

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FATHOM-DEEPRESEARCH: UNLOCKING LONG HORIZON INFORMATION RETRIEVAL AND SYNTHESIS FOR SLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Tool-integrated reasoning has emerged as a key focus for enabling agentic applications. Among these, DeepResearch Agents have gained significant attention for their strong performance on complex, open-ended information-seeking tasks. We introduce Fathom-DeepResearch, an agentic system composed of two specialized models. The first is Fathom-Search-4B, a DeepSearch model trained from Qwen3-4B and optimized for evidence-based investigation through live web search and targeted webpage querying. Its training combines three advances: (i) DUETQA, a 5K-sample dataset generated via multi-agent self-play that enforces strict web-search dependence and heterogeneous source grounding; (ii) RAPO, a zero-overhead extension of GRPO that stabilizes multi-turn Reinforcement Learning with Verifiable Rewards through curriculum pruning, reward-aware advantage scaling, and per-prompt replay buffers; and (iii) a steerable step-level reward that classifies each tool call by cognitive behavior and marginal utility, enabling explicit control over search trajectory breadth, depth, and horizon. These improvements enable reliable extension of tool-calling beyond 20 calls when warranted. The second is Fathom-Synthesizer-4B, trained from Qwen3-4B, which converts multi-turn DeepSearch traces into structured, citation-dense DeepResearch Reports for comprehensive synthesis. Evaluated on DeepSearch benchmarks (SimpleQA, FRAMES, WebWalker, Seal0, MuSiQue) and DeepResearch-Bench, the system achieves state-of-the-art performance in the open-weights category while closely rivaling proprietary closed systems, while also demonstrating strong performance in general reasoning benchmarks: HLE, AIME-25, GPQA-Diamond, and MedQA.

1 INTRODUCTION

Recent advancements in reasoning capabilities of Large Language Models (LLMs) have enabled a significant performance advancement across a diverse set of tasks, such as mathematical reasoning, code generation (Jain et al., 2024; DeepSeek-AI et al., 2025; Singh et al., 2025b;a). We are not only witnessing expert level performance on academic benchmarks, but are perceiving a paradigm shift towards agentic intelligence. Owing to tool-integrated reasoning, these models can now autonomously observe, reason and interact with complex and dynamic environments. Contemporary state-of-the-art tool-augmented AI systems like DeepResearch (OpenAI, 2025b; Team, 2025a;c), have exhibited super-human performance in highly sophisticated long-horizon, deep-information retrieval and synthesis tasks. These agents transcend the limitations of static parametric knowledge by implementing dynamic reasoning frameworks that autonomously partition multifaceted queries, coordinate multiple tool interactions, and integrate heterogeneous information sources into unified, evidence-supported conclusions.

However, a substantial performance gap remains between (OpenAI, 2025b; Team, 2025a;c) and open-source (Team, 2025b; AI, 2025), making the development of robust DeepResearch architectures a critical challenge. Current open-source frameworks suffer from two fundamental limitations. First, they lack proficiency in sustained tool usage required for high-uncertainty reasoning and synthesis tasks (Wu et al., 2025; Pham et al., 2025; Trivedi et al., 2022; Krishna et al., 2024; Wei et al., 2024). Efforts to scale DeepResearch capabilities are constrained by (i) the absence of a high-quality, verifiable, and scalable dataset creation pipeline, (ii) algorithmic instability in multi-turn

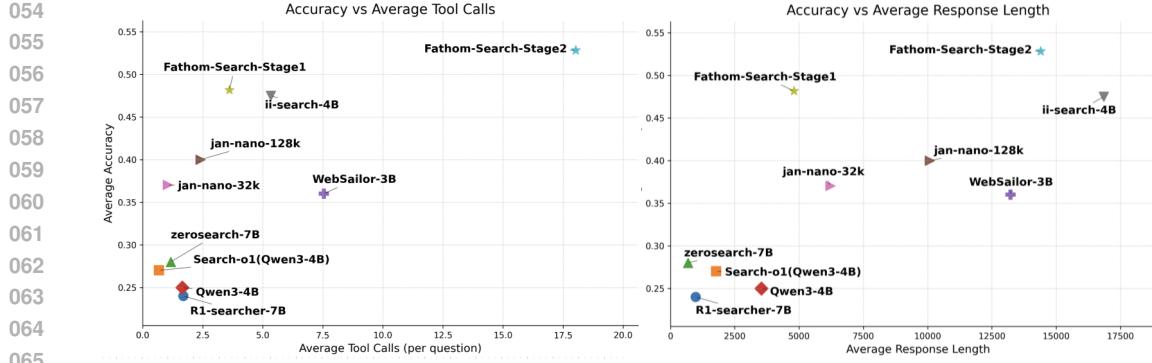


Figure 1: **Accuracy vs Response length & Accuracy vs Avg. Tool calls** plot comparing open-source DeepSearch models, clearly demonstrates the higher accuracy and efficient long horizon tool interaction ability of Fathom-Search models compared to its contemporaries.

reinforcement learning (RL) with tools, and (iii) inefficient tool-calling behavior that undermines deep information exploration and retrieval. Second, there is an overemphasis on closed-form problem solving, which comes at the expense of the information synthesis capabilities essential for tackling open-ended investigative queries. In the next section we discuss the aforementioned issues further.

1.1 MOTIVATION

(1) Training instability of GRPO in multi-turn tool interaction: RLVR (Reinforcement Learning with verifiable rewards) with GRPO (Shao et al., 2024) has demonstrated early promise in aligning LLMs with sparse reward signals for single-turn reasoning tasks, particularly in structured domains like Math/STEM Shao et al. (2024); Yang et al. (2024). However, GRPO struggles to scale to multi-turn tool-augmented environments, because external tool interaction responses induce distribution shift in the policy model from its set token generation patterns, this leads to decoding instability and malformed generations. This cascading of errors causes group-relative advantages to saturate, leading to extremely unstable gradient updates that breaks the entire training process. (Xue et al., 2025).

(2) Reward hacking and inefficient tool calling (a) *Correctness-only sparse rewards do not scale to long-horizon tool calling.* When training with only a single end of episode correctness signal, the agent shows early improvements achieving format adherence and basic tool-calling competence in the beginning, however, as training progresses, tool usage increases sharply while both training reward and validation performance deteriorate (Nguyen et al., 2025). This degradation stems from reward hacking: the agent collapses into repetitive, identical tool calls because the vanilla RLVR objective provides no incentive for efficiency or diversity in tool use. (b) *RL amplifies SFT priors, limiting control over the cognitive behaviors developed by the policy* (Gandhi et al., 2025): Tool-use RL typically relies on an SFT cold start to elicit basic tool competence (Li et al., 2025a); (Dong et al., 2025) RL then amplifies pre-existing cognitive behaviors seeded by SFT. Standard RLVR affords limited control over the exploration and verification strategies developed by the policy model, consequently the quality of cold-start trajectories disproportionately shape the policy model’s tool-use behavior and provides no steerability.

