

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LORA PROVABLY REDUCES FORGETTING AND EN- ABLES ADAPTER MERGING IN MULTICLASS LINEAR CLASSIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) has become the de-facto parameter-efficient fine-tuning algorithm. Besides training-efficiency, practitioners observe two striking benefits: *(i)* remarkable resistance to *catastrophic forgetting*, and *(ii)* independently trained adapters can be *merged* into a single model that performs well on multiple tasks. Despite their practical importance, these phenomena have lacked rigorous theoretical explanation. In this work, we provide the first theoretical justification for the aforementioned phenomena by analyzing the structure of LoRA solutions in multiclass linear classification problems for orthogonal tasks. Our analysis shows that, under suitable weight regularization, the optimal LoRA adapter aligns exactly with the *max-margin* (hard-margin SVM) solution for the fine-tuning data. This alignment lets us track in closed form how the normalized margins on the pre-training data, fine-tuning data and their union vary with the regularization parameter. For *(i)*, we observe a trade-off: decreasing the regularization parameter enlarges the fine-tuning margin while proportionally shrinking the pre-training margin, never collapsing it to zero. Concerning *(ii)*, we view the merged weights through the same margin lens, we prove why merging succeeds and derive optimal mixing coefficients that maximize the margin on the union of all tasks. Finally, we numerically validate our theory across multiple deep learning architectures and task configurations. The empirical results closely match our theoretical predictions. Taken together, our results give the first principled explanation for LoRA’s resistance to forgetting and its surprising merging ability.

1 INTRODUCTION

Foundation models like GPT-4, Gemini, and Deepseek-v3 have revolutionized Artificial Intelligence (AI) capabilities across numerous domains (OpenAI, 2023; Team et al., 2023; Liu et al., 2024). However, deploying these models in real-world applications typically requires fine-tuning on specialized datasets to meet accuracy, safety, and alignment requirements. Traditional full fine-tuning, which requires optimizing over all parameters of the pre-trained model, presents prohibitive computational barriers, requiring massive memory footprints, extended training times, and substantial storage resources. Low-Rank Adaptation (LoRA) (Hu et al., 2022) has emerged as a breakthrough solution, augmenting pre-trained weight matrices W with low-rank adapters B, A while keeping W frozen during fine-tuning. Empirically, LoRA achieves accuracy comparable to full fine-tuning while training less than one percent of the original parameters. While LoRA’s primary appeal was initially its efficiency, practitioners have discovered two remarkable additional benefits that lack a formal explanation:

Resistance to catastrophic forgetting. In fine-tuning and continual learning, catastrophic forgetting, i.e., the performance degradation on previously learned tasks after adapting to new ones, represents a fundamental challenge (Kirkpatrick et al., 2017; McCloskey & Cohen, 1989; Ramasesh et al., 2021). Surprisingly, recent empirical studies have consistently shown that LoRA exhibits a strong resistance to catastrophic forgetting, retaining prior knowledge even after extensive adaptation (Biderman et al., 2024; Qiao & Mahdavi, 2024; Wistuba et al., 2023). This unexpected robustness has made LoRA particularly valuable for incremental adaptation scenarios, yet without theoretical understanding of why this occurs.

054 **Effective adapter merging.** In the context of learning multiple tasks, maintaining separate fine-
 055 tuned models for each task requires substantial storage. Remarkably, studies have shown that LoRA
 056 adapters independently trained on distinct tasks can be directly merged through simple weighted
 057 summation of adapter weights into a single unified adapter that maintains high performance across
 058 all original tasks (Huang et al., 2023; Yadav et al., 2023; Wang et al., 2024; Zhao et al., 2024; Yu
 059 et al., 2024). This property enables extraordinary flexibility in model deployment and management,
 060 but lacks principled explanation for its effectiveness.

061 Despite these empirical benefits, the theoretical mechanisms underlying LoRA’s resistance to *cata-
 062 strophic forgetting* and its *adapter merging* capabilities have remained elusive. In this work, we take
 063 the first step toward closing this gap by providing theoretical explanations for these phenomena.

064 **Paper contributions.** In this work, we characterize the global minimizer of LoRA in the context of
 065 multiclass linear classification problems, focusing on an *orthogonal-tasks* regime where each fine-
 066 tuning dataset is orthogonal to both the pre-training data and other fine-tuning tasks. Compared with
 067 prior works on theoretical analysis of LoRA (Please see Appendix B for a detailed literature review),
 068 our contributions are as follows:

- 070 • *Characterization of optimal solution:* We provide the first complete characterization of LoRA’s
 071 global minimizer across different regularization regimes (Theorem 3.1). (i) *high-penalty
 072 regime*: when the regularization parameter is large, LoRA adapters learn nothing, and equal
 073 zero at the global minimum. (ii) *intermediate regime*: when the regularization parameter is
 074 moderate, LoRA adapters align with the hard-margin SVM direction on the fine-tuning data.
 075 (iii) *low-penalty regime*: when the regularization parameter is small, LoRA adapters align with
 076 a non-max-margin classifier whose direction generally does not have a clear closed-form ex-
 077 pression. Nevertheless, as the regularization parameter approaches zero, we show that its di-
 078 rection converges to a simple and interpretable structure.
- 079 • *Theory for reduced forgetting:* We define *forgetting* as the reduction in margin that the fine-
 080 tuned model exhibits on the pre-training data, and derive closed-form expressions for normal-
 081 ized margins on pre-training data, fine-tuning data and their union (Theorem 3.2). We theo-
 082 retically characterize that LoRA’s margins are governed by the regularization parameter, and
 083 observe the following trade-off: smaller regularization parameter leads to larger Frobenius-
 084 norm ratio of the adapter to the pre-trained weights, which leads to more *forgetting*. At the
 085 same time, the margin on the fine-tuning task increases. Finally, we identify the regulariza-
 086 tion parameter that maximizes the margin of the union of pre-training and fine-tuning tasks,
 087 optimally balancing retention of the old task with performance on the new one.
- 088 • *Theoretical foundation for adapter merging:* We derive closed-form expressions for the merged
 089 model’s margin on each task under the assumption that the level of regularization for each task
 090 lies in the *intermediate regime* (see Theorem 3.3). We show that the margin of the unified model
 091 on each task remains strictly positive, and this result explains why *adapter merging* works in
 092 theory. Moreover, we prove that properly chosen mixing coefficients, which can be obtained in
 093 closed form, maximize the margin of the merged model on the union of *all* tasks.
- 094 • *Numerical validations:* We complement our theoretical analysis with empirical evaluations on
 095 real-world datasets using modern deep learning architectures. Our experiments confirm the
 096 following: (i) the existence of an optimal regularization level that maximizes the performance
 097 of the fine-tuned model, with our theoretically derived value matching the empirical optimum,
 098 and (ii) the effectiveness of our closed-form mixing coefficients for adapter merging.

102 2 PRELIMINARIES

103 In this section, we begin by introducing the multiclass linear classification problem and the corre-
 104 sponding hard-margin SVM formulation. We then describe the specific problem setup considered
 105 in this work, which consists of a pre-training and fine-tuning phase. Finally, we outline the key
 106 assumptions that underpin our analysis, and discuss their motivation and implications.

108 2.1 BACKGROUND ON MULTICLASS LINEAR CLASSIFICATION
109

110 We begin by reviewing the standard K -class linear classification problem, which serves as the foun-
111 dation for our analysis. Given a dataset \mathcal{D} , the goal is to learn a weight matrix $W \in \mathbb{R}^{K \times d}$ that
112 minimizes the empirical cross-entropy loss:

$$113 \min_{W \in \mathbb{R}^{K \times d}} L(W; \mathcal{D}) := \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \mathcal{L}_{\text{CE}}(\mathbf{y}, W\mathbf{x}), \quad (1)$$

115 where $\mathbf{x} \in \mathbb{R}^d$ is the input and $\mathbf{y} \in \mathbb{R}^K$ is a one-hot label vector. The cross-entropy loss is given by:

$$116 \mathcal{L}_{\text{CE}}(\mathbf{y}, \hat{\mathbf{y}}) := -\sum_{c=1}^K y_c \cdot \log(z_c), \quad \text{where } z_c = \frac{\exp(\hat{y}_c)}{\sum_{i=1}^K \exp(\hat{y}_i)}. \quad (2)$$

118 Here, $\hat{\mathbf{y}} = W\mathbf{x}$ represents the class logits, and z_c is the softmax probability assigned to class c .

119 Recent studies have shown that when data is linearly separable, gradient descent (GD) implicitly
120 biases the solution of (1) toward the max-margin classifier (Lyu & Li, 2019; Soudry et al., 2018;
121 Gunasekar et al., 2018; Frei et al., 2022; Ravi et al., 2024). More specifically, the limiting solution
122 (as the iteration of GD tends to infinity) satisfies the following hard-margin SVM problem:

$$123 \min_{W \in \mathbb{R}^{K \times d}} \|W\|_F^2 \quad \text{subject to} \quad C(W; \mathcal{D}) \geq 1, \quad (3)$$

125 where $C(W; \mathcal{D})$ is the minimum margin over the dataset:

$$126 C(W; \mathcal{D}) := \min_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \min_{k \neq c, y_c=1} (\mathbf{w}_c^\top \mathbf{x} - \mathbf{w}_k^\top \mathbf{x}), \quad \text{with } W = [\mathbf{w}_1; \dots; \mathbf{w}_K]^\top.$$

128 The Hard-margin SVM problem in (3) seeks a weight matrix with minimal norm that separates all
129 examples with at least unit margin between the correct class and the nearest competing class.

131 Intuitively, classification decisions depend primarily on the direction of the weight matrix rather than
132 its scale. To enable comparisons across different scales of W , we define the *normalized margin*:

$$133 \gamma(W; \mathcal{D}) := \frac{C(W; \mathcal{D})}{\|W\|_F}. \quad (4)$$

135 While margin is well understood in binary classification ($K = 2$), there is no universally accepted
136 definition in the multiclass setting. We adopt the formulation of Crammer & Singer (2001), which
137 has been used in recent theoretical studies (Lyu & Li, 2019; Ravi et al., 2024).

138 2.2 PRE-TRAINING AND FINE-TUNING SETUP
139

140 We now describe the specific pre-training and fine-tuning framework that is the focus of this work.
141 This setup is common in practice and serves as the foundation for our theoretical analysis.

143 **Pre-training stage.** Let \mathcal{D}_{pre} be a labeled dataset with K classes. We assume a pre-trained linear
144 classifier $W_{\text{pre}} \in \mathbb{R}^{K \times d}$ has been obtained by minimizing the cross-entropy loss:

$$145 W_{\text{pre}} \in \arg \min_{W \in \mathbb{R}^{K \times d}} L(W; \mathcal{D}_{\text{pre}}). \quad (5)$$

147 **Fine-tuning stage.** In the fine-tuning stage, we aim to adapt the pre-trained model to a down-
148 stream task with dataset \mathcal{D}_{ft} , which contains $\bar{K} \leq K$ new classes, each with n samples. This
149 pre-training and fine-tuning setup, where the fine-tuning stage involves new samples that are a sub-
150 set of the classes present during pre-training, reflects several practical scenarios. These include
151 *domain-incremental learning* (Esaki et al., 2024), *domain shift adaptation* (Zohrizadeh et al., 2019;
152 Zhang et al., 2022), and *bias-rebalancing fine-tuning* (Li & Xu, 2021; ValizadehAslani et al., 2024).

153 When LoRA is applied to adapt the pre-trained model to the fine-tuning task, we introduce a low-
154 rank update to the weights, parameterized by matrices $B \in \mathbb{R}^{K \times r}$ and $A \in \mathbb{R}^{r \times d}$:

$$155 \min_{B, A} L(W_{\text{pre}} + BA; \mathcal{D}_{\text{ft}}) + \frac{\lambda}{2} (\|B\|_F^2 + \|A\|_F^2). \quad (6)$$

157 Here, the Frobenius-norm penalties explicitly constrain the adapters in weight space, limiting the
158 deviation of the fine-tuned model from the pretrained initialization. Such regularization has been
159 adopted in prior empirical studies (Hu et al., 2022; Biderman et al., 2024; Wistuba et al., 2023),
160 making it a natural and widely used variant of the standard LoRA formulation.

161 Our goal is to understand the structure of the optimal solution to (6), and how it explains LoRA's
resistance to catastrophic forgetting, and effectiveness in enabling adapter merging.

162 2.3 ASSUMPTIONS AND THEIR IMPLICATIONS
163164 Throughout the paper, we make the following assumptions.
165166 **Assumption 2.1.** *The input data dimension is larger than the total number of classes, i.e., $d \geq K$.*
167168 **Assumption 2.2.** *The rank of the LoRA adapters is larger than or equal to the number of classes in the fine-tuning dataset, i.e., $r \geq \bar{K}$.*
169170 **Assumption 2.3.** *The combined pre-training and fine-tuning datasets are linearly separable. Every fine-tuning feature vector has unit Euclidean norm, is orthogonal to every pre-training feature vector, and is also orthogonal to every other fine-tuning feature vector, i.e.,*
171

172 (a) $\|\bar{x}\| = 1, \bar{x}^\top \bar{x}' = 0, \quad \forall \bar{x}, \bar{x}' \in \mathcal{D}_{\text{ft}}, \quad (b) \quad \bar{x}^\top x = 0, \quad \forall x \in \mathcal{D}_{\text{pre}}, \forall \bar{x} \in \mathcal{D}_{\text{ft}}.$
173

174 **Assumption 2.4.** *The pre-trained classifier W_{pre} is a scaled version of the hard-margin SVM solution on \mathcal{D}_{pre} : $W_{\text{pre}} = \rho_{\text{pre}} \cdot W_{\text{pre}}^{\text{SVM}} / \|W_{\text{pre}}^{\text{SVM}}\|_F$, for some scalar $\rho_{\text{pre}} > 0$, where $W_{\text{pre}}^{\text{SVM}}$ is the unique solution to:*
175

176
$$W_{\text{pre}}^{\text{SVM}} = \arg \min_{W \in \mathbb{R}^{K \times d}} \frac{1}{2} \|W\|_F^2 \quad \text{subject to} \quad C(W; \mathcal{D}_{\text{pre}}) \geq 1.$$

177

178 We now briefly justify our assumptions and illustrate how they represent valid simplifications of
179 real-world scenarios, preserving essential characteristics needed for theoretical analysis.
180181 *Assumption 2.1* is mild since for most machine learning tasks, the input dimension is greatly larger
182 than the number of classes, i.e., $d = 3072 > 100 = K$ in CIFAR-100 (Krizhevsky et al., 2009). *Assumption 2.2* requires only $r \geq \bar{K}$, meaning the LoRA rank needs only to exceed the number of new
183 classes, and is independent of the number of samples, which aligns with practical implementations
184 where LoRA with rank ranging from 8 to 64 successfully handles tasks with thousands of samples
185 per class. Additionally, the orthogonality condition in *Assumption 2.3*, while restrictive, is common
186 in theoretical analyses (Frei et al., 2022; Bui Thi Mai & Lampert, 2021; Boursier et al., 2022; Kou
187 et al., 2023), as it provides essential simplifications that facilitate deriving theoretical insights. We
188 further support this assumption with numerical evidence, presented in Appendix I.1. Finally, *Assumption 2.4* is
189 motivated by recent theoretical results on the implicit bias of gradient descent in
190 multiclass classification (Ravi et al., 2024; Lyu et al., 2021), as discussed in §2.1.
191192 **Implications.** The assumptions introduced above lead to a clean closed-form expression for the \bar{K} -
193 class hard-margin SVM solution for the fine-tuning task, and also imply orthogonality between the
194 pre-trained weights W_{pre} and the fine-tuning dataset \mathcal{D}_{ft} , which lays a foundation for our subsequent
195 theoretical analysis in §3. To formalize these implications, we begin by introducing the concept of
196 a *simplex equiangular tight frame* (simplex ETF), which characterizes the geometry of the hard-
197 margin SVM solution in our setting.
198199 **Definition 2.1** (Simplex ETF). *A m -simplex ETF is a collection of m vectors in \mathbb{R}^d given by the
200 columns of $M_m := \sqrt{\frac{m}{m-1}} P (\mathbf{I}_m - \frac{1}{m} \mathbf{1}_m \mathbf{1}_m^\top)$, where $P \in \mathbb{R}^{d \times m}$ satisfies $P^\top P = \mathbf{I}_m$.*
201202 Using this definition, we now present a proposition that characterizes the structure of the hard-
203 margin SVM solution for the fine-tuning data (\mathcal{D}_{ft}), and the orthogonality between the pre-trained
204 weight (W_{pre}) and fine-tuning data, under Assumptions 2.3 and 2.4.
205206 **Proposition 2.1.** *Under Assumptions 2.3 and 2.4, the following properties hold:*
207208 (i) *Under condition (a) of Assumption 2.3, the \bar{K} -class hard-margin SVM solution for the fine-
209 tuning task \mathcal{D}_{ft} , defined as*

210
$$\bar{W}_{\text{ft}}^{\text{SVM}} = \arg \min_{W \in \mathbb{R}^{\bar{K} \times d}} \frac{1}{2} \|W\|_F^2 \quad \text{subject to} \quad C(W; \mathcal{D}_{\text{ft}}) \geq 1,$$

211

212 *admits the closed-form solution: $\bar{W}_{\text{ft}}^{\text{SVM}} = (M_{\bar{K}} \otimes \mathbf{1}_n^\top) X_{\text{ft}}^\top$, where $x_{i,j}$ denoting the j -th
213 sample from class i , and $X_{\text{ft}} = [\mathbf{x}_{1,1}, \dots, \mathbf{x}_{1,n}, \dots, \mathbf{x}_{\bar{K},n}]$ is the fine-tuning data matrix.*
214215 (ii) *Under condition (b) of Assumption 2.3 and Assumption 2.4, the pre-trained weights are or-
216 thogonal to the fine-tuning data: $W_{\text{pre}} \bar{x} = 0, \quad \forall \bar{x} \in \mathcal{D}_{\text{ft}}$.*

216 **Remark on Proposition 2.1.** The first result in Proposition 2.1 reveals that the hard-margin SVM so-
 217 lution for the fine-tuning task admits a compact closed-form expression: $W_{\text{ft}}^{\text{SVM}} = (M_{\bar{K}} \otimes \mathbf{1}_n^\top) X_{\text{ft}}^\top$.
 218 However, this form does not immediately reveal how the classifier aggregates information from the
 219 fine-tuning data. To provide insight, we explicitly derive the expression for the *first row* of $W_{\text{ft}}^{\text{SVM}}$
 220 (the remaining rows follow symmetrically), yielding:

$$221 \quad \sqrt{\frac{\bar{K}}{\bar{K}-1}} P \left(\frac{\bar{K}-1}{\bar{K}} \sum_{i=1}^n \bar{x}_{1,i} - \frac{1}{\bar{K}} \sum_{k=2}^{\bar{K}} \sum_{j=1}^n \bar{x}_{k,j} \right).$$

224 Intuitively, each row of $W_{\text{ft}}^{\text{SVM}}$ encodes a direction that emphasizes its corresponding class mean
 225 while uniformly suppressing the influence of all other classes, leading to class separation in max-
 226 margin classification. The second result in Proposition 2.1 arises naturally due to the representer
 227 theorem for SVMs, which implies that the hard-margin SVM solution for pre-training task is a
 228 linear combination of pre-training data only. Under condition (b) in Assumption 2.3, each row of
 229 W_{pre} is consequently orthogonal to the fine-tuning data.

230 Building upon these assumptions and propositions, we develop a rigorous theoretical framework
 231 that for the first time provides a principled explanation for LoRA’s empirical advantages in the
 232 subsequent section. Our analysis reveals properties that enables precise quantification of LoRA’s
 233 benefits in terms of margin preservation and multi-task performance.

235 3 MAIN RESULTS

237 In this section, we first analyze the optimization landscape of the LoRA objective and characterize
 238 its global minimum in §3.1. We then derive closed-form expressions for the margins on the union of
 239 pre-training and fine-tuning datasets, demonstrating why LoRA mitigates *catastrophic forgetting* in
 240 §3.2. Finally, in §3.3, we extend our margin-based analysis to the multi-task setting, providing the
 241 first theoretical explanation for the effectiveness of *adapter merging* and deriving optimal mixing
 242 coefficients that maximize the margin on the union of all tasks.

243 3.1 GLOBAL MINIMUM OF LORA OBJECTIVE

244 In this section, we present our main theoretical result on the characterization of the global minimizer
 245 of the LoRA objective in (6). Interestingly, under suitable regularization, we find that part of the
 246 optimal LoRA adapters aligns exactly with the \bar{K} -class hard-margin SVM solution ($W_{\text{ft}}^{\text{SVM}}$) for the
 247 fine-tuning data (see Proposition 2.1 for definition). While our analysis does not assume or rely on
 248 this, its emergence highlights a geometric alignment that partially explains LoRA’s effectiveness.

249 **Theorem 3.1.** *There exists a critical regularization weight $\lambda_{\text{crit}} \in (0, \frac{1}{K\sqrt{n}})$ and scalar functions
 250 $a_\lambda, b_\lambda, c_\lambda, \Theta_\lambda$ of λ such that for any global minimizer $(B_\lambda^*, A_\lambda^*)$ of (6) with $\lambda > 0$, we have*

$$252 \quad B_\lambda^* A_\lambda^* = \left(\begin{pmatrix} (a_\lambda + b_\lambda) \mathbf{I}_{\bar{K}} & -b_\lambda \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top \\ -c_\lambda \mathbf{1}_{K-\bar{K}} \mathbf{1}_{\bar{K}}^\top \end{pmatrix} \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top, \quad \|B_\lambda^* A_\lambda^*\|_F = \Theta_\lambda. \quad (7)$$

254 When $\bar{K} \geq 2$, the scalar functions $a_\lambda, b_\lambda, c_\lambda, \Theta_\lambda$ are characterized as follows:

256 (i) *High-penalty regime* ($\lambda \geq \frac{1}{K\sqrt{n}}$): $a_\lambda = b_\lambda = c_\lambda = \Theta_\lambda = 0$, thus $B_\lambda^* A_\lambda^* = \mathbf{0}_{K \times d}$.

258 (ii) *Intermediate regime* ($\lambda_{\text{crit}} < \lambda < \frac{1}{K\sqrt{n}}$): $a_\lambda = \frac{\Theta_\lambda}{\sqrt{K}n}, b_\lambda = \frac{\Theta_\lambda}{K\sqrt{K}n}, c_\lambda = 0$, and Θ_λ is the
 259 unique root of a nonlinear equation (see (28) in Appendix E), thus the minimizer is

$$261 \quad B_\lambda^* A_\lambda^* = \frac{\Theta_\lambda}{\sqrt{K}n} \left(\begin{pmatrix} M_{\bar{K}} \\ \mathbf{0}_{(K-\bar{K}) \times \bar{K}} \end{pmatrix} \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top. \quad (8)$$

264 (iii) *Low-penalty regime* ($\lambda \leq \lambda_{\text{crit}}$): in general $a_\lambda, b_\lambda, c_\lambda, \Theta_\lambda$ are positive. Nevertheless,

$$266 \quad \lim_{\lambda \rightarrow 0^+} \Theta_\lambda = \infty, \quad \lim_{\lambda \rightarrow 0^+} \frac{B_\lambda^* A_\lambda^*}{\|B_\lambda^* A_\lambda^*\|_F} = \sqrt{\frac{1}{nK}} \left(M_K^{(\bar{K})} \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top, \quad (9)$$

268 where K is the number of pre-training classes and $M_K^{(\bar{K})}$ is the first \bar{K} columns of the K -ETF
 269 matrix M_K .

270 The proof of the above theorem is provided in Appendix E. Theorem 3.1 shows that the product of
 271 the optimal LoRA adapter has a unified form as is shown in (7), and identifies three different regimes
 272 based on the regularization parameter λ . We make the following remarks:
 273

274 **Effect of regularization and connection with max-margin classifier.** In the above theorem, the
 275 regularization parameter determines the structure of the optimal LoRA adapters. In the *high-penalty*
 276 *regime* (large regularization), the regularization term dominates, forcing optimal adapters toward
 277 zero. In the *intermediate regime* (medium regularization), the LoRA adapters balance between
 278 minimizing cross-entropy and regularization, resulting in the explicit structure given in (8). Notably,
 279 the first \bar{K} rows of the product $B_\lambda^* A_\lambda^*$ align with the \bar{K} -class hard-margin SVM solution for the fine-
 280 tuning data (see Proposition 2.1 for comparison). This alignment offers a clear interpretation of the
 281 learned solution and partially explains the strong empirical performance of LoRA in practice. In
 282 the *low-penalty regime* (small regularization), explicit solutions for the scalar functions a_λ, b_λ are
 283 difficult to derive. However, as $\lambda \rightarrow 0^+$, the cross-entropy term dominates, pushing the optimal
 284 solution toward infinity, as indicated by $\lim_{\lambda \rightarrow 0^+} \Theta_\lambda = \infty$. Additionally, our asymptotic analysis
 285 characterizes the limiting direction of $B_\lambda^* A_\lambda^*$ as is shown in (9). We emphasize that this asymptotic
 286 direction does not align with the hard-margin SVM solution for the fine-tuning data unless $\bar{K} = K$.
 287

288 **Implication for fine-tuned model.** The structured form of the optimal LoRA adapters in (7) nat-
 289 urally enables $W_{\text{LoRA}}^\lambda := W_{\text{pre}} + B_\lambda^* A_\lambda^*$ to perform well on both pre-training and fine-tuning data.
 290 Under Assumptions 2.3 and 2.4, Proposition 2.1 and Theorem 3.1 imply that $W_{\text{pre}} \bar{x} = 0$ for all
 291 $\bar{x} \in \mathcal{D}_{\text{ft}}$ and $B_\lambda^* A_\lambda^* \mathbf{x} = 0$ for all $\mathbf{x} \in \mathcal{D}_{\text{pre}}$. That is, the two components operate independently:
 292 W_{pre} classifies the pre-training data, while $B_\lambda^* A_\lambda^*$ adapts to the fine-tuning data:
 293

$$\forall \mathbf{x} \in \mathcal{D}_{\text{pre}} \cup \mathcal{D}_{\text{ft}}, \quad W_{\text{LoRA}}^\lambda \mathbf{x} = \begin{cases} W_{\text{pre}} \mathbf{x} & \text{if } \mathbf{x} \in \mathcal{D}_{\text{pre}}, \\ B_\lambda^* A_\lambda^* \mathbf{x} & \text{if } \mathbf{x} \in \mathcal{D}_{\text{ft}}. \end{cases} \quad \text{holds } \forall \lambda > 0. \quad (10)$$

294 This clean separation allows us to derive the margin of W_{LoRA}^λ for any data in the combined dataset:
 295

$$\begin{cases} \frac{W_{\text{pre}} \mathbf{x}}{\|W_{\text{pre}}\|_F} \cdot \frac{\|W_{\text{pre}}\|_F}{\|W_{\text{LoRA}}^\lambda\|_F} & \text{if } \mathbf{x} \in \mathcal{D}_{\text{pre}}, \\ \frac{B_\lambda^* A_\lambda^* \mathbf{x}}{\|B_\lambda^* A_\lambda^*\|_F} \cdot \frac{\|B_\lambda^* A_\lambda^*\|_F}{\|W_{\text{LoRA}}^\lambda\|_F} & \text{if } \mathbf{x} \in \mathcal{D}_{\text{ft}}. \end{cases} \quad (11)$$

300 The expression in (11) shows that the normalized margin on the combined dataset depends not only
 301 on the individual normalized margins of W_{pre} and $B_\lambda^* A_\lambda^*$ on the \mathcal{D}_{pre} and \mathcal{D}_{ft} respectively, but also
 302 on the relative Frobenius norms of these components. In the following sections, we use (11) to
 303 derive closed-form expressions for the normalized margin on the combined dataset and to compute
 304 the optimal mixing coefficients for *adapter merging*. For clarity of presentation, we focus on the
 305 case $\bar{K} = K$ and refer the reader to Appendix G and Appendix H for the full version of our results.
 306

3.2 LORA PROVABLY REDUCES FORGETTING

308 In this section, we demonstrate that LoRA provably reduces forgetting through the lens of nor-
 309 malized margin, and identify an optimal regularization level achieving max-margin over the
 310 combined datasets. For convenience, we define the following shorthand for margins: $\gamma_{\text{pre}} =$
 311 $\gamma(W_{\text{pre}}; \mathcal{D}_{\text{pre}})$, $\gamma_{\text{ft}, \lambda} = \gamma(B_\lambda^* A_\lambda^*; \mathcal{D}_{\text{ft}})$ (motivated by (11)).
 312

313 With these definitions in place, we now present our main theorem.
 314

Theorem 3.2. *Adopt the setup of Theorem 3.1, let γ_{ft}^* be the max normalized margin any linear
 315 classifier can obtain on the fine-tuning data \mathcal{D}_{ft} , and recall the scalar ρ_{pre} from Assumption 2.4.
 316 Then, the normalized margins of W_{LoRA}^λ on the union of pre-training and fine-tuning data can be
 317 characterized uniformly over all λ as follows:*

$$\begin{aligned} \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}}) &= \gamma_{\text{pre}} \frac{\rho_{\text{pre}}}{\sqrt{\Theta_\lambda^2 + \rho_{\text{pre}}^2}}, & \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{ft}}) &= \gamma_{\text{ft}, \lambda} \frac{\Theta_\lambda}{\sqrt{\Theta_\lambda^2 + \rho_{\text{pre}}^2}}, \\ \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}} \cup \mathcal{D}_{\text{ft}}) &= \min \left\{ \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}}), \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{ft}}) \right\} \end{aligned} \quad (12)$$

321 Moreover, $\Theta_\lambda, \gamma_{\text{ft}, \lambda}$ take different values depending on the regime λ is in:
 322

324 (i) *High-penalty regime*: $\lambda \geq \frac{1}{K\sqrt{n}}$: $\Theta_\lambda = \gamma_{\text{ft},\lambda} = 0$.
 325
 326 (ii) *Intermediate and low-penalty regime*: $\lambda < \frac{1}{K\sqrt{n}}$: $\gamma_{\text{ft},\lambda} = \gamma_{\text{ft}}^*$, and Θ_λ is a decreasing function.
 327

328 **Optimal trade-off choice of λ .** There exists a unique λ^* such that
 329

330 $\max_{\lambda > 0} \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}} \cup \mathcal{D}_{\text{ft}}) = \left(\frac{1}{(\gamma_{\text{ft}}^*)^2} + \frac{1}{\gamma_{\text{pre}}^2} \right)^{-1/2}, \quad \text{attained at } \lambda = \lambda^*. \quad (13)$
 331

332 **Remark 3.1.** Notably, the intermediate and low-penalty regimes coincide when $\bar{K} = K$. This
 333 merging is specific to the case $\bar{K} = K$; when $\bar{K} < K$, the two regimes remain distinct.

334 **Interpretation of the normalized margin.** Theorem 3.2 characterizes the margins of the LoRA
 335 fine-tuned model W_{LoRA}^λ on the pre-training and fine-tuning datasets. Notably, the margin on the
 336 pre-training data remains positive in both the *intermediate* and *low-penalty* regimes, indicating that
 337 LoRA mitigates *catastrophic forgetting*. Furthermore, the margin on the combined dataset, given
 338 in (12), is defined as the minimum of two terms: the margin on the pre-training data weighted by the
 339 relative magnitude of the pre-trained weights, and the margin on the fine-tuning data weighted by the
 340 norm of the LoRA adapters. This structure reveals a clear trade-off: decreasing the regularization
 341 parameter λ increases the adapter norm Θ_λ , which decreases the pre-training margin contribution
 342 while increasing the fine-tuning margin contribution.

343 **Uniqueness of the optimal λ .** Due to the opposing effects of Θ_λ on the two components of the
 344 combined margin, the maximum of $\gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}} \cup \mathcal{D}_{\text{ft}})$ is achieved when the weighted margins are
 345 equal. This balance determines a unique value of Θ_λ . Since Θ_λ is a strictly decreasing function, it
 346 follows that there exists a unique λ that maximizes the normalized margin on the combined datasets.
 347

348 **Full fine-tuning as an alternative method.** While our work focuses on LoRA, it is instructive to
 349 briefly contrast it with the more conventional strategy of full fine-tuning. Full fine-tuning updates
 350 all parameters of the pretrained model, which is considerably less efficient in both computation and
 351 storage, whereas LoRA achieves adaptation through a compact low-rank parameterization. In the
 352 linear classification setting, the two approaches correspond to the following regularized objectives:
 353

$$\min_{B, A} L(W_{\text{pre}} + BA; \mathcal{D}_{\text{ft}}) + \frac{\lambda}{2} (\|B\|_F^2 + \|A\|_F^2), \quad \text{LoRA objective,} \quad (14)$$

$$\min_{W} L(W; \mathcal{D}_{\text{ft}}) + \frac{\lambda}{2} \|W - W_{\text{pre}}\|_F^2, \quad \text{Full fine-tuning objective.} \quad (15)$$

354 Beyond efficiency, the two formulations induce fundamentally different (implicit) biases. By ex-
 355 ploring the variational form of the nuclear norm (Recht et al., 2010), one can show that for any
 356 solution (B^*, A^*) of (14), the induced update W_{LoRA}^λ is equivalently the solution of
 357

$$\min_{W, \text{rank}(W - W_{\text{pre}}) \leq r} L(W; \mathcal{D}_{\text{ft}}) + \frac{\lambda}{2} \|W - W_{\text{pre}}\|_*, \quad \text{Implicit bias of LoRA fine-tuning,} \quad (16)$$

358 which highlights LoRA’s connection to nuclear-norm regularization under rank constraints. We refer
 359 the readers to Jang et al. (2024) for the proof of the argument. Understanding the consequences of
 360 this distinction of nuclear norm regularization and Frobenius norm regularization remains an open
 361 direction for future work. Importantly, our goal is not to compare LoRA and full fine-tuning, but
 362 to rigorously analyze why LoRA exhibits reduced forgetting and to provide principled guidance for
 363 selecting regularization parameters in adapter-based fine-tuning.
 364

3.3 LORA SUPPORTS ADAPTER MERGING

365 In this section, we explain why LoRA supports *adapter merging* through the same margin lens.
 366

367 We now consider a scenario where a single pre-trained network is fine-tuned independently on T
 368 datasets, denoted by $\mathcal{D}_1, \dots, \mathcal{D}_T$. Let (B_i^*, A_i^*) represent the LoRA adapter obtained from training
 369 on dataset \mathcal{D}_i , for each $i \in [T]$. Our goal is to merge these adapters into a unified model that performs
 370 well simultaneously on the original pre-training task and on all fine-tuning tasks $\mathcal{D}_1, \dots, \mathcal{D}_T$. To
 371 achieve this, we merge all adapters with the pre-trained weight matrix as follows:
 372

$$W_{\text{LoRA}}(\boldsymbol{\alpha}) := W_{\text{pre}} + \sum_{i=1}^T \alpha_i B_i^* A_i^*, \quad \alpha_1, \dots, \alpha_T \in \mathbb{R}, \quad (17)$$

373 where $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_T)$ are user-specified mixing coefficients. Moreover, we generalize the As-
 374 sumption 2.3 to the setting of learning multiple tasks as follows.
 375

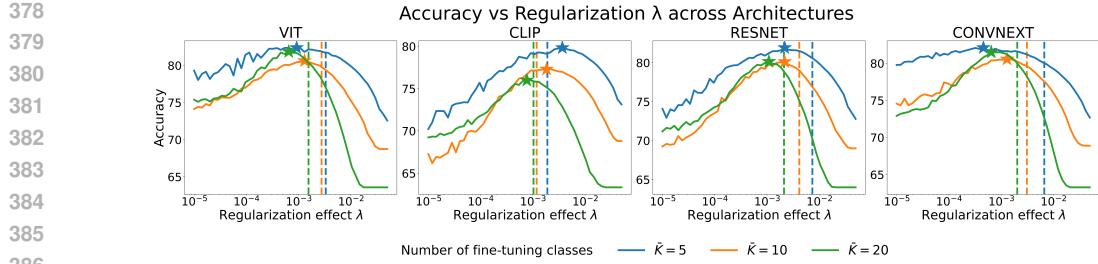


Figure 1: Accuracy of the fine-tuned model across varying regularization levels for four different pre-trained models. Each line represents a fine-tuning task, indicated by color. Stars highlight the best-performing regularization value for each task. Vertical dashed lines indicate the theoretically predicted optimal regularization parameter for each setting. Alignment between the star and the dashed line of the same color reflects how well our theory predicts the empirically optimal regularization level.

Assumption 3.1. For each fine-tuning task \mathcal{D}_i the dataset consists of m_i classes, each containing n_i samples. All fine-tuning feature vectors have unit norm, are pairwise orthogonal, and are orthogonal to every pre-training feature vector.

The following theorem characterizes the optimal mixing coefficients. See Appendix H for the proof.

Theorem 3.3. Under Assumption 3.1, and suppose each fine-tuning task \mathcal{D}_i ($i = 1, \dots, T$) is trained with a regularization parameter in the intermediate or low-penalty regime. Let $\Theta_{\lambda, i} = \|B_i^* A_i^*\|_F$ and $\gamma_i = \gamma(B_i^* A_i^*; \mathcal{D}_i)$. For an arbitrary coefficient vector $\alpha = (\alpha_1, \dots, \alpha_T)$ the merged model (17) achieves the normalized margins on each task as follows

$$\gamma(W_{\text{LoRA}}(\alpha); \mathcal{D}_{\text{pre}}) = \frac{\gamma_{\text{pre}} \rho_{\text{pre}}}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T \alpha_j^2 \Theta_{\lambda, i}^2}}, \quad \gamma(W_{\text{LoRA}}(\alpha); \mathcal{D}_i) = \frac{\gamma_i \alpha_i \Theta_{\lambda, i}}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T \alpha_j^2 \Theta_{\lambda, i}^2}},$$

$$\gamma(W_{\text{LoRA}}(\alpha); \mathcal{D}_{\text{pre}} \cup \{\mathcal{D}_i\}_{i=1}^T) = \min \{\gamma(W_{\text{LoRA}}(\alpha); \mathcal{D}_{\text{pre}}), \gamma(W_{\text{LoRA}}(\alpha); \mathcal{D}_i)\}, i \in [T]$$

Choosing the weights $\alpha_i = \frac{\rho_{\text{pre}} \gamma_{\text{pre}}}{\gamma_i \Theta_{\lambda, i}}$, $i \in [T]$, maximizes the margin on the union of all tasks:

$$\max_{\alpha} \gamma(W_{\text{LoRA}}(\alpha); \mathcal{D}_{\text{pre}} \cup \{\mathcal{D}_i\}_{i=1}^T) = \left(\frac{1}{\gamma_{\text{pre}}^2} + \sum_{j=1}^T \frac{1}{(\gamma_j)^2} \right)^{-1/2}.$$

Theorem 3.3 characterizes the optimal mixing coefficients, i.e., $\frac{\rho_{\text{pre}} \gamma_{\text{pre}}}{\gamma_i \Theta_{\lambda, i}}$, based on two key quantities: the ratio between the Frobenius norms of the pre-trained weight matrix and each LoRA adapter product, i.e., $\rho_{\text{pre}}/\Theta_{\lambda, i}$, and the ratio between the margins for the pre-training task and for each task, i.e., $\gamma_{\text{pre}}/\gamma_i$. As either ratio decreases, the optimal mixing coefficient for the corresponding adapter should increase. Intuitively speaking, a larger $\rho_{\text{pre}}/\Theta_{\lambda, i}$ implies the adapter has a weaker impact relative to the pre-trained model, necessitating a larger weighting to achieve a balanced contribution. Similarly, a larger $\gamma_{\text{pre}}/\gamma_i$ indicates that task i is inherently more challenging compared to the pre-trained task, thus requiring a larger weight for its adapter to ensure satisfactory performance in the unified model, i.e., $\hat{W}_{\text{LoRA}}(\alpha)$. Finally, we point out that the optimal mixing coefficients proposed in Theorem 3.3 can be computed after the training as long as the regularization parameter lies in the *intermediate regime*, making the approach practical and easy to implement.

So far, we have characterized the optimal solutions to the LoRA objective in §3.1, explained why LoRA mitigates *catastrophic forgetting* by analyzing margins on pre-training and fine-tuning datasets in §3.2, and derived optimal mixing coefficients for adapter merging through the same margin perspective in §4.2. In the next section, we numerically validate these theoretical insights.

4 EXPERIMENTS

In this section, we evaluate our theoretical predictions in realistic settings where assumptions are not strictly satisfied (Assumption 2.3 and Assumption 2.4). Specifically, we test: (i) the effect of regularization on LoRA’s performance across architectures and tasks, and (ii) the accuracy of our predicted mixing coefficients for adapter merging.

Setup. We use four popular pre-trained models, ResNet-50, ViT-B/16, ConvNeXt, and CLIP (He et al., 2016; Dosovitskiy et al., 2021; Liu et al., 2022; Radford et al., 2021), as frozen

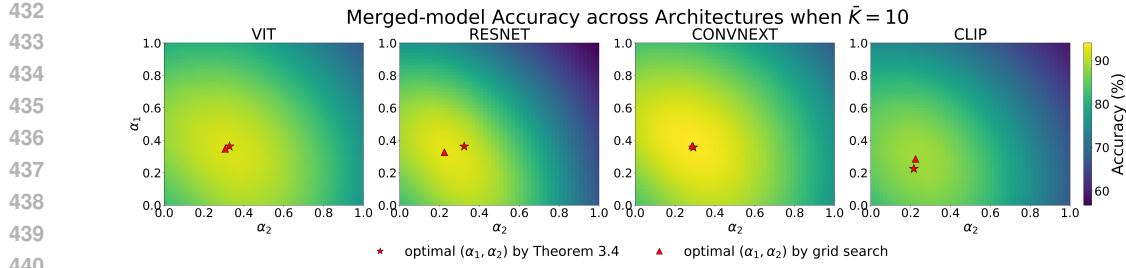


Figure 2: Merged-model accuracy across architectures. Each panel shows the accuracy of the merged model evaluated on the combined dataset, across a 50×50 grid of mixing coefficients $(\alpha_1, \alpha_2) \in (0, 1)^2$. For each architecture, the red star indicates the theoretically predicted optimal coefficients from Theorem 3.3, while the red triangle marks the empirically optimal coefficients.

feature extractors on CIFAR-100 (Krizhevsky et al., 2009). We apply LoRA to the final linear classification layer only, following the standard linear probing protocol (Kornblith et al., 2019). Tasks are constructed using CIFAR-100’s superclass hierarchy. All training and task construction details are provided in Appendix I.

Metric. Though our theory is developed for normalized margin, real-world classification problems are more challenging, and perfect accuracy is typically unattainable, which leads to negative normalized margin of the fine-tuned model. Therefore, we report classification accuracy as a more practical measure of performance in this setting.

4.1 EFFECT OF REGULARIZATION

We first pre-train a linear classifier on the pretraining task, and then fine-tune it using LoRA across 50 logarithmically spaced regularization strengths, with $\lambda \in [10^{-5}, 10^{-1}]$. Figure 1 shows that LoRA’s performance exhibits a non-monotonic relationship with λ , peaking at a moderate value. Notably, our theoretically predicted optimal λ aligns well with the best empirical choice when the pre-trained models are VIT, RESNET and CLIP. Detailed comparisons are reported in Appendix I.

4.2 OPTIMAL MIXING COEFFICIENTS FOR ADAPTER MERGING: THEORY VS. GRID SEARCH

We fine-tune LoRA adapters on two disjoint tasks $(\mathcal{D}_1, \mathcal{D}_2)$, then merge them with the pre-trained weights using mixing coefficients (α_1, α_2) . We evaluate the merged model’s performance on the combined dataset $\mathcal{D}_{\text{pre}} \cup \mathcal{D}_1 \cup \mathcal{D}_2$. As shown in Figure 2, our predicted mixing coefficients closely match the grid-searched optima, confirming the practical accuracy of our merging theory. In Appendix I, we provide more experimental results when $\bar{K} = 5, 20$.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we provide a theoretical analysis of LoRA fine-tuning through the lens of normalized margin. We characterize the structure of optimal LoRA adapters under varying regularization regimes and show how LoRA mitigates catastrophic forgetting. Our results reveal a clean separation of responsibility between the pre-trained weights and LoRA adapters, enabling margin-based analysis on pre-training and fine-tuning tasks. We further extend our framework to the setting of adapter merging and derive closed-form expressions for the optimal mixing coefficients. Empirical results across multiple architectures validate our theoretical predictions, even when the underlying assumptions (e.g., data orthogonality) are mildly violated in practice.

Limitations and future work. Our analysis relies on several simplifying assumptions. In particular, we assume orthogonal task structure (*Assumption 2.3*), perfect alignment between pre-trained weights and pre-training tasks (*Assumption 2.4*), and balanced class sizes in the fine-tuning data. While these assumptions enable closed-form characterization, they limit the generality of our results. An important direction for future work is to relax these constraints and explore how LoRA behaves under more realistic data distributions and pre-training conditions. Extending the margin-based perspective to non-linear models is another promising avenue. Finally, as discussed in §3.2, full fine-tuning and LoRA fