
SpectraLDS: Provable Distillation for
Linear Dynamical Systems

Devan Shah1 Shlomo Fortgang1 Sofiia Druchyna1

Elad Hazan1,2

1Computer Science Department, Princeton University
2Google DeepMind Princeton

Abstract

We present the first provable method for identifying symmetric linear dynamical
systems (LDS) with accuracy guarantees that are independent of the systems’ state
dimension or effective memory. Our approach builds upon recent work that repre-
sents symmetric LDSs as convolutions learnable via fixed spectral transformations.
We show how to invert this representation, thereby recovering an LDS model from
its spectral transform and yielding an end-to-end convex optimization procedure.
This distillation preserves predictive accuracy while enabling constant-time and
constant-space inference per token, independent of sequence length. We evaluate
our method, SpectraLDS, as a component in sequence prediction architectures and
demonstrate that accuracy is preserved while inference efficiency is improved on
tasks such as language modeling.

1 Introduction

The emergence of attention-based transformer architectures has revolutionized sequence modeling
tasks, particularly in natural language processing [37] and large-scale sequence-to-sequence learning
[16, 29]. These transformer models rely on the self-attention mechanism, which allows each token in
a sequence to attend to every other token, enabling strong contextual understanding. However, this
approach suffers from quadratic complexity in sequence length, making it computationally expensive
for longer sequences. Recent research has thus explored alternative, more efficient architectures that
preserve expressiveness while reducing computational costs for long sequences. Among these are
attention-free approaches such as convolution-based or state-space models (SSMs) [9, 2, 22, 28],
which can offer sub-quadratic or even near-linear time generation.

The most basic SSM, which is the starting point for all aforementioned models, are linear dynamical
systems (LDS), a foundational framework for modeling sequential dependencies in control theory,
signal processing, and learning theory [20, 13]:

xt = Axt−1 +But, ŷt = Cxt +Dut. (1)

Here ut represents the input sequence, xt encodes the past state information, and ŷt approximates
the target sequence. By maintaining a fixed latent state, LDSs enable efficient inference and allow
for efficient memory utilization. However, gradient-based approaches for learning LDSs suffer from
exploding or vanishing gradients, particularly when modeling systems with long-term memory or
large hidden state dimension [14].

To address these limitations, Agarwal et al. [2] leveraged the spectral filtering method [14] and
introduced the Spectral Transform Unit (STU), a convex relaxation that shifts from learning the hidden

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

transition matrix A directly to a reparameterization of the LDS impulse response that learns how
input signals convolve with fixed spectral filters. This approach provably preserves the expressiveness
of an LDS with symmetric A while making the training problem far more tractable. In practice, it has
proven robust for systems requiring long-range memory and empirical results show that hybrid STU
models—with alternating attention and STU layers—can match or even surpass purely attention-
based architectures, as well as other popular hybrid state-space models, on long-context tasks such as
language modeling and time-series prediction [22]. Furthermore, unlike self-attention, which requires
O(L2) operations per L tokens during training and identically for inference with KV-caching, the
STU operates in O(L logL) operations per L tokens during training and O(L log3 L) operations per
L tokens during inference through algorithms based on the Fast Fourier Transform [1, 22].

However, although STUs capture LDS-like dynamics using spectral filtering, there has been no
straightforward way to convert (or “distill”) a trained STU layer back into explicit LDS form.
Moreover, it has remained unclear whether every STU layer can be represented as a LDS with
provably small error. Such a distillation from an STU layer to an LDS layer with hidden-dimension h
would permit recurrent inference in place of convolution operations, reducing the cost of generating
L tokens during inference to O(h · L), while maintaining the training robustness guarantees of the
STU.

Such a distillation is especially desirable in the light of the resurgence of SSMs as scalable alternatives
to Transformers in long-context tasks [9, 10, 34]. Thus, our work allows one to retain the STU’s
performance on long sequences while enabling logarithmic-time per-token generation—providing
an appealing alternative to both long convolutions and Transformer-based self-attention caching.

1.1 Our Contribution

We present a novel technique for distilling STU filters into LDS form, achieving a substantial reduction
in operations—from O(log3 L) to O(logL) per token1 during generation—while preserving the
STU’s expressivity and performance. Moreover, due to the training stability guarantees of the
STU architecture, even when learning a marginally stable symmetric LDS or an LDS with large
hidden dimension, this distillation procedure provides the first provable method to directly learn the
parameters of a symmetric LDS of arbitrarily high effective memory and with bounded noise.
Specifically:

• In Algorithm 2, we show how to convert a learned STU into explicit system matrix parame-
ters whose recurrence can be computed in logarithmic time.

• We provide a theoretical analysis of this distillation in Theorem 1, and empirically demon-
strate that the new LDS form incurs negligible degradation in modeling quality while
improving the autoregressive generation speed.

• We demonstrate in Section 6 that by applying SpectraLDS to trained STUs, we maintain the
same accuracy and attain O(logL) per-token computational generation cost.

• As a consequence of our theoretical analysis, we show in Section 5.4 how we can efficiently
convert a symmetric LDS of arbitrary high dimension, via an intermediate STU learning
step, to one of O(logL) dimension with minimal error.

We open-source the SpectraLDS code at https://github.com/dshah02/SpectraLDS.

2 Related Work

State-space models have long been a cornerstone of control theory and signal processing. The
simplest variants, linear dynamical systems, provide a succinct way to capture temporal dependencies
via a hidden state that evolves with linear transitions. Classical methods include the Kalman filter
[20], which remains widely used due to its robust theoretical properties and computational efficiency.

In recent years, a new wave of SSMs have emerged as efficient alternatives to attention-based
methods for long-sequence tasks, promising sub-quadratic or even near-linear complexity without

1We expect the actual reduction to be much larger: from
√
L, which is a practical method for generation, as

opposed to log3 L, which is a complex algorithm, especially to implement efficiently on a GPU.

2

https://github.com/dshah02/SpectraLDS

compromising expressive power. Models like S4 [10] and its diagonal variants [11] exploit structured
state matrices to learn long-range dependencies, while works such as Hyena, Mega, and Mamba
[34, 24, 9] incorporate gating or convolution-based parameterizations to compete against (and
sometimes outperform) transformers in language modeling, time-series analysis, and other long-
context applications. Their growing popularity and the challenges of training SSMs underscore the
need for methods with greater training robustness, efficiency, and performance guarantees. The
Spectral Transform Unit (STU) [2] lies squarely in this tradition, offering a powerful convex relaxation
for training LDS-like systems that achieves impressive empirical results on long-context tasks. Our
work builds directly on this line of research, introducing the first method to distill a learned STU
layer into an explicit LDS with provable guarantees, thereby unifying the convex training advantages
of spectral filtering with the real-time inference benefits of a recurrent LDS.

Our contributions also align with the long tradition of system identification for LDSs, where the
aim is to learn the hidden transition and output matrices (A,B,C,D) from observed sequences.
Early influential approaches—such as the Ho–Kalman algorithm [15], Kung’s method [21], and the
Eigensystem Realization Algorithm (ERA) [18] —rely on linear-algebraic decompositions (e.g.,
SVD) of Hankel matrices consistent with observations. Modern variants allow for single-trajectory
identification [31], and subsequent refinements like MOESP and N4SID [17] added stochastic
noise modeling, while prediction-error and maximum-likelihood methods improved estimation
accuracy and statistical efficiency. More recent lines of work incorporate regularization and spectral
methods (e.g., stable-spline kernels, sparse identification) to yield more robust or interpretable LDS
representations. In the context of distillation, these methods still require matrix decompositions that
scale super-linearly in the problem size.

In contrast to many previous approaches, since the STU’s parameterization avoids direct recon-
struction of the system matrix A, distillation from a STU layer into an LDS remains agnostic to
hidden dimension. Moreover, as our method uses a fixed and abstract Hankel matrix—rather than
having to construct it anew from observed data— we can perform a significant part of the distillation
computation offline.

Finally, we highlight the recent closely related work of [28], which distills state-space-like recurrences
from convolution-based sequence models. Their Laughing Hyena method accelerates long convolu-
tional filters by approximating them with a diagonal LDS, thus allowing constant-time generation
at inference. While this approach generalizes to any convolution-based model (e.g., Hyena [34]),
it does not provide formal guarantees on distillation quality. In contrast, we focus on the STU’s
spectral filters, which have expressive power comparable to a symmetric LDS with real eigenvalues,
and present the first theoretical framework to convert the filters into such an LDS with provable
bounds on distillation quality. By leveraging the STU’s fixed bank of spectral filters, our method pre-
serves long-sequence expressiveness while achieving a symmetric LDS realization with a guaranteed
approximation error (see Section 5).

3 Token Generation and Complexity for Language Modeling

In this section, we summarize the autoregressive generation costs for three model classes, Transform-
ers, Convolutional Models, and RNNs, considering a prompt length of T and the generation of K
tokens by each model, with L the length of the convolutional filters (i.e., the maximum sequence
length). We show the runtimes and memory requirements for each of the listed models in Table 1.

Attention. Processing a prompt requires O(T 2) time. However, token-by-token generation
can be accelerated to O(T + K) for each generated token via key-value caching, with a total of
O(T 2 +K(T +K)) = O(T 2 +K2) operations and requiring O(T +K) space [37, 28].

Convolutional Model. A Convolutional Model with k convolutional filters will require O(kN)
operations to autoregressively generate a new output given N inputs, and thus a naive autoregressive
convolutional implementation will require O(k ·K · (T +K)) operations to generate K tokens. A
more refined “Epoched Future Fill” algorithm with prompt prefilling can reduce this to
O(k · (T log T +K3/2

√
logK)) to generate K tokens. The "Continuous Future Fill" algorithm has

theoretical guarantees of O(k · (T log T +K log2K)) operations, although it suffers from numerical
instability and has not been implemented or used in practice [1]. For the guarantees of the STU
architecture, we require k = O(logL) and in practice we choose k = 24 [22].

3

RNN (LDS). For an RNN with state dimension h, autoregressive generation requiresO(h) operations
per token generated and O(h) memory, allowing generation of K tokens with O(h · (T + K))
operations. As we will prove, for an LDS with representation capacity comparable to an STU with k
filters, we require h = O(k) = O(logL).

Method Prefill + Generation Runtime Cache Size Runtime with K,T = O(L)

Standard Conv (TK + T log T +K2)k T +K L2 logL
Standard Attn. T 2 +K2 T +K L2

EpochedFF (T log T +K3/2
√
logK)k K L3/2(logL)3/2

ContinuousFF (T log T +K log2K)k K L log3 L
SpectraLDS (ours) (T +K)h h L logL

Table 1: Comparison of architecture runtime and memory requirements for generating K tokens from
a length T prompt with k, h = O(logL), where O(·) is omitted for brevity.

4 Problem Background

In this section, we survey the fundamentals relevant to our approach. First, we discuss linear
dynamical systems and the inherent challenges of training them directly on tasks requiring long
memory. We then present the main theoretical results of spectral filtering and outline how the Spectral
Transform Unit (STU) leverages fixed spectral filters to model linear recurrences without explicitly
learning the transition matrix A. Finally, we set the stage for our method of distilling STUs back into
linear dynamical systems.

4.1 Linear Dynamical Systems

Linear dynamical systems (LDS) have been widely used in control theory to represent time-dependent
processes, forming the basis of classical state-space formulations and optimal control methods
[20, 23, 3, 19, 6]. Concretely, we consider an input sequence u1, u2, . . . , ut ∈ Rn, and the
corresponding output sequence y1, y2, . . . , yt ∈ Rm. The hidden state xt ∈ Rd summarizes the
system’s memory of past inputs, with the evolution of the system being represented as

xt = Axt−1 +But, yt = Cxt +Dut. (2)

where A ∈ Rd×d, B ∈ Rd×n, C ∈ Rm×d, and D ∈ Rm×n. We omit dynamics and observation
noise terms for simplicity with this derivation, although we test our methods on signals with noise.

Expanding the LDS to the Convolutional Form. In a noiseless environment with x0 = 0⃗, we can
expand the LDS equations as follows:

yt = Cxt +Dut = C
(
Axt−1 +But

)
+Dut = · · · =

t−1∑
i=0

CAiB ut−i +Dut.

Note that if any eigenvalue |λi(A)| > 1, the system becomes unstable and yt may tend to infinity
in magnitude. Even for |λi(A)| < 1, systems with ∥A∥ ≈ 1 are prone to failure due to large Ai

powers in backpropagation, as a noisy algorithm may approximate A with spectral radius greater
than 1 during training. If |λi(A)| < 1− δ for some spectral gap δ > 0, then

yt =

τ∑
i=0

C AiB ut−i + ετ , ∥ετ∥ ≤ ε,

where τ = O
(
1
δ log

1
ε

)
and the effective memory is thus on the order 1

δ [2]. As δ → 0, learning
A directly becomes unstable for large contexts [5, 32, 30], highlighting the need for methods
such as spectral filtering. Since the D matrix serves as a skip connection that does not affect the
representation capacity, we fix it to a 0-matrix and omit its consideration for the remainder of this
paper. We will sometimes use the shorthand LDS(C,A,B) to refer to a linear dynamical system
with those parameters and D = 0.

4

Additionally, for the remainder of this paper, we restrict our attention to systems where A is a
symmetric real matrix. An LDS with symmetricA can be diagonalized over the real numbers, making
it equivalent to an LDS with a diagonal A. Without loss of generality, we therefore assume A is
diagonal with eigenvalues α1, . . . , αd.

Spectral Filtering. With initial state x0 = 0⃗, defining µ(α) = (1, α, α2, . . .), and indexing the
columns of C as cℓ and the rows of B as bℓ, we can extend the convolutional representation:

yt =

t−1∑
i=0

C AiB ut−i =

t−1∑
i=0

C

(
d∑

ℓ=1

αi
ℓ(eℓ ⊗ eℓ)

)
But−i =

d∑
ℓ=1

(cℓ ⊗ bℓ)

t∑
i=1

µ(αℓ)(i) · ut−i+1

To circumvent the non-convex optimization problem of finding α that best fit an LDS, [14] propose
the spectral filtering algorithm, which learns an approximation of µ(α) in a convex manner. They
prove that given eigenvalue-eigenvector pairs {σj , ϕj}j of the Hankel matrix Z,

Z :=

∫ 1

0

µ(α)µ(α)⊤ dα, Zi,j :=
2

(i+ j)3 − (i+ j)

any µ(α) with 0 ≤ α ≤ 1 can be approximated by the top k eigenvectors {ϕ1, . . . , ϕk} of Z with
an exponentially decreasing error in k. Thus, if yt is generated by a PSD linear dynamical system,
we have the following result:

yt ≈
d∑

ℓ=1

(cℓ ⊗ bℓ)

t∑
i=1

µ̃(αℓ)(i) · ut−i+1 =

k∑
j=1

Mj

(t∑
i=1

ϕj(i) · ut−i+1

)
where we define µ̃(α) :=

∑k
i=1⟨µ(α), ϕi⟩ϕi and learn suitable parameters Mj ∈ Rm×n. Rather

than depending on powers of A, learning an LDS with this parameterization remains convex in {Mj},
since eigenvectors {ϕj} from the matrix Z are computed offline.

The Spectral Transform Unit. To account for learning negative eigenvalues of A, the spectral
filtering construction can be adapted by introducing positive and negative sets of feature maps. If
{σj , ϕj} are the eigenvalue-eigenvector pairs of Z, then for each time t and each respective filter ϕj ,
we define the projections of the inputs onto the spectral basis:

U+
t,j =

t∑
i=1

ut−i+1 · ϕj(i), U−
t,j =

t∑
i=1

ut−i+1 · (−1)i−1 · ϕj(i).

One then forms the output by learning linear combinations of both U+
t,k and U−

t,k and an optional
autoregressive term [12, 2]:

ySF
t =

k∑
j=1

Mϕ+
j U+

t−2,j +

k∑
j=1

Mϕ−
j U−

t−2,j︸ ︷︷ ︸
Spectral Filtering component

+ ŷt−2 +

3∑
i=1

Mu
i ut+1−i︸ ︷︷ ︸

AR component

(3)

Without the autoregressive component we compute ySF
t =

∑k
j=1M

ϕ+
j U+

t,j +
∑k

j=1M
ϕ−
j U−

t,j . The
above expression is considered the Spectral Transform Unit, where {Mj} is the set of parameters
to be learned using a differentiable algorithm. Following [22], we consider the STU without the
autoregressive component. Empirical evidence [22] shows that hybrid STU models can compete with
or even outperform purely attention-based architectures.

Error Bounds for Spectral Approximation. We repeat the result from [14] (see also [2, 26, 27])
stating that given any LDS parameterized by A,B,C where A is a symmetric matrix with ∥A∥ ≤ 1,
there exist matrices Mϕ+

1 , . . . ,Mϕ+
k ,Mϕ−

1 , . . . ,Mϕ−
k such that for all L and for all input sequences

u1, . . . , uL, with ∥ut∥ ≤ 1, the following holds for all t ∈ [L]:

∥yLDS
t − ySFt ∥ ∼ e−

k
log L .

5

where k is the number of spectral filters, yLDS
t is the sequence generated by the LDS, and ySFt is the

sequence generated by spectral filtering.

Therefore, one can approximate any LDS that meets these specifications up to error ε by selecting
k = O

(
logL log

(
1
ε

))
spectral filters. Thus, the STU can capture LDS dynamics with only a

logarithmic number of filters k, providing a compact and stable representation even for systems with
high effective memory (∥A∥ ≈ 1).

4.2 Distilling STU into an LDS

While the STU avoids direct learning ofA, it still implements LDS-like dynamics via spectral filtering.
A natural question is whether we can recover explicit parameters (Ã, B̃, C̃) from the learned STU,
enabling an equivalent recurrence rather than O(L) costs when convolving spectral filters with input
sequences. This can be achieved by approximating the convolution kernel of the STU by the implicit
convolution kernel of an LDS. Such a distillation would bridge the gap between the stable convex
training of the STU and the fast inference of a recurrent LDS.

5 Algorithm and Main Result

We now present our main theoretical result and accompanying algorithm, which shows how to recover
an accurate LDS representation from the learned spectral filters. Concretely, we demonstrate that
each STU filter ϕj can be approximated by a linear combination of geometrically decaying LDS
impulse response filters (i.e., the LDS implicit convolutional kernel).

5.1 A General Transformation from Spectral Filters to LDS

Our main result is given in Algorithm 2. For the dynamics LDS(1− α, α, 1), we denote the impulse
response filter by

µL(α) = (1− α)[1 α α2 . . . αL−1].

Note that µL(α) ∗ u1:L =
∑L

i=1(1− α)αi−1 · uL−1 = LDS(1− α, α, 1)(u1:L), and thus inference
with the LDS is the same as convolution with its impulse response filter. Let ϕ1, . . . , ϕk ∈ RL be the
spectral filters of length L. We write the first k filters in matrix form as Φ1:k ∈ Rk×L, such that the
i-th row is ϕi.

A first observation is that we can write any LDS impulse filter approximately in the spectral basis.
This is a direct consequence of the spectral filtering methodology for learning an LDS [14].

Algorithm 1 FindSpectralRepresentation

1: Input: Scalar LDS parameter α ∈ R, representation size k.
2: Output: Spectral parameters m ∈ Rk.
3: Construct the impulse response vector µL(α) ∈ RL as µL(α) = (1− α)[1, αi, α

2
i , . . . , α

L−1
i].

4: return best spectral fit of the system over random inputs u ∈ RL using gradient descent

m = arg min
m∈Rk

E
u∈RL

[∣∣m⊤Φ1:ku− µL(α)
⊤u
∣∣2] .

As a consequence of results from spectral filtering for learning LDSs, we show in Appendix A.4 that
the procedure FindSpectralRepresentation returns a vector m for which, for some constant c > 0,∥∥m⊤Φ1:k − µL(α)

∥∥ ≤ c e−
k

log L .

We proceed to use this subroutine to find a distillation to the spectral filters.

Our main performance guarantee is given in the following theorem.

Theorem 1. As long as h ≥ k, Algorithm 2 returns w.h.p. a matrix M̃ such that∥∥∥Φ1:k − M̃ µL(α1, . . . , αh)
∥∥∥ ≤ c λmaxh e

− k
log L ,

where λmax is the largest eigenvalue of the Penrose-Moore pseudo inverse of the matrix M .

6

Algorithm 2 Spectral Filters to LDS Filters

1: Input: The first k spectral filters matrix Φ1:k ∈ Rk×L; and parameter h > k.
2: Output: The transformation matrix M̃ .
3: Sample h randomly chosen independent scalars α1, ..., αh with each α ∈ [0, 1].
4: Construct the matrix µL(α1:h) ∈ Rh×L with ith row µL(αi) = (1− αi)[1, αi, α

2
i , . . . , α

L−1
i].

5: For each scalar impulse response, find the spectral representation by

mi = FindSpectralRepresentation(αi).

6: Let M be the h× k matrix whose rows are mi.
7: return M̃ :=M−1 ∈Rk×h

The significance of Theorem 1 is that it allows us to translate between the representation of spectral
filters and linear dynamical systems.

We note that it is not immediate to upper bound λmax. Indeed, for h ∼ k, this can be exponentially
large in k, as it corresponds to the condition number of a Vandermonde matrix [4]. However, we note
experimentally, under the distribution described in the practical algorithm below, that as h grows,
λmax quickly becomes smaller. This is an overparametrization effect, which we show experimentally
in Appendix A.3. We provide analysis of Theorem 1 in Appendix A.4.

5.2 Practical Algorithm

For improved practical performance we adopt the following procedure. Fix H ≫ h. As above, let
µL(α1:H) ∈ RH×L denote H impulse responses and let Φ1:k ∈ Rk×L denote the first k spectral
filters. To obtain a representation of size h, we select a small index set S ⊆ {1, . . . ,H}, |S| = h≪
H , by running multi-target Orthogonal Matching Pursuit (OMP) [25, 36] on the regression

µL(α1:H)⊤X ≈
(
Φ1:k

)⊤
.

OMP greedily sets one coefficient per step from 0 to reduce the regression loss, with the selected
coefficients after h steps providing the indices for S. Given S, we solve the unregularized least-
squares problem

X⋆ = argmin
X

∥∥µL(αS)
⊤X −

(
Φ1:k

)⊤∥∥2
F
,

to yield Φ1:k ≈ M̃ µL(α1:H), where M̃ = (X∗)⊤.

Another change is the distribution from which the αi are drawn. We employ symmetric, near-
unit-radius sampling to emphasize long-memory behavior: for each i, draw Ui ∼ Unif[0, 1] and
Si ∼ Unif({−1, 1}), and set

αi = Si

(
1− U4

i

)
.

Equivalently, |αi|
d
= 1− U4

i with an independent random sign. This deliberately skews mass toward
|αi| ≈ 1, improving reconstruction at a better h to H ratio. We ablate this choice in Appendix A.9.
For numerical stability we use float64 arithmetic end-to-end and scale Φ1:k by snum > 0 so that
∥µL(α1:H)∥F ≈ ∥snumΦ1:k∥F . To mitigate the impact of magnitude on OMP, we normalize the
columns of µL(α1:H)⊤. We later undo the scaling. In Figure 1 we report the reconstruction error of
Φ1:k against an LDS of hidden dimension h produced by this practical method.

5.3 Converting M̃ into an LDS.

As a result of Theorem 1, with A := Diag(α1, . . . , αh), Γ := Diag(1 − α1, . . . , 1 − αh) and
µ := µL(α1, . . . , αh), we can replace the costly STU convolutions:

7

Figure 1: Reconstruction error of spectral filters as a function of LDS state dimension. For this
experiment, H = 10000, but results are similar for H = 1000 to 20000 (see Appendix A.8).

U+
t,j =

t∑
i=1

ut−i+1 · ϕj(i) ≈
t∑

i=1

(
M̃jµ

)
(i) · ut−i+1 = M̃j

t−1∑
i=0

ΓAi 1h u
⊤
t−i = LDS(M̃jΓ, A,1h)(u

⊤
1:L)

U−
t,j =

t∑
i=1

ut−i+1 · ϕj(i) ≈ M̃j

t−1∑
i=0

Γ(−A)i 1h u
⊤
t−i = LDS(M̃jΓ,−A,1h)(u

⊤
1:L)

This provides the basis of our autoregressive inference advantage: rather than computing U+
t,j

and U−
t,j as pure convolutions, we can maintain the hidden state for LDS(M̃jΓ, A, 1⃗) and

LDS(M̃jΓ,−A, 1⃗) for the O(h) computation during inference. For practical efficiency, we can
compute all U+

t,1, . . . , U
+
t,k, U

−
t,1 . . . U

−
t,k simultaneously with a single LDS by leveraging the similari-

ties in the state updates (see Appendix A.7).

5.4 LDS to LDS Distillation

A direct consequence of our approach is that we can distill any high-dimensional symmetric LDS
into a low-dimensional LDS with a bounded error. For an LDS with input dimension din and output
dimension dout, spectral filtering provides an ε-approximation with only O(din ·dout · logL · log(1ε))
parameters regardless of the hidden dimension.

Accepting that hλmax is O(1) for h ≫ k, as justified in Appendix A.3, we can then convert this
spectral representation by application of our distillation procedure into an LDS with state dimension
din · h, where with h = O(k) = O(logL log

(
1
ε

)
) we maintain ε error. Thus, the distilled LDS has

O(din · dout · logL · log(1ε)) total parameters. In other words, the combination of spectral filtering
for LDS learning and the following distillation step yields a practical method to reduce the state
dimension while preserving the system’s dynamics within tight error bounds. Empirically, for tasks
as difficult as modeling language, we only require k ≤ 24 filters for strong performance, and the
state dimension h ≥ 80 of the distilled LDS suffices to retain performance.

6 Experiments

To demonstrate the effectiveness of our distillation algorithm, we begin by illustrating that a low-
dimensional LDS can effectively approximate the spectral filters in Figure 3 and further examine
the eigenvalues of the resulting system in Appendix A.7. Building on this, to further quantify the
effectiveness of Algorithm 2 in fitting the spectral filters with practically efficient LDSs, we plot the
reconstruction error of the spectral filters across different LDS state dimensions in Figure 1. These
results show that our algorithm, guided by Theorem 1 amply reduces the approximation error to a
sufficiently small level without an excessive increase in state dimension.

8

Figure 2: Comparison of SpectraLDS and other methods learning an arbitrary symmetric LDS with
and without noise. The shaded region shows the 95% confidence interval over 8 runs. Each model
leveraged default configurations except the LDS, which required a lower learning rate to converge.
More details are available in Appendix A.5.

Figure 3: Fit of Spectral Filters by an LDS of state dimension 160, where x-axis represents the time
domain. 80 dimensions are for the spectral filters (U+

t,k) and 80 for the negative features (U−
t,k, not

shown). Filters are normalized to be comparable. The shading on the middle figure represents a
filter quickly alternating (negative α). A complete comparison for k = 24 without normalization is
provided in Appendix A.6. These filters have MSE error 7.689× 10−19.

To validate our method quantitatively, we perform synthetic experiments comparing SpectraLDS
against other benchmarks on learning high-memory LDSs (see Appendix A.10). We find that our
method significantly outperforms strong baselines in both sample efficiency and reconstruction accu-
racy, confirming that our approach is well suited for learning systems with long-range dependencies.

Turning to the large-scale evaluation, we distill a 340M-parameter FlashSTU model [22] into an
LDS-based architecture and compare its performance across a suite of language benchmarks. From
the results in Table 2, we point out that despite the change from convolution-based spectral filters to
an explicit LDS representation for the STU layers, the performance remains identical across all tasks.
This observation supports our claim that the STU can be closely approximated by a low-dimensional
LDS without compromising predictive accuracy. We provide details of the experimental setup and
hyperparameters for the models used in Appendix A.13.

Model MMLU Hella. PIQA BoolQ Wino. CSQA OBQA ARC-e ARC-c Average
Flash STU 340M 26.58 30.46 65.34 60.12 51.85 20.48 20.60 54.08 23.29 39.20
SpectraLDS 340M 26.58 30.45 65.29 60.12 50.99 20.15 20.20 54.17 23.29 39.03
Flash STU Std. Err. 0.37 0.47 1.11 0.86 1.40 1.16 2.06 1.02 1.24 –
SpectraLDS Std. Err. 0.37 0.46 1.11 0.86 1.40 1.15 2.07 1.02 1.24 –

Transformer 340M 26.81 30.41 64.64 61.10 51.62 19.98 18.80 55.47 21.84 38.96

Table 2: Evaluation of a 340M-parameter FlashSTU model and its distilled representation, replacing
each convolution with an LDS of state dim. 160, on language benchmarks. Despite converting
convolutions into an explicit LDS formulation, performance remains statistically equivalent.

9

Figure 4: Runtime for generating sequences of increasing length across STU implementations. The
naive convolution approach exhibits quadratic growth, the FutureFill variants show logarithmic
growth, and the distilled STU-to-LDS layers achieve linear growth. The STU-Only Epoched Future
Fill OOMs for the largest sequence length. As shown in the rightmost figure, the SpectraLDS models
have nearly identical runtime despite varied state dimension. Further results are in Appendix A.11.

Finally, we present various measures of inference speed to illustrate the constant-time per token
generation provided by the distilled STU. In Figure 4, we compare the inference speed of a distilled
STU model against a naive convolutional approach and a numerically stable FutureFill variant [1]. In
a 12 STU layer model, the naive convolution exhibits quadratic runtime growth with sequence length;
the FutureFill variants achieve logarithmic growth; and the distilled STU-to-LDS model demonstrates
the best performance with linear growth.

In the hybrid model with 6 attention and 6 STU layers, we find the distilled LDS implementation
still provides a significant performance increase. Additionally, we note increases in the LDS state
dimension have little impact on the overall runtime, indicating that LDS operations are not a compute
bottleneck (see Appendix A.11). For both the hybrid and STU-only models up to 16, 384 tokens, the
distilled LDS, naive convolution, and Epoched Future Fill all have similar runtimes. All performance
benchmarks were conducted on a single H100 GPU, with each generation process evaluated separately
to ensure consistent measurements. We provide full experiment details in Appendix A.12.

Looking ahead, further investigation is warranted to better understand how convolution, LDS, and
attention layers interact at the hardware level, and to optimize their coordination for even greater
speedup. Additionally, further work is required to determine if the LDS layer is stable below float64.

To conclude, since optimized transformer implementations suffer from KV-Cache memory bottlenecks
rather than compute bottlenecks [9], and the LDS layers have drastically lower memory requirements,
we anticipate that, with appropriate optimization, the inference speed of hybrid attention-STU
architectures will be independent of the amount of LDS layers.

7 Conclusion and Discussion

We have provided the first provable technique for learning the parameters of a symmetric LDS with
arbitrarily high effective memory. By leveraging their convex-learning approach, we show how
spectral filters can be distilled into an explicit LDS representation, enabling the construction of a
state-space model with logarithmic-time inference and theoretical guarantees on the loss bounds.

We have provided a lower bound on how increasing state dimension affects reconstruction loss for a
linear dynamical system, and we envision SpectraLDS as a drop-in replacement for autoregressive
convolutional layers in certain sequence-to-sequence tasks.

8 Acknowledgments

EH gratefully acknowledges support from the Office of Naval Research and Open Philanthropy.

10

References
[1] Naman Agarwal, Xinyi Chen, Evan Dogariu, Devan Shah, Hubert Strauss, Vlad Feinberg,

Daniel Suo, Peter Bartlett, and Elad Hazan. Futurefill: Fast generation from convolutional
sequence models, 2025.

[2] Naman Agarwal, Daniel Suo, Xinyi Chen, and Elad Hazan. Spectral state space models, 2024.

[3] Brian D.O. Anderson and John B. Moore. Linear Optimal Control. Prentice-Hall, 1971.

[4] Bernhard Beckermann. The condition number of real vandermonde, krylov and positive definite
hankel matrices. Numerische Mathematik, 85(4):553–577, 2000.

[5] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[6] Dimitri P Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific,
2005.

[7] Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

[8] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[9] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2024.

[10] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022.

[11] Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and
initialization of diagonal state space models, 2022.

[12] E. Hazan, H. Lee, K. Singh, C. Zhang, and Y. Zhang. Spectral filtering for general linear
dynamical systems, 2018.

[13] Elad Hazan and Karan Singh. Introduction to online nonstochastic control. arXiv preprint
arXiv:2211.09619, 2022.

[14] Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral
filtering, 2017.

[15] B. L. Ho and R. E. Kalman. Effective construction of linear state-variable models from
input/output functions. Automatica, 3(1):49–59, 1966.

[16] A. Huang, S. Subramanian, J. Sum, K. Almubarak, S. Biderman, and S. Rush. The annotated
transformer, 2022.

[17] I. W. Jamaludin, N. A. Wahab, N. S. Khalid, S Sahlan, Z. Ibrahim, and M F. Rahmat. N4sid and
moesp subspace identification methods. In 2013 IEEE 9th International Colloquium on Signal
Processing and its Applications, pages 140–145, 2013.

[18] Jer-Nan Juang and Richard S. Pappa. An eigensystem realization algorithm for modal parameter
identification and model reduction. Journal of Guidance, Control, and Dynamics, 8(5):620–627,
1985.

[19] Thomas Kailath. Linear Systems. Prentice-Hall, 1980.

[20] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of
Basic Engineering, 82.1:35–45, 1960.

[21] S. Y. Kung. A new identification and model reduction algorithm via singular value decom-
positions. In Proc. 12th Asilomar Conf. Circuits, Systems and Computers, pages 705–714,
1978.

11

[22] Y. I. Liu, W. Nguyen, Y. Devre, E. Dogariu, A. Majumdar, and E. Hazan. Flash stu: Fast spectral
transform units, 2024.

[23] David Luenberger. An introduction to observers. IEEE Transactions on Automatic Control,
16(6):596–602, 1971.

[24] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention, 2023.

[25] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12):3397–3415, 1993.

[26] Annie Marsden, Evan Dogariu, Naman Agarwal, Xinyi Chen, Daniel Suo, and Elad Hazan.
Provable length generalization in sequence prediction via spectral filtering, 2024.

[27] Annie Marsden and Elad Hazan. Universal sequence preconditioning. arXiv preprint
arXiv:2502.06545, 2025.

[28] Stefano Massaroli, Michael Poli, Daniel Y. Fu, Hermann Kumbong, Rom N. Parnichkun,
Aman Timalsina, David W. Romero, Quinn McIntyre, Beidi Chen, Atri Rudra, Ce Zhang,
Christopher Ré, Stefano Ermon, and Yoshua Bengio. Laughing hyena distillery: Extracting
compact recurrences from convolutions, 2023.

[29] OpenAI. Gpt-4 technical report, 2024.

[30] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and S. De. Resurrecting
recurrent neural networks for long sequences, 2023.

[31] Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems from a single
trajectory. In 2019 American control conference (ACC), pages 5655–5661. IEEE, 2019.

[32] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks,
2013.

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[34] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models, 2023.

[35] Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022.

[36] Ron Rubinstein, Michael Zibulevsky, and Michael Elad. Efficient implementation of the k-svd
algorithm using batch orthogonal matching pursuit. CS Technion, 40, 01 2008.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

12

A Appendix

A.1 Notation throughout the paper

xt ∈ Rd state at time t
ut ∈ Rn control (input) at time t
yt ∈ Rm sequence model outputs at time t
A,B,C,D system matrices for linear dynamical system
h Number of α used in final LDS representation
H Number of random samples of α
k Number of spectral filters
K Length of generated sequence
T Length of prefill sequence
L Length of sequence (or of filters)

A.2 Experimental details and notation

All experiments were performed on Nvidia H100-80GB GPUs in PyTorch [33]. All layers except
the LDS leverage bfloat16 precision, whereas the LDS layers require float64 precision. All tests,
unless otherwise stated, use k = 24 spectral filters and replace the k filters with an LDS with
state-dimension h = 80. To fit the additional 24 alternating filters of the negative component (i.e.,
ϕ−j , where ϕ−j [i] = (−1)i−1ϕj [i], as is needed to compute U−

t,j purely convolutionally), we expand
to an LDS with state-dimension h = 160.

For the layer-level inference speed benchmarks, we leverage the STU with tensor-dot approximation
(STU-T) [2], the same variant used in the FlashSTU language model [22]. It is worth noting that
the STU-to-LDS distillation leads to LDS layers with comparable speed regardless of whether the
tensor-dot approximation is employed, and thus this approximation only accelerates the STU layers
in benchmarks. A formal definition of this approximation is as follows:

STU Tensor-Dot Approximation: [2] introduced an important optimization, the tensor-dot
approximation, wherein each tensor M ∈ Rdin×2k×dout , representing a concatenation of the
tensors Mϕ+

1 , . . . ,Mϕ+
k ,Mϕ−

1 , . . . ,Mϕ−
k , is learned as M (1) × M (2) for M (1) ∈ Rdin×2k

and M (2) ∈ Rdin×dout . This approximation allows for a reduction in convolutions as,
with input x1, x2, . . . , xℓ, we can compute ySF

ℓ ≈
∑ℓ

i=1(x
⊤
ℓ−i+1M

(2)) ⊙ Mfilters[i], where
Mfilters = [ϕ1, . . . , ϕk, ϕ

−
1 , . . . , ϕ

−
k]

⊤M (1) ∈ RL×dout and ⊙ refers to the Schur product (i.e.
(x ⊙ y)j = xj · yj). This allows for only dout convolutions with the tensor-dot approximation, as
opposed to k · din convolutions without it. Although this method can reduce expressivity and does not
inherit the same marginal-stability guarantees, it maintains competitive empirical performance while
yielding significant improvements in efficiency.

Additionally, we frequently refer to the impulse response of the LDS and STU models. The impulse
response of a linear sequence model f : RL → R1 is the vector or convolutional kernel ψ ∈ RL that
is equivalent to f (i.e. f(x[1,...L]) = ψ ∗ x[1,...L]), and thus:

ψ[t] = f([0, . . . , 1, . . . , 0︸ ︷︷ ︸
1 at position L−t+1

])

We only consider the impulse response of f : RL → R1, but the impulse response is closely
related to the derivative with respect to the inputs and is generalized identically. For an STU model
with din = dout = 1 and parameters Mϕ+

1 , . . . ,Mϕ+
k ,Mϕ−

1 , . . . ,Mϕ−
k ∈ R, the impulse response

ψSF is thus described by ψSF[t] =
∑k

j=1M
ϕ+
j ϕj [t] + (−1)t−1

∑k
j=1M

ϕ−
j ϕj [t]. Similarly, for an

LDS with din = dout = 1 and parameters a, b, c ∈ R, the impulse response ψLDS is described by
ψLDS[t] = cat−1b

13

A.3 Experimental Results on the Condition Number of M , the Spectral Coefficients Matrix

In Figure 5, we present experimental results on the condition number of M as defined in Section
5. Recall that M ∈Rh×k is the spectral coefficients matrix produced by Algorithm 2; its i-th row
m⊤

i stores the coefficients that express the LDS impulse response µL(αi) (with geometric decay
factor αi) in the spectral basis Φ1:k. Starting at h = k with k = 24, we repeatedly add additional
independent vectors αi and measure the maximum singular value of the constructed M−1. The blue
central line shows the mean maximum singular value across 5 experiments for a given value of h,
with the shaded region showing the maximum and minimum of the largest singular values across
experiments. We draw α independently from the distribution in Figure 7. To justify our statement
in section 5.2 that λmax · h can be considered O(1), we additionally plot λmax · h under the same
experimental setup in Figure 6.

Figure 5: Largest Singular Value as we increase h.

Figure 6: λmax · h as we increase h.

A.4 Analysis of Theorem 1

Proof of Theorem 1. Let

µL(α) = (1− α)
[
1 α α2 . . . αL−1

]
∈ RL,

14

Figure 7: Distribution of α (H = 10, 000 samples)

be the L-impulse response of the one dimensional linear dynamical system with parameters
α, b = 1, c = 1 − α. Lemma 11.3 from [13] asserts that for any α ∈ [0, 1], there exist real
coefficients m1, . . . ,mk ∈ Rk and constant c > 0, such that any sequence of inputs uL:1 ∈ RL with
∥uL:1∥∞ ≤ 1, ∣∣∣∣∣

k∑
i=1

mi ⟨ϕi, uL:1⟩ − ⟨µL(α), uL:1⟩

∣∣∣∣∣ ≤ ce−
k

log L .

The RHS term represents the evolution of the LDS, with system matrices b, c that are assumed to be
identity, and µL(α) is the system evolution.

As the above is true for all uL:1, for each αj , there exist mj such that,

∀j ,
∥∥m⊤

j Φ1:k − µL(αj)
∥∥ ≤ c e−

k
log L . (4)

Moreover, as the optimization problem is convex in mj and Lipschitz continuous, FindSpectralRep-
resentation will return such mj .

Let M ∈ Rh×k be the matrix whose rows are mj ∈ Rk:

M =


−m1−
−m2−

...
−mh−

 .

Let E =M Φ1:k − µL(α1, . . . , αh). By the triangle inequality and (4),

∥E∥1 ≤
h∑

j=1

∥∥m⊤
j Φ1:k − µL(αj)

∥∥ ≤ c h e−
k

log L . (5)

Thus, assuming that M is full rank, multiplying E by the Penrose-Moore pseudo-inverse of M and
using Holder’s inequality, we get

∥Φ1:k − M−1µL(α1, . . . , αh)∥ = ∥M−1E∥ ≤ ∥M−1∥⋆∥E∥1 ≤ λmax · che−
k

log L .

It remains to argue that M is full rank. This follows since Φ1:k is an orthogonal basis, and the matrix
µL(α1:h) is a Vandermonde matrix. Thus, both matrices are full rank.

A.5 Learning a Symmetric LDS with and without noise

Figure 2 in the main paper compares SpectraLDS to other system-identification methods on the
task of learning an arbitrary symmetric LDS with and without noise. The LDS signal has hidden

15

dimension 256, input and output dimension 5, and maximum eigenvalue magnitude 0.99 with
Gaussian initialization. Each step provides a Gaussian input sequence of length 100 with variance
1/din and the final output. For the learning with noise experiment, Gaussian noise with 0.5 variance
was added to the hidden state at each step, and Gaussian noise with 5 variance was added to the
output. Each architecture was trained with the default PyTorch RMSProp optimizer configuration,
except for the LDS, which required a lower learning rate to converge. The Ho-Kalman matrices are
recomputed every 20 steps for computational ease, while the other methods were updated every step,
and the Ho-Kalman parameters are the maximum for an input of length 100 (that is T_horizon = 99,
T1 = 49, T2 = 49, state_dim_est = 48). The shaded region in the figure shows the 95% confidence
interval over 8 runs.

16

A.6 Fit of the Spectral Filters with a Linear Dynamical System (State Dimension 160)

Figure 8: Visualization of the positive spectral filters and their approximation using an LDS with
state dimension 160, as obtained via the practical algorithm. As described previously, only the first
80 dimensions of the state are used for approximate the Spectral Filters, with the remaining used
for the alternating filters (negative filter maps), as described in Appendix A.7. The figure illustrates
that even with a low-dimensional state, the LDS can accurately fit the spectral filters, confirming the
efficacy of our distillation process.

17

A.7 State Dynamics of the Linear Dynamical System

We train a linear dynamical system with state dimension 160 to fit the Spectral Filters and alternating
filters using Algorithm 2 and examine the eigenvalues of the resulting system in Figure 9. We only
plot the 80 eigenvalues corresponding to the Spectral Filters, as the remaining 80 corresponding to
the alternating filters are identical except multiplied by −1 (see below the plot). The reconstruction
error of the spectral filters for the trained LDS is 7.69 × 10−19. We transform the eigenvalues to
visualize the full range of the values as they approach 1 and differentiate the negative and positive
eigenvalues as blue and red (e.g, 0.97 and −0.97 would both map to ≈ 3.5, although the first would
join a red column and the second blue).

Figure 9: Distributions of Eigenvalues for LDS corresponding to the first 24 Spectral Filters.

For practical efficiency, we can compute all U+
t,1, . . . , U

+
t,k, U

−
t,1 . . . U

−
t,k simultaneously with a single

LDS parameterized by
{[

M̃ Γ 0
0 M̃ Γ

]
,

[
A 0
0 −A

]
,12h

}
. This LDS has a state dimension of 2hm,

where each of the m input dimensions have a hidden state updated by
[
A 0
0 −A

]
. The hidden state

dimension differs from 2h as we treat m as a batch dimension, resulting in But ∈ R2h×m rather
than R2h. This mimics an LDS acting independently across each of the m dimensions, equivalent to
treating m as a batch-axis, and this is the analog to how each of the k spectral filters convolve along
each input dimension independently. The above Figure 9 showcases the eigenvalues of matrix A,

whereas for practical deployment, the state matrix is
[
A 0
0 −A

]
.

A.8 Reconstruction Error of the Spectral Filters varying LDS State Dimension and H

We demonstrate the efficacy of the practical algorithm in fitting the Spectral Filters with a low initial
LDS State Dimension. In Figure 10, we ablate the choices of H and h for the practical algorithm.
We do not fully understand why larger H leads to worse fits for small state dimension. Notably,
the error quickly becomes no longer human perceptible. In this procedure we only aim to fit the k
positive spectral filters. To fit both the k positive spectral filters and k negative spectral filters, we
can achieve the same error with double the state dimension, as described in Appendix A.7. With our
implementation of sparsity, the resulting hidden dimension will be near but not exactly that requested,
which is why each line has different reconstruction dimensions.

18

Figure 10: Reconstruction Error varying H and LDS state dimension h.

A.9 Reconstruction Error of the Spectral Filters with the Practical Algorithm and Uniform α
Distribution

In Figure 11, we illustrate that if rather than choosing (|αi|
d
= 1− U4) with U ∼ Unif[0, 1] with an

independent random sign, we instead choose αi ∈ [−1, 1], we require larger H to achieve similar
performance. At sufficiently large H , uniform sampling will have sufficient coverage of α near 1
and −1. Thus, we instead prefer a distribution with a natural bias towards these extreme points, as
α ∈ [−0.9, 0.9] decay towards 0 quickly.

A.10 Experiments on Synthetic Tasks

We evaluate SpectraLDS (state dimension 160) against a strong baseline on a synthetic task, reporting
results in Table 3 and Figure 12. A symmetric linear dynamical system with input dimension din
and state dimension dh is initialized by drawing all entries from a standard normal distribution, after
which the update matrix A is rescaled so its largest eigenvalue has magnitude 1− δ. We then distill a
SpectraLDS model from an STU model trained with AdaGrad (learning rate 1.0) for 2000 steps; each
step minimizes the mean-squared-error (MSE) between the STU output and the ground-truth LDS
output over batches of 32 sequences of length seq_len. For the baseline, we fit a randomly initialized
symmetric LDS with AdaGrad (learning rate 0.0001) under the same loss. To keep training times
practical, most baseline runs use a shorter sequence length, and several runs were stopped early due
to computational limits, marked with an asterisk. When the state dimension satisfies dh ≥ 1000,
baseline training with a learning rate of 0.01 becomes unstable and often diverges, whereas the
STU remains stable even with a learning rate of 1.0.

19

Figure 11: Reconstruction Error varying H and LDS state dimension h when choosing α ∈
Unif[−1, 1].

Performance Results

Type Len. Delta d_in d_h Avg MSE MSE Std Step 10 Loss Step 100 Loss Runs Time (s) Time Std (s)

LDS GD 8192 1 × 10−2 10 100 2.15 × 10−2 1.32 × 10−3 3.49 × 10−1 1.43 × 10−1 4* 2153.12 14.16
LDS GD 8192 1 × 10−3 10 100 2.53 × 10−2 3.18 × 10−3 4.53 × 10−1 1.80 × 10−1 3* 2147.61 18.64
LDS GD 8192 1 × 10−4 10 100 3.03 × 10−2 6.09 × 10−3 5.99 × 10−1 2.29 × 10−1 3* 2150.73 28.05
LDS GD 1024 1 × 10−2 10 100 9.54 × 10−3 0.00 × 100 1.18 × 10−1 6.72 × 10−2 1* 248.33 0.00
LDS GD 1024 1 × 10−2 10 1000 1.90 × 10−5 5.93 × 10−6 5.25 × 10−4 3.39 × 10−5 5 252.24 1.64
LDS GD 1024 1 × 10−3 10 100 7.34 × 10−3 1.02 × 10−3 1.06 × 10−1 4.97 × 10−2 2* 248.68 0.13
LDS GD 1024 1 × 10−3 10 1000 2.40 × 10−5 1.71 × 10−6 4.00 × 10−4 3.71 × 10−5 5 250.24 0.87
LDS GD 1024 1 × 10−4 10 100 7.72 × 10−3 2.52 × 10−4 1.13 × 10−1 5.31 × 10−2 2* 248.32 0.38
LDS GD 1024 1 × 10−4 10 1000 2.01 × 10−5 4.53 × 10−6 5.29 × 10−4 3.53 × 10−5 5 250.58 1.40
LDS GD 1024 1 × 10−5 10 100 6.77 × 10−3 6.43 × 10−4 1.01 × 10−1 4.84 × 10−2 5 250.80 0.17
LDS GD 1024 1 × 10−5 10 1000 1.94 × 10−5 4.92 × 10−6 4.79 × 10−4 3.39 × 10−5 5 251.51 0.67
SpectraLDS 8192 1 × 10−2 10 100 3.35 × 10−4 9.84 × 10−5 8.27 × 10−3 3.74 × 10−4 5 51.85 10.36
SpectraLDS 8192 1 × 10−2 10 1000 1.86 × 10−5 2.27 × 10−6 7.99 × 10−3 5.48 × 10−5 5 51.14 0.04
SpectraLDS 8192 1 × 10−3 10 100 3.73 × 10−4 1.57 × 10−4 9.32 × 10−3 4.12 × 10−4 5 63.92 24.06
SpectraLDS 8192 1 × 10−3 10 1000 1.73 × 10−5 2.27 × 10−6 8.46 × 10−3 5.49 × 10−5 5 51.93 1.55
SpectraLDS 8192 1 × 10−4 10 100 4.73 × 10−4 1.91 × 10−4 9.81 × 10−3 5.11 × 10−4 5 52.23 10.66
SpectraLDS 8192 1 × 10−4 10 1000 1.84 × 10−5 4.53 × 10−6 9.30 × 10−3 5.54 × 10−5 5 51.15 0.07
SpectraLDS 8192 1 × 10−5 10 100 2.94 × 10−4 8.78 × 10−5 1.18 × 10−2 3.30 × 10−4 5 51.69 10.37
SpectraLDS 8192 1 × 10−5 10 1000 1.66 × 10−5 4.47 × 10−6 9.00 × 10−3 5.27 × 10−5 5 51.15 0.07
SpectraLDS 8192 1 × 10−6 10 100 4.05 × 10−4 3.61 × 10−5 1.07 × 10−2 4.46 × 10−4 5 46.53 0.03
SpectraLDS 8192 1 × 10−6 10 1000 1.96 × 10−5 1.27 × 10−6 8.55 × 10−3 5.63 × 10−5 5 51.95 1.63
SpectraLDS 8192 1 × 10−7 10 100 4.50 × 10−4 1.73 × 10−4 9.63 × 10−3 4.87 × 10−4 5 46.51 0.06
SpectraLDS 8192 1 × 10−7 10 1000 1.77 × 10−5 1.95 × 10−6 9.45 × 10−3 5.46 × 10−5 5 51.96 1.64