(3) Limited training data characterized by high and hard-to-reduce intrinsic information uncertainty: Training datasets such as TriviaQA (Joshi et al., 2017), and multi-hop variants like 2WIKI(Ho et al., 2020), and HotpotQA (Yang et al., 2018) represent problems where solutions can often be found through minimal set queries or even from a model’s parametric knowledge alone. These datasets do not expose models to the real-world retrieval challenges posed by noisy, heterogeneous data sources on the internet. Recent synthetic efforts (Sun et al., 2025a; Li et al., 2025a; Sun et al., 2025b) attempt to bridge this gap by simulating realistic search behavior. For instance, WebSailor’s(Li et al., 2025a) SailorFog-QA constructs ambiguous queries using obfuscated subgraphs of entity graphs, while SimpleDeepResearcher (Sun et al., 2025b) issues multi-stage search-summarize-generate tool calls over raw HTML. Despite their innovation, these pipelines remain expensive, brittle, and time-consuming. They rely on handcrafted heuristics, graph expansion, or multi-stage LLM orchestration, limiting scalability, topical diversity, and adaptability to new domains.

108 **(4) Challenges in handling open-ended queries** Recent work largely targets closed-ended queries
 109 with well-defined objectives (Dao & Vu, 2025; Internet, 2025; Li et al., 2025a). In contrast, many real-
 110 world tasks are open-ended: they lack a single definitive answer and require multi-turn exploration,
 111 retrieval of diverse perspectives, and synthesis of evidence-grounded conclusions. Addressing these
 112 challenges, demands strong information-synthesis and verification capabilities, gaps that current
 113 open-source approaches largely leave unfilled.

114 **1.2 OUR CONTRIBUTIONS**

115 To this end, we present an end-to-end DeepSearch system centered on *Fathom-Search-4B* (search en-
 116 abled reasoning) and *Fathom-Synthesizer-4B* (synthesis & report-generation). Our key contributions:

- 117 • **RL Zero framework for DeepSearch training.** We present a novel two-stage RL-Zero
 118 framework that helps to *steer cognitive behaviors* developed by the policy model like
 119 exploration & verification during the training.
- 120 • **RAPO: Reward Aware Policy Optimization.** We introduce a zero-overhead modification
 121 of GRPO with *dataset pruning, advantage scaling, and replay buffers, and a steerable*
 122 *step-level reward* that stabilizes multi-turn RL and enables long-horizon tool use.
- 123 • **DUETQA.** We release a 5K sample dataset created through our novel *multi-agent self-play*
 124 *pipeline*, which has verifiable question-answer pairs, impossible to answer without *live web*
 125 *search*, for DeepSearch model training.
- 126 • **DEEPRESEARCH-SFT.** A synthetic SFT corpus for converting downstream search/investi-
 127 *gation traces of DeepSearch enabled models into comprehensive citation-backed DeepRe-*
 128 *search reports via an explicit *plan then write* protocol.*

132 **2 FATHOM-SEARCH-4B**

133 We describe the methodology underlying *Fathom-Search-4B*, a tool-using LLM that leverages live
 134 web-search capabilities to do evidence based reasoning in a multi-turn tool interaction setting,
 135 unlocking long-horizon tool use (> 20 calls) ability. These capabilities arise from a combined
 136 approach of: (i) a curated synthetic data pipeline tailored to search-tool augmented reasoning, (ii)
 137 targeted upgrades to GRPO to effectively adapt it to multi-turn tool interaction, and (iii) a two-stage
 138 training regimen with reward shaping to expand the tool-use horizon in a steerable manner.

139 **2.1 DUETQA: A DEEPSEARCH DATASET, GENERATED VIA MULTI-AGENT SELF PLAY**

140 To address the aforementioned dataset challenges in (Sec. 1.1), we develop a self-supervised dataset
 141 construction framework designed to yield verifiable, search-dependent, multi-hop QA pairs. This
 142 pipeline serves as the basis for generating DUETQA, a dataset tailored for training agentic deepsearch
 143 models. The design goals are: **Live web-search dependency**: for each QA pair (q, a) , the question
 144 is unanswerable without search by enforcing that at least one hop contains information post-2024
 145 (i.e., for a model \mathcal{M} , $P(a | q, \mathcal{M}_{\text{no-search}}) \ll P(a | q, \mathcal{M}_{\text{search}})$); **Diverse source domains**: questions
 146 require querying heterogeneous web-sources beyond Wikipedia ; and **Steerable theme control**: each
 147 example is grounded in $k \in [5, 7]$ sampled themes from \mathcal{T} , a manually curated taxonomy of 200 +
 148 themes covering a broad range of topics. We generate questions using two frontier web search enabled
 149 LRM, \mathcal{M}_1 (O3) and \mathcal{M}_2 (O4-mini) (OpenAI, 2025a), acting as *proxy web-crawling agents* that
 150 produce QA pairs and as *independent verifiers* to that ensure question solvability; a third model, \mathcal{M}_3
 151 (GPT-4o), is a *non-search* model used for controlled paraphrasing/obfuscation of questions and as a
 152 baseline verifier without search. Refer to (Appendix A.2 for more details on the dataset)

153 **Data Generation.** We adopt two strategies to synthesize multi-hop, search-dependent question-
 154 answer pairs. In both, we sample a set of themes $\mathcal{T}_{\text{sample}} \sim \text{Uniform}(\mathcal{T})$ with $|\mathcal{T}_{\text{sample}}| = k$,
 155 $k \in \{5, 6, 7\}$. In the *Mixture of Themes* setting, for each $t \in \mathcal{T}_{\text{sample}}$, the generator (\mathcal{M}_1 or \mathcal{M}_2)
 156 issues live queries to retrieve recent and/or obscure facts, and composes a multi-hop pair (q, a) by
 157 chaining a subset of them into a coherent reasoning path. In the *Seeded Question* setting, we maintain
 158 a seed bank of 100 questions. (50 % *manually curated* and 50% *sampled from BrowseComp* (Wei
 159 *et al.*, 2025); given a seed q_0 , the generator rewrites it into a new question q by integrating one or

