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Abstract: This work proposes an optimization-based manipulation planning
framework where the objectives are learned functionals of signed-distance fields
that represent objects in the scene. Most manipulation planning approaches rely
on analytical models and carefully chosen abstractions/state-spaces to be effec-
tive. A central question is how models can be obtained from data that are not
primarily accurate in their predictions, but, more importantly, enable efficient rea-
soning within a planning framework, while at the same time being closely coupled
to perception spaces. We show that representing objects as signed-distance fields
not only enables to learn and represent a variety of models with higher accuracy
compared to point-cloud and occupancy measure representations, but also that
SDF-based models are suitable for optimization-based planning. To demonstrate
the versatility of our approach, we learn both kinematic and dynamic models to
solve tasks that involve hanging mugs on hooks and pushing objects on a table.
We can unify these quite different tasks within one framework, since SDFs are the
common object representation. Video: https://youtu.be/ga8Wlkss7co

Keywords: Manipulation Planning, Signed Distance Fields, Model Learning

1 Introduction
Manipulation planning is challenging for multiple reasons. On the one hand, planning robot motions
to solve a task can be formulated as a decision problem over a high-dimensional, non-convex space,
including discrete and continuous aspects. Especially long-horizon tasks that consist of multiple
manipulation steps have the property that motions have to be coordinated globally with the future
goal. This coupling of potentially all variables requires joint reasoning and makes the problem
particularly challenging [1]. On the other hand, the problem solving capabilities of a planning
framework is inherently dependent on its underlying models. The field of Task and Motion Planning
(TAMP) has made significant progress in solving challenging multi-step, long-horizon tasks [2],
ranging from ones that involve mainly kinematic models [3, 4, 5, 6, 7] to dynamic tasks that require
reasoning about forces, friction etc. based on more general dynamic equations [8, 9, 10, 11, 12,
13, 14]. However, most TAMP approaches rely on carefully chosen abstractions and analytically
defined models in order to be successful and efficient. In particular, TAMP often makes simplifying
assumptions on the possible geometries of objects it can deal with to define manipulation constraints
in the first place. It is unclear how these models can be grounded from sensor information.

To overcome these issues, a natural idea is to replace the analytic models in TAMP frameworks with
learned ones. Recent advances in deep learning have enabled to learn predictive forward models even
in high-dimensional observation spaces like images. The typical objective for learning a forward
model is its predictive accuracy. However, having an accurate model does not necessarily imply that
a planning framework can utilize it efficiently. While having an accurate forward prediction model
might be sufficient for short-horizon tasks, especially for long-horizon tasks, learned models can
exhibit too high combinatorics for sampling or non-informative gradients for achieving future goals.

This paper aims to address these challenges by learning models that can be used effectively by a
planning framework while at the same time using a general object representation more closely re-
lated to senors spaces. To realize this, we present an optimization-based TAMP framework where the
objectives are learned functionals of signed-distance fields (SDFs). The SDFs represent each object
in the scene separately, while the functionals defined on top of them induce constraints on possible,
physically plausible interactions between the objects within a trajectory optimization problem. The
task planning aspect is realized by (discrete) decisions that determine which of those functionals are
active at which phase of the planning horizon.
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We argue that representing objects as SDFs has multiple advantages. First, an SDF can be seen
as an intermediate representation between raw perception like point-clouds or images and full state
information. While not the focus of this work, many methods have been developed to learn and
obtain SDFs from, e.g., image observations of the scene. Further, SDFs can represent arbitrary, non-
convex geometries, which is beneficial, since manipulation problems and physical phenomena often
depend on the geometry of the interacting objects. Finally, we show that SDFs are particularly suited
for learning and representing models that can later be used within a planning framework effectively.
Since our models are functionals of the SDFs, the constraints can take the information about whole
objects into account to reason about their geometry and therefore especially the interaction between
objects. Compared to a representation that only describes the surface of an object like point clouds or
occupancy measures, a signed-distance field also provides information about the object at distance.
As we experimentally show, this not only leads to models that perform better in their prediction
accuracy compared to models learned on top of point-cloud or occupancy object representations,
but SDFs also enable the functionals/learned models to have more useful gradients for planning.

In the experiments, we demonstrate the versatility of our approach by tackling two completely dif-
ferent tasks within one framework: On the one hand, a kinematic task where the goal is to hang mugs
of different shapes on hooks of different shapes. On the other hand, a pushing scenario where boxes
and L-shaped objects should be pushed to different goal regions by pushers of different sizes. In
the first case, the model predicts whether the static interaction between SDFs leads to manipulation
success, whereas in the latter case, the model predicts the forward dynamics in SDF space based
on a history of SDF interactions of two objects. We show that our framework can be used to plan
motions that involve multiple push phases. To summarize our main contributions, we propose

• To learn a novel class of kinematic and dynamic models as functionals of SDFs,

• A manipulation planning framework that utilizes these learned functionals as constraints,

• Comparison to other object representations showing the advantages of the SDFs.

2 Related Work

2.1 Signed Distance Fields as Object Representation
Representing objects or scenes as implicit surfaces [15, 16, 17] or SDFs [18, 19, 20, 21, 22, 23] is an
active research topic, due to aforementioned advantages like learning shape completion, non-convex
shapes etc. Our focus is not to obtain SDFs from observations in the first place. Conversely, we
are interested in what can be done with SDFs in the context of model learning and manipulation
planning. There are some works that utilize SDFs within trajectory optimization [24, 25, 26], but
without learning or integration into a TAMP framework. While some recent approaches [27, 28, 29]
have suggested that grasping of diverse objects can be addressed using implicit functions, we present
a manipulation framework that utilizes SDFs for learning and formulating more general models.

2.2 Perceptual Models
There is great interest in learning predictive models in perception spaces, especially applied to the
problem of pushing. So-called visual foresight approaches [30, 31, 32] aim to predict the evolution
of the scene in image space. Our SDF dynamics model is also closely related to perception spaces,
but, in comparison, is naturally differentiable. Xu et al. [33] use a voxelized SDF-based representa-
tion of the whole scene to predict the motion of an object when an action is applied. Our approach
is more structured in the sense that we do not predict the scene flow for actions applied on a sin-
gle object, but the dynamics of interacting of objects. In [34], the pushing dynamics in keypoints
extracted from visual object observations is learned. However, their focus is to utilize the learned
model to stabilize a trajectory with MPC. We focus on planning a complex pushing trajectory and
not stabilization during execution. SE3 networks [35] learn a forward model that predicts a rigid
transformation of an observed point cloud given actions. However, they need ground-truth transfor-
mations at training time (we only need SDF observations). Where most of these approaches differ
from our approach is that they assume the model to be a function of the observation of a single ob-
ject or the scene and an action as input. Therefore, these approaches are mostly limited to the same
pusher geometry and make the assumption that actions can readily be applied to the object. Our
model handles the interaction between objects of different shapes and can plan the contact estab-
lishment phase as well. Transporter networks [36] or deep visual reasoning [7] predict manipulation
sequences from image spaces. However, no dynamic models are considered in these approaches.
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2.3 Manipulation Planning (with learned models)
In [37, 38], a manipulation framework based on point cloud observations and manipulation prim-
itives is proposed. Our method plans the complete motions based on learned dynamic models.
Sutanto et al. [39] is related to our formulation in the sense that they learn manifolds that are used as
constraints in sequential manipulation problems. However, there are no dynamic models or depen-
dencies on the geometry of the involved objects in the learned constraints. You et al. [40] address
a hanging task similar to our mug hanging experiment on a more diverse set of object categories.
They use a point-cloud-based input representation to predict a hanging pose. Therefore, they need a
special neural network for collision avoidance (similar to [41]), while our SDF based representation
can handle collisions directly. Further, we learn a manifold of solutions instead of predicting a single
hanging configuration. To summarize, what makes our approach unique is that we propose to use
SDFs as a common object representation that is closely connected to perception to learn a variety
of models that are able to take the interaction of objects into account and can be integrated in an
optimization-based motion planning framework due to their differentiability.

