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Abstract

Planning tasks succinctly represent labeled transition sys-
tems, with each ground action corresponding to a label. This
granularity, however, is not necessary for solving planning
tasks and can be harmful, especially for model-free meth-
ods. In order to apply such methods, the label sets are of-
ten manually reduced. In this work, we propose automating
this manual process. We characterize a valid label reduction
for classical planning tasks and propose an automated way
of obtaining such valid reductions by leveraging lifted mu-
tex groups. Our experiments show a significant reduction in
the action label space size across a wide collection of plan-
ning domains. We demonstrate the benefit of our automated
label reduction in two separate use cases: improved sam-
ple complexity of model-free reinforcement learning algo-
rithms and speeding up successor generation in lifted plan-
ning. The code and supplementary material are available at
https://github.com/IBM/Parameter-Seed-Set.

1 Introduction
AI Planning tasks, described in the planning domain descrip-
tion language (PDDL) (McDermott 2000), induce transition
graphs with states as nodes and transitions between states as
labeled edges. These labeled transition systems (LTS) fea-
ture a unique label for each ground action. They identify
transitions induced by the same action on different states
with the same label. In practice, these labels are primarily
used to distinguish applicable operations in a given state. So,
a much smaller, sufficient set of labels might be attainable.
Consider a gripper domain (McDermott 2000) where a robot
moves balls between two rooms. Figure 1 depicts a PDDL
task in this domain. Consider the lifted action pick and its
second parameter ?r:room. All applicable groundings of
the action pick in any given state will have the same value
for ?r, namely the current room the robot is in. Therefore,
this parameter is not essential for distinguishing LTS transi-
tions. Note that it does not mean that the parameter can be
omitted from the lifted action, as it is essential for defining
action preconditions. On the labeled transition system, how-
ever, all labels of the corresponding grounded actions that
differ only in the room parameter can be safely collapsed
into one label, achieving a smaller set of labels.
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It is no coincidence that discrete action sets of small sizes
are also favored by reinforcement learning (RL) approaches.
Choosing from a large collection of mostly irrelevant actions
in a state can be detrimental to model-free methods (Huang
and Ontañón 2022). Most RL benchmarks have only a small
number of actions, e.g., Atari benchmarks have at most 18
actions, representing all possible transition labels (Nelson
2021). When planning problems are cast as Markov Deci-
sion Processes (MDPs), great care is taken in defining small
label sets (Silver and Chitnis 2020; Fern, Yoon, and Gi-
van 2006; Dzeroski, Raedt, and Driessens 2001). In PDDL-
Gym (Silver and Chitnis 2020), the label sets are manually
crafted by identifying a subset of lifted action parameters
that are inessential for distinguishing two labels in a state.
For example, the ?r:room parameter from our Gripper ex-
ample is manually identified as inessential.

In this work, we propose automating this manual pro-
cess, exploring ways of automatically reducing action la-
bels in classical planning domains. For that, we character-
ize a valid label reduction for classical planning tasks and
propose a way to automatically obtain such a reduction. Fo-
cusing on the reduction of action parameters, we show how
lifted mutex groups (Fišer 2020) can be leveraged to auto-
matically identify the inessential parameters of the actions
effectively, essentially automating the manual process of Sil-
ver and Chitnis (2020). Our contributions, however, have a
wider scope. We formally define the problem of obtaining
a parameter seed set and propose to solve this problem by
translating it to a delete-free planning task, proving that the
solution obtained is a valid label reduction. Then we em-
pirically evaluate our approach on 14 IPC domains and 10
hard-to-ground domains (Lauer et al. 2021; Haslum 2011;
Matloob and Soutchanski 2016) and show that it achieves
a significant reduction in action labels. Finally, we demon-
strate the benefits of our approach on two use cases, RL and
lifted successor generation (Corrêa et al. 2020). We empiri-
cally show that the label reduction can help in both cases: it
significantly improves the sample efficiency of standard RL
agents and speeds up the time to generate applicable ground
action in lifted successor generation.

2 Preliminaries
In this section, we first introduce the necessary classical
planning notations and then describe lifted mutex groups
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Gripper task Π = ⟨L,O, I, G⟩.
• Language L includes:

objects B : r1, r2, b1, b2, g1, g2
types T : room, ball, gripper
variables V : ?r, ?b, ?g, ?f, ?t
predicates P : at robby, at, free, carry

• Initial state I is: {at(b1, r1), at(b2, r1),
at robby(r1), free(g1), free(g2)}

• Goal G is: {at(b2, r2)}
• Actions O consists of:
move : params {?f : room, ?t : room}
: pre {at robby(?f)}
: add {at robby(?t)}
: del {at robby(?f)}

pick : params {?b : ball, ?r : room, ?g : gripper}
: pre {at(?b, ?r), at robby(?r), free(?g)}
: add {carry(?b, ?g)}
: del {at(?b, ?r), free(?g)}

drop : params {?b : ball, ?r : room, ?g : gripper}
: pre {carry(?b, ?g), at robby(?r)}
: add {at(?b, ?r), free(?g))}
: del {carry(?b, ?g)}

(b)

Figure 1: A running example of Gripper task, (a) an initial
state with b1, b2, and robot in room r1, and (b) a normal-
ized PDDL task.

that we use in our proposed approach.

2.1 PDDL Task
We consider normalized PDDL tasks without axioms and
conditional effects (Helmert 2009). A normalized PDDL
task Π = ⟨L,O, I, G⟩ is defined over a first-order language
L, a finite set of lifted actions O, an initial state specification
I , and a goal specification G.

A first-order language L = ⟨B, T ,V,P⟩ consists of a
finite number of objects (B), types (T ), variables (V), and
predicates (P). The association between types and objects is
defined by a function D : T 7→ 2B. T contains a special
default type t0. Every object is associated with this default
type such that D(t0) = B. Every pair of types ti, tj ∈ T sat-
isfy one of the following conditions, either D (ti) ⊆ D (tj)
or D (ti) ⊇ D (tj) or D (ti) ∩ D (tj) = ∅. V is a finite
set of variable symbols such that each variable is associ-
ated with a type in T . All variables are represented with a
prefix “?”, for example, ?v. A pair of object and variable
(o,?v) are compatible if o ∈ D(tv), where tv is the type
of variable v. A predicate in P has fixed arity and each ar-
gument is associated with a type in T . An atom is a predi-
cate symbol followed by a parenthesized list of arguments,
predicate(term1, term2, · · ·) where termi can
be a variable or object. For an atom (or a set of atoms) α,

free(α) ⊆ V denotes a set of variables in the atom (or the
set). If free(α)= ∅ then α is called ground atom; otherwise
it is called lifted atom. A lifted atom is grounded by replac-
ing every variable with a compatible object. If lifted atoms
α and α′ have the same predicate and the types of all the
terms in α are subsets of types of respective terms in α′, we
say that α is a subset of α′. That is, p(?a, ?b)⊑ p(?a′, ?b′),
if D(ta)⊆D(ta′) and D(tb)⊆D(tb′). A literal is an atom
or negation of an atom.

The initial state specification I is a conjunction of
ground atoms with fluent predicates (that can change
over time). The goal specification G is a conjunction of
ground atoms or their negations. A lifted action o =
⟨head , cost , pre, add , del⟩ in O consists of the atom
head(o), indicating the name and the parameters of the ac-
tion, an optional cost(o), indicating the cost of perform-
ing that operation, the preconditions pre(o), the add-effects
add(o), and the delete-effects del(o), each is a conjunction
of literals over L. For each action o, the set of action param-
eters params(o) is defined as free(pre(o))∪ free(add(o))∪
free(del(o)). Actions with empty parameter sets are called
ground actions. Otherwise, an action can be grounded by re-
placing parameters with compatible objects in the domain.

The set of all ground actions is denoted by O↓. By
o↓(P/θ) we denote a set of ground actions induced by
assigning objects θ to parameter subset P and ground-
ing the remaining parameters with all the compatible ob-
jects. In the gripper example, the ground action set of the
lifted action o = pick(?b,?r,?g) induced by the as-
signment {?b/b1,?g/g1} is o↓

(
{?b/b1,?g/g1}

)
=

{pick(b1,r1,g1),pick(b1,r2,g1)}, where the
parameters ?b and ?g are replaced with the objects men-
tioned in the assignment but the parameter ?r is replaced
with all room objects, {r1, r2}.

A state s assigns values TRUE and FALSE to all ground
atoms with fluent predicates. The initial state s0 of the task
assigns value TRUE to all atoms occurring in I , and FALSE to
all other fluent ground atoms. A ground action o is applica-
ble in state s if s |= pre(o), that is, the preconditions of o
are satisfied in the state s. A ground atom α is TRUE in the
successor state if and only if either it has been TRUE in s and
α ̸∈ del(o) or α ∈ add(o). A plan for the task is a sequence
of ground actions whose subsequent application leads from
s0 to some state s∗ with s∗ |= G.

2.2 Lifted Mutex Groups
A mutex group is a set of mutually exclusive ground
atoms M , of which at any given (reachable from I)
state s at most one can be TRUE. That is, for any
reachable state s, |M ∩ s| ≤ 1 or equivalently |{α | s |=
α, α ∈ M}| ≤ 1. For example, in the gripper domain,
{at(b1,r1),at(b1,r2)} is a mutex group as, in any
given state, ball b1 can only be in one of the rooms. Any
subset of a mutex group is also a mutex group. A lifted mu-
tex group (LMG) is a set of lifted atoms that produces a mu-
tex group when grounded. Formally, a lifted mutex group is
defined using an invariant candidate.

An invariant candidate is a tuple c = ⟨vf , vc,A⟩ where
vf (c) (vc(c)) is a finite set of fixed (counted) variables (il-



lustrated in the example below) and A(c) is a finite set of
atoms such that all the variables of the atoms are present
in either vf (c) or vc(c), i.e. free(A(c))= vf (c)∪ vc(c)
and vf (c)∩ vc(c)= ∅. For example, consider an invari-
ant candidate c= ⟨{?b},{?r},{at(?b,?r)} ⟩. Differ-
ent groundings of fixed variables vf (c)= {?b} gener-
ate different sets of ground atoms and different ground-
ing of counted variable vc(c)= {?r} generates ground
atoms within each set. We denote the ground atom set
with down arrow ↓. One of the ground atom sets for
{?b/b1} is c↓(?b/b1)= {at(b1,r1),at(b1,r2)}
and another ground set for {?b/b2} is c↓(?b/b2) =
{at(b2,r1),at(b2,r2)}.

An invariant candidate is called a lifted mutex group
if all of its ground atom sets are mutex groups, that
is, for any reachable state s and assignment {vf (c)/x},
|{a | s |= a, a∈ c↓(vf (c)/x)}|≤ 1. An LMG with no fixed
variable can only generate one ground mutex group.
For example, ⟨∅,?r,{at robby(?r)}⟩ only induces
ground atoms set {at robby(r1),at robby(r2)}.
Fišer (2020) provides a method to identify the set of LMGs
for a PDDL task. Since an LMG with multiple atoms can
be split into multiple LMGs with a single atom each, for
simplicity, in this paper we assume each LMG has only one
atom.

3 Label Reduction
A planning task can be represented as a labeled transition
system, where labels are operations that can be executed in
states. These transition labels are identified by the head(o)
for ground actions. For example, pick(b1,r1,g1) is a
label for the action that picks the ball b1 from room r1 in
the gripper g1. A label set L consists of a unique label for
each ground action in O↓. The label set size increases expo-
nentially in the number of objects. This work aims to reduce
the size of the label set L. We do so by identifying an as-
signment of labels to planning actions such that it generates
a smaller label set L′ while producing an equivalent transi-
tion system. We capture this requirement by specifying the
criteria for a valid label reduction. A label reduction is valid
if it assigns distinct labels to any two ground actions that
can be applied in the same reachable state. For example, ac-
tions pick(b1,r1,g1) and pick(b2,r2,g1) cannot
be applied in the same state as the gripper g1 cannot be in
two different rooms in the same state. Thus, assigning the
same label to both would be valid. But pick(b1,r1,g1)
and pick(b2,r1,g2) can be applied in the same state,
and hence cannot be assigned the same label.

Definition 1 A label reduction function ψ : L 7→ L′ is
valid if any two distinct ground action labels
head(o1), head(o2) ∈ L that are applicable in the same
reachable state (s |= pre(o1) ∧ s |= pre(o2)) are assigned
distinct labels, that is ψ(head(o1)) ̸= ψ(head(o2)).

This definition ensures that any two actions that are appli-
cable in the same state are distinguishable. For each reduced
label, the set of corresponding actions must include at most
one applicable action for each reachable state. Noticing the

resemblance to predicate mutex groups, we call such action
sets applicable action mutex groups.

Definition 2 A set of ground actions O′ is an applicable
action mutex group (AAMG) if for any reachable state s,
|{o | s |= pre(o), o ∈ O′}| ≤ 1.

Naturally, any subset of an AAMG is also an AAMG, and
any set of actions of size 1 is an AAMG. A partitioning of ac-
tions into AAMGs defines a valid label reduction, and vice
versa, a valid label reduction defines a partitioning of ac-
tions into AAMGs. While one can seek to find the smallest
possible valid label reduction, that might require generating
the set of all ground actions. To avoid the tedious grounding
process, we focus on finding AAMGs for lifted actions.

We find AAMGs for each lifted action separately, by re-
ducing its parameters. For example, consider a lifted ac-
tion o = pick(?b,?r,?g), as a robot can only be in
one specific room in any state, only one specific assign-
ment to ?r is satisfiable in any state. So one possible set
of AAMGs can be obtained by defining partial ground-
ing of action o on the subset of parameters obtained after
removing ?r. That is o↓({?b/b,?g/g}) | ∀b, g ∈
B} = {{pick(b1,r1,g1),pick(b1,r2,g1)},
{pick(b1,r1,g2),pick(b1,r2,g2)}, ...}.

A partial grounding of parameter subset (X ⊆
params(o)) of a lifted action o induces sets of ground ac-
tions where each set corresponds to a particular assignment
of objects to parameter subset X . Thus, we want to identify
a subset of parameters (X) such that any assignment (c) to
this subset results in the ground action set (o↓(X/c)) being
an AAMG (like the subset {?b,?g} in the above example).
Note that LMGs have a similar property. Any assignment to
their fixed variables results in a ground atom set being a mu-
tex group. Next, we show how LMGs can be used to identify
the required parameter subset.