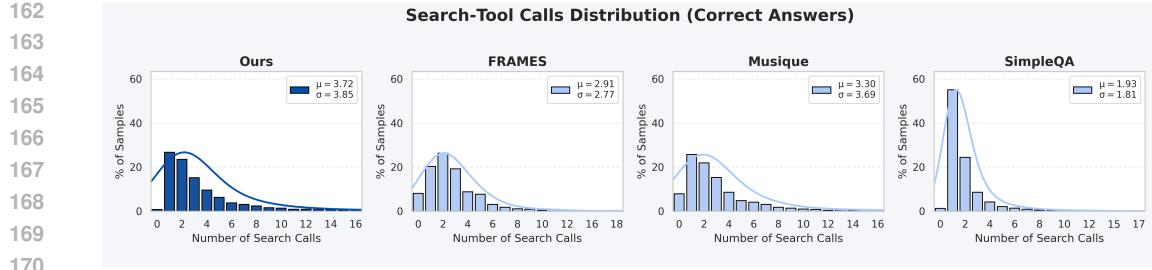


Figure 2: Distribution of number of search-calls issued by o3(OpenAI, 2025a) over correctly answered questions comparing DuetQA to other prominent benchmarks. **DuetQA shows strict live-web-search dependence and multi-hop reasoning** as evident from the long-tailed distribution (unlike simpleQA (Wei et al., 2024)) and ≥ 1 search call(s) required to answer all DuetQA questions correctly (unlike FRAMES (Krishna et al., 2024), Musique(Trivedi et al., 2022)).

more sampled facts while preserving the multi-hop scaffold of q_0 . In both settings, we enforce that at least one incorporated fact references information after 2024. Refer to (Fig. 5 & Fig. 6) in Appendix for examples.

Data obfuscation. To remove surface cues that enable *short-circuiting* the multi-hop reasoning, we run an obfuscation pass, using \mathcal{M}_3 (GPT-4o) with in-context examples, we paraphrase questions, masking intermediate hops. Specifically, \mathcal{M}_3 attenuates exact anchors by (i) coarsening dates (e.g., “March 2025” \rightarrow “early 2025”), (ii) mapping precise numerics to qualitative magnitudes (e.g., “1%” \rightarrow “negligible”), (iii) replacing named entities with indirect descriptors (e.g., “University of Florida” \rightarrow “a major southeastern university”).

Multi-agent Verification. We retain a candidate pair (q, a) only if two independent search-enabled LRM \mathcal{M}_1 and \mathcal{M}_2 produce the same correct answer while a strong non-search baseline \mathcal{M}_3 fails. This filter enforces correctness through cross-model agreement and certifies that web retrieval is indispensable, ensuring the non-triviality of the question while guarding against overlap of information with the model’s parametric knowledge.

2.2 AGENTIC REINFORCEMENT LEARNING

In this section, we formulate multi-turn, tool-augmented RL with LLM policies. Let $x \in \mathcal{X}$ be an input from distribution \mathcal{D} and \mathcal{T} the set of available tools. The policy π_θ generates a reasoning trajectory \mathcal{R} interleaved with tool feedback, followed by a final textual answer y . A reference policy π_{ref} is used for KL regularization, and a verifiable reward function r_ϕ (LLM-as-judge) provides supervision. The joint rollout can be written as:

$$P_\theta(\mathcal{R}, y | x; \mathcal{T}) = \left[\prod_{t=1}^{t_{\mathcal{R}}} P_\theta(\mathcal{R}_t | \mathcal{R}_{<t}, x; \mathcal{T}) \right] \cdot \left[\prod_{t=1}^{t_y} P_\theta(y_t | y_{<t}, \mathcal{R}, x; \mathcal{T}) \right], \quad \mathcal{R}_t = (\varphi_t, c_t, o_t), \quad (1)$$

where φ_t is a latent “think” segment, $c_t \in \mathcal{T}$ a tool call (with arguments), and o_t the tool response, all expressed in a ReAct-style template. We optimize the policy model with a token-level clipped loss defined as follows:

$$\mathcal{L}_{\text{GRPO}} = \frac{1}{G} \sum_{i=1}^G \frac{1}{T_i} \sum_{t=1}^{T_i} \min \left[r_{i,t} \hat{A}_{i,t}, \text{clip}(r_{i,t}, 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t} \right], \quad r_{i,t} = \frac{\pi_\theta(o_{i,t} | x, \mathcal{H}_{t-1})}{\pi_{\theta_{\text{old}}}(o_{i,t} | x, \mathcal{H}_{t-1})} \quad (2)$$

The trajectory-level scalar reward combines a format score and an answer score (Li et al., 2025a):

$$r_i = 0.1 * R_i^{\text{format}} + 0.9 * R_i^{\text{answer}} \quad (3)$$

Here, R_i^{format} verifies that rollout follows the ReAct template (i.e., all steps are correctly wrapped in `<think>`, `<tool_call>`, `<tool_response>` tags). Meanwhile, $R_i^{\text{answer}} = \mathbf{1}[a_{\text{pred}}^{(i)} = a_{\text{gt}}]$, where correctness of the final answer is judged by an LLM-as-judge against the ground truth.

216 For a group of G sampled rollouts with scalar rewards $\{r_i\}$, group-relative advantages defined as:
 217

$$218 \quad 219 \quad 220 \quad 221 \quad \hat{A}_{i,t} = \frac{r_i - \mu_R}{\sigma_R}, \quad \mu_R = \frac{1}{G} \sum_{j=1}^G r_j, \quad \sigma_R = \sqrt{\frac{1}{G} \sum_{j=1}^G (r_j - \mu_R)^2}. \quad (4)$$

222 2.3 RAPO: REWARD-AWARE POLICY OPTIMIZATION

224 RAPO is a lightweight extension of GRPO designed to stabilize multi-turn, tool-augmented training
 225 by addressing the issues outlined in Sec. 1.1. In GRPO, the per-prompt (group) reward variance
 226 σ_R (Eq. 4) determines the strength of the advantage signal. Let σ_R denote the within-group reward
 227 standard deviation; a group is **Good** if $\sigma_R > 0$ and **Bad** if $\sigma_R = 0$. *Bad* groups arise under both
 228 prompt saturation (all rollouts succeed) and cascading errors (all fail). In both cases, no advantage
 229 signal is produced, shrinking gradient norms and destabilizing updates. (Fig. 7 in Appendix). RAPO
 230 counters these effects through three modifications applied on top of GRPO, all at zero additional
 231 rollout cost:

232 **Dataset pruning.** We prune prompts solved at epoch end using $\text{SolveRate}(q) = \frac{1}{G} \sum_{i=1}^G \mathbf{1}[R_i > 0]$
 233 and drop q when $\text{SolveRate}(q) \geq 0.9$. This prevents training batches from being dominated by
 234 saturated groups that provide negligible variance, while implicitly yielding a curriculum in which the
 235 active set concentrates on harder prompts.

236 **Advantage scaling.** To counter gradient dilution when only a few groups in a batch are informative,
 237 we rescale token-level advantages for Good groups inversely with their batch frequency : $\tilde{A}_{i,t} =$
 238 $\frac{G}{G_{\text{good}}} \hat{A}_{i,t}$ with $G_{\text{good}} = \#\{\text{groups with } \sigma_R > 0\}$. This adjustment preserves effective gradient
 239 magnitude without requiring costly re-sampling as in DAPO (Yu et al., 2025), ensuring that updates
 240 remain stable even when informative groups are sparse.