3 Background on Signed-Distance Fields (SDFs)
Let Ω ⊂ R3 be an object in the 3D Euclidean space. A function φ : R3 → R, φ ∈ Φ with
φ(x) = −d(x, ∂Ω) for x ∈ Ω and φ(x) = d(x, ∂Ω) for x ∈ R3\Ω is called a signed-distance field
of Ω in R3. Here, d(x, ∂Ω) = infx′∈∂Ω ‖x− x′‖2 and ∂Ω the boundary of Ω. We assume φ to
be differentiable almost everywhere in R3. The way φ is defined ensures that inside the object, φ
attains negative values, on the boundary zeros, and outside positive ones. We denote with the set Φ
the space of all functions φ that are SDFs for some object.
Rigid Transformations of SDFs A central concept in this work is to rigidly transform SDFs in
space. This can be realized by transforming the input where the SDF is queried. To simplify the
notation, we define a rigid transformation, parameterized by q ∈ R7 (translation + quaternion),

T (q)[φ](·) := φ
(
R(q)T ( · − r(q))

)
(1)

of an SDF φ, where R(q) ∈ R3×3 is a rotation matrix and r(q) ∈ R3 the translation vector.

4 Manipulation Planning with Signed-Distance Functionals
The core idea of this work is to represent each object i in the scene as a signed-distance field φi in
order to learn predictive models as functionals H of these SDFs. Based on the learned functionals,
we formulate a trajectory optimization problem where the decision variable is a trajectory of rigid
transformations applied on the initial SDFs as they have been observed in the initial scene.

More specifically, through interaction with the environment, we aim to learn functionals of the
form H : Φ × · · · × Φ → R that map multiple SDFs of multiple, possible different objects at
possibly different consecutive times to a real number. These are trained in a way that a value of zero
implies that the SDFs as input are compatible with what has been learned through interaction with
the environment. Otherwise, they should attain a positive value, hence functionals H discriminate
correct from incorrect dynamics or desired from undesired manipulations.

The learned functionals then define constraints for the (hybrid) trajectory optimization problem

min
q0:KT ,qt∈R7·nO

K∈N, s1:K

KT∑
t=1

c
(
qt−l:t, sk(t)

)
(2a)

s.t. ∀H∈H(sk(t)) : H
((
T (qit)[φ

i]
)

(t,i)∈IH(sk(t))

)
= 0 (2b)

s1:K ∈ S(S), q0 = 0. (2c)

The discrete variable sk determines which functionals H from the set H(sk(t)) are active at which
of the K ∈ N phases of the motion (k(t) = bt/T c). This number of phases is part of the decision
problem. The trajectory q0:KT of rigid transformations is discretized in time into T ∈ N steps
per phase. If nO is the number of objects in the scene S, then qt ∈ R7·nO , leading to 7 · KTnO
continuous variables. Further, sk selects through the set IH(sk(t)) the time slice and object index
tuples (t, i) that determine the SDFs φi, which have been transformed through qit, at the times t
of the trajectory on which the functional constraints H depends on. This problem formulation is
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inspired by LGP [10], but the constraints are replaced by learned functionals of SDFs. The set
S(S) contains all valid sequences s1:K of such discrete variables for the scene S. The goal of the
manipulation problem is specified through S(S) by sK selecting a desired goal functional constraint
that has to be fulfilled at the end qKT of the trajectory. Solving (2) therefore involves a tree search
over nodes s1:K such that the continuous optimization problem implied by the choice of s1:K at a
node of the tree is feasible. The role of q in the optimization problem is not absolute object poses, but
rather rigid transformations applied to the SDFs φi that represent the configurations of the objects
as observed in the scene initially. With the term c, we can include regularizing motion costs. As will
be described in sec. 5.1, the forward dynamic model we learn for pushing implies a constraint on
the evolution of one object based on the motion of another object. Therefore, we only add motion
costs to those degrees of freedom that can be interpreted as being controlled, meaning the motion of
the other object. From the perspective of (2), there is no explicit notion of controlled actions.

5 Deep Signed-Distance Functionals
This section presents two main types of models we propose. First, a way of learning forward dy-
namic models that predict the dynamics in SDF space based on the interaction between objects. Sec-
ond, a kinematic success model that determines whether a static configuration of interacting SDFs
leads to manipulation success. All functionals we consider are of the form H : Φ × · · · × Φ → R,
i.e. they only take the SDFs of interacting objects as input, there is no explicit notion of position,
orientation, action etc. Therefore, the functionals can be used at arbitrary locations in space.
Bounding-Box To define most of the following functionals and those in sec. 6, we utilize a set
X with the property Ω ⊂ X ⊂ R3 for all objects Ω that are involved. This set should be large
enough to cover the relevant workspace of the manipulation problem where the interaction between
the objects should occur. A more detailed discussion about the role of X can be found in sec. 5.3.

5.1 Forward Dynamic Models
Generally, a forward model predicts future states/observations of a system given the current or addi-
tionally a history of states/observations. In the context of objects being represented solely as SDFs,
we propose to learn a forward model F : Φ × · · · × Φ → Φ that predicts the SDF of an object φ1

t

at time step t based on a history of SDF observations of the object φ1
t−l:t−1 until time t− 1 and the

motion of another object φ2
t−l:t until time t. This means F as

φ1
t (·) = F

[
φ1
t−l:t−1, φ

2
t−l:t

]
(·) (3)

is an SDF itself that can be queried in R3. Interactions between more than two objects are possible,
but we focus on pair-interactions in the present work. If l = 1, F is a quasi-static model. Internally,
F can be defined to either directly predict the SDF φ1

t as in (3) or the flow

φ1
t (·) = φ1

t−1(·) + Fflow
[
φ1
t−l:t−1, φ

2
t−l:t

]
(·) (4)

from φ1
t−1 to φ1

t . In both cases, the functional H for planning is then naturally defined as

HF

(
φ1
t−l:t, φ

2
t−l:t

)
=

∫
X

(
φ1
t (x)− F

[
φ1
t−l:t−1, φ

2
t−l:t

]
(x)
)2

dx. (5)

For a perfect model F , this functional HF attains a zero value if and only if the evolution of φ1
t−l:t

and φ2
t−l:t is compatible with the underlying physical process in the space X . Therefore, the loss

function to train F is also (5) for a datasetD =
{(
φ1

0:l, φ
2
0:l

)
i

}n
i=1

of such consecutive SDF motions
of the two objects. Since F takes as input the complete SDFs of the objects and not just values
like the distance between objects and their contact point locations, it can learn to reason not only
about these quantities, but also the contact geometry, relative object movements, center of mass and
inertial parameters (assuming an equal density of the objects), all of which are necessary quantities
to represent the dynamics. This way, F inherently takes the geometry of the objects into account.
Note that usually, forward models are understood in terms of a function that maps the current state
(history) and an (abstract) action a to the next state. For SDFs, this would mean a model of the
form φ1

t = F [φ1
t−l:t−1, at−1]. In our case, however, there is no notion of an abstract action, instead,

our formulation learns a generic model of the interaction between two objects, where the motion
of one object (φ2) influences the other (φ1). Therefore, while the transformation applied to φ2

can be interpreted as an action, the model has no action as input and hence can deal with different
geometries of φ2, which is not possible in case of an abstract action without φ2 also being an input.
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5.2 Kinematic Success Models
Many tasks in manipulation planning can be specified in terms of static success models instead of a
full forward dynamics model. We call a model that predicts whether a configuration of potentially
multiple SDFs at the same time slice leads to manipulation success a kinematic success model.
Assume through interaction with the environment, a dataset D =

{
(φj)j∈Ii , y

i
}n
i=1

of SDFs repre-
senting |Ii| many objects has been obtained with yi = 1 indicating that the configuration of SDFs
leads to manipulation success, yi = 0 to failure. Then learning H is similar to a classification prob-
lem, where H

(
(φi)i∈I

)
= 0 implies success prediction. This way, H can model a manifold of

feasible configurations and not only a single solution. See sec. F for details (loss function etc.).

5.3 Learning Functionals with Neural Networks
So far, we have not discussed how functionals of the form H : Φ × · · · × Φ → R can be learned
or even queried in the first place with usual function approximators like neural networks, since, in
general, the neural network would have to take functions as infinite dimensional objects as input.
To approximate this, we choose in this work the straight-forward approach by evaluating φ ∈ Φ on
a discretized version of the set X , denoted by Xh. As discussed previously, the set X should cover
the relevant region of the workspace where the interaction between the objects takes place. We
specifically do not assume X to be aligned or perfectly centered with the objects that are involved.
This way, the dynamics model from sec. 5.1 can be realized by

F
[
φ1
t−l:t−1, φ

2
t−l:t

]
(x) ≈ Fθ(φ1

t−l:t−1(Xh), φ2
t−l:t(Xh), x) (6)

with Fθ being usual neural network architectures. During training, the integral in (5) is approximated
over the same discretized Xh for simplicity. Hence, the dataset to train F can contain the SDF obser-
vations at the grid points ofXh only. However, Fθ still approximates an SDF which can be queried at
arbitrary x ∈ R3 and does not only predict the values on the grid points. For general functionals H ,
the evaluation is analogous, i.e. H

((
φi
)
i∈I

)
≈ Hθ

((
φi(Xh)

)
i∈I

)
. Technically, Xh ⊂ Rd×h×w

is a regular grid which allows us to encode φ(Xh) using 2D or 3D convolutions. In contrast to an
occupancy grid, the evaluation of φ(Xh) contains more information about the object than whether
there is an object at the grid point or not. Note that the differentiabilty of H

((
T (qi)[φi(Xh)]

)
i∈I

)
with respect to qi is maintained, which is another advantage of representing such models as func-
tionals of SDF functions evaluated on a grid instead of static values on a grid. During training, it
is sufficient to only have the SDF values evaluated on a gird, no other information like actions or
velocity/pose estimations are needed.

6 Task Constraint Functionals
Here we present analytical functionals of SDFs that are useful to specify goals of a manipulation
problem or other task aspects. These functionals are general as a direct consequence of our object
representations being SDFs. Therefore, there is no advantage or need to learn these given the SDFs.

6.1 Pair-Collision between Objects
Collision avoidance is an inherent part of many task specifications. Given two SDFs φ1, φ2, we can
measure whether they are in collision via their overlap integral

Hcoll(φ1, φ2) =

∫
X

[φ1(x) < 0] [φ2(x) < 0] dx. (7)

The indicator bracket [·] means [P ] = 1 if P is true, otherwise [P ] = 0. The integral in (7)
integrates over the space where both SDFs are negative at the same time, which is only the case if
the two objects overlap, hence are in collision. The gradients of (7) are smoothed using the sigmoid
function σ(z) = 1

1+exp(−z) , i.e. [φ1,2(x) < 0] = σ (−aφ1,2(x)) with a parameter a > 0.

6.2 Goal Region
If part of the task specification is that an object φ1 is fully contained inside the boundary of another
object φg , called the goal region, then a similar integral as for the pair-collision can be utilized

Hg(φ1, φg) =

∫
X

[φ1(x) < 0] [φg(x) > 0] dx ≈
∫
X
σ (−aφ1(x))σ (aφg(x)) dx. (8)

Here, points outside of the goal region that are inside the object count towards the integral.
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Figure 1: Found solution configurations
by the optimizer using the learned model.

solution success total scenes
found rate solved

SDF opt. + sampling 98.7% 88.5% 87.3%
SDF opt. only 51.3% 93.5% 47.3%

SDF sampling only κ1 83.8% 82.3% 68.9%
occupancy ψ, sampling κ3 100.0% 34.0% 34.0%
pointnet++, sampling κ1 100.0% 82.0% 52.0%

Table 1: Success rates of mug hanging experiment. Total
scenes solved means the percentage of scenes in the evaluation
dataset for which a solution was found that is not in collision
and is stable when dropped. Only best results for each object
representation shown. Full results see Tab. 3 and sec. A.5.

6.3 Establishing Contact between Objects
Establishing and maintaining contact between objects is central for many manipulation tasks. One
way to model that the distance between two objects φ1 and φ2 should be zero is via the functional

HPoC(φ1, φ2) = min
p∈X
|φ1(p)|+ |φ2(p)|. (9)

7 Experiments
7.1 Mug-Hanging: Kinematic Success Model
In this experiment, we want to find rigid transformations applied on observed mugs of different
shapes in a scene to hang them stably on hooks of different types. The functional Hhang is therefore
a kinematic success model that takes the SDFs of the mug and the hook as input. To generate data to
learnHhang, we randomly sample scenes of different mug and hook shapes (1600 scenes for training,
400 for testing and 150 for evaluation). See Fig. 15 for examples of mugs and hooks in the evaluation
data. Then we sample for each scene in the training and test data the position and orientation of the
mug uniformly in the bounding box X until at least one successful configuration has been obtained
where the mug does not fall on the ground when being dropped from the sampled configuration while
at the same time not being in collision with the hook. We use Bullet [42] to simulate the dropping. In
total, 20 configurations per scene are generated. Since sampling a successful configuration is a rare
event, for the majority of the scenes, only one successful and 19 failure configurations are contained
in the training and test data, making learning challenging. Another challenge of this task is that
the model has to reason about both the hook and mug geometry jointly. Formulating an analytical
model, e.g. on a mesh-based object representation, to model this constraint is non-trivial.

7.1.1 Performance with Optimization
Fig. 1 shows solution configurations found by our model Hhang as an optimization objective. Inter-
estingly, the solutions not always contain the intuitive solution, but also ones where other parts of
the hook are being utilized (middle column in Fig. 1). The optimization problem (2) to solve this
mug hanging problem has two objectives, the learned kinematic success functional Hhang and the
pair-collision Hcoll from sec. 6.1. While in principle Hhang also learns to avoid collisions, we found
that the robustness in avoiding collisions increases when including Hcoll. The learned functional
Hhang is, in general, non-convex in the rigid transformation q of the mug. Therefore, we observed
that gradient-based optimization is not sufficient for the optimizer to find a feasible solution, i.e.
where Hhang predicts zero, in every instance [43]. To overcome this issue, we restart the optimiza-
tion procedure up to 20 times with a randomly sampled initial guess of the mug in X . Fig. 16 shows
an example of a sampled initial configuration from which the optimizer is started (left), then the
optimized configuration (middle) and finally, the configuration after simulation. Tab. 1 shows the
success rates on the evaluation scenes. As one can see, for the proposed approach where objects are
represented as SDFs using optimization and sampling, in 98.7% of the evaluation scenes, a solution
is found whereHhang predicts success and no collision is violated (first column). Out of these, 88.5%
are stable configurations (checked by simulation) and the optimized configuration of the mug is col-
lision free with the hook, leading to 87.3% total solved scenes (last column). When the optimization
is run only once (second row), then only in 51.3% of the cases it converges to a feasible solution.

7.1.2 Comparison to Sampling, Point-Cloud and Occupancy Measure Representations
This section shows that learning a kinematic success model based on the proposed SDF object
representation outperforms other representations (point-clouds and occupancy measures) and further
highlights the advantage of the models learned with SDFs providing useful gradients by comparing
it to sampling without optimization. For full results, refer to sec. A and Tab. 3. The sampling
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Figure 2: Different pushing scenarios in evaluation dataset. Yellow is the pusher, green the goal region and
light blue the object. The two images from the right show out-of-distribution generalization shapes.

approach draws relative transformations of the mugs uniformly in X until the evaluation with the
learned Hhang and the collision functional Hcoll predicts a successful and collision free configuration
with a threshold κ. As one can see in Tab. 1 and Tab. 3, our proposed approach has a significantly
higher performance (87.3%) compared to the best threshold for pure sampling with SDF (68.9%) and
the best of the other object representations (34% with occupancy measure, 52% with point-cloud).

