Learning Models as Functionals of Signed-Distance Fields for Manipulation Planning

Abstract: This work proposes an optimization-based Task and Motion Planning (TAMP) framework where the objectives are learned functionals of signed-distance fields that represent objects in the scene. Most TAMP approaches rely on analytical models and carefully chosen abstractions/state-spaces to be effective. A central question is how models can be obtained from data that are not primarily accurate in their predictions, but, more importantly, enable efficient reasoning within a planning framework, while at the same time being closely coupled to perception spaces. We argue that signed-distance fields not only enable to learn and represent a variety of models, but also that such models are suitable for optimization-based planning. To demonstrate the versatility of our approach, we learn both kinematic and dynamic models to solve tasks that involve hanging mugs on hooks and pushing objects on a table. We can unify these completely different tasks within one framework, since SDFs are the common object representation.

Keywords: Manipulation Planning, Signed Distance Fields, Model Learning

1 Introduction

Manipulation planning is challenging for multiple reasons. On the one hand, planning robot motions to solve a task can be formulated as a decision problem over a high-dimensional, non-convex space, including discrete and continuous aspects. Especially long-horizon tasks that consist of multiple manipulation steps have the property that motions have to be coordinated globally with the future goal. This coupling of potentially all variables requires joint reasoning and makes the problem particularly challenging [1]. On the other hand, the problem solving capabilities of a planning framework is inherently dependent on its underlying models. The field of Task and Motion Planning (TAMP) has made significant progress in solving challenging multi-step, long-horizon tasks [2], ranging from ones that involve mainly kinematic models [3, 4, 5, 6, 7] to dynamic tasks that require reasoning about forces, friction etc. based on more general dynamic equations [8, 9, 10, 11, 12, 13]. However, most TAMP approaches rely on carefully chosen abstractions and analytically defined models in order to be successful and efficient. In particular, TAMP often makes simplifying assumptions on the possible geometries of objects it can deal with to define manipulation constraints in the first place. It is unclear how these models can be grounded from sensor information.

To overcome these issues, a natural idea is to replace the analytic models in TAMP frameworks with learned ones. Recent advances in deep learning have enabled to learn predictive forward models even in high-dimensional observation spaces like images. The typical objective for learning a forward model is its predictive accuracy. However, having an accurate model does not necessarily imply that a planning framework can utilize it efficiently. While having an accurate forward prediction model might be sufficient for short-horizon tasks, especially for long-horizon tasks, learned models can exhibit too high combinatorics for sampling or non-informative gradients for achieving future goals.

This paper aims to address these challenges by learning models that can be used effectively by a planning framework while at the same time using a general object representation more closely related to sensors spaces. To realize this, we present an optimization-based TAMP framework where the objectives are learned functionals of signed-distance fields (SDFs). The SDFs represent each object in the scene separately, while the functionals defined on top of them induce constraints on possible, physically plausible interactions between the objects within a trajectory optimization problem. The task planning aspect is realized by (discrete) decisions which of those functionals are active at which phase of the planning horizon.

Submitted to the 5th Conference on Robot Learning (CoRL 2021). Do not distribute.
We argue that representing objects as SDFs has multiple advantages. First, an SDF can be seen as an intermediate representation between raw perception like point-clouds or images and full state information. While not the focus of this work, many methods have been developed to obtain SDFs from, e.g., image observations of the scene. Further, SDFs can represent arbitrary, non-convex geometries, which is beneficial, since manipulation problems and physical phenomena often depend on the geometry of the interacting objects. Finally, we show that SDFs are particularly suited for learning and representing models that can later be used within a planning framework effectively. Since our models are functionals of the SDFs, the constraints can take the information about whole objects into account to reason about their geometry and therefore especially the interaction between objects. Compared to a representation that only describes the surface of an object like point clouds or occupancy measures, a signed-distance field also provides information about the object at distance, enabling the functionals, for example, to have more useful gradients.

In the experiments, we demonstrate the versatility of our approach by tackling two completely different tasks within one framework: On the one hand, a kinematic task where the goal is to hang mugs of different shapes on hooks of different shapes. On the other hand, a pushing scenario where boxes and L-shaped objects should be pushed to different goal regions by pushers of different sizes. In the first case, the model predicts whether the static interaction between SDFs leads to manipulation success, whereas in the latter case, the model predicts the forward dynamics in SDF space based on a history of SDF interactions of two objects. We show that our framework can be used to plan motions that involve multiple push phases. To summarize our main contributions, we propose

- To learn a novel class of kinematic and dynamic models as functionals of SDFs,
- A manipulation planning framework that utilizes these learned functionals as constraints.

## 2 Related Work

### 2.1 Signed Distance Fields as Object Representation

Representing objects or scenes as implicit surfaces [14, 15, 16] or SDFs [17, 18, 19, 20] is an active research topic, due to aforementioned advantages. Our focus is not to obtain SDFs from observations in the first place. Conversely, we are interested in what can be done with SDFs in the context of model learning and manipulation planning. While some recent approaches [21, 22, 23] have suggested that grasping of diverse objects can be addressed using implicit functions, we present a manipulation framework that utilizes SDFs for formulating more general models.

### 2.2 Perceptual Models

There is great interest in learning predictive models in perception spaces, especially applied to the problem of pushing. So-called visual foresight approaches [24, 25, 26] aim to predict the evolution of the scene in image space. Our dynamics model, in comparison, is also closely related to perception spaces, but is naturally differentiable. Xu et al. [27] use a voxelized SDF-based representation of the whole scene to predict the motion of an object when an action is applied. Our approach is more structured in the sense that we do not predict the scene flow for actions applied on a single object, but the dynamics of interacting of objects. In [28], the pushing dynamics in keypoints extracted from visual object observations is learned. However, their focus is to utilize the learned model to stabilize a trajectory with MPC. We focus on planning a complex pushing trajectory and not stabilization during execution. SE3 networks [29] learn a forward model that predicts a rigid transformation of an observed point cloud given actions. However, they need ground-truth transformations at training time (we only need SDF observations). Where most of these approaches differ from our approach is that they assume the model to be a function of the observation of a single object or the scene and an action as input. Therefore, these approaches are mostly limited to the same pusher geometry and make the assumption that actions can readily be applied to the object. Our model handles the interaction between objects of different shapes and can plan the contact establishment phase as well. Transporter networks [30] or deep visual reasoning [7] predict manipulation sequences from image spaces. However, no dynamic models are considered in these approaches.

### 2.3 Manipulation Planning (with learned models)

In [31, 32], a manipulation framework based on point cloud observations and manipulation primitives is proposed. Our method plans the complete motions based on learned dynamic models. Sutanto et al. [33] is related to our formulation in the sense that they learn manifolds that are used as constraints in sequential manipulation problems. However, there are no dynamic models or dependencies on the geometry of the involved objects in the learned constraints. You et al. [34] address a hanging task similar to our mug hanging experiment on a more diverse set of object categories.
They use a point-cloud-based input representation to predict a hanging pose. Therefore, they need a
special neural network for collision avoidance (similar to [35]), while our SDF based representation
can handle collisions directly. Further, we learn a manifold of solutions instead of predicting a single
hanging configuration. To summarize, what makes our approach unique is that we propose to use
SDFs as a common object representation that is closely connected to perception to learn a variety
of models that take the interaction of objects into account and can be integrated in an optimization-
based motion planning framework.

3 Background on Signed-Distance Fields (SDFs)

Let \( \Omega \subset \mathbb{R}^3 \) be an object in the 3D Euclidean space. A function \( \phi : \mathbb{R}^3 \rightarrow \mathbb{R}, \phi \in \Phi \) with
\( \phi(x) = -d(x, \partial \Omega) \) for \( x \in \Omega \) and \( \phi(x) = d(x, \partial \Omega) \) for \( x \in \mathbb{R}^3 \setminus \Omega \) is called a signed-distance field
of \( \Omega \) in \( \mathbb{R}^3 \). Here, \( d(x, \partial \Omega) = \inf_{x' \in \partial \Omega} \|x - x'\|_2 \) and \( \partial \Omega \) the boundary of \( \Omega \). We assume \( \phi \) to
be differentiable almost everywhere in \( \mathbb{R}^3 \). The way \( \phi \) is defined ensures that inside the object, \( \phi 
attains negative values, on the boundary zeros, and outside positive ones. We denote with the set \( \Phi \)
the space of all functions \( \phi \) that are SDFs for some object.

Rigid Transformations of SDFs  A central concept in this work is to rigidly transform SDFs in
space. This can be realized by transforming the input where the SDF is queried. To simplify the
notation, we define a rigid transformation
\[
T(q)[\phi](\cdot) := \phi \left( R(q)^T (\cdot - t(q)) \right)
\]
of an SDF \( \phi \), where \( q \in \mathbb{R}^7 \) (translation + quaternion) parameterizes \( R(q) \in \mathbb{R}^{3 \times 3} \) as a rotation
matrix and \( t(q) \in \mathbb{R}^3 \) as the translation vector.

4 Manipulation Planning with Signed-Distance Functionals

The core idea of this work is to represent each object \( i \) in the scene as a signed-distance field \( \phi^i \) in
order to learn predictive models as functionals \( H \) of these SDFs. Based on the learned functionals,
we formulate a trajectory optimization problem where the decision variable is a trajectory of rigid
transformations applied on the initial SDFs as they have been observed in the initial scene.

More specifically, through interaction with the environment, we aim to learn functionals of the
form \( H : \Phi \times \cdots \times \Phi \rightarrow \mathbb{R} \) that map multiple SDFs of multiple, possible different objects at
possibly different consecutive times to a real number. These are trained in a way that a value of zero
implies that the SDFs as input are compatible with what has been learned through interaction with
the environment. Otherwise, they should attain a positive value, hence functionals \( H \) discriminate
correct from incorrect dynamics or desired from undesired manipulations.

The learned functionals then define constraints for the (hybrid) trajectory optimization problem
\[
\min_{q_0, \ldots, q_T \in \mathbb{R}^{7 \times n_O}} \sum_{t=1}^{K \cdot T} c(q_{t-L:T, s_{k(t)}})
\]
\[\text{s.t.} \ \forall H \in \mathbb{H}(s_{k(t)}) : H \left( \left( T(q^i_{t})[\phi^i](t,i) \right)_{t \in \mathbb{I}_H(s_{k(t)})} \right) = 0 \]
\[s_{1:K} \in \mathbb{S}(S), \ q_0 = 0. \]

The discrete variable \( s_k \) determines which functionals \( H \) from the set \( \mathbb{H}(s_{k(t)}) \) are active at which
of the \( K \in \mathbb{N} \) phases of the motion (\( k(t) = \lfloor t/T \rfloor \)). This number of phases is part of the decision
problem. The trajectory \( q_0, K, T \) of rigid transformations is discretized in time into \( T \in \mathbb{N} \)
steps per phase. If \( n_O \) is the number of objects in the scene \( S \), then \( q_t \in \mathbb{R}^{7 \times n_O} \), leading to \( 7 \cdot K \cdot T \cdot n_O \)
continuous variables. Further, \( s_k \) selects through the set \( \mathbb{I}_H(s_{k(t)}) \) the time slice and object index
tuples \((t, i)\) that determine the SDFs \( \phi^i \), which have been transformed through \( q^i_t \), at the times \( t \)
of the trajectory on which the functional constraints \( H \) depends on. This problem formulation is
inspired by LGP [10], but the constraints are replaced by learned functionals of SDFs. The set
\( \mathbb{S}(S) \) contains all valid sequences \( s_{1:K} \) of such discrete variables for the scene \( S \). The goal of the
manipulation problem is specified through \( \mathbb{S}(S) \) by \( s_K \) selecting a desired goal functional constraint
that has to be fulfilled at the end \( q_{K, T} \) of the trajectory. Solving (2) therefore involves a tree search
over nodes \( s_{1:K} \) such that the continuous optimization problem implied by the choice of \( s_{1:K} \) at a
node of the tree is feasible. The role of \( q \) in the optimization problem is not an absolute object pose,
but rather rigid transformations applied to the SDFs \( \phi^i \) that represent the configuration of the object

3
as observed in the scene initially. With the term \( c \), we can include regularizing motion costs. As will be described in sec. 5.1, the forward dynamic model we learn for pushing implies a constraint on the evolution of one object based on the motion of another object. Therefore, we only add motion costs to those degrees of freedom that can be interpreted as being controlled, meaning the motion of the other object. From the perspective of \( \phi \), there is no explicit notion of controlled actions.

5 Deep Signed-Distance Functionals

This section presents two main types of models we propose. First, a way of learning forward dynamic models that predict the dynamics in SDF space based on the interaction between objects. Second, a kinematic success model that determines whether a static configuration of interacting SDFs leads to manipulation success. All functionals we consider are of the form \( H : \Phi \times \cdots \times \Phi \to \mathbb{R} \), i.e. they only take the SDFs of interacting objects as input, there is no explicit notion of position, orientation, action etc. Therefore, the functionals can be used at arbitrary locations in space.

Bounding-Box To define most of the following functionals and those in sec. 6, we utilize a set \( \mathcal{X} \) with the property \( \Omega \subset \mathcal{X} \subset \mathbb{R}^3 \) for all objects \( \Omega \) that are involved. This set should be large enough to cover the relevant workspace of the manipulation problem where the interaction between the objects should occur. A more detailed discussion about the role of \( \mathcal{X} \) can be found in sec. 5.3.

5.1 Forward Dynamic Models

Generally, a forward model predicts future states/observations of a system given the current or additional a history of states/observations. In the context of objects being represented solely as SDFs, we propose to learn a forward model \( F : \Phi \times \cdots \times \Phi \to \Phi \) that predicts the SDF of an object \( \phi_t^1 \) at time step \( t \) based on a history of SDF observations of the object \( \phi_{t-1-t-1}^1 \) until time \( t-1 \) and the motion of another object \( \phi_{t-1-t}^2 \) until time \( t \). This means \( F \) as

\[
\phi_t^1(\cdot) = F[\phi_{t-1-t-1}^1, \phi_{t-1-t}^2](\cdot)
\]

is an SDF itself that can be queried in \( \mathbb{R}^3 \). Interactions between more than two objects are possible, but we focus on pair-interactions in the present work. If \( l = 1 \), \( F \) is a quasi-static model. Internally, \( F \) can be defined to either directly predict the SDF \( \phi_t^1 \) as in (3) or the flow

\[
\phi_t^1(\cdot) = \phi_{t-1}^1(\cdot) + F_{\text{flow}}[\phi_{t-1-t-1}^1, \phi_{t-1-t}^2](\cdot)
\]

from \( \phi_{t-1}^1 \) to \( \phi_t^1 \). In both cases, the functional \( H_F \) for the planning is then naturally defined as

\[
H_F(\phi_{t-1-t}^1, \phi_{t-1-t}^2) = \int_{\mathcal{X}} \left( \phi_t^1(x) - F[\phi_{t-1-t-1}^1, \phi_{t-1-t}^2](x) \right)^2 \, dx.
\]

For a perfect model \( F \), this functional \( H_F \) attains a zero value if and only if the evolution of \( \phi_{t-1-t}^1 \) and \( \phi_{t-1-t}^2 \) is compatible with the underlying physical process in the space \( \mathcal{X} \). Therefore, the loss function to train \( F \) is also (5) for a dataset \( D = \{(\phi_{0,t}^1, \phi_{0,t}^2)\}_{i=1}^n \) of such consecutive SDF motions of the two objects. Since \( F \) takes as input the complete SDFs of the objects and not just values like the distance between objects and their contact point locations, it can learn to reason not only about these quantities, but also the contact geometry, relative object movements, center of mass and inertial parameters (assuming an equal density of the objects), all of which are necessary quantities to represent the dynamics. This way, \( F \) inherently takes the geometry of the objects into account. Note that usually, forward models are understood in terms of a function that maps the current state (history) and an (abstract) action \( a \) to the next state. For SDFs, this would mean a model of the form \( \phi_t^1 = F[\phi_{t-1-t-1}^1, a_{t-1}] \). In our case, however, there is no notion of an abstract action, instead, our formulation learns a generic model of the interaction between two objects, where the motion of one object (\( \phi_t^2 \)) influences the other (\( \phi_t^1 \)). Therefore, while the transformation applied to \( \phi_t^2 \) can be interpreted as an action, the model has no action as input and hence can deal with different geometries of \( \phi_t^2 \), which is not possible in case of an abstract action without \( \phi_t^2 \) also being an input.

5.2 Kinematic Success Models

Many tasks in manipulation planning can be specified in terms of static success models instead of a full forward dynamics model. We call a model that predicts whether a configuration of potentially multiple SDFs at the same time slice leads to manipulation success a kinematic success model.
Assume through interaction with the environment, a dataset $D = \{(\phi^j)_{j \in \mathcal{I}}, y^j\}_{i=1}^n$ of SDFs representing $|\mathcal{I}|$ many objects has been obtained with $y^j = 1$ indicating that the configuration of SDFs leads to manipulation success, $y^j = 0$ to failure. Then learning $H$ is similar to a classification problem. To account for the fact that we want to use $H$ as a constraint, we use the loss function

$$L(\theta) = \sum_{i=1}^n y^i H\left(\left(\phi^j\right)_{j \in \mathcal{I}}; \theta\right)^2 + \left(1 - y^i\right) \exp \left(-H\left(\left(\phi^j\right)_{j \in \mathcal{I}}; \theta\right)\right)$$

(6)

When $y^i = 1$, this objective brings the value of $H$ closer to zero, while for $y^i = 0$, the value of $H$ is being pushed up. $H$ can model a manifold of feasible configurations.

5.3 Learning Functionals with Neural Networks

So far, we have not discussed how functionals of the form $H : \Phi \times \cdots \times \Phi \rightarrow \mathbb{R}$ can be learned or even queried in the first place with usual function approximators like neural networks, since, in general, the neural network would have to take functions as infinite dimensional objects as input. To approximate this, we choose in this work the straightforward approach by evaluating $\phi \in \Phi$ on a discretized version of the set $\mathcal{X}$, denoted by $\mathcal{X}_h$. As discussed previously, the set $\mathcal{X}$ should cover the relevant region of the workspace where the interaction between the objects takes place. We specifically do not assume $\mathcal{X}$ to be aligned or perfectly centered with the objects involved.

This way, the dynamics model from sec. 5.1 can be realized by

$$F(\phi_{\mathcal{I} \rightarrow \mathcal{I}}, \phi_{\mathcal{I} \rightarrow \mathcal{I}}^2) \approx F_{\theta}(\phi_{\mathcal{I} \rightarrow \mathcal{I}}, \phi_{\mathcal{I} \rightarrow \mathcal{I}}^2)$$

(7)

with $F_{\theta}$ being usual neural network architectures. During training, the integral in (5) is approximated over the same discretized $\mathcal{X}_h$ for simplicity. Hence, the dataset to train $F$ can contain the SDF observations at the grid points of $\mathcal{X}_h$ only. However, $F_{\theta}$ is still an SDF which can be queried at arbitrary $x \in \mathbb{R}^3$ and does not only predict the values on the grid points. For general functionals $H$, the evaluation is analogous, i.e. $H\left(\left(\phi^j\right)_{j \in \mathcal{I}}\right) \approx H_{\theta}\left(\left(\phi^j(\mathcal{X}_h)\right)_{j \in \mathcal{I}}\right)$. Technically, $\mathcal{X}_h \subset \mathbb{R}^{d \times h \times w}$ is a regular grid which allows us to encode $\phi(\mathcal{X}_h)$ using 2D or 3D convolutions. In contrast to an occupancy grid, the evaluation of $\phi(\mathcal{X}_h)$ contains more information about the object than whether there is an object at the grid point or not. Note that the differentiability of $H\left(\left(T(q^j)[\phi^j(\mathcal{X}_h)]\right)_{j \in \mathcal{I}}\right)$ with respect to $q^j$ is maintained, which is another advantage of representing such models as functionals of SDF functions evaluated on a grid instead of static values on a grid. During training, it is sufficient to only have the SDF values evaluated on a grid, no other information like actions or velocity/pose estimations are needed.

6 Task Constraint Functionals

Here we present analytical functionals of SDFs that are useful to specify goals of a manipulation problem or other task aspects. These functionals are general as a direct consequence of our object representations being SDFs. Therefore, there is no advantage or need to learn these given the SDFs.

6.1 Pair-Collision between Objects

Collision avoidance is an inherent part of many task specifications. Given two SDFs $\phi_1, \phi_2$, we can measure whether they are in collision via their overlap integral

$$H_{\text{coll}}(\phi_1, \phi_2) = \int_{\mathcal{X}} \left[\phi_1(x) < 0\right] \left[\phi_2(x) < 0\right] \text{d}x.$$  

(8)

The indicator bracket $[\cdot]$ means $[P] = 1$ if $P$ is true, otherwise $[P] = 0$. The integral in (8) integrates over the space where both SDFs are negative at the same time, which is only the case if the two objects overlap, hence are in collision. The gradients of (8) are smoothed using the sigmoid function $\sigma(z) = \frac{1}{1 + \exp(-z)}$, i.e. $\left[\phi_{1,2}(x) < 0\right] = \sigma(-a\phi_{1,2}(x))$ and a parameter $a > 0$.