241 **Replay buffer.** We maintain a per-prompt buffer \mathcal{B} containing the most recent successful trajectory
 242 \mathbf{o}^* with $R(q, \mathbf{o}^*) > 0.5$. If all rollouts for a prompt fail in the current epoch, one trajectory is randomly
 243 replaced with \mathbf{o}^* from \mathcal{B} . This reintroduces variance ($\sigma_R > 0$) into otherwise collapsed groups, restores
 244 group-relative advantages, and anchors updates to a high-quality, low-entropy reference that curbs
 245 uncontrolled trajectory growth.

247 2.4 STEERABLE STEP-LEVEL REWARD DESIGN FOR SEARCH TOOLS

249 We design our novel *Steerable Step-Level Reward* that alleviates the reward-hacking challenge faced
 250 by RLVR training in the multi-turn, tool-interaction setting using vanilla reward (Eq. 3) as described
 251 in (Sec. 1.1). Our reward function enables us to steer (i) *how much* the agent uses tools and (ii) *how* it
 252 allocates cognition to exploration and verification. Starting from the vanilla RLVR objective in (Eq.
 253 3), we make the correctness branch R_i^{answer} depend on cognitive behaviors and marginal utility aware
 254 labels assigned to each call c_t in the rollout $\mathcal{R} = \{(\varphi_t, c_t, o_t)\}_{t=1}^T$ by a GPT-4.1 LLM-as-judge as
 255 follows. Refer to (Appendix. A.1) for exact details on the search & browsing tool implementation.

```
256 search_urls ∈ {
  257   UNIQUESEARCH: (semantically new query about previously unseen entities/facts),
  258   REDUNDANTSEARCH: (Highly similar to a prior query; overlapping results)}
  259 query_url ∈ {
  260   EXPLORATION: (first query of a new URL),
  261   VERIFICATION: (cross-source check on a new URL for an existing query; allowed  $B_v$  times),
  262   REDUNDANTQUERY: (further checks for a query/fact on new URLs beyond  $B_v$ )}
```

263 From the LLM-as-Judge tool call classification we form tallies ¹ and define the following aggregates:

$$264 \quad 265 \quad 266 \quad 267 \quad \rho = \frac{n_{\text{redS}} + n_{\text{redQ}}}{T}, \quad \Delta_S = n_{\text{uniqS}} - n_{\text{redS}}, \quad \Delta_Q = n_{\text{uniqQ}} - n_{\text{redQ}}. \quad (5)$$

268 ¹ $n_{\text{uniqS}} \leftrightarrow \# \text{UNIQUESEARCH calls}; n_{\text{redS}} \leftrightarrow \# \text{REDUNDANTSEARCH calls};$
 269 $n_{\text{explore}} \leftrightarrow \# \text{EXPLORATION calls}; n_{\text{verify}} \leftrightarrow \# \text{VERIFICATION calls}; n_{\text{uniqQ}} = n_{\text{explore}} + n_{\text{verify}};$
 $n_{\text{redQ}} \leftrightarrow \# \text{REDUNDANTQUERY calls};$

270 Using these aggregates we define our *Steerable Step-Level Reward* as:
 271

$$272 \quad r_i = \begin{cases} 0.1 * R_i^{\text{format}} + \max(1 - \rho, 0.5), & \text{if } a_{\text{pred}}^{(i)} = a_{\text{gt}}, \\ 273 \quad 0.1 * R_i^{\text{format}} + c_1 * \min(1, \frac{\Delta_S}{C_S}) + c_2 * \min(1, \frac{\Delta_Q}{C_Q}), & \text{if } a_{\text{pred}}^{(i)} \neq a_{\text{gt}}. \end{cases} \quad (6)$$

275 Here, ρ penalizes redundant tool calls *even when the*
 276 *rollout is correct*, pushing for efficiency; whereas
 277 Δ_S and Δ_Q provide credit to *incorrect* rollouts that
 278 exhibit genuine, non-redundant exploration & information
 279 seeking behavior.

280 **Monotonocity.** We set $c_1 = c_2 = 0.2$, to ensure
 281 any incorrect rollout has $r_i \leq 0.5$, while any correct
 282 rollout has $r_i \geq 0.5$, which ensures incorrect trajectories
 283 never get rewarded more than the correct ones.
 284 $c_1=c_2$ also ensures equal weight to `search_urls`
 285 (Δ_S) and `query_url` (Δ_Q).

286 **Steerability.** We expose three primary knobs: (i) C_S
 287 and (ii) C_Q set the saturation thresholds for creditable
 288 novelty in `search_urls` and `query_url`,
 289 respectively. Increasing C_S and/or C_Q raises the novelty caps, enabling more steps to earn credit
 290 when they introduce genuinely new evidence; decreasing them compresses trajectories. (iii) The
 291 per-claim verification budget B_v controls verification depth: higher B_v permits multiple creditable
 292 cross-checks per claim, promoting verification. For our experiments we set $B_v = 1$ allowing 1
 293 cross-check per claim, additionally we set $C_S = 8$ and $C_Q = 16$.

294 2.5 TRAINING RECIPE

295 We build our reinforcement learning with verifiable rewards (RLVR) framework on top of RE-
 296 CALL (Chen et al., 2025). For web search, we use the Serper API (Serper.dev), and implement a
 297 retrieval toolchain leveraging Jina-AI together with open-source components such as TRAFILTURA
 298 and CRAWL4AI. Training is carried out in two stages. **Stage 1.** We train with RAPO for 10 epochs on
 299 our curated DUETQA dataset, comprising **4,889** high-quality QA instances. The setup uses a constant
 300 learning rate of 1×10^{-6} with the Adam optimizer ($\beta_1 = 0.9$, $\beta_2 = 0.95$), batch size 32, mini-batch
 301 size 16, 5 rollouts per group, and top- $p = 1.0$ sampling. Each rollout is capped at 32 tool-interaction
 302 steps, with each step limited to 8,192 output tokens. The vanilla reward (Eq. 3) with $\alpha = 0.1$
 303 is used to instill correct tool-calling behavior and strict format adherence. **Stage 2.** We continue
 304 RLVR training for an additional 2 epochs under the same hyperparameter settings. For Stage 2, we
 305 construct a mixed dataset by combining DUETQA, with math data from S1 dataset (Muennighoff
 306 et al., 2025), and the training split of MUSIQUE (Trivedi et al., 2022) and medical reasoning data from
 307 MedQA (Jin et al., 2021) train split. This combined pool is adversarially filtered against the Stage-1
 308 checkpoint, yielding **5,471** instances. From MUSIQUE, we retain only questions requiring at least
 309 three reasoning hops to ensure sufficient compositional depth. For this stage, we adopt the Steerable
 310 Step-Level Reward (Eq. 6) to extend the tool-use horizon beyond 20 calls in a stable manner. We use
 311 the Qwen3-4B model (Yang et al., 2025) as the base, which supports a maximum context length of
 312 40,960 tokens; we utilize the full window during training. We use GPT-4.1-mini(Temperature=0.) as
 313 the query LLM for training and evaluation unless stated otherwise. A higher sampling temperature of
 314 1.4 is applied to Qwen3 models, consistent with prior findings (An et al., 2025). All experiments are
 315 conducted on a single node with 8×H100 GPUs.