Theorem 1 Given a lifted action o and a lifted mutex group
l = ⟨vf (l), vc(l), {α}⟩, if p⊑ α for some p ∈ pre(o), then
any assignment c to X = params(o) \ vc(l) 1 results in
o↓(X/c) being an AAMG.

Proof: Given an assignment vf (l)/c, any state s can only
satisfy at most one of the ground atoms from the mutex
group l↓(vf/c) (from the definition of LMG). Consequently,
as p ∈ pre(o) and p ⊑ α, the state can satisfy at most one of
the preconditions of the ground actions in the set o↓(X/c).
Hence, o↓(X/c) is an AAMG.

We call an LMG l relevant to a lifted action if an atom
p in the precondition satisfies p ⊑ α, where α ∈ A(l).
The parameters from set vc(l) of a relevant LMG need
not be included in X . Given the assignment to vf (l) ⊆
params(o) the LMG l guarantees a unique assignment to
parameters vc(l). Once the assignment to these parameters
(vf (l)∪ vc(l) ⊆ params(o)) are identified, another LMG l′

could now be used to identify the assignment to parameters
vc(l′) and hence vc(l′) can also be removed from X . Essen-
tially, we can leverage multiple LMGs to further reduce the

1We assume that the variables of the LMG l match the ones of
the precondition atom p.



subset X . Formally, this corresponds to the following prob-
lem, which we call parameter seed set:

Input: A lifted action o with parameters params(o) and a
set of relevant lifted mutex groups L.
Find: A subset X ⊆ params(o) of parameters s.t.
∃X1, . . . Xk with (i) X = X1 ⊆ X2 ⊆ . . . ⊆ Xk =
params(o), and (ii) Xi+1 =Xi∪vc(l) for some l ∈ L s.t.
vf (l)⊆Xi.

Any assignment of objects to the parameter seed set X
will result in a unique assignment to all the remaining pa-
rameters of o for any reachable state.

Theorem 2 Let o be a lifted action over parameters
params(o) and X be a solution to the parameter seed set
problem above. Any assignment c of objects to X results in
o↓(X/c) being an AAMG.

Proof: Let X1 ⊆ X2 ⊆ . . . ⊆ Xk = params(o) and let
l1, . . . , lk−1 be lifted mutex groups such that vf (li) ∈ Xi

and Xi+1 = Xi ∪ vc(li). Then, each Xi is a solution to
the parameter seed set problem. We prove the claim by
induction over the number of lifted mutex groups starting
from k. The base claim of o↓(Xk/x) (one lifted mutex
group) is AAMG results from Theorem 1. We assume that
o↓(Xi+1/ĉ) is an AAMG for any assignment ĉ to Xi+1 and
prove that o↓(Xi/c̃) is an AAMG for any assignment c̃ to
Xi. Since li = ⟨vf (li), vc(li),A(li)⟩ is a lifted mutex group
with vf (li) ⊆ Xi, we have that li↓(Xi/c̃) is a mutex group.
Let o1, o2 be two ground actions in o↓(Xi/c̃). If both o1
and o2 belong to o↓(Xi+1/ĉ), we are done. Otherwise, as-
sume o1 in o↓(Xi+1/c1) and o2 in o↓(Xi+1/c2), where c1
and c2 agree on Xi but differ on Xi+1 \Xi. However, since
Xi+1=Xi∪vc(li), we have Xi+1 \Xi ⊆ vc(li), making c1
and c2 mutually exclusive. Thus, o↓(Xi/c̃) is an AAMG.

Different parameter seed sets X correspond to different
AAMGs. To find the smallest possible label set L′, we want
to minimize the number of AAMGs and therefore we are
looking for a seed setX with a minimum possible total num-
ber of assignments. This can be expressed as

argmin
X

∏
x∈X

|D(x)|.

As the objective is not linear, we can use an equivalent one
instead: argmin

X

∑
x∈X log(|D(x)|).

The parameter seed set problem is NP-Complete. For the
lack of space, the proof, by reducing the bounded param-
eter seed set decision problem to a seed set decision prob-
lem (Gefen and Brafman 2011), is deferred to the supple-
mentary material. To solve the parameter seed set problem,
we cast it as a (delete-free) STRIPS planning task with op-
eration costs. We first find a set L of relevant LMGs. Then,
for each lifted action o we define a separate planning task
Πo = ⟨Lo,Oo, Io, Go⟩, where

• Language Lo contains a single predicate mark and an
object for each parameter in params(o).

• The set Oo consists of two types of actions

1. seedx actions are defined for each pa-
rameter x ∈ params(o) as seedx :=〈
seedx, log(|D(x)|), ∅, {mark(x)}, ∅

〉
2. getl actions are defined for each relevant

LMG l as getl :=
〈
getl, 0, {mark(x) |x ∈

vf (l)}, {mark(y) | y∈vc(l)}, ∅
〉
.

• Initial state Io = ∅
• Goal state Go = {mark(x) | ∀x ∈ params(o)}.