Table 3: SpectraLDS performance on learning synthetic linear dynamical systems with maximum
eigenvalue 1− δ against a strong baseline.

20

Figure 12: Comparison of learning performance on synthetic LDS tasks between SpectraLDS and
a gradient-descent-updated LDS baseline. The plot shows the loss at different training steps under
varying δ, input/output dimensions, and sequence lengths. SpectraLDS consistently achieves lower
loss with significantly reduced runtime, especially at larger output dimensions. Full experimental
details are provided in Table 3.

A.11 Layer Speeds of SpectraLDS and STU

We benchmark the inference speed of a single SpectraLDS layer across several state dimensions
and compare it with two accelerated schemes for computing the STU convolution: Epoched Future
Fill [1] and an STU that employs the tensor-dot approximation [22]. The SpectraLDS layer itself is
produced by applying STU-to-LDS distillation to the tensor-dot STU. For the timings reported in
Table 4, each model is evaluated on L (Seq. Len.) autoregressive convolutions on inputs of dimension
128, and the mean and standard deviation over five runs are recorded. All STU variants use a filter
length of 1,048,576 to accommodate the longest sequences. Although every architecture begins in the
linear-scaling regime, only SpectraLDS continues to scale favorably as the sequence length increases.
The resulting layer-speed comparison is visualized in Figure 13; benchmarks of SpectraLDS layers
embedded in large language-model architectures appear in Appendix A.12.

Inference Time Performance (ms)

Seq. Len. STU Future Fill STU Tensor-Dot STU SpectraLDS (SD 100) SpectraLDS (SD 800)

Mean Std Mean Std Mean Std Mean Std Mean Std

32 30.86 1.20 31.87 6.43 134.96 22.13 21.27 3.86 18.98 0.73
64 36.52 0.72 28.92 0.42 123.16 2.54 22.40 0.14 22.27 0.29

128 49.87 0.52 40.20 6.63 135.94 2.28 29.49 0.18 29.72 0.58
256 75.73 0.35 45.98 1.12 162.74 2.90 43.54 0.27 43.62 0.47
512 136.67 7.90 70.24 0.61 211.66 2.99 71.40 0.56 73.01 0.88

1024 234.10 6.99 122.89 1.19 317.91 4.79 127.52 1.25 128.98 0.97
2048 441.09 3.69 226.47 8.02 525.65 5.09 241.16 4.43 252.58 8.78
4096 863.81 8.72 426.43 7.96 936.94 6.53 472.15 8.40 477.96 8.42
8192 1856.63 191.17 837.46 2.03 1772.30 20.46 921.55 10.23 929.06 9.76

16384 3377.29 33.16 1812.17 16.47 3434.19 30.83 1839.63 25.21 1846.04 17.43
32768 7139.35 515.40 4286.86 24.74 6721.83 19.65 3620.84 43.71 3686.90 26.45
65536 13485.25 234.22 11614.43 28.04 13478.53 89.72 7181.13 35.96 7362.73 78.96

131072 27252.83 240.34 36427.10 14.56 26703.77 323.97 14356.92 74.91 14649.56 162.32
262144 63437.26 123.25 117796.38 268.48 55775.49 275.16 28573.69 119.09 29156.42 113.55
524288 177502.89 651.96 365168.31 460.23 142896.29 621.72 57083.23 404.91 58027.04 276.39

1048576 576129.57 1425.12 1145862.83 1805.50 451607.11 721.73 114044.79 1215.07 115999.77 670.78

Table 4: Autoregressive Inference Time (ms) across model architectures (5 runs).

21

Figure 13: Autoregressive Inference Time (ms) across model architectures.

A.12 FlashSTU Ablations

A.12.1 Implementation Architecture Details

To perform the FlashSTU performance evaluations with STU-T, we employ the architecture depicted
in Figure 14. We test token generation efficiency with a hybrid architecture, alternating between
layers using STU-T and sliding window attention (SWA), and we additionally test with each layer
using STU-T only. Each layer consists of RMS-Norm, followed by STU-T or SWA, followed by
RMS-Norm, and then followed by an MLP. Inputs are tokenized by the o200k_base tokenizer and the
FlashSTU model begins with an embedding layer, which is weight-tyed to the output unembedding
layer. To start generation, we add special tokens such as <|endoftext|> and <|endofprompt|>.

The sliding window attention layers leverage Flash Attention v2 [8, 7] and ALiBi position embeddings
[35]. The tested model has input dimension 896 and 12 layers, which has 550.31 million parameters
for the hybrid model, and 535.99 million parameters for the STU-only model. All layers are
run in bfloat16 except for the LDS distilled layers, which require float64 precision. The Flash
STU-T leverages the STU with tensor-dot [22] approximation rather than the base STU layer for
faster inference, and thus we perform the STU-to-LDS distillation on the STU with tensor-dot
approximation. For tests with generation length up to 131072, we leverage STU filter length of
131072. For the generation length of 262144, we leverage an STU filter length of 262144. For each
runtime measurement, we first run a warmup generation, before reporting the mean of two generations
of that length. All benchmarks include only inference time and not model setup or filter computation
costs. Additionally, each MLP layer has hidden dimension 12× the input dimension (MLP expansion
factor). Other configuration details are identical to those in Table 7.

22

Figure 14: FlashSTU architecture [22].

A.12.2 Implementation Efficiency

Using the setup of Fig. 14, we time autoregressive generation for sequence lengths 4,096–262,144
tokens under two architectures—(i) a hybrid network that interleaves STU-T and sliding-window
attention layers and (ii) an STU-only network in which every layer is STU-T. Tables 5–6 report mean
runtimes (over two runs after a warmup) for SpectraLDS with state dimensions 100–800 alongside
the STU-T with naive convolutions (Base STU) and the Epoched FutureFill method. We note three
main results. First, SpectraLDS runtimes grow nearly linearly with sequence length and are virtually
independent of the chosen state dimension. Second, while the STU-T with naive convolutions is
competitive at 4–8 k tokens, it becomes progressively slower, so that SpectraLDS is ≈ 2× faster
by 65 k tokens and over 4× faster at 262 k tokens in the STU-only setting (and 2× faster in the
hybrid setting). Third, Epoched FutureFill narrows the gap at medium lengths but is still outpaced by
SpectraLDS beyond 131 k tokens and, in the STU-Only architecture, exhausts memory (OOM) at 262
k tokens, whereas SpectraLDS completes the run. Together these results demonstrate that SpectraLDS
delivers the most favorable long-context scaling and remains robust across model hyper-parameters.

