
PAC-tuning: Fine-tuning Pretrained Language Models with PAC-driven
Perturbed Gradient Descent

Guangliang Liu*, Zhiyu Xue+, Xitong Zhang*, Kristen Marie Johnson* and Rongrong Wang*

*Michigan State University
+ UC Santa Barbara

{liuguan5,zhangxit,kristenj,wangron6}@msu.edu
zhiyuxue@ucsb.edu

Abstract
Fine-tuning pretrained language models
(PLMs) for downstream tasks is a large-scale
optimization problem, in which the choice of
the training algorithm critically determines
how well the trained model can generalize
to unseen test data, especially in the context
of few-shot learning. To achieve good gener-
alization performance and avoid overfitting,
techniques such as data augmentation and
pruning are often applied. However, adding
these regularizations necessitates heavy
tuning of the hyperparameters of optimization
algorithms, such as the popular Adam opti-
mizer. In this paper, we propose a two-stage
fine-tuning method, PAC-tuning, to address
this optimization challenge. First, based on
PAC-Bayes training, PAC-tuning directly
minimizes the PAC-Bayes generalization
bound to learn proper parameter distribution.
Second, PAC-tuning modifies the gradient by
injecting noise with the variance learned in the
first stage into the model parameters during
training, resulting in a variant of perturbed
gradient descent (PGD). In the past, the few-
shot scenario posed difficulties for PAC-Bayes
training because the PAC-Bayes bound, when
applied to large models with limited training
data, might not be stringent. Our experimental
results across 5 GLUE benchmark tasks
demonstrate that PAC-tuning1 successfully
handles the challenges of fine-tuning tasks
and outperforms strong baseline methods by a
visible margin, further confirming the potential
to apply PAC training for any other settings
where the Adam optimizer is currently used
for training.

1 Introduction

Since the emergence of pretrained language mod-
els (PLMs), e.g., BERT (Devlin et al., 2018) and
GPT-3 (Brown et al., 2020), fine-tuning of such pre-
trained models has been the de-facto pipeline for

1Our implementation is publicly available at
https://github.com/MSU-NLP-CSS/PAC-tuning

NLP, achieving state-of-the-art results in various
tasks. There are two main fine-tuning approaches:
parameter-tuning and prompt-tuning. Parameter-
tuning considers a PLM as a feature extractor and
tries to update the complete PLM with a small learn-
ing step (Jiang et al., 2020; Gunel et al., 2020). By
contrast, prompt-tuning aligns downstream tasks
with the objective of language modeling through
inserting prompts with or without task demonstra-
tions into the original sample and asking the PLM
to predict the next token according to the prompted
input context (Gao et al., 2021; Gu et al., 2022; Hu
et al., 2022b). In the context of few-shot learning,
parameter-tuning over a neural model with up to
billions of parameters is a non-trivial task (Zhang
et al., 2020; Dodge et al., 2020). A significant chal-
lenge is that the training process is unstable (Mos-
bach et al., 2020; Lee et al., 2019): given only
a few samples from downstream tasks, the over-
parameterization nature of a PLM leads to issues
such as overfitting and forgetting (He et al., 2021;
Kirkpatrick et al., 2017). Existing methods mainly
address these challenges by applying data augmen-
tation (Zhou et al., 2022; Wu et al., 2022; Kumar
et al., 2019), regularization (Zhu et al., 2019; Yu
et al., 2021; Aghajanyan et al., 2020; Jiang et al.,
2020) and network pruning (Xu et al., 2021).

From the perspective of machine learning the-
ory, data augmentation, regularization, and prun-
ing are all used during training as generalization
enhancers. Other well-known generalization en-
hancers include weight-decay and dropout. Per-
haps a little surprisingly, different choices of learn-
ing rates (Li et al., 2019) and mini-batch sizes (He
et al., 2019) also affect generalization. A less well-
known enhancer to the NLP community is noise in-
jection, implemented by the PGD (Perturbed Gradi-
ent Descent) algorithm (Orvieto et al., 2022, 2023).
Theoretically, PGD is shown to effectively help
the algorithm escape spurious local minima (Zhou
et al., 2019) and saddle points (Jin et al., 2021),

https://github.com/MSU-NLP-CSS/PAC-tuning


due to an implicit regularization on the trace of the
Hessian matrix.