The action seedx marks parameter x ∈ params(o) as an
element of the seed set. Action getl indicates that a unique
assignment for the parameters x ∈ vc(l) can be identified if
all parameters y ∈ vf (l) are known. Therefore, the param-
eters vc(l) can be reduced. A plan for Πo corresponds to a
sequence of seed and getl actions. The parameters marked
by seed actions form the seed set, while others are reduced.
Theorem 3 For a plan π of Πo, Xπ = {c | seedc ∈ π}, is
a solution to the parameter seed set problem of o.
Proof: Let π be a plan for Πo (assume there are no redun-
dant repetitions of actions in π). Since seed actions have no
preconditions, assume these actions come before getl ac-
tions, and let π = πsπg denote the partition of π into the
two sequences of seed and getl actions, respectively. Let s1
be the state resulting from applying πs in the initial state
Io and s1, . . . , sk be the sequence of states along πg ap-
plied to s1. Then, we have (i) s1 ⊆ s2 ⊆ . . . ⊆ sk and
sk = {mark(x) | x ∈ params(o)}, as well as (ii) si+1 =
si ∪ add(getl) = si ∪ {mark(y) | y ∈ vc(l)} for some
getl with pre(getl) = {mark(x) |x ∈ vf (l)} ⊆ si. De-
noting the parameters of o marked in the state s by Γ(s) =
{x | mark(x) ∈ s}, we get that Xπ = Γ(s1).

The cost of a plan π is
∑

seedx∈π log(|D(x)|), and there-
fore a cost-optimal plan will correspond to a parameter seed
set with a minimal possible total number of assignments. To
summarize, we find a parameter seed-set X for each lifted
action such that assigning objects to X will result in a set of
ground actions that is an AAMG. Hence, all the ground ac-
tions in that set can be assigned the same label. This reduces
the size of the label set L.

4 Experiments
Our experimental evaluation is split into three parts. First,
we check whether our approach is able to reduce the size of
the transition label set and whether the reduction is substan-
tial. The next two parts evaluate the utility of our approach.
We test whether our reduction can translate into improved
performance in two use cases: learning reinforcement learn-
ing policies and lifted successor generation.

4.1 Reduction in the Label Sets
We compare the size of label sets, obtained with and without
the proposed reduction, on a representative set of 14 STRIPS
domains from various IPC (using the typed versions where
available) and 10 hard-to-ground (HTG) domains. We use
the Fast Downward (Helmert 2006) planning system trans-
lator to ground the lifted actions. To infer the lifted mu-
tex groups, we use the implementation by Fišer (2020) and



101 102 103 104 105 106
101

102

103

104

105

106

⋆⋆⋆⋆⋆⋆
∗

∗

∗

∗
∗

∗

∗
∗

∗

∗
∗

∗∗∗∗

∗

∗

∗

∗

∗
∗

∗
∗∗

∗

∗

∗
∗

∗

∗

∗

∗

∗

∗
∗

∗

⊞⊞⊞

⊞

⊞

⊞⊞⊞

⊞⊞⊞

⊞

⊞

⊞⊞

⊞⊞

⊛

⊛⊛

⊛

⊛

⊛⊛

⊛

⊛⊛⊛⊛⊛⊛⊛

⊛

⊛⊛⊛⊛

⋆⋆⋆⋆⋆
⋆

⋆⋆
⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆
⋆

⋆

⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆

⋆
⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆

⋆

⋆⋆⋆

⋆⋆

⋆
⋆⋆⋆

⋆⋆
⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆
⋆⋆⋆

Size of label set L

Si
ze

of
re

du
ce

d
la

be
ls

et
L

′
blocks gripper logistics visitall

⋆ barman pipesworld rovers depot
driverlog tpp ∗ satellite ⊞ zenotravel

⊛ thoughtful ⋆ freecell

102 105 108 1011 1014 1017

102

106

1010

1014

⊞ ⊞⊞⊞⊞ ⊞⊞⊞⊞⊞ ⊞⊞⊞⊞ ⊞⊞⊞⊞⊞⊞ ⊞⊞

⊞⊞⊞

⊞
⊞

⊞⊞⊞⊞

⊞
⊞

⊞⊞⊞
⊞⊞

⊞
⊞

⊞

⊞
⊞

⊞
⊞

⊞
⊞

⊞
⊞

⊞
⊞⊞⊞⊞

⊞
⊞

⊞⊞⊞⊞
⊞

⊞
⊞⊞

⊞
⊞

⋆

⋆⋆

⋆

⋆

⋆

⋆

⋆⋆

⋆

Size of label set L

Si
ze

of
re

du
ce

d
la

be
ls

et
L

′

visitall rovers
blocksworld childsnack

⊞GED ⋆ logistics
pipesworld

(a) (b)

Figure 2: Comparison of label set sizes on (a) 14 IPC STRIPS domains and (b) 7 HTG domains.

to solve the parameter seed set planning task we use the
Fast Downward planner with A* search. The parameter seed
set planning problem described in the previous section uses
real-valued costs for the seed actions. However, the Fast
Downward planner only allows integer costs. So we scale
the real-valued costs of the seed action in our experiments.