Seq. Len. LDS SD 100 LDS SD 200 LDS SD 400 LDS SD 800 Base STU FutureFill

4096 20.34 20.71 20.40 20.40 18.91 19.92
8192 40.48 41.32 40.69 40.82 38.09 38.39

16384 80.78 82.90 80.95 81.63 76.49 74.89
32768 161.43 163.92 162.13 163.30 164.70 141.16
65536 323.40 327.31 323.90 325.92 389.72 290.68

131072 646.66 653.96 648.99 651.35 1014.67 666.24
262144 1588.81 1639.24 1591.50 1536.20 3113.45 2498.89

Table 5: Hybrid Model Runtime (seconds) for generation across SpectraLDS with different state
dimensions and Baseline and Epoched FutureFill implementations

23

Seq. Len. LDS SD 100 LDS SD 200 LDS SD 400 LDS SD 800 Base STU FutureFill

4096 14.04 13.87 13.87 13.74 12.14 19.35
8192 28.15 27.74 27.67 27.42 24.84 35.86

16384 55.71 55.51 55.34 54.73 57.32 67.96
32768 110.85 110.88 110.57 108.68 149.12 135.75
65536 220.11 221.55 221.13 215.00 429.20 329.91

131072 439.87 442.65 442.04 428.36 1352.40 952.70
262144 1104.97 1101.76 1132.18 1107.49 4672.60 OOM

Table 6: STU-Only Runtime (seconds) for generation across SpectraLDS with different state dimen-
sions and Baseline and Epoched FutureFill implementations

A.13 Details of STU Model In Experiments

We summarize in Table 7 all relevant details for the FlashSTU model used in the language evaluations
in Table 2. The distilled LDS layer used in the language benchmarking experiments was obtained
by Algorithm 2 and has a state dimension of 160, incorporating both positive and negative spectral
components. The weights for the distilled model were directly transferred from the FlashSTU model
described below. The FlashSTU architecture is further described in Appendix A.12 and graphically
shown in Figure 14.

Benchmarks were conducted with task-specific few-shot configurations. For each task, if the few-shot
value is not set to -1, that number of examples is provided during evaluation; otherwise, the few-shot
setting is left unchanged. Specifically, the few-shot settings are as follows: HellaSwag: 0 shots,
MMLU: 5 shots, PIQA: 0 shots, BoolQ: 0 shots, Winogrande: -1, Commonsense_QA: 7 shots,
OpenBookQA: -1, ARC-Easy: -1, ARC-Challenge: -1. The model employs bfloat16 precision except
for the LDS computations, where it requires float64 precision, and a global batch size of 3 examples
per task. All computations were performed on a single H100 GPU.

A.14 Example Generation

The following is an example completion from the FlashSTU 340M model after LDS distillation with
temperature 1.0:

Prompt: After school each day, Deidre Smith would look over the essays her students submitted at
the end of class and, without fail, each day Alex would surprise her. Today, he wrote about

Generated Text: After school each day, Deidre Smith would look over the essays her students
submitted at the end of class and, without fail, each day Alex would surprise her. Today, he wrote
about 40 essays from his freshman class, all of which were collected over the past three years for The
Book of Sentiments: What Students Should Do When Reading Literature – First published in 1962,
this book was very well received. What people who read this book would not immediately accept or
appreciate the author’s thought-provoking message of what it means to read literature.

What exactly are you doing with your newfound ability to read? You are reading? What emotions
do you feel at the time? What do you do with your newfound ability to read? These are just a few
examples of how much reading students think they can gain from the experience. It is no accident,
then, that each and every level of student will have difficulty with the text in this book. Students are
given a choice: choose an assignment that you are comfortable with and one that you would like to
read more deeply and critically. As the task to read becomes more difficult and the pressure for it is
much greater, students will struggle to put their best minds together when reading literature. To help
students overcome this hurdle, I have devised a book that makes the task a bit easier by providing all
the information they need from a reader. If a reader is too afraid to read, I have designed a page that
provides guidance from the textbook that will...

24

Model Architecture

Description Flash STU

Parameter Count Total number of parameters 340M
Embedding Dimension Dimensionality of embedding space 1024
Number of Heads Attention heads 4
Number of Layers Transformer + STU layers 12
ALiBi Attention Attention scores modification using linear biases No
RoPE Theta RoPE scaling factor for rotary embeddings 10,000
Sliding Window Size Sliding window attention context lookback size 512
Sequence Length (Training) Input sequence length during training 4,096
Sequence Length (Inference) Input sequence length during inference via position interpolation 131,072
Vocabulary Size Size of the model’s vocabulary 200,064
MLP Expansion Factor Expansion factor in MLP layers 4
Bias Use of bias terms in linear layers No
Dropout Dropout rate 0.0
Number of Filters Number of filters 24

Training and Optimization

Epochs Number of training epochs 1
Global Batch Size Number of tokens processed per step 524,288
Micro Batch Size Batch size per GPU 8
Gradient Accumulation Steps Number of steps before performing a gradient update 8
Warmup Steps Number of warmup steps 1,907
Evaluation Period Evaluation frequency (steps) 50
Max Grad Norm Maximum gradient norm for clipping 1.0

Optimizer Configuration

Optimizer Optimizer type AdamW
Learning Rate Schedule LR scheduling strategy Linear decay with warmup
Max Learning Rate Maximum learning rate 4.0 × 10−4

Min Learning Rate Minimum learning rate 4.0 × 10−5

Torch Dtype Data type for PyTorch tensors bfloat16
Betas Optimizer betas (0.9, 0.999)
Epsilon Optimizer epsilon 1.0 × 10−8

Weight Decay Weight decay factor 1.0 × 10−2

AMSGrad Use AMSGrad variant No
Fused Use fused optimizer Yes

Optimization Techniques

Activation Checkpointing Enable activation checkpointing Yes
Use Flash FFT Enable Flash FFT No
Use Tensordot Approx. Enable tensordot approximation Yes
Use Attention Enable attention mechanism Yes
Softcap Softcap threshold 50.0
Torch Compile Enable Torch compile optimization Yes

Table 7: Model and training configuration details for the 340M Flash STU model.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that we have identified a method to distill spectral filters to lin-
ear dynamical system form and demonstrate in the experiments section that our method
successfully works.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: At the end of the experiments section, we mention the current limitations of
our distillation. Additionally, throughout we demonstrate understanding of the limitations
of our approach, such as restricting our results to linear dynamical systems with symmetric
system matrices.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our main theoretical result is Theorem 1, in which we mention complete
assumptions made and demonstrate when and why they would hold both theoretically and
experimentally in the main paper and in the Appendix.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we describe our algorithm completely in 1 and 2, and elaborate on the
practical implementation in Section 5.2. Our code repository is also open sourced.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A link to the code is provided.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment details are expansively explained in 6, A.13, A.3, A.10, and in
many other instances throughout the paper.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: 3, 2, and other graphs where relevant include error bars and statistical signifi-
cance.

26

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In 6, A.13, and in all places where relevant, the paper describes completely
the computer resources needed and used. Furthermore, since many of our results relate to
inference speed, we explain the hardware used and time of execution/memory extensively.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms simply in every respect with the NeurIPS Code of Ethics
as explained.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: [NA]

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All previous work is fully credited and cited throughout.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our new assets are well documented and the documentation is provided.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

27

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: [NA]

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]

28

	Introduction
	Our Contribution

	Related Work
	Token Generation and Complexity for Language Modeling
	Problem Background
	Linear Dynamical Systems
	Distilling STU into an LDS

	Algorithm and Main Result
	A General Transformation from Spectral Filters to LDS
	Practical Algorithm
	Converting M"0365M into an LDS.
	LDS to LDS Distillation

	Experiments
	Conclusion and Discussion
	Acknowledgments
	Appendix
	Notation throughout the paper
	Experimental details and notation
	Experimental Results on the Condition Number of M, the Spectral Coefficients Matrix
	Analysis of Theorem 1
	Learning a Symmetric LDS with and without noise
	Fit of the Spectral Filters with a Linear Dynamical System (State Dimension 160)
	State Dynamics of the Linear Dynamical System
	Reconstruction Error of the Spectral Filters varying LDS State Dimension and H
	Reconstruction Error of the Spectral Filters with the Practical Algorithm and Uniform Distribution
	Experiments on Synthetic Tasks
	Layer Speeds of SpectraLDS and STU
	FlashSTU Ablations
	Implementation Architecture Details
	Implementation Efficiency

	Details of STU Model In Experiments
	Example Generation