In this paper, instead of searching for the op-
timal combination of a basket of generalization
enhancers, we follow an alternative training frame-
work, PAC-Bayes training (Rivasplata et al., 2019),
which provides a more straightforward way of im-
proving the generalization – the network is trained
towards directly minimizing the generalization er-
ror characterized by the PAC-Bayes bound (Maurer,
2004) instead of minimizing only the training loss.
Although PAC-Bayes bounds are classical bounds
in learning theory, leveraging them for training is
relatively new. This is likely due to concerns that
the PAC-Bayes bounds suffer from the curse of
dimensionality (Dziugaite and Roy, 2017a; Foong
et al., 2021); therefore they are unlikely to be effec-
tive on modern neural networks that are large and
deep. However, recent studies (Rivasplata et al.,
2019; Zhang et al., 2023) have shown that this view
might be too pessimistic, and that the PAC-Bayes
bound could be rather effective in training modern
convolutional neural networks.

This paper explores the potential of PAC-Bayes
training on even larger models, namely, the PLM.
We consider the most challenging task in the per-
spective of PAC-Bayes training, the fine-tuning
task, as it amounts to using an extremely small
training dataset to tune a PLM with millions of
parameters. For this setting, we propose a novel,
efficient implementation of PAC-Bayes training,
called PAC-tuning, which consists of two stages.
The first stage learns the noise variance and updates
the PLM’s parameters by minimizing a PAC-Bayes
upper bound. The second stage implements noise
injection training with the noise variance learned
from the previous stage. We validate the effec-
tiveness of PAC-tuning with few-shot text clas-
sification tasks extracted from the GLUE bench-
mark. The overall good performance of PAC-
tuning suggests promising potential for leveraging
PAC-Bayes training for fine-tuning much larger
PLMs, even during the pretraining process. To the
best of our knowledge, PAC-tuning is the first work
of its kind in terms of improving PLM fine-tuning
by PAC-Bayes training.

2 Related Works

Few-shot learning with PLMs has been compre-
hensively studied by Zhang et al. (2020) to under-
stand the influence of various factors, such as the

layer-wise learning rate and instability of cross-
entropy loss, in order to recommend techniques for
improving the final generalization performance. In
contrast to fine-tuning methods which require an
update for the model parameters, another research
line explores prompting-based methods; Prefix-
tuning (Li and Liang, 2021) is a representative one.
A straightforward solution for few-shot tasks is to
generate more data via data augmentation (Arthaud
et al., 2021; Feng et al., 2021). To grapple with the
forgetting issue of fine-tuning PLMs, trust-region-
based methods define a trustworthy region con-
straining the change of parameters in each update
step. Based on the lottery-ticket hypothesis be-
hind PLMs (Frankle and Carbin, 2018), parameter-
tuning methods that only update the sub-network of
a PLM have also been proposed (Ben Zaken et al.,
2022). All these methods require heavy hyperpa-
rameter searches and minimization of the training
error, instead of directly optimizing over the gener-
alization error.

PAC-Bayes Training means training machine
learning models by minimizing the PAC-Bayes
upper bound. In contrast to empirical risk min-
imization, PAC-Bayes training is more straight-
forward in terms of improving generalization by
minimizing the upper bound of generalization er-
ror. McAllester (1998) trains a stochastic neural
network on an MNIST dataset by minimizing a non-
vacuous PAC-Bayes bound. The PAC-Bayes train-
ing with BackProp proposed by Rivasplata et al.
(2019) trains shallow probabilistic neural networks
and certifies their risk by PAC-Bayes bound on the
MNIST dataset. Zhang et al. (2023) introduced
Auto-tune PAC to train various neural networks,
such as ResNet and GNN, through optimizing both
the prior distribution variance and posterior dis-
tribution variance of parameters. Auto-tune PAC
leverages a larger model and larger dataset, includ-
ing ResNet34, DenseNet121, and the CIFAR 100
dataset, and the authors test a GNN on a smaller
dataset with only 20 nodes per class. Previous
works overlook confidence difference between pre-
trained layers and adaptation layers, this is the main
reason that those works can not be applied to PLMs.
We, however, take the confidence difference into
account by learning the noise level associated with
pretrained layers and adaptation layers separately.

Perturbed Gradient Descent (PGD) implic-
itly regularizes the trace of the Hessian matrix to
push the model towards a region of the loss land-



scape with larger flatness, which is claimed to be a
measurement of generalization (Foret et al., 2020;
Jiang et al., 2019). Zhou et al. (2019) proves that
PGD can help a two-layer convolutional neural
network model escape a spurious local minimum
and converge to a global minimum. A similar
generalization-enhanced benefit of PGD is also
validated by Jin et al. (2021): given PGD, neu-
ral network models can converge to second-order
stationary points and avoid saddle points. While ex-
isting PGD works assign isotropic noise to models,
causing training loss explosion, PAC-tuning avoids
this problem by injecting parameter-wise noises to
PLMs.

3 Method

This section presents our proposed method, PAC-
tuning, an implementation of PAC-Bayes training
for parameter-based fine-tuning of PLMs. Sec-
tion 3.2 introduces PAC-Bayes training and the
PAC-Bayes bound, followed by Section 3.3 which
describes perturbed gradient descent. The moti-
vation to assist PGD with PAC-Bayes training is
presented in Section 3.4, and we explain the details
of PAC-tuning in Section 3.5.

3.1 Problem Setup and Notations
Let θ be the parameters of the PLM. We replace
the head layer of the PLM with a one-layer fully-
connected neural network parameterized by ω. De-
noting the PLM classifier as f , we consider θ and
ω as vectors for simplicity. Let ℓ(·; θ, ω) be the
loss function, e.g., the cross-entropy loss. An indi-
vidual sample is represented with (x, y) where x is
the input data and y is the associated label.

3.2 PAC-Bayes Training and the PAC-Bayes
Bound

The idea of PAC-Bayes training arises from mini-
mizing the PAC-Bayes bound J(θ,Q,P) ≡ Ltrain+
LPAC of the following type:

generalization error︷ ︸︸ ︷
Eθ∼QE(x,y)∼Dℓ(x, y; θ)

≤ 1

m

m∑
i=1

Eθ∼Qℓ(xi, yi, θ)︸ ︷︷ ︸
Ltrain

+

√
log 1

δ + KL(Q||P)

2m︸ ︷︷ ︸
LPAC

PAC-Bayes bounds are probabilistic bounds that
hold with high probabilities, i.e., 1 − δ (where δ
is the probability that the upper bound does not

hold), and for any neural network type. They char-
acterize the generalization error of a trained model.
Here, θ is the weight of the neural network, m is
the number of training samples, Q and P are arbi-
trary pairs of prior and posterior distributions, KL
is the Kullback–Leibler divergence measuring the
distance between two distributions, and D is the
training data distribution. When the PAC-Bayes
bound is nonvacuous, minimizing the bound effec-
tively reduces the generalization error. In several
recent works (Rivasplata et al., 2019; Zhang et al.,
2023), optimization algorithms have been proposed
to find the minimizer of J(θ,Q,P) when Q and
P are taken to be multivariate Gaussian distribu-
tions. This provides an automatic way to learn the
optimal noise levels (which are the variance of Q)
that reflect the different confidence levels of each
parameter in the model θ.

3.3 Noise Injection and Perturbed Gradient
Descent (PGD)

The KL term in the LPAC may suffer from two pos-
sible issues: (1) it could be difficult to compute and
(2) it could be too large to allow the training loss to
approach 0. As a result, it is a common practice to
ignore the LPAC term in the PAC-Bayes bound and
simply minimize Ltrain. In the simplest case, we
use isotropic Gaussian noise, N(θ, ηI), with mean
θ and noise level η as the posterior distribution, and
then Ltrain reduces to:

Ltrain =
1

m

m∑
i=1

Eτ∼N(0,I)ℓ(xi, yi, θ + ητ) (1)

This can be interpreted as the original training loss
with noise injected into the model parameters, and
our goal is to minimize its expectation.

The algorithm that minimizes Ltrain is called Per-
turbed Gradient Descent (PGD), which injects ran-
dom noise into the model before computing the
gradient and removes the added noise after the gra-
dient update.

Algorithm 1 describes the application of Per-
turbed Gradient Descent to the PLM. Specifically,
in line 2, noises τ1 and τ2 are sampled from a stan-
dard Gaussian distribution whose dimension is the
same as θ and ω (we refer readers to the confidence
difference issue in Section 3.5), respectively. Next,
we rescale the sampled noises by η1 and η2 and
inject them into the parameters of the PLM f to
produce noisy parameters θ

′
and ω

′
as shown in

line 3. Parameters are then updated according to



Algorithm 1: Perturbed Gradient Descent

1 Sample (x, y) from training dataset
2 Sample noise from a Gaussian distribution

τ1, τ2 ∼ N(0, I)
3 Rescale and inject noise

θ
′
, ω

′
= θ +

√
η1 · τ1, ω +

√
η2 · τ2

4 Update parameters θ, ω =

θ − α1 · ∂L(x;θ
′
,ω

′
)

∂θ , ω − α2 · ∂L(x;θ
′
,ω

′
)

∂ω

the perturbed gradient with a learning rate of α1

and α2, as shown in line 4.

3.4 The Noise Level
In the previous section, we explained why Ltrain
amounts to a noise injection into the model. Next,
we provide the intuition of why the proposed algo-
rithm can detect the noise variance automatically.
When we introduce noise into the model, the train-
ing loss Ltrain is expected to rise. The greater the
amount of noise added, the larger the anticipated
increase in Ltrain. In other words, Ltrain is generally
an increasing function of the noise level. Hence
if we just minimize Ltrain, then the optimal noise
variance would just be 0. The reason our algorithm
can learn a meaningful non-zero noise is due to
the existence of the second term LPAC in the loss,
which is a decreasing function of the noise level
when the noise converges towards the prior distri-
bution. As a result, we expect that minimizing the
total loss, Ltrain + LPAC, will find us an optimal
point for the noise level, and therefore achieve au-
tomatic learning of the noise. This is the basic idea
of the proposed PAC-tuning algorithm that will be
described in the next section.

After the training is complete, the learned
noise levels can be used for model interpreta-
tion/validation, as they reflect how important each
model parameter is to the final performance. For
example, a model parameter associated with a large
learned noise level is less important than one with
a small noise level. More concretely, if the trained
model parameter is (1, 1, 1) and the learned noise
level by PAC-training is (10, 1, 10), then it indi-
cates that the second model parameter is more
important than the first and the third because its
associated noise injection level is low.

3.5 PAC-tuning
Previous work on PAC-Bayes training all targeted
the one-time training of a neural network. In fine-

tuning, we train the model a second time, and there-
fore we expect the pretrained part to be updated less
in the second round. In other words, θ should not
change much since the PLM is assumed to be accu-
rate enough and we generally use a small learning
rate to update θ (Zhang et al., 2021). In contrast,
the learning rate for ω should be much larger be-
cause we are less confident about it. We name this
as the confidence difference issue. Recall in Sec-
tion 3.4, we explained how the noise level reflects
our confidence in the target parameters. Therefore,
we are motivated to use different noise levels as
well as learning rates for θ and ω. In turn, the KL
term in the LPAC would consist of two parts:

KL(Qω||Pω) + KL(Qθ||Pθ)

To force these KL divergences small for extremely
large models, we leverage the PAC-Bayes bound
proposed in Zhang et al. (2023), a variant of the
basic PAC-Bayes bound J(θ,P,Q) described in
Section 3.2. The final objective function we want
to minimize, omitting learnable parameters of the
prior distribution variance, e.g., λ and β, for sim-
plicity, is J(·; ξ, ϵ, θ, ω):

J(D; ξ, ϵ, θ, ω) =

Ltrain︷ ︸︸ ︷
1

m

m∑
i

ℓ(xi, yi; θ, ω)

+
(ln 1

δ + KL(Qθ
ξ ||Pθ

λ) + KL(Qω
ϵ ||Pω

β ))

γm
+ γK2︸ ︷︷ ︸

LPAC

where ξ and ϵ are the posterior distribution vari-
ance associated with θ and ω respectively, D =
{(xi, yi)}mi=1 is the training dataset, δ ∈ (0, 1) is
the probability of failure, γ can be set to any value
within a bounded [γ1, γ2] specified by the users,
and K(λ, β, γ1, γ2) > 0 is the effective variance
of the training loss ℓ when the prior variances for
(θ, ω) are set to (λ, β). We refer readers to Section
4 of Zhang et al. (2023) for more details about γ
and K. This objective function is obtained by mak-
ing the following assumptions: (1) the prior distri-
butions of the PLM classifier are Pθ

λ = N(θ0, λI)
and Pω

β = N(ω0, βI), where θ0 and ω0 are the
initialized parameter weights, and (2) in each gra-
dient update t, the posterior distributions of the
PLM classifier are Qθ

ξ = θt + N(0, diag(ξ)) and
Qω
ϵ = ωt +N(0, diag(ϵ)) where θt and ωt are the

current parameter weights for the gradient update
step t.
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Figure 1: PAC-tuning Pipeline. In Stage 1, we update
the model parameters and noise variance by minimizing
the PAC-Bayes bound J described in Section 3.2. Then
the optimal noise variance ξ∗ and ϵ∗ are learned after T1

training epochs. Next, fine-tuning is continued in Stage
2 with Algorithm 1 but the noise variance is fixed as ξ∗

and ϵ∗, and the objective function is training loss Ltrain
only. Model parameters θ and ω are updated during
both fine-tuning stages.

Figure 1 shows the pipeline of our proposed PAC-
tuning technique. The implementation contains
two stages. In Stage 1, by minimizing the objec-
tive J over T1 epochs, the optimal noise variance
ξ∗ and ϵ∗ and the model parameters θ and ω are
updated. Afterward, we leverage PGD on the PLM
(Algorithm 1) with fixed noise levels as ξ∗ and ϵ∗

to update θ and ω. Two stages of fine-tuning are re-
quired because minimizing J cannot usually make
the PLM classifier fit the downstream data very
well due to the existence of the LPAC term. During
stage 2, the LPAC term is dropped; therefore the
PLM classifier can fit the downstream data well.

The target of Stage 1 is to estimate posterior vari-
ance ξ and ϵ as well as update model parameters2:

ξ∗, ϵ∗, θ∗, ω∗ = argmin
ξ,ϵ,θ,ω

J(D; ξ, ϵ, θ, ω)

To reflect our greater confidence in θ than ω,
we initialize ξ to be smaller than ϵ. Meanwhile,
we follow the convention to use a smaller learning
rate for the θ than ω. The small learning rate of
θ would in turn result in a smaller gradient for
the corresponding noise ξ. Therefore, we need a
larger learning rate for ξ to neutralize this effect. In
addition, dropout introduces extra noise to model
parameters (Wei et al., 2020), resulting in a conflict
with the noise injection by our proposed method.
To effectively employ PAC-tuning, dropout must
be disabled.

Given the learned posterior variance, Stage 2
continues fine-tuning θ and ω through PGD. In

2Please note λ and β are also optimized in Stage 1.

each gradient update, we sample noise τ1 and τ2
from a standard normal distribution and multiply
them by the learned noise variance (ξ∗ and ϵ∗) from
Stage 1 to replace line 3 of Algorithm 1 as:

θ
′
= θ +

√
ξ∗ · τ1

ω
′
= ω +

√
ϵ∗ · τ2

4 Experiments and Analysis

In this section, we outline our experimental settings,
dataset, and baseline models used for evaluation.
Section 4.4 discusses the experimental findings.
Section 4.5 concludes with an analysis of the sta-
bility of our PAC-tuning approach.

4.1 Experimental Settings

We conduct extensive experiments with PAC-
tuning and baseline PLMs over 5 text classifica-
tion tasks of the GLUE benchmark 3 as shown in
Tables 1 and 2. We adopt the HuggingFace imple-
mentations of BERT 4 and GPT-2 5 as a backbone
and add one fully-connected layer to be the classi-
fication layer. To simulate a few-shot learning sce-
nario, we randomly sample 100 instances from the
original training set and use the whole development
set to evaluate the classification performance. All
experiments are repeated 5 times and we report the
average performance over 5 seeds6 on the original
development set. All model architectures have the
same hyperparameters and optimizers in all exper-
iments, except the training epochs in PAC-tuning
(as further detailed in Appendix A). We freeze the
parameters associated with embeddings and do not
update them during fine-tuning.

For the implementation of PAC-tuning, we set
the learning rate for the variances associated with
the PLM, ξ and λ, to 0.1, and the learning rate for
the variances of the classification layers, ϵ and β,
to be initialized as 0.5 and decreased to be 90% ev-
ery 10 gradient updates, until the minimal of 0.01.
We chose the loss interval γ as 10 for the tasks
of SST and CoLA, and used 5 for the remaining
tasks. PAC-tuning Stage 1 runs for 250 epochs
with a maximum training epoch of 300. However,
the convergence of Stage 1 depends on the diffi-
culty of the considered task. For the SST task, a
stage 1 with 100 epochs can ensure convergence,

3https://gluebenchmark.com/
4https://huggingface.co/bert-base-uncased
5https://huggingface.co/gpt2
6Seeds used: 1, 2, 10, 26, 100



but 250 epochs of Stage 1 is enough for all of the
experiments reported in this paper.

4.2 Dataset

Five tasks of the GLUE benchmark are used to val-
idate our proposed fine-tuning method: the Corpus
of Linguistic Acceptability (CoLA), the Stanford
Sentiment Treebank (SST), a mixture of the two
datasets MultiNLI Matched and MultiNLI Mis-
matched (MNLI-m), Question NLI (QNLI), and
Recognizing Textual Entailment (RTE).

4.3 Baseline Methods

The following baseline methods represent current,
typical approaches for fine-tuning.

• Vanilla-tuning is the vanilla, basic parameter-
tuning without any add-on regularization.

• Data Augmentation is implemented in this
work with BackTranslation (Sennrich et al.,
2016) to control the quality of augmented data.
BackTranslation is a model-based augmenta-
tion method, which first translates a sequence
of tokens into another language and then trans-
lates it back to the original language. We
mix the sampled training data and augmen-
tation data together as the training set. For
benchmarks with paired inputs, e.g., MNLI-
m, QNLI, and RTE, we generate 2 augmented
samples for each training sample. One is gen-
erated from the first part of the input and the
other is generated using the second part of that
input. For the remaining benchmarks (SST
and CoLA), we generated only one augmented
sample using back translation.

• Noise Injection (Orvieto et al., 2023) theo-
retically and empirically proves that noise in-
jection into a randomly selected layer in each
gradient update can avoid large loss variance
and effectively implement explicit regulariza-
tion to overparameterized models.

• Low-Rank Adaptation (LoRA) (Hu et al.,
2022a) aims to address the challenges of
fine-tuning PLMs by leveraging low-rank ap-
proximations of the model’s weight matrices,
achieving more efficient adaptation to spe-
cific tasks or domains. The low-rank adap-
tation matrix amplifies important features for
specific downstream tasks that were learned
but not emphasized in the general pretrained
model, making the adaptation process more

efficient while alleviating overfitting to down-
stream tasks.

• Prefix-tuning (Li and Liang, 2021; Liu et al.,
2022) optimizes a sequence of continuous
task-specific vectors added to the beginning of
the input sequence, known as prefixes, while
keeping the PLM parameters frozen. It pro-
vides a more efficient and effective approach
for fine-tuning PLMs by optimizing these con-
tinuous prefixes.

• BitFit (Ben Zaken et al., 2022) is a subnet-
work fine-tuning method that only optimizes
the bias terms of the PLM. By targeting a
specific subset of the model parameters, Bit-
Fit achieves competitive performance by fine-
tuning the entire model, and is especially ef-
fective with smaller training datasets.

4.4 Experimental Results

Tables 1 and 2 show the experimental results of our
proposed PAC-tuning approach compared to other
fine-tuning methods when used with the two back-
bone PLMs, BERT and GPT-2, respectively. The
first column lists the specific fine-tuning method as
described in Section 4.3. The first three techniques,
vanilla-tuning, data augmentation, and noise in-
jection are instances of parameter-tuning methods.
The next two techniques, LoRA and prefix-tuning,
are examples of parameter-efficient-tuning. The
next 5 columns correspond to each GLUE bench-
mark task. Results for each task are reported in
terms of accuracy, except for the CoLA task which
uses the Matthew’s correlation coefficient (MCC).
The final column reports the average results for
each fine-tuning approach across all 5 tasks.

Overall, PAC-tuning achieves the best average
performance with both PLMs, but is not the best
fine-tuning approach for the MNLI-m task given
the BERT-base backbone. The average perfor-
mance of parameter-tuning methods is better than
that of parameter-efficient tuning methods, though
LoRA is the second best fine-tuning method in
Table 1. These experimental results show support-
ive evidence for future research in applying PAC-
tuning for fine-tuning PLMs for downstream tasks.

When applied to the BERT backbone (Table 1),
in the tasks of CoLA and SST, PAC-tuning’s per-
formance exceeds other fine-tuning baselines by a
large margin. The performance gain for the QNLI
and RTE tasks is somewhat smaller, but still signifi-
cant. However, PAC-tuning is worse than data aug-



BERT CoLA SST MNLI-m QNLI RTE
(MCC) (Accuracy) (Accuracy) (Accuracy) (Accuracy) Average

Vanilla-tuning .235 .773 .369 .702 .589 .533
Data Augmentation .171 .817 .395 .705 .594 .536

Noise Injection .233 .783 .371 .706 .588 .536

LoRA .298 .792 .385 .669 .592 .547
Prefix-tuning .191 .704 .375 .649 .565 .497

BitFit .267 .768 .376 .647 .588 .510

PAC-tuning .335 .834 .387 .709 .601 .573

Table 1: Experimental Results for BERT-base-uncased Backbone Model. The best results are highlighted in bold. PAC-tuning
outperforms other fine-tuning methods in all tasks except MNLI-m, where data augmentation contributes to the best performance.
PAC-tuning achieved the best average performance across all 5 tasks.

GPT-2 CoLA SST MNLI-m QNLI RTE
(MCC) (Accuracy) (Accuracy) (Accuracy) (Accuracy) Average

Vanilla-tuning .048 .774 .353 .560 .572 .461
Data Augmentation .031 .777 .355 .573 .574 .462

Noise Injection .073 .713 .369 .550 .552 .451

LoRA .053 .703 .366 .545 .560 .445
Prefix-tuning .071 .521 .352 .523 .525 .398

BitFit .047 .586 .366 .542 .520 .432

PAC-tuning .085 .815 .373 .576 .580 .486

Table 2: Experimental Results for GPT-2 Backbone Model. The best results are highlighted in bold. PAC-tuning outperforms
all other fine-tuning methods.

mentation and parameter-efficient tuning methods
for the MNLI-m task. Data augmentation-based
fine-tuning is the best method for the task of MNLI-
m and is the second or third best method for SST,
QNLI, and RTE. However, it performs worse than
vanilla-tuning for the CoLA task. It is the second
best method in terms of stable performance across
five tasks, indicating the effectiveness of data aug-
mentation in a low-resource setting.

According to Table 2, the overall performance
of GPT-2 is worse than that of BERT-based fine-
tuning methods, particularly in the task of CoLA.
This is consistent with previous findings (Liu et al.,
2021; Radford et al., 2019). However, the addi-
tion of our method improves the fine-tuned perfor-
mance, and our method is the best fine-tuning ap-
proach for all tasks. All fine-tuning methods show
similar trends in performance as with the BERT
backbone.

The overall good performance of PAC-tuning
proves its feasibility and usefulness for fine-tuning
PLMs for few-shot text classification tasks. This
typical application scenario introduces two key
challenges for applying PAC-Bayes training: larger
model sizes and smaller data sizes, which are gen-
erally considered to result in vacuous bounds, pre-

venting the use of PAC-Bayes training in practical
settings. Our results of PAC-tuning demonstrate
that PAC-Bayes training can be used with even
very large models like PLMs, that have never been
considered before.

4.5 Stability Analysis

The PAC-Bayes bound contains a term relevant
to data size and the KL-divergence term is associ-
ated with model size. Therefore, we conduct thor-
ough experiments to analyze how PAC-tuning’s
performance changes given different data sizes and
model sizes. Table 3 shows the performance of
BERT-based fine-tuning methods with respect to
a training dataset size of 50 and 20. We construct
the training dataset by implementing random sam-
pling over the training set of SST and RTE. When
training data size drops to 20, the performance of
PAC-tuning is worse than prefix-tuning by a very
small margin. Considering the test size of RTE is
small, the performance difference between prefix-
tuning and PAC-tuning implies that both methods
have very close generalization performances.

Table 4 describes the classification results when
considering fine-tuning methods on the SST and
RTE tasks with BERT-large-uncased as the back-



SST Training Size 50 20 RTE Training Size 50 20

Vanilla-tuning .772 .601 Vanilla-tuning .530 .517
Data Augmentation .783 .585 Data Augmentation .533 .507

LoRA .756 .596 LoRA .538 .514
Prefix-tuning .672 .572 Prefix-tuning .538 .536

BitFit .746 .610 BitFit .543 .517
PAC-tuning .810 .620 PAC-tuning .546 .532

Table 3: Stability Analysis of Training Dataset Sizes. This table presents the accuracy on development sets for the SST and
RTE tasks while varying training dataset sizes. PAC-tuning’s performance drops as the CoLA data size decreases to 20 but is still
the best fine-tuning method given 50 training samples.

BERT-large SST RTE

Vanilla-tuning .832 .561
Data Augmentation .836 .591

LoRA .845 .560
Prefix-tuning .721 .542

BitFit .804 .546
PAC-tuning .848 .565

Table 4: Stability Analysis for a Larger Model Architecture.
PAC-tuning outperforms other fine-tuning methods for the
task of SST when using BERT-large-uncased. The training
data size is fixed at 100.

bone model. With this larger model, all fine-tuning
methods have a performance increase over the two
tasks. PAC-tuning is the best method in the SST
task and the second best in the task of RTE, where
data augmentation outperforms all methods. When
viewed with the main experimental results of Sec-
tion 4.4, these stability tests further validate the
usefulness of leveraging PAC-Bayes training, via
PAC-tuning, to fine-tune PLMs in the challenging
settings of small training data availability and ex-
tremely large pretrained models.

5 Discussion

5.1 The Role of Stage 1

Stage 1 learns the noise variance to be used in
Stage 2 and prepares the model to be at a good
initialization state for Stage 2. Figure 2 indicates
that if we start Stage 2 from the initial pretrained
model and not from the learned model from Stage
1, then the PGD steps in Stage 2 cannot converge.
This means both the level of the noise injection and
the initialization learned from Stage 1 are important
for the success of Stage 2, showcasing the role of
Stage 1 for the PAC-tuning approach.

5.2 The Necessity of Stage 2

To empirically verify the necessity of Stage 2 in
PAC-tuning, we run PAC-tuning on the SST dataset

Figure 2: From the beginning of Stage 2, the noise learned
in Stage 1 is applied to fine-tune a BERT-based model on the
SST dataset from scratch, as the blue line shows. Beginning
at the 200th epoch we continue PAC-tuning, as shown in the
red line, and leverage the learned noise in Stage 1 to fine-tune
the model from scratch, as described by the blue line.

and validate how the training loss changes in the
fine-tuning process. From Figure 3, it is clear that
the training loss stagnates around 1.5 at the end
of Stage 1 (200 epochs), which indicates that the
model has not fit the data. This is because the
existence of the LPAC term in the objective func-
tion prevents the optimizer from further decreasing
Ltrain. As long as Stage 2 starts, the model quickly
fits the data and the training loss is almost zero.
More discussion on the two-stage training schema
is available in Appendix B.

6 Advice for Applying PAC-tuning

In this section, we wish to share recommendations
for using PAC-tuning, since the training process
of PAC-tuning is different from conventional fine-
tuning progress.

