fathom-Search-4B. This explicit planning improves question
alignment, strengthens citation accuracy through section-level constraints, and provides structured
supervision during SFT, enhancing the distillation process.
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Table 1: Accuracy(%) of Fathom-Search-4B on DeepSearch benchmarks SimpleQA, FRAMES,
WebWalker, Seal0, Musique and general reasoning benchmarks HLE, AIME-25, GPQA-D, MedQA.
‘Avg’ is the unweighted mean within each block. Bold/italics denote best/second-best per benchmark.

DeepSearch Benchmarks General Reasoning Benchmarks
Model SimpleQA FRAMES WebWalker Seal0 Musique Avg HLE AIME-25 GPQA-D MedQA Avg

Closed-Source Models
GPT-4o (without search) 34.7 52.4 3.2 7.2 34.0 26.3 2.3 71.0 53.0 88.2 53.6
o3 (without search) 49.4 43.2 14.0 14.0 48.9 33.9 20.3 88.9 85.4 95.4 72.5
GPT-4o (with search) 84.4 63.7 31.6 15.3 37.5 46.5 4.3 71.0 53.0 88.2 54.1
o3 (with search) 96.0 86.8 57.0 49.5 51.2 68.1 27.4 88.9 85.4 95.4 74.3

Open-Source Models
Qwen-2.5-7B 4.0 16.5 2.1 1.4 6.2 6.0 1.2 10 33.0 61.2 24.7
Qwen-2.5-7B + Search 50.8 23.3 10.1 3.0 13.6 20.2 2.4 10 33.5 62.0 25.3
Qwen3-4B 3.8 14.7 2.6 2.1 9.0 6.4 4.2 65.0 55.1 71.0 48.8
Qwen3-4B + Search 67.7 27.2 17.5 6.2 18.7 27.5 6.2 65.0 55.9 72.0 49.8
ZeroSearch-3B 51.9 11.3 8.7 7.1 13.8 18.6 3.4 10.0 14.6 51.0 17.3
ZeroSearch-7B 75.3 30.0 18.2 6.2 20.6 30.1 4.2 10.0 29.3 57.5 22.8
R1-Searcher-7B 58.8 37.0 1.8 1.4 19.1 23.6 2.1 10.0 33.3 56.5 25.5
search-o1 (Qwen3-4B) 57.5 26.8 10.8 5.5 15.3 23.2 3.4 40.0 30.5 53.7 31.9
WebSailor-3B 87.1 44.4 52.2 9.0 27.4 44.0 7.4 40.0 45.5 51.3 36.0
Jan-Nano-32K 80.7 36.1 25.0 6.2 21.4 33.9 5.5 60.0 37.4 66.0 42.2
Jan-Nano-128K 83.2 43.4 33.7 6.2 23.9 38.1 6.1 53.3 51.0 65.4 44.0
II-Search-4B 88.2 58.7 40.8 17.1 31.8 47.3 7.4 60.0 51.5 72.1 47.8

Fathom-Search-4B (Stage-1) 88.1 57.2 39.0 19.8 31.3 47.1 6.7 60.0 55.6 75.4 49.4
Fathom-Search-4B (Stage-2) 90.0 64.8 50.0 22.5 33.2 52.1 9.5 70.0 60.1 75.4 53.8

Table 2: Accuracy(%) of various Open/Closed-sourced DeepResearch-Agents and Search
Augmented LLMs on DeepResearch-Bench. Bold/italics denote best/second-best per category.

RACE FACT

Model Overall Comp. Depth Inst. Read. C. Acc. E. Cit.

Closed Source LLM with Search Tools

Claude-3.7-Sonnet w/Search 40.67 38.99 37.66 45.77 41.46 93.68 32.48
Perplexity-Sonar-Reasoning-Pro (high) 40.22 37.38 36.11 45.66 44.74 39.36 8.35
Gemini-2.5-Pro-Grounding 35.12 34.06 29.79 41.67 37.16 81.81 32.88
GPT-4o-Search-Preview (high) 35.10 31.99 27.57 43.17 41.23 88.41 4.79
GPT-4.1 w/Search (high) 33.46 29.42 25.38 42.33 40.77 87.83 4.42

Closed Source Deep Research Agent

Grok Deeper Search 40.24 37.97 35.37 46.30 44.05 83.59 8.15
Perplexity-DeepResearch 42.25 40.69 39.39 46.40 44.28 90.24 31.26
Gemini-2.5-Pro DeepResearch 48.88 48.53 48.50 49.18 49.44 81.44 111.21
OpenAI-DeepResearch 46.98 46.87 45.25 49.27 47.14 77.96 40.79

Open Source Deep Research Agent

Kimi-Researcher 44.64 44.96 41.97 47.14 45.59 – –
Doubao-DeepResearch 44.34 44.84 40.56 47.95 44.69 52.86 52.62
LangChain Open-DeepResearch 43.44 42.97 39.17 48.09 45.22 – –
Fathom-DeepResearch 45.47 42.98 45.14 48.25 46.12 56.1 38.3