Figure 2 compares the size of the label sets L′ and L,
obtained with and without the reduction resp. Figure 2a
presents the reduction on each PDDL problem instance for
IPC domains and Figure 2b on 7 out of 10 HTG domains
(the remaining 3 are available in the supplementary mate-
rial). Both axes are log-scale. Points below the diagonal in-
dicate instances where the reduced label set is smaller than
the original one. The distance from the diagonal indicates
the significance of the reduction. Gray dashed lines below
the diagonal represent the order of magnitude of the reduc-
tion. Our experimental results show a substantial reduction
of the label set in most problem instances, going up to 2 or-
ders of magnitude on IPC problems and up to 10 orders of
magnitude on hard-to-ground domains.

Table 1 summarizes the number of lifted actions that were
reduced by our approach. It also presents the mean and max
number of non-seed parameters found in the lifted actions,
i.e., |params(o)| − |X|. Each row of the table represents
a domain, aggregating results over the instances of that do-
main. We were able to find non-seed parameters in all 14
IPC domains and all but 2 HTG domains. More than 3 pa-
rameters were reduced for some lifted actions in thought-
ful, pipesworld, tpp, freecell, zenotravel, visit all, childsnack,
and OS-alkene domains. 2 IPC domains and 3 HTG domains
have actions with 100% reduction, that is all the parameters
of some actions were deemed inessential. Note that the num-
ber of reduced parameters (in Table 1) is not necessarily pro-
portional to the reduction in the label set (in Figure 2). Nev-
ertheless, the number of reduced parameters indicates the
importance of parameter reduction. The computation time
was between 0.25 and 1.73 seconds for the IPC domains
and between 0.26 and 4.69 seconds for the HTG domains.

4.2 Learning RL Policies
An MDP M = ⟨S,A, P,R⟩ contains a set of states S, a set
of actions A, a transition probability distribution P : S ×
S × A 7→ [0, 1], and a reward function R : S 7→ R. When
a PDDL task Π is cast as an MDP M, the set of states S
are defined as the set of all states reachable from I of Π, the
action setA is defined as the set of labels that is composed of
a unique label for each of the ground actions, the probability
distribution P is defined to respect the state-transition in the
PDDL actions, and the reward functionR is defined as some
positive integer when s |= G and 0 otherwise. In practice,
for each of the ground actions, the head of the ground action
head(o) is assigned as the unique label.

To evaluate the advantage of reducing the label set size
in planning as RL, we cast the PDDL task as an MDP with
two different action spaces: 1) All: default action space with
all ground actions, with head(o) as unique labels, 2) Re-
duced: reduced action space with one label for each AAMG
and compare the learning curves of RL policies. We focus
on 4 classical planning domains, ferry, gripper, blocks, and
logistics. Since our aim is to evaluate the advantage of reduc-
ing the action space, and not the generalization of policies,
we fix the number of objects in each domain. We generate
500 unique pairs of initial and goal states in each domain.
Of these, 250 pairs were used in training and the remain-
ing were set aside for evaluation. Inspired by the work of
Gehring et al. (2022), we use domain-independent planning
heuristic, hFF, as a dense reward function and use their code
to convert the PDDL problem to an RL environment. We em-
ploy the Double DQN implementation from the ACME RL
library (Hoffman et al. 2020) to learn a state-action value
function and apply a greedy policy π(s) = max

a
Q(s, a) in

our evaluation.
Figure 3 shows learning curves aggregated over 5 runs

with different random seeds. For ferry and gripper do-
mains (Figure 3 a and b), the reduction of action labels im-
proves sample efficiency by as many as 300, 000 steps. In
blocks and logistics domains (Figure 3 c and d), the base-
line without the label reduction was not able to learn a pol-
icy. With a reduced label set, the training becomes feasible.
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Figure 3: Learning curve in the (a) ferry, (b) gripper, (c) blocks, and (d) logistics; with and without action label reduction.
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Figure 4: Comparison of table sizes before the query is performed. We split HTG domains into two plots for readability.

It is clear from these plots that reducing the action label
sets yields significant gains in terms of sample efficiency.
One possible reason that explains these results is the reduc-
tion of invalid actions achieved in these environments. As
our approach reduces the action labels while maintaining
all the valid actions, the number of invalid actions is re-
duced. This phenomenon of deep RL agents showing per-
formance improvement upon reduction of invalid actions is
studied in Huang and Ontañón (2022). Well aware of this
phenomenon, researchers invest significant effort to manu-
ally identify small action spaces in planning domains (Silver
and Chitnis 2020; Fern, Yoon, and Givan 2006; Dzeroski,
Raedt, and Driessens 2001) and code state-dependent action
functions in RL (Boutilier et al. 2018; Huang and Ontañón
2022; Bamford and Ovalle 2021). We automated this man-
ual process for planning domains. Our results show that even
in small-scale problems (with 4–7 objects) label reduction is
beneficial. In large problems (with many objects) our ap-
proach can provide tremendous leverage for training RL al-
gorithms, reducing label set by orders of magnitude.

4.3 Lifted Successor Generation
While planning tasks are often represented in PDDL, us-
ing first-order representations, most planners use a proposi-
tional or a multi-valued grounded representation (Bäckström
and Nebel 1995). The lifted successor generator by Corrêa
et al. (2020) works directly on a lifted level to generate

successor states using database techniques (Ullman 1989).
A state is represented as a database. Each predicate has a
table with the number of columns according to the predi-
cate arity. Each fact in the state forms a row in the table.
With this state representation, the task of identifying the
applicable actions is equivalent to a join query evaluation.
Consider a planning task Π = ⟨L,O, I, G⟩ over a first-
order language L = ⟨B, T ,V,P⟩. A state s is a database
D(s) = ⟨B, {RP,s|P ∈ P}⟩ with objects B as domain and
finite set of relations over these objects. The relation RP,s

contains all ground atoms of predicate P in state s as tuples.
The set of ground actions applicable in s for a lifted action
o ∈ O is identified by the conjunctive query

Q(params(o)) :− RP1,s, · · · , RPn,s where Pi ∈ pre(o).

The query result provides tuples of object assignments to the
action parameters, which define the ground actions that are
applicable in the state.

There are several possible ways of exploiting the addi-
tional information of the seed parameters for speeding up
join computation. The complexity of the query evaluation is
measured in terms of the input and output size of the query.
With our seed parameter set, the input and the output of the
query can be modified and improvement can be achieved in
computation time. To modify the output, one can query only
for the seed parameters and derive the assignments for non-
seed parameters using the sequence of lifted mutex groups.



Domain # reduced non-seed parameters
actions max % (#) mean % (#)

IPC domains

blocks 3/4 100.0% (1.00) 50.00% (0.75)
barman 11/12 66.67% (3.00) 41.94% (1.92)
driverlog 6/6 66.67% (2.00) 47.22% (1.50)
thoughtful 20/21 100.0% (6.00) 73.03% (3.24)
gripper 3/3 66.67% (2.00) 50.00% (1.33)
pipesworld 6/6 74.57% (6.12) 65.69% (5.26)
pipesworld (no t.) 6/6 71.43% (5.00) 59.81% (3.87)
pipesworld (no s.) 4/4 68.89% (7.60) 65.83% (6.88)
tpp 4/4 69.52% (4.87) 60.48% (3.90)
freecell 10/10 80.00% (5.00) 65.29% (3.30)
logistics 6/6 66.67% (2.00) 55.95% (1.76)
rovers 8.62/9 77.08% (2.88) 46.50% (1.73)
satellite 5/5 68.52% (2.08) 51.99% (1.46)
visitall 1/1 50.00% (1.00) 50.00% (1.00)
depot 5/5 50.00% (2.00) 46.67% (1.80)
zenotravel 5/5 77.50% (4.10) 62.23% (2.68)

HTG Domains

visitall-3dim 3/3 75.00% (3.00) 75.00% (3.00)
visitall-4dim 4/4 80.00% (4.00) 80.00% (4.00)
visitall-5dim 5/5 83.33% (5.00) 83.33% (5.00)
blocksworld 3/4 100.0% (1.00) 50.00% (0.75)
GED 11/14 100.0% (3.00) 61.90% (1.50)
GED-split 19/21 100.0% (2.00) 73.81% (1.38)
GED-positional 0/3 0.00% (0.00) 0.00% (0.00)
pipesworld (no s.) 4/4 68.00% (7.26) 64.10% (6.68)
rovers 0/9 0.00% (0.00) 0.00% (0.00)
childsnack parsize1 2.5/4 63.33% (3.17) 27.29% (1.17)
childsnack parsize2 3/4 77.78% (4.67) 36.11% (1.92)
childsnack parsize3 3/4 80.95% (5.67) 37.95% (2.42)
childsnack parsize4 3/4 83.33% (6.67) 39.17% (2.92)
logistics 6/6 83.33% (2.50) 65.97% (2.08)
OS-MIT 15.22/52 44.41% (4.39) 7.91% (0.81)
OS-alkene 12/12 67.36% (7.11) 37.28% (3.81)
OS-original 14.85/52 45.74% (4.65) 7.14% (0.76)

Table 1: Summary of actions reduced by our approach. Col-
umn 2 shows the number of reduced/total lifted actions.
Columns 3 & 4 present the maximum & mean of the per-
cent (number) of reducible parameters per action, aggre-
gated over problems in that domain.