316 3 FATHOM-SYNTHESIZER-4B

317 *Fathom-Synthesizer-4B* is a planning and synthesis model built on Qwen3-4B via supervised fine-
 318 tuning (SFT). It converts multi-hop DeepSearch traces from *Fathom-Search-4B* into decision-grade,
 319 citation-dense *DeepResearch Reports*. Following a *Plan-then-Write* protocol, the model first de-
 320 composes the question into sub-goals, defines the report structure, maps evidence to sections, and
 321 specifies strategies for insight generation; only then does it produce the public report with citations
 322 drawn strictly from URLs explored by *Fathom-Search-4B*. This explicit planning improves question
 323 alignment, strengthens citation accuracy through section-level constraints, and provides structured
 324 supervision during SFT, enhancing the distillation process.

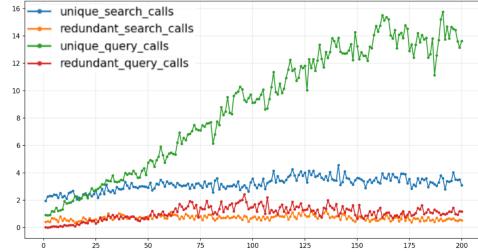


Figure 3: Evolution of unique/redundant tool-calls during Stage-2 training using our Steerable Step-level Reward (Eq.6)

324 Table 1: Accuracy(%) of *Fathom-Search-4B* on DeepSearch benchmarks SimpleQA, FRAMES,
 325 WebWalker, Seal0, Musique and general reasoning benchmarks HLE, AIME-25, GPQA-D, MedQA.
 326 ‘Avg’ is the unweighted mean within each block. Bold/italics denote best/second-best per benchmark.
 327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343					328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343					
	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343					328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343					
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343	328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343					328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343					
GPT-4o (without search)	34.7	52.4	3.2	7.2	34.0	26.3	2.3	71.0	53.0	88.2	53.6
o3 (without search)	49.4	43.2	14.0	14.0	48.9	33.9	20.3	88.9	85.4	95.4	72.5
GPT-4o (with search)	84.4	63.7	31.6	15.3	37.5	46.5	4.3	71.0	53.0	88.2	54.1
o3 (with search)	96.0	86.8	57.0	49.5	51.2	68.1	27.4	88.9	85.4	95.4	74.3
Closed-Source Models											
Qwen-2.5-7B	4.0	16.5	2.1	1.4	6.2	6.0	1.2	10	33.0	61.2	24.7
Qwen-2.5-7B + Search	50.8	23.3	10.1	3.0	13.6	20.2	2.4	10	33.5	62.0	25.3
Qwen3-4B	3.8	14.7	2.6	2.1	9.0	6.4	4.2	65.0	55.1	71.0	48.8
Qwen3-4B + Search	67.7	27.2	17.5	6.2	18.7	27.5	6.2	65.0	55.9	72.0	49.8
ZeroSearch-3B	51.9	11.3	8.7	7.1	13.8	18.6	3.4	10.0	14.6	51.0	17.3
ZeroSearch-7B	75.3	30.0	18.2	6.2	20.6	30.1	4.2	10.0	29.3	57.5	22.8
R1-Searcher-7B	58.8	37.0	1.8	1.4	19.1	23.6	2.1	10.0	33.3	56.5	25.5
search-o1 (Qwen3-4B)	57.5	26.8	10.8	5.5	15.3	23.2	3.4	40.0	30.5	53.7	31.9
WebSailor-3B	87.1	44.4	52.2	9.0	27.4	44.0	7.4	40.0	45.5	51.3	36.0
Jan-Nano-32K	80.7	36.1	25.0	6.2	21.4	23.9	5.5	60.0	37.4	66.0	42.2
Jan-Nano-128K	83.2	43.4	33.7	6.2	23.9	38.1	6.1	53.3	51.0	65.4	44.0
II-Search-4B	88.2	58.7	40.8	17.1	31.8	47.3	7.4	60.0	51.5	72.1	47.8
Fathom-Search-4B (Stage-1)	88.1	57.2	39.0	19.8	31.3	47.1	6.7	60.0	55.6	75.4	49.4
Fathom-Search-4B (Stage-2)	90.0	64.8	50.0	22.5	33.2	52.1	9.5	70.0	60.1	75.4	53.8

344
 345 Table 2: **Accuracy(%) of various Open/Closed-sourced DeepResearch-Agents and Search**
 346 **Augmented LLMs on DeepResearch-Bench.** Bold/italics denote best/second-best per category.

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370	347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370					347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370			
	347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370					347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370			
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370	347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370					347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370			
Closed Source LLM with Search Tools									
Claude-3.7-Sonnet w/Search	40.67	38.99	37.66	45.77	41.46	93.68	32.48		
Perplexity-Sonar-Reasoning-Pro (high)	40.22	37.38	36.11	45.66	44.74	39.36	8.35		
Gemini-2.5-Pro-Grounding	35.12	34.06	29.79	41.67	37.16	81.81	32.88		
GPT-4o-Search-Preview (high)	35.10	31.99	27.57	43.17	41.23	88.41	4.79		
GPT-4.1 w/Search (high)	33.46	29.42	25.38	42.33	40.77	87.83	4.42		
Closed Source Deep Research Agent									
Grok Deeper Search	40.24	37.97	35.37	46.30	44.05	83.59	8.15		
Perplexity-DeepResearch	42.25	40.69	39.39	46.40	44.28	90.24	31.26		
Gemini-2.5-Pro DeepResearch	48.88	48.53	48.50	49.18	49.44	81.44	111.21		
OpenAI-DeepResearch	46.98	46.87	45.25	49.27	47.14	77.96	40.79		
Open Source Deep Research Agent									
Kimi-Researcher	44.64	44.96	41.97	47.14	45.59	–	–		
Doubao-DeepResearch	44.34	44.84	40.56	47.95	44.69	52.86	52.62		
LangChain Open-DeepResearch	43.44	42.97	39.17	48.09	45.22	–	–		
Fathom-DeepResearch	45.47	42.98	45.14	48.25	46.12	56.1	38.3		

369 3.1 DEEPRESEARCH-SFT

371 DEEPRESEARCH-SFT is a synthetic dataset distilled from GPT-5 (OpenAI, 2025a) to train *Fathom-*
 372 *Synthesizer-4B*, it provides supervision along three complementary axes: **(i) Question decomposition**.
 373 Each input question q is decomposed into ordered sub-questions $\pi^{\text{decomp}} = (S_1, \dots, S_n)$, which form
 374 the report scaffold and ensure coverage of all facets, **(ii) Section mapping**. Every piece of evidence
 375 recovered during search (URLs, quoted passages, tables, figures) is grounded to one or more sections
 376 via a mapping π^{map} , this aligns each explored URL to the most relevant S_i , enhancing citation
 377 accuracy and preventing omissions/duplication. **(iii) Planning for insights**. The model specifies an
 378 analysis strategy π^{insight} how the gathered evidence should be synthesized into higher-level insights.