7.2 Pushing Objects on a Table: Dynamic Model
In this experiment, we consider the task of pushing boxes and L-shaped objects of different dimen-
sions with a spherical pusher of different radii into a goal region φg on a table. Fig. 2 visualizes
typical objects, pushers and goal regions. The goal region has to be large enough that all possible
objects fit. We again use Bullet as a simulator to generate data to train a dynamics model of the
from described in sec. 5.1 with l = 1, i.e. HF is a function of four SDFs φ1

t , φ
1
t−1 (object) and

φ2
t , φ

2
t−1 (pusher). In total, 14975 different scenes (including shapes and initial configuration) are

sampled where random push actions biased roughly towards the object center are applied until the
object leaves the table. Since the dynamics and interaction of the objects in this scenario can be
described in the 2D plane, the 3D signed distance functions of the objects are evaluated in the 2D
set Xh ∈ R140×140 only. Therefore, the model F predicts the dynamics of φ1 in this 2D projection.

7.2.1 Forward Prediction Error contact phase no contact phase
Fflow 3.4 ± 1.6 1.4 ± 1.8
F 5.8 ± 1.7 5.2 ± 1.6

φ1
t = φ1

t−1 10.8 ± 3.4 0
Table 2: RMSE [mm] on evaluation dataset.

Tab. 2 shows the one-step prediction error on the evalu-
ation dataset for the flow model Fflow (4) and the direct
SDF prediction F (3). The way we utilize the model
within the trajectory optimization problem never asks
for predictions more than one step into the future. We
train one single dynamics model for both box and L-shaped objects and different pushers. The pre-
diction error is the RMSE of predicting the correct SDF values in Xh. The last row shows the error
if the model would simply predict the next state as the last state of the object. As one can see, Fflow
achieves a lower error than F . This is due to F having to predict the complete SDF, while Fflow only
the flow. In phases of the motion where there is no contact between the object and the pusher, both
models Fflow and F have to learn that the object should not move (and F has to predict the complete
SDF in this case as well), which is also non-trivial, but they accomplish this with low error.

7.2.2 Comparison to other Object Representations (Point-Cloud and Occupancy Measure)

In sec. A.6.1 and sec. A.6.2 we present and explain a comparison of the forward prediction error
between models learned with object representations being SDFs, occupancy measures and point-
clouds. As shown in Tab. 4 and Tab. 5, models learned with the SDF representation outperform
models based on point-clouds and occupancy measures in their predictive performance. Further, in
Tab. 5 and sec. A.4, we also show that one can learn image conditioned SDFs and dynamic models
on top of the learned SDF simultaneously with no noticeable performance degradation.

7.2.3 Planning with the Learned Model and Execution Performance
Having learned the pushing dynamics prediction model, we now utilize it within (2) to solve the task
of pushing the object into the goal region. There are four constraints. First, the dynamics model HF

and, second, the goal region Hg. While this seems to be enough to specify the problem fully, we add
two additional constraints, Hcoll and HPoC. The discrete variable sk of (2) decides whether there are
one or two push phases. Only in a push phase, HPoC is active. Hcoll is always active. Similarly to the
mug hanging experiment, local minima are a core issue as well. Therefore, we initialize the pusher
position at phase 1 or 2 on a set of 4 different points around the object. These 4 points around the
object are always the same in all scenarios, no matter of the size, shape or orientation of the object.
Compared to other approaches where the action space has to be chosen much more carefully, we
believe that this is a rather weak prior. The initialization also does not start from contact with the
object or similar, because our problem contains the challenge of contact establishment and possible
breakage to push from a different side to achieve the goal. Therefore, due to this initialization, there
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Figure 3: Pushing performance on evaluation scenes
in terms of the amount of φ1 that is inside of the goal
region at the end of the execution. A value of 1 means
that the object is fully contained in the goal region.