6.2 Goal Region

If part of the task specification is that an object $\phi_1$ is fully contained inside the boundary of another object $\phi_g$, called the goal region, then a similar integral as for the pair-collision can be utilized

$$H_g(\phi_1, \phi_g) = \int_{\mathcal{X}} \left[\phi_1(x) < 0\right] \left[\phi_g(x) > 0\right] \text{d}x \approx \int_{\mathcal{X}} \sigma(-a\phi_1(x)) \sigma(a\phi_g(x)) \text{d}x.$$  

(9)

Here, points outside of the goal region that are inside the object count towards the integral.
6.3 Establishing Contact between Objects
Establishing and maintaining contact between objects is central for many manipulation tasks. One way to model that the distance between two objects $\phi_1$ and $\phi_2$ should be zero is via the functional

$$H_{PoC}(\phi_1, \phi_2) = \min_{p \in \mathcal{X}} |\phi_1(p)| + |\phi_2(p)|. \quad (10)$$

7 Experiments
7.1 Mug-Hanging: Kinematic Success Model
In this experiment, we want to find rigid transformations applied on observed mugs of different shapes in a scene to hang them stably on hooks of different types. The functional $H_{\text{hang}}$ is therefore a kinematic success model that takes the SDFs of the mug and the hook as input. To generate data to learn $H_{\text{hang}}$, we randomly sample scenes of different mug and hook shapes (1600 scenes for training, 400 for testing and 150 for evaluation). See Fig. 1 for examples of mugs and hooks in the evaluation data. Then we sample for each scene in the training and test data the position and orientation of the mug uniformly in the bounding box $\mathcal{X}$ until at least one successful configuration has been obtained where the mug does not fall on the ground when being dropped from the sampled configuration while at the same time not being in collision with the hook. We use Bullet [36] to simulate the dropping. In total, 20 configurations per scene are generated. Since sampling a successful configuration is a rare event, for the majority of the scenes, only one successful and 19 failure configurations are contained in the training and test data. Fig. 3 shows the set $\mathcal{X}_h \in \mathbb{R}^{40 \times 40 \times 40}$ (red box) for the functional $H_{\text{hang}}$. The hooks are centered in the $x, y$-plane of $\mathcal{X}_h$, not in $z$-direction. The challenge of this task is that the model has to reason about both the hook and mug geometry jointly. Formulating an analytical model, e.g. on a mesh-based object representation, to model this constraint is non-trivial.

7.1.1 Performance with Optimization
Fig. 2 shows solution configurations found by our model $H_{\text{hang}}$ as an optimization objective. Interestingly, the solutions not always contain the intuitive solution, but also ones where other parts of the hook are being utilized (middle column in Fig. 2). The optimization problem (2) to solve this mug hanging problem has two objectives, the learned kinematic success functional $H_{\text{hang}}$ and the pair-collision $H_{\text{coll}}$ from sec. 6.1. While in principle, $H_{\text{hang}}$ also learns to avoid collisions, we found that the robustness in avoiding collisions increases when including $H_{\text{coll}}$. The learned functional $H_{\text{hang}}$ is, in general, non-convex in the rigid transformation $q$ of the mug. Therefore, we observed that using gradient based optimization is not sufficient for the optimizer to find a feasible solution, i.e. where $H_{\text{hang}}$ predicts zero, in every instance. To overcome this issue, we restart the optimization procedure up to 20 times with a randomly sampled initial guess of the mug in $\mathcal{X}$. Fig. 3 shows an example of a sampled initial configuration from which the optimizer is started (left), then the optimized configuration (middle) and finally, the configuration after simulation. Tab. 1 shows the success rates on the evaluation scenes. As one can see, for the approach of using optimization and sampling, in 98.7% of the evaluation scenes, a solution is found where $H_{\text{hang}}$ predicts success and no collision is violated (first column). Out of these, 88.5% are actually stable configurations when checked in the simulator. When the optimization is run only once (second row), then only in 51.3% of the cases it converges to a feasible solution, showing the issue of the non-convexity.

7.1.2 Comparison to Sampling without Optimization
Despite the issue of local minima, to show the advantages of utilizing our learned functionals within a gradient-based optimization problem, we compare with an approach where we sample configurations uniformly in $\mathcal{X}$ until the evaluation with the learned $H_{\text{hang}}$ and the collision functional $H_{\text{coll}}$

![Figure 1: Different mug and hook shapes in evaluation dataset. SDFs meshed with marching cubes.](image1)

![Figure 2: Found solution configurations by the optimizer using the learned model.](image2)
predicts a successful and collision free configuration. Note that due to the way it was generated, the test and training data distribution has a significantly different ratio of success/failure examples than when sampling the model until it predicts success. Therefore, when using the same feasibility threshold $\kappa_2$ as for evaluating the test data, the model is overly optimistic, which can be seen in the last row of Tab. 1. For a 10-times smaller threshold $\kappa_1$, the success rate is high again, but only in 83.8% of the scenes a feasible solution is sampled within the computational budget. To allow for a fair comparison, both the optimization problem (including its restarts) and the sampling procedure are allowed to use the exact same total maximum number of functional evaluations (20,000). This shows the advantages of our models being differentiable.

### 7.2 Pushing Objects on a Table: Dynamic Model

In this experiment, we consider the task of pushing boxes and L-shaped objects of different dimensions with a spherical pusher of different radii into a goal region $\phi_h$ on a table. Fig. 4 visualizes typical objects, pushers and goal regions. The goal region has to be large enough that all possible objects fit. We again use Bullet as a simulator to generate data to train a dynamics model of the from described in sec. 5.1 with $l = 1$, i.e. $H_F$ is a function of four SDFs $\phi^1, \phi^{1}_{t-1}$ (object) and $\phi^2, \phi^{2}_{t-1}$ (pusher). In total, 14975 different scenes (including shapes and initial configuration) are sampled where random push actions biased roughly towards the object center are applied until the object leaves the table. Since the dynamics and interaction of the objects in this scenario can be described in the 2D plane, the 3D signed distance functions of the objects are evaluated in the 2D set $X_h \in \mathbb{R}^{140 \times 140}$ only. Therefore, the model $F$ predicts the dynamics of $\phi^1$ in this 2D projection.

#### 7.2.1 Forward Prediction Error

Tab. 2 shows the one-step prediction error on the evaluation dataset for the flow model $F_{\text{flow}}$ (4) and the direct SDF prediction $F$ (3). The way we utilize the model within the trajectory optimization problem never asks for predictions more than one step into the future. We train one single dynamics model for both box and L-shaped objects and different pushers. The prediction error is the RMSE of predicting the correct SDF values in $X_h$. The last row shows the error if the model would simply predict the next state as the last state of the object. As one can see, $F_{\text{flow}}$ achieves a lower error than $F$. This is due to $F$ having to predict the complete SDF, while $F_{\text{flow}}$ only the flow. In phases of the motion where there is no contact between the object and the pusher, both models $F_{\text{flow}}$ and $F$ have to learn that the object should not move (and $F$ has to predict the complete SDF in this case as well), which is also non-trivial, but they accomplish this with low error.

#### 7.2.2 Planning with the Learned Model and Execution Performance

Having learned the pushing dynamics prediction model, we now utilize it within (2) to solve the task of pushing the object into the goal region. There are four constraints. First, the dynamics model $H_F$ and, second, the goal region $H_g$. While this seems to be enough to specify the problem fully, we add two additional constraints, $H_{\text{coll}}$ and $H_{\text{PoC}}$. The discrete variable $s_k$ of (2) decides whether there are

### Table 1: Success rates of mug hanging experiment. Total scenes solved means the percentage of scenes in the evaluation dataset for which a solution was found that is stable when dropped.

<table>
<thead>
<tr>
<th>Method</th>
<th>Total scenes solved</th>
<th>Success rate</th>
<th>Total scenes solved</th>
<th>Success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>opt. + sampling</td>
<td>98.7%</td>
<td>88.3%</td>
<td>87.3%</td>
<td>83.8%</td>
</tr>
<tr>
<td>opt. only</td>
<td>51.3%</td>
<td>93.5%</td>
<td>48.0%</td>
<td>82.3%</td>
</tr>
<tr>
<td>sampling only $\kappa_1$</td>
<td>83.8%</td>
<td>82.3%</td>
<td>68.9%</td>
<td>75.6%</td>
</tr>
<tr>
<td>sampling only $\kappa_2$</td>
<td>100%</td>
<td>35.6%</td>
<td>83.8%</td>
<td>35.6%</td>
</tr>
</tbody>
</table>

### Table 2: RMSE [mm] on evaluation dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>Contact phase</th>
<th>No contact phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\text{flow}}$</td>
<td>3.4 ± 1.6</td>
<td>1.4 ± 1.8</td>
</tr>
<tr>
<td>$F$</td>
<td>5.8 ± 1.7</td>
<td>5.2 ± 1.6</td>
</tr>
<tr>
<td>$\phi^1$</td>
<td>10.8 ± 3.4</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3: Left: sampled initial configuration from which the optimizer is started. Middle: found solution. Right: configuration after dropping the mug. Transparent red box is $\phi_h$.

Figure 4: Different pushing scenarios. Yellow pusher, green goal region, light blue object.
one or two push phases. Only in a push phase, \( H_{\text{PoC}} \) is active. \( H_{\text{coll}} \) is always active. Similarly to the mug hanging experiment, local minima are a core issue as well. Therefore, we initialize the pusher position at phase 1 or 2 on a set of 4 different points around the object. These 4 points around the object are always the same in all scenarios, no matter of the size, shape or orientation of the object.

Compared to other approaches where the action space has to be chosen much more carefully, we believe that this is a rather weak prior. The initialization also does not start from contact with the object or similar, because our problem contains the challenge of contact establishment and possible breakage to push from a different side to achieve the goal. Therefore, due to this initialization, there are 20 different optimization problems we solve for each scene (4 for one pushing phase, \( 4^2 \) for two pushing phases). To evaluate the performance, we execute the planning result with the least constraint violation and cost open-loop in the simulator. Despite the fact that pushing is unstable over long-horizons, our proposed approach achieves a high performance. As shown in Fig. 5a, which plots the amount of the object that is inside of the goal region at the end of the execution, using the learned \( F_{\text{flow}} \), the approach achieves 99.7% (median) coverage of the object inside the goal region on box pushing and 96.9% (median) on the L-shaped objects (30 evaluation scenes each). Please note that, although the goal region for small objects seems large, the optimizer usually moves the object until it is just barely inside the goal region and not any further. Therefore, even very small deviations during the open-loop execution already lead to some parts sticking out. For the larger objects in the evaluation scenes, the goal region is barely large enough. With the direct \( F \), the performance is a bit worse, but still high (median 95.3% for boxes, 89.8% for L-shaped objects).

### 7.2.3 Ablation Study

In the last paragraph, we have described additional objectives \( H_{\text{PoC}} \) to encourage the trajectory to establish contact and \( H_{\text{coll}} \) to avoid collisions. Here we investigate the importance of these, also in comparison with using \( F \) and \( H_g \) as the only constraints. Fig. 5b shows the performance on a dataset of 20 box pushing scenarios, both for \( F \) (orange) and \( F_{\text{flow}} \) (blue), where we remove \( H_{\text{coll}} \), \( H_{\text{PoC}} \) or both (only \( F \)). The main reason for the significantly decreased performance when not using \( H_{\text{PoC}} \) (only \( F \), no \( H_{\text{PoC}} \)) is that, in many cases, the pusher is not moved at all by the optimization problem. A forward model alone, or more precisely its gradients, simply does not contain enough information for long-horizon tasks to succeed. Therefore, \( H_{\text{PoC}} \) helps the optimization problem to establish contact, where then the model locally provides sufficient information to solve the task. \( H_{\text{PoC}} \) only models that there should be contact, and the exact contact locations are then subject to the model. When removing the collision constraint, the performance also drops. This is caused mainly by the fact that the optimized trajectory without the collision constraint sometimes is in collision for a very short moment, which then leads to a failed open-loop execution.

### 8 Conclusion

In this work, we have shown that the constraints of a trajectory optimization problem for solving manipulation problems can be formulated in terms of learned functionals of SDFs only. SDFs can serve as a common object representation across completely different tasks. The functionals can naturally model the interaction between objects of arbitrary shapes and can be learned directly from SDF observations, which is closely connected to perception. The greatest challenge of our framework are local minima of the resulting trajectory optimization problem. While sampling strategies for initial guesses can mitigate this, it is an issue, which is not unique to our approach, but many nonlinear trajectory optimization formulations. While we have considered rigid objects in this work only, we believe that the proposed approach can be extended to deformables as well.
References