378 Table 3: **Ablation** on using RAPO as the policy optimization algorithm for Stage-1 training
 379 compared to GRPO. Both trainings done on top of Qwen3-4B model.

Algorithm	SimpleQA	FRAMES	WebWalker	Seal0	Avg. Tokens
GRPO	87.8	55.2	33.8	14.4	9,000
RAPO	88.1	57.2	39.0	19.8	5,000

385 Table 4: **Ablation** on using our steerable step-level reward compared to the vanilla trajectory-level
 386 RLVR reward for Stage-2 training. Trained on top of Fathom-Search-4B (Stage-1) using RAPO.

Reward	SimpleQA	FRAMES	WebWalker	Seal0	Avg. Tokens
Vanilla Reward (Eq. 3)	88.2	58.2	43.2	21.6	5,500
Steerable Step-Level Reward (Eq. 6)	90	64.8	50	22.5	14,500

393 Formally, given a question q and trajectory $\tau = \{\mathcal{R}_1, \dots, \mathcal{R}_T\}$, the teacher outputs `Plan` and
 394 `Report`. The plan $\pi = (\pi^{\text{decomp}}, \pi^{\text{map}}, \pi^{\text{insight}})$ appears in a private `<think>` block, followed by
 395 the public report r . The training target is $y = \text{<think>} \pi \text{ </think>} r$.

396 **Report structure.** The public-facing report r follows a fixed, inline-citation–driven format: an
 397 *Executive Summary* followed by a *Main Body* organized exactly by the sections (S_1, \dots, S_n) from
 398 π^{decomp} , where each section weaves the mapped evidence from π^{map} using the analysis strategy in
 399 π^{insight} . Sections are citation-dense: every pivotal or non-obvious claim carries inline citations drawn
 400 *only* from URLs explored in τ , with section-level citations restricted to items mapped to that section
 401 in π^{map} . The report concludes with a deduplicated *Sources used* list of the cited URLs.

402 **Thematic diversity & scale.** Training questions are generated via the *Seeded Question mode*
 403 (Sec 2.1), starting from 100 open-ended real-world questions spanning law, business, technology,
 404 science, and policy. Rewritten across sampled themes, this yields **2,500** questions for training. Refer
 405 to (Appendix A.2 for more details on the dataset)

407 3.2 TRAINING RECIPE

409 We fine-tune **Qwen3-4B** on DEEPRESEARCH-SFT, training for **5 epochs** on the 2,500-sample
 410 split using a single node of $8 \times \text{H100}$ GPUs. We use `bf16`, FlashAttention-2, a 65,536-token
 411 context, gradient accumulation of 8, cosine LR with peak 5.0×10^{-5} , Adam ($\beta_1=0.9, \beta_2=0.95$),
 412 and sequence parallel size 4. **Context extension.** Our DeepSearch traces exhaust Qwen3-4B’s native
 413 40,960-token context window, so we *extend* the effective context during SFT using YARN RoPE
 414 scaling: `rope_scaling: {type=yarn, factor=2.0}`. This increases the usable positional
 415 range to 65,536 tokens, allowing the synthesizer to ingest the full investigation trace and generate
 416 high-quality synthesis while preserving section alignment and citation locality.

418 4 BASELINES, BENCHMARKS & METRICS

421 **Baselines.** Open-source DeepSearch agents: with public checkpoints: Jan-Nano (Dao & Vu, 2025),
 422 II-Search-4B (Internet, 2025), Qwen3-4B (Yang et al., 2025), ZeroSearch (Sun et al., 2025a), Search-
 423 o1 (Li et al., 2025b), R1-Searcher (Song et al., 2025), WebSailor (Li et al., 2025a). **Closed-source:**
 424 comparators: o3 (OpenAI, 2025a), GPT-4o (OpenAI, 2024).

425 **Benchmarks (9).** **DeepSearch (5):** SimpleQA (Wei et al., 2024), FRAMES (Krishna et al., 2024),
 426 WebWalkerQA (Wu et al., 2025), Seal0 (Pham et al., 2025), MuSiQue (Trivedi et al., 2022). **General**
 427 **reasoning (4):** HLE (Phan et al., 2025), AIME-25 (AIME, 2025), GPQA-Diamond (Rein et al., 2024),
 428 MedQA (Jin et al., 2021). **Metric:** Pass@1 using GPT-4.1-mini LLM as Judge (Temperature=0).
 429 **DeepResearch (1):** DeepResearch-Bench (Du et al., 2025). **Metrics:** RACE (reference-based
 430 adaptive criteria-driven evaluation of comprehensiveness, depth, instruction-following, readability)
 431 and FACT (factuality via citation accuracy and effective citation count) for open-ended citation driven
 report generation.

432

5 DISCUSSION

433
 434
 435 **Strong performance rivaling closed-source proprietary models** Fathom-DeepResearch estab-
 436 lishes itself as a clear state-of-the-art by achieving large, non-incremental gains on the most chal-
 437 lenging DeepSearch tasks like *FRAMES*, *WebWalker*, & *Seal0*, (Table. 1), while also showing strong
 438 generalization to broader reasoning benchmarks like (GPQA-Diamond and Humanity’s Last Exam).
 439 Unlike many search-augmented systems that falter outside their training domain, it consistently out-
 440 performs both its base model and other open-source systems, and even surpasses larger closed-source
 441 models such as GPT-4o with notable margins. On open-ended benchmark: *DeepResearch-Bench*, it
 442 outperforms most proprietary closed-source systems (including Claude, Grok, and Perplexity Deep
 443 Research) (Table. 2) underscoring its competitiveness in end-to-end deep research tasks.