• In Stage 1, the target is to minimize Ltrain +
LPAC which is larger than the training loss
alone. Therefore, users may not observe a



Figure 3: The training trajectory w.r.t. the training loss (cross-
entropy loss) in the course of PAC-tuning with the SST dataset
and BERT-base. We take 200 training epochs for Stage 1, and
Stage 2 starts from the 200th epoch as indicated by the black
vertical line.

large decrease in the training loss. As long
as the total loss is reducing, PAC-tuning is
progressing correctly.

• Since the variances of the noises are non-
negative, we used exp(2p) to model them,
where p is a trainable parameter. In addi-
tion, we initialize the standard deviation using
the initial weights. More specifically, p is
initialized as the log magnitude of the initial
weights.

• An effective way to check the status of Stage
1 is to check the mean value of the posterior
variance. If the mean value does not change,
users should increase their learning rate or
increase the learning rate of the PLM.

• The prior variance parameters can easily ap-
proach convergence and are less sensitive to
learning rate. Therefore, users can begin with
a large learning rate and decrease it gradually.
For the learning rate of the posterior variance,
since the gradient is very small, we recom-
mend readers to pick up a large learning rate.

7 Conclusions and Future Work

In this paper, we propose a PLM fine-tuning
method, PAC-tuning, for few-shot text classifica-
tion. PAC-tuning is based on PAC-Bayes train-
ing and perturbed gradient descent. We leverage
PAC-tuning in the more challenging settings of
larger models and smaller training data, which are

generally considered to be the two main obstacles
for improving generalization through PAC-Bayes
training. With extensive experiments on 5 GLUE
benchmark tasks, we observed that the performance
of PAC-tuning is competitive to other fine-tuning
methods and more stable with respect to differ-
ent model sizes and training dataset sizes. PAC-
tuning, our proposed pretrained language model
fine-tuning method, can be expanded in several
ways for future work. More larger-sized models
should be validated to fully explore the effective-
ness of PAC-tuning. It would also be interesting
to augment other fine-tuning techniques with PAC-
tuning, especially data augmentation. Lastly, the
performance of PAC-tuning is largely determined
by the convergence of Stage 1, necessitating more
studies to determine how to make Stage 1 con-
verge quickly and robustly. Our experimental re-
sults demonstrate the usefulness of PAC-tuning and
the potential to consider NLP problems from the
point-of-view of generalization, a less explored
PLM-optimization approach in the NLP commu-
nity.

8 Limitations

Although we empirically validated the effective-
ness of our proposed PAC-tuning method, there
is still room for improvement. In particular, we
cannot validate how PAC-tuning can be improved
with the full-batch gradient update due to GPU
hardware access limitations. Related to this, we
did not perform an exhaustive best hyperparameter
search, and instead defaulted to conventional learn-
ing rates and batch sizes to ensure fairness across
all experiments.

It is also possible that the reported performances
may not be the best performances. BERT and GPT-
2 are not the newest language models and they are
small compared to currently popular large language
models. Therefore, more experiments for larger
models are required, including experiments with
close-sourced yet powerful models such as GPT-4.
Furthermore, our experiments should be repeated
in order to compare the performance of PAC-tuning
and prompt-based techniques for validation against
models such as ChatGPT and BARD.
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A Hyperparameters

Hyperparameters Setting

Optimizer AdamW
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-3

Learning rate for θ 5e-5
Learning rate for ω 1e-2

Maximum training epochs 35
Weight decay 0.01

Batch size 32

Table 5: Hyperparameter Settings for the AdamW Opti-
mizer.

B Two-stage Approach

Most PAC-Bayes training methods typically rely
on a single-stage approach. However, these meth-
ods are limited in their applicability, as they can
only effectively handle bounded loss functions and
shallow networks. They also struggle to optimize
the noise prior, resulting in suboptimal final perfor-
mance. We know of one other paper that used two
stages but in a different way. More explicitly, Dziu-
gaite and Roy (2017b) introduce a two-stage train-
ing process, where the first stage focuses on learn-
ing the model prior, followed by a second stage

that learns the model posterior. Despite the use
of two stages, as presented in Dziugaite and Roy
(2017b), the method still faces challenges when
dealing with unbounded loss functions, such as the
commonly used cross-entropy loss in text classifi-
cation tasks. Moreover, it demands a significant
amount of training time.

To the best of our knowledge, prior to this work,
there has been no PAC-Bayes training method that
outperforms the baseline methods on any popular
task, especially when targeting complex architec-
tures like transformers.

The primary reason for the extended training
epochs required in Stage 1 of PAC-tuning is the
necessity to effectively learn both the model and
the noise. It is worth noting that all PAC-Bayes
training methods that optimize these aspects also
tend to require more training epochs. While this
does result in longer running times, the benefit of
learned noise is significant, as it can be used to
enhance model calibration and support pruning.
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