Figure 4: Generalization experiments for pushing
scenario. Left: interaction between three objects to
solve the task. Middle: the goal is that the right robot
arm touches the object. Right: the two robots have
to collaborate to push the object into the goal region,
which would not be possible with one arm alone.

are 20 different optimization problems we solve for each scene (4 for one pushing phase, 42 for
two pushing phases). To evaluate the performance, we execute the planning result with the least
constraint violation and cost open-loop in the simulator. Despite the fact that pushing is unstable
over long-horizons, our proposed approach achieves a high performance. As shown in Fig. 3, which
plots the amount of the object that is inside of the goal region at the end of the execution, using the
learned Fflow, the approach achieves 99.7% (median) coverage of the object inside the goal region on
box pushing and 98.4% (median) on the L-shaped objects (50 evaluation scenes each). Please note
that, although the goal region for small objects seems large, the optimizer usually moves the object
until it is just barely inside the goal region and not any further. Therefore, even very small deviations
during the open-loop execution already lead to some parts sticking out. For the larger objects in the
evaluation scenes, the goal region is barely large enough. With the direct F , the performance is a bit
worse, but still high (median 96.6% for boxes, 91.5% for L-shaped objects).

Sec. B demonstrates that our proposed SDF framework outperforms an approach where the opti-
mization problem is formulated for objects represented as meshes and the analytic dynamic model
from [13] for the pushing dynamics. Refer to Fig. 6 for quantitative results. Finally, in sec. A.6.3
and Fig. 5 we investigate the importance of models learned on top of SDF representations providing
useful gradients for planning in comparison to models with point-clouds and occupancy measures.

7.2.4 Ablation Study
Sec. D presents an ablation study regarding the importance of the additional objectives Hcoll and
HPoC in the optimization problem. Results in Fig. 11 show that while it is possible to solve the
scenes without them, the performance greatly increases if they are part of the problem formulation.

7.2.5 Generalization to Out-of-Distribution Shapes, Multiple Objects, and Robots
In sec. C.1, we demonstrate that the framework and the learned model generalizes to shapes beyond
the training distribution. See Fig. 2 and Fig. 7 for those shapes. Quantitative results presented in
Tab. 6 and Fig. 8 indicate that the model achieves both high prediction accuracy and high perfor-
mance when used for planning. Furthermore, as seen in Tab. 6, a model learned with SDFs general-
izes significantly better than with point-clouds, also relative to the results obtained on-distribution.
We further show in sec. C.3 and sec. C.2 that the framework is capable of generalizing to scenes
that contain obstacles (Fig. 10) and a scenario where three objects interact in order to solve the task
(Fig. 9 and Fig. 4). Finally, in sec. E we demonstrate multiple scenarios where the learned pushing
dynamics model is embedded into a scene that contains robots. All these generalization experiments
require no change in the methodology or to learn a new model, showing the generality and versatility
of our proposed framework. For more details, refer to the respective sections in the appendix.

8 Conclusion
In this work, we have shown that the constraints of a trajectory optimization problem for solving
manipulation problems can be formulated in terms of learned functionals of SDFs only. SDFs can
serve as a common object representation across completely different tasks. The functionals can
naturally model the interaction between objects of arbitrary shapes and can be learned directly from
SDF observations, which is closely connected to perception. We have shown that learning models on
top of SDFs outperform other object representations like point-clouds and occupancy measures both
in terms of prediction accuracy and the ability to plan. The greatest challenge of our framework are
local minima of the resulting trajectory optimization problem. While sampling strategies for initial
guesses can mitigate this to some extend, it is an issue, which is not unique to our approach, but
many nonlinear trajectory optimization formulations. While we have considered rigid objects in this
work only, we believe that the proposed approach can be extended to deformables as well.
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