444 **On policy optimization: RAPO vs. GRPO.** Table. 3 contrasts RAPO and GRPO as the policy-
 445 optimization algorithm with the Stage-1 setup
 446 fixed. RAPO consistently outperforms GRPO across
 447 DeepSearch benchmarks. This shows that RAPO pro-
 448 vides a more stable and effective optimization signal.
 449 As shown in Fig. 4, GRPO expands response length
 450 as training progresses, but this growth does not trans-
 451 late into higher accuracy because the model collapses
 452 into redundant tool-call spamming behavior. RAPO,
 453 in contrast, achieves stronger tool-calling efficiency
 454 and more accurate results.

455 **On the Steerable Step-Level reward.** As shown
 456 in Fig. 3, the steerable step-level reward provides a
 457 finer-grained training signal that steers the tool calling
 458 behavior of the model. By directly shaping the utility
 459 of each intermediate step, it encourages controlled
 460 growth in response length without inflating reasoning
 461 traces with redundant tool call spam, thereby yielding
 462 both efficiency and stability in multi-step reasoning,
 463 outperforming the vanilla RLVR reward function on
 464 all DeepSearch tasks as shown in Table. 4

465 **Limitations.** While RAPO is effective for stabiliz-
 466 ing multi-turn RL training, it shows limited test-time
 467 scaling. As illustrated in Fig. 4, RAPO with vanilla
 468 rewards during Stage-2 training saturates before 6,000 tokens and yields only marginal accuracy
 469 gains (Table 4) as question difficulty increases, when the steerable step-level reward is absent. This
 470 trade-off arises from its reliance on trajectory replacement in the replay buffer, which anchors learn-
 471 ing to low-entropy traces which prevents training collapse but also hinders adaptation to extended
 472 reasoning horizons. More broadly, our current system depends on synchronous training pipelines that,
 473 although simple to implement, remain inefficient and brittle at scale. Transitioning to asynchronous
 474 frameworks presents a natural next step for improving efficiency and robustness.

475

6 CONCLUSION

476 We present Fathom-DeepResearch, an agentic system that addresses critical gaps in open-source
 477 deep research capabilities through two specialized 4B models: Fathom-Search-4B for multi-turn
 478 web search and reasoning, and Fathom-Synthesizer-4B for structured report synthesis. Our key
 479 contributions include DuetQA, a multi-agent self-play dataset that ensures search dependency; RAPO,
 480 a stabilized extension of GRPO that enables reliable tool use beyond 20 calls through curriculum
 481 pruning, advantage scaling, and replay buffers; a steerable step-level reward system that mitigates
 482 reward hacking while providing explicit control over exploration and verification behaviors; and
 483 DeepResearch-SFT, a synthetic corpus that enables comprehensive information synthesis through
 484 explicit plan-then-write supervision.

485 Figure 4: Response length evolution during
 486 (i) **top.** Stage-2 training (Steerable Step
 487 Level Reward vs. Vanilla Reward) & (ii)
 488 **bottom.** Stage-1 training (GRPO vs RAPO)

486 REFERENCES
487

488 Moonshot AI. Kimi researcher, 2025. URL <https://moonshotai.github.io/Kimi-Researcher/>.

489

490 AIME. Aime problems and solutions, 2025, 2025. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

491

492 Chenxin An, Zhihui Xie, Xiaonan Li, Lei Li, Jun Zhang, Shansan Gong, Ming Zhong, Jingjing
493 Xu, Xipeng Qiu, Mingxuan Wang, and Lingpeng Kong. Polaris: A post-training recipe for
494 scaling reinforcement learning on advanced reasoning models, 2025. URL <https://hkunlp.github.io/blog/2025/Polaris>.

495

496

497 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
498 Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to
499 reason with search for llms via reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.19470>.

500

501 Alan Dao and Dinh Bach Vu. Jan-nano technical report, 2025. URL <https://arxiv.org/abs/2506.22760>.

502

503

504 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
505 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
506 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
507 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
508 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
509 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
510 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
511 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
512 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
513 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
514 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
515 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
516 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
517 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
518 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
519 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
520 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
521 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
522 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
523 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
524 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
525 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
526 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
527 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
528 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
529 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
530 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
531 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
532 URL <https://arxiv.org/abs/2501.12948>.

533

534

535 Guanting Dong, Hangyu Mao, Kai Ma, Licheng Bao, Yifei Chen, Zhongyuan Wang, Zhongxia Chen,
536 Jiazen Du, Huiyang Wang, Fuzheng Zhang, Guorui Zhou, Yutao Zhu, Ji-Rong Wen, and Zhicheng
537 Dou. Agentic reinforced policy optimization, 2025. URL <https://arxiv.org/abs/2507.19849>.

538

539 Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A
540 comprehensive benchmark for deep research agents. *arXiv preprint arXiv:2506.11763*, 2025.

541

542 Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
543 behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
544 <https://arxiv.org/abs/2503.01307>.

540 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
 541 hop QA dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th*
 542 *International Conference on Computational Linguistics*, pp. 6609–6625, Barcelona, Spain (Online),
 543 December 2020. International Committee on Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.coling-main.580>.

544

545 Intelligent Internet. Ii-search-4b: Information seeking and web-integrated reasoning llm. <https://huggingface.co/II-Vietnam/II-Search-4B>, 2025.

546

547

548 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 549 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 550 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

551

552 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
 553 disease does this patient have? a large-scale open domain question answering dataset from medical
 554 exams. *Applied Sciences*, 11(14):6421, 2021.

555

556 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale Distantly
 557 Supervised Challenge Dataset for Reading Comprehension. *arXiv e-prints*, art. arXiv:1705.03551,
 558 2017.

559

560 Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler, Shyam
 561 Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of retrieval-
 562 augmented generation, 2024. URL <https://arxiv.org/abs/2409.12941>.

563

564 Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
 565 Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong
 566 Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-human
 567 reasoning for web agent, 2025a. URL <https://arxiv.org/abs/2507.02592>.

568

569 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
 570 and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *CoRR*,
 571 abs/2501.05366, 2025b. doi: 10.48550/ARXIV.2501.05366. URL <https://doi.org/10.48550/arXiv.2501.05366>.

572

573 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 574 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 575 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

576

577 Xuan-Phi Nguyen, Shrey Pandit, Revanth Gangi Reddy, Austin Xu, Silvio Savarese, Caiming Xiong,
 578 and Shafiq Joty. Sfr-deepresearch: Towards effective reinforcement learning for autonomously
 579 reasoning single agents. *arXiv preprint arXiv:2509.06283*, 2025.

580

581 OpenAI. Hello gpt-4o, 2024. URL <https://openai.com/index/hello-gpt-4o/>.

582

583 OpenAI. Introducing openai o3 and o4-mini, 2025a. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

584

585 OpenAI. Introducing deep research, 2025b. URL <https://openai.com/index/introducing-deep-research/>.

586

587 Thinh Pham, Nguyen Nguyen, Pratibha Zunjare, Weiyuan Chen, Yu-Min Tseng, and Tu Vu.
 588 Sealqa: Raising the bar for reasoning in search-augmented language models. *arXiv preprint
 589 arXiv:2506.01062*, 2025.

590

591 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, et al. Humanity’s last exam, 2025.
 592 URL <https://arxiv.org/abs/2501.14249>.

593

594 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 595 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 596 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

597

598 Serper.dev. Serper.dev – ai-powered search api. URL <https://serper.dev/>.

594 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 595 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 596 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

598 Kunal Singh, Sayandeep Bhowmick, Pradeep Moturi, and Siva Kishore Gollapalli. NO STRESS
 599 NO GAIN: STRESS TESTING BASED SELF-CONSISTENCY FOR OLYMPIAD PROGRAM-
 600 MING. In *ICLR 2025 Workshop: VerifAI: AI Verification in the Wild*, 2025a. URL <https://openreview.net/forum?id=7SlCSjhBsq>.

602 Kunal Singh, Ankan Biswas, Sayandeep Bhowmick, Pradeep Moturi, and Siva Kishore Gollapalli.
 603 Sbsc: Step-by-step coding for improving mathematical olympiad performance, 2025b. URL
 604 <https://arxiv.org/abs/2502.16666>.

606 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
 607 Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning,
 608 2025. URL <https://arxiv.org/abs/2503.05592>.

610 Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
 611 Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
 612 searching, 2025a. URL <https://arxiv.org/abs/2505.04588>.

613 Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia
 614 Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking via
 615 web-powered reasoning trajectory synthesis. *arXiv preprint arXiv:2505.16834*, 2025b.

616 Gemini Team. Gemini deep research, 2025a. URL <https://gemini.google/overview/deep-research/>.

619 Langchain Team. Langchain open deep research, 2025b. URL https://github.com/langchain-ai/open_deep_research.

622 Perplexity Team. Introducing perplexity deep research, 2025c. URL <https://github.com/Alibaba-NLP/DeepResearch>.

624 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 625 questions via single-hop question composition, 2022. URL <https://arxiv.org/abs/2108.00573>.

627 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 628 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
 629 *arXiv preprint arXiv:2411.04368*, 2024.

631 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 632 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 633 challenging benchmark for browsing agents, 2025. URL <https://arxiv.org/abs/2504.12516>.

635 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang, Yulan
 636 He, Deyu Zhou, Pengjun Xie, and Fei Huang. Webwalker: Benchmarking llms in web traversal,
 637 2025. URL <https://arxiv.org/abs/2501.07572>.

639 Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
 640 pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. *arXiv preprint*
 641 *arXiv:2509.02479*, 2025.

642 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
 643 Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
 644 Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
 645 model via self-improvement, 2024. URL <https://arxiv.org/abs/2409.12122>.

646 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical report,
 647 2025. URL <https://arxiv.org/abs/2505.09388>.

648 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 649 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 650 answering. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2018.
 651

652 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 653 Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
 654 Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
 655 Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 656 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
 657 open-source llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.
 658

659 A APPENDIX

660 A.1 AGENTIC TOOL DESIGN

661 We provide our policy model access to two tools:

662 **search_urls (web search).** The tool takes as input a natural language query q and returns a ranked
 663 list of triples $(u, \text{title}, \text{snippet})$ using a live search engine. The policy model uses this to identify
 664 promising sources and optionally select a URL u for opening in the next step. The tool is invoked as
 665 follows: `<tool_call>{name: search_urls, args: {query: q}}</tool_call>`

666 **query_url (goal-conditioned page reading).** Given a goal g and a URL u , the
 667 tool leverages a query LLM to return targeted evidence-backed response that address
 668 g . This tool enables precise grounding of facts and targeted querying of web-
 669 pages. Compared to the ingestion of entire web-page into the policy model's trajec-
 670 tory, this tool minimizes noise and increases recall. The tool is invoked as follows:
 671 `<tool_call>{name: query_url, args: {goal: g, url: u}}</tool_call>`

672 A.2 DATASETS

673 Datasets provided in the supplementary material:

674 **Stage-1 DeepSearch Training (DuetQA):** QA pairs (search-essential, multi-hop).

675 **Stage-2 DeepSearch + General Reasoning Training:** mixed QA pairs spanning DeepSearch
 676 and general reasoning tasks from S1 (maths), Musique (multi-hop) and DuetQA(live-web-search),
 677 MedQA(medical-reasoning) adversely filtered agaisnt Fathom-Search-Stage1 checkpoint.

678 **DeepResearch-SFT:** Contains synthetically generated open-ended questions, their DeepSearch
 679 traces from Fathom-Search-4B, the per-example planning used for report synthesis, and the final
 680 DeepResearch reports generated by GPT-5 from the corresponding search traces.

681 B ACKNOWLEDGEMENT

682 B.1 USE OF LLMs

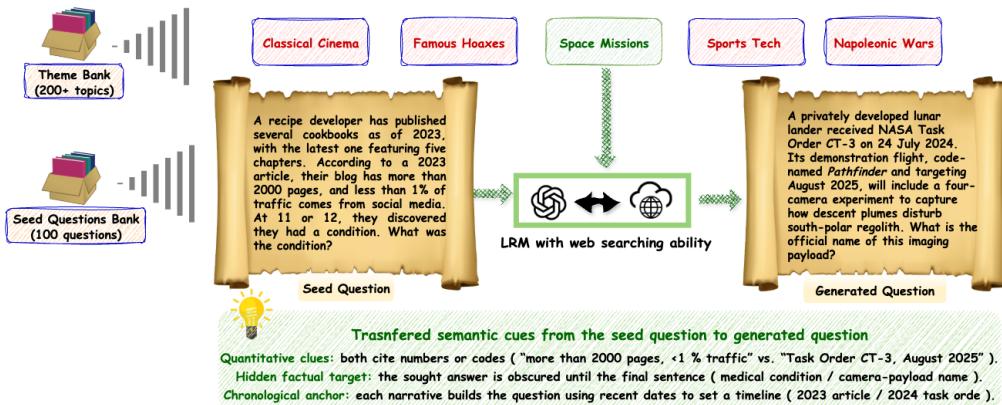
683 We acknowledge the use of LLMs for basic writing, grammar and formatting enhancements in limited
 684 capacity within the paper.

685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

Figure 5: Sample question from DuetQA, generated using the *Mixture-of-Themes mode*

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

Figure 6: Sample question from DuetQA, generated using the *Seeded-Question-Generation mode*

752
753
754
755

Figure 7: Comparison of policy entropy and gradient norm during RLVR training. GRPO exhibits rapid entropy collapse and diminished gradient norms due to sparse rewards, whereas RAPO sustains exploration and stronger updates via targeted updates