3.1 DEEPRESEARCH-SFT

DEEPRESEARCH-SFT is a synthetic dataset distilled from GPT-5 (OpenAI, 2025a) to train Fathom-
Synthesizer-4B, it provides supervision along three complementary axes: (i) Question decomposition.
Each input question q is decomposed into ordered sub-questions πdecomp = (S1, . . . , Sn), which form
the report scaffold and ensure coverage of all facets, (ii) Section mapping. Every piece of evidence
recovered during search (URLs, quoted passages, tables, figures) is grounded to one or more sections
via a mapping πmap, this aligns each explored URL to the most relevant Si, enhancing citation
accuracy and preventing omissions/duplication.(iii) Planning for insights. The model specifies an
analysis strategy πinsight how the gathered evidence should be synthesized into higher-level insights.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Ablation on using RAPO as the policy optimization algorithm for Stage-1 training
compared to GRPO. Both trainings done on top of Qwen3-4B model.

Algorithm SimpleQA FRAMES WebWalker Seal0 Avg. Tokens

GRPO 87.8 55.2 33.8 14.4 9,000
RAPO 88.1 57.2 39.0 19.8 5,000

Table 4: Ablation on using our steerable step-level reward compared to the vanilla trajectory-level
RLVR reward for Stage-2 training. Trained on top of Fathom-Search-4B (Stage-1) using RAPO.

Reward SimpleQA FRAMES WebWalker Seal0 Avg. Tokens

Vanilla Reward (Eq. 3) 88.2 58.2 43.2 21.6 5,500
Steerable Step-Level Reward (Eq. 6) 90 64.8 50 22.5 14,500

Formally, given a question q and trajectory τ = {R1, . . . ,RT }, the teacher outputs Plan and
Report. The plan π = (πdecomp, πmap, πinsight) appears in a private <think> block, followed by
the public report r. The training target is y = <think> π </think> r.

Report structure. The public-facing report r follows a fixed, inline-citation–driven format: an
Executive Summary followed by a Main Body organized exactly by the sections (S1, . . . , Sn) from
πdecomp, where each section weaves the mapped evidence from πmap using the analysis strategy in
πinsight. Sections are citation-dense: every pivotal or non-obvious claim carries inline citations drawn
only from URLs explored in τ , with section-level citations restricted to items mapped to that section
in πmap. The report concludes with a deduplicated Sources used list of the cited URLs.

Thematic diversity & scale. Training questions are generated via the Seeded Question mode
(Sec 2.1), starting from 100 open-ended real-world questions spanning law, business, technology,
science, and policy. Rewritten across sampled themes, this yields 2,500 questions for training. Refer
to (Appendix A.2 for more details on the dataset)

3.2 TRAINING RECIPE

We fine-tune Qwen3-4B on DEEPRESEARCH-SFT, training for 5 epochs on the 2,500-sample
split using a single node of 8×H100 GPUs. We use bf16, FlashAttention-2, a 65,536-token
context, gradient accumulation of 8, cosine LR with peak 5.0 × 10−5, Adam (β1=0.9, β2=0.95),
and sequence parallel size 4. Context extension. Our DeepSearch traces exhaust Qwen3-4B’s native
40,960-token context window, so we extend the effective context during SFT using YaRN RoPE
scaling: rope_scaling:{type=yarn, factor=2.0}. This increases the usable positional
range to 65,536 tokens, allowing the synthesizer to ingest the full investigation trace and generate
high-quality synthesis while preserving section alignment and citation locality.

4 BASELINES, BENCHMARKS & METRICS

Baselines. Open-source DeepSearch agents: with public checkpoints: Jan-Nano (Dao & Vu, 2025),
II-Search-4B (Internet, 2025), Qwen3-4B (Yang et al., 2025), ZeroSearch (Sun et al., 2025a), Search-
o1 (Li et al., 2025b), R1-Searcher (Song et al., 2025), WebSailor (Li et al., 2025a). Closed-source:
comparators: o3 (OpenAI, 2025a), GPT-4o (OpenAI, 2024).

Benchmarks (9). DeepSearch (5): SimpleQA (Wei et al., 2024), FRAMES (Krishna et al., 2024),
WebWalkerQA (Wu et al., 2025), Seal0 (Pham et al., 2025), MuSiQue (Trivedi et al., 2022). General
reasoning (4): HLE (Phan et al., 2025), AIME-25 (AIME, 2025), GPQA-Diamond (Rein et al., 2024),
MedQA (Jin et al., 2021). Metric: Pass@1 using GPT-4.1-mini LLM as Judge (Temperature=0).
DeepResearch (1): DeepResearch-Bench (Du et al., 2025). Metrics: RACE (reference-based
adaptive criteria-driven evaluation of comprehensiveness, depth, instruction-following, readability)
and FACT (factuality via citation accuracy and effective citation count) for open-ended citation driven
report generation.
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5 DISCUSSION

Strong performance rivaling closed-source proprietary models Fathom-DeepResearch estab-
lishes itself as a clear state-of-the-art by achieving large, non-incremental gains on the most chal-
lenging DeepSearch tasks like FRAMES, WebWalker, & Seal0, (Table. 1), while also showing strong
generalization to broader reasoning benchmarks like (GPQA-Diamond and Humanity’s Last Exam).
Unlike many search-augmented systems that falter outside their training domain, it consistently out-
performs both its base model and other open-source systems, and even surpasses larger closed-source
models such as GPT-4o with notable margins. On open-ended benchmark: DeepResearch-Bench, it
outperforms most proprietary closed-source systems (including Claude, Grok, and Perplexity Deep
Research) (Table. 2) underscoring its competitiveness in end-to-end deep research tasks.

Figure 4: Response length evolution during
(i) top. Stage-2 training (Steerable Step
Level Reward vs. Vanilla Reward) & (ii)
bottom. Stage-1 training (GRPO vs RAPO)

On policy optimization: RAPO vs. GRPO. Ta-
ble. 3 contrasts RAPO and GRPO as the policy-
optimization algorithm with the Stage-1 setup
fixed. RAPO consistently outperforms GRPO across
DeepSearch benchmarks, This shows that RAPO pro-
vides a more stable and effective optimization signal.
As shown in Fig. 4, GRPO expands response length
as training progresses, but this growth does not trans-
late into higher accuracy because the model collapses
into redundant tool-call spamming behavior. RAPO,
in contrast, achieves stronger tool-calling efficiency
and more accurate results.

On the Steerable Step-Level reward. As shown
in Fig. 3, the steerable step-level reward provides a
finer-grained training signal that steers the tool calling
behavior of the model. By directly shaping the utility
of each intermediate step, it encourages controlled
growth in response length without inflating reasoning
traces with redundant tool call spam, thereby yielding
both efficiency and stability in multi-step reasoning,
outperforming the vanilla RLVR reward function on
all DeepSearch tasks as shown in Table. 4

Limitations. While RAPO is effective for stabiliz-
ing multi-turn RL training, it shows limited test-time
scaling. As illustrated in Fig. 4, RAPO with vanilla
rewards during Stage-2 training saturates before 6,000 tokens and yields only marginal accuracy
gains (Table 4) as question difficulty increases, when the steerable step-level reward is absent. This
trade-off arises from its reliance on trajectory replacement in the replay buffer, which anchors learn-
ing to low-entropy traces which prevents training collapse but also hinders adaptation to extended
reasoning horizons. More broadly, our current system depends on synchronous training pipelines that,
although simple to implement, remain inefficient and brittle at scale. Transitioning to asynchronous
frameworks presents a natural next step for improving efficiency and robustness.

6 CONCLUSION

We present Fathom-DeepResearch, an agentic system that addresses critical gaps in open-source
deep research capabilities through two specialized 4B models: Fathom-Search-4B for multi-turn
web search and reasoning, and Fathom-Synthesizer-4B for structured report synthesis. Our key
contributions include DuetQA, a multi-agent self-play dataset that ensures search dependency; RAPO,
a stabilized extension of GRPO that enables reliable tool use beyond 20 calls through curriculum
pruning, advantage scaling, and replay buffers; a steerable step-level reward system that mitigates
reward hacking while providing explicit control over exploration and verification behaviors; and
DeepResearch-SFT, a synthetic corpus that enables comprehensive information synthesis through
explicit plan-then-write supervision.
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A APPENDIX

A.1 AGENTIC TOOL DESIGN

We provide our policy model access to two tools:

search_urls (web search). The tool takes as input a natural language query q and returns a ranked
list of triples (u,title,snippet) using a live search engine. The policy model uses this to identify
promising sources and optionally select a URL u for opening in the next step. The tool is invoked as
follows: <tool_call>{name: search_urls, args: {query: q}}</tool_call>

query_url (goal-conditioned page reading). Given a goal g and a URL u, the
tool leverages a query LLM to return targeted evidence-backed response that address
g. This tool enables precise grounding of facts and targeted querying of web-
pages. Compared to the injestion of entire web-page into the policy model’s trajec-
tory, this tool minimizes noise and increases recall. The tool is invoked as follows:
<tool_call>{name: query_url, args: {goal: g, url: u}}</tool_call>

A.2 DATASETS

Datasets provided in the supplementary material:

Stage-1 DeepSearch Training (DuetQA): QA pairs (search-essential, multi-hop).

Stage-2 DeepSearch + General Reasoning Training: mixed QA pairs spanning DeepSearch
and general reasoning tasks from S1 (maths), Musique (multi-hop) and DuetQA(live-web-search),
MedQA(medical-reasoning) adversely filtered agaisnt Fathom-Search-Stage1 checkpoint.

DeepResearch-SFT: Contains synthetically generated open-ended questions, their DeepSearch
traces from Fathom-Search-4B, the per-example planning used for report synthesis, and the final
DeepResearch reports generated by GPT-5 from the corresponding search traces.
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Figure 5: Sample question from DuetQA, generated using the Mixture-of-Themes mode

Figure 6: Sample question from DuetQA, generated using the Seeded-Question-Generation mode

Figure 7: Comparison of policy entropy and gradient norm during RLVR training. GRPO exhibits
rapid entropy collapse and diminished gradient norms due to sparse rewards, whereas RAPO sustains
exploration and stronger updates via targeted updates
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