In our preliminary experiment, we modify the proce-
dure of Powerlifted planner (Corrêa et al. 2020) by pre-
processing the tables, hence modifying the input size. Be-
fore querying, we join the precondition tables with the cor-
responding lifted mutex group table, over non-seed param-
eters. This allows us to reduce the size of the tables in the
query. Figure 4 shows the difference in the size of the tables
before the query is performed. The X-axis presents the size
of the table in Powerlifted and the Y-axis presents the size of
the table in Powerlifted with seeds. So, a point below the di-
agonal indicates reduced sizes. There are 4914, out of 36097
tables, that undergo size reduction, and often a significant
one. In 478 out of 811 problems where the join is performed,
at least one table is reduced in size. As known from database
literature, reducing the size of the tables can help improve
join performance (Ullman 1989). Our initial results (in sup-
plementary material), comparing the time taken to perform

the join and to generate applicable actions show that our ap-
proach has the potential to save computational cost. Note
that we do not modify the existing query evaluation process.
Optimizing the join query using the cardinality of the re-
lations can potentially further improve the processing time.
However, query optimization is out of the scope of the cur-
rent work. Further research is needed into additional variants
of improving the lifted successor generation to make it ben-
eficial in other domains.

5 Related Work
Various approaches have been studied in RL to reduce the
action space. Stochastic action sets (Boutilier et al. 2018)
and invalid action masking (Huang and Ontañón 2022; Bam-
ford and Ovalle 2021; Kanervisto, Scheller, and Hautamäki
2020) restricts the action selected by an agent to a small
subset of actions that are feasible in the given state. This is
done by assigning zero probability (or −∞ score) to invalid
actions. While the stochastic action sets and invalid action
masking define a state-dependent subset of feasible actions,
our action reduction is independent of the current state.

Another approach to manage a large number of actions
in an MDP is by using factored action spaces (Pazis
and Lagoudakis 2011; Geißer, Speck, and Keller
2020; Guestrin, Lagoudakis, and Parr 2002). With
factored action space, an action is decomposed into
multiple components and represented as either a de-
cision tree or a vector. It is straightforward to convert
predicate action space (for example, gripper actions
{drop(b1, r2, g1), pick(b2, r1, g2), . . .})
to a factored action space (a0, a1, . . . , an) with a0 denoting
the action identifier (for example, drop or pick) and
a1, . . . , an, denoting the parameters. Our approach of
identifying the parameter seed set can be used to reduce the
number of factors in the factored action spaces.

In planning literature, label reduction techniques are used
to reduce the number of transition labels in an abstract
transition graph (Helmert et al. 2014; Sievers, Wehrle, and
Helmert 2014), with the aim to simplify the transition sys-
tem by creating an equivalence between labeled transitions.
Here, the purpose is different: labels of actions that are never
applicable together are reduced to the same label while al-
lowing to differentiate between applicable actions in a given
state.

6 Discussion and Future Work
In this work, we have introduced definitions of a valid la-
bel reduction and applicable action mutex groups and have
shown the connection between the two. We have presented
a method for automatically deriving action label reductions
for planning tasks based on action parameter reduction. For
that, a parameter seed set problem was introduced, and a
solution to the problem was suggested by translating it to
delete-free planning. Our experimental evaluation shows a
significant reduction in action labels when using our ap-
proach, across all tested planning domains. This reduction
translates both into improved sample efficiency of standard
RL agents and into reduced computation time of identifying



applicable ground actions in lifted planning, the two exam-
ple use cases.

Our method, however, does not guarantee the optimality
of the valid reduction size, even for the restricted case con-
sidered in this work. Finding provably minimal size reduc-
tions is an interesting topic for future research. Further, we
barely touched on the possible benefits of action parame-
ter reduction for classical planning. We have not explored
other methods of speeding up successor computation. Fi-
nally, exploring the possible benefits of the action param-
eter reduction for lifted heuristic computation (Corrêa et al.
2021; Lauer et al. 2021) is of great promise for lifted plan-
ning.
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Fišer, D. 2020. Lifted Fact-Alternating Mutex Groups and
Pruned Grounding of Classical Planning Problems. In AAAI,
9835–9842.
Gefen, A.; and Brafman, R. I. 2011. The Minimal Seed Set
Problem. In ICAPS, 1, 319–322.
Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling,
L. P.; Sohrabi, S.; and Katz, M. 2022. Reinforcement Learn-
ing for Classical Planning: Viewing Heuristics as Dense Re-
ward Generators. In ICAPS, 588–596.
Geißer, F.; Speck, D.; and Keller, T. 2020. Trial-Based
Heuristic Tree Search for MDPs with Factored Action
Spaces. In SOCS, 38–47.
Guestrin, C.; Lagoudakis, M. G.; and Parr, R. 2002. Coordi-
nated Reinforcement Learning. In ICML, 227–234.
Haslum, P. 2011. Computing Genome Edit Distances using
Domain-Independent Planning. In Scheduling and Planning
Applications woRKshop (SPARK) at ICAPS, 45–51.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Hoffman, M.; Shahriari, B.; Aslanides, J.; Barth-Maron, G.;
et al. 2020. Acme: A Research Framework for Distributed
Reinforcement Learning. CoRR, abs/2006.00979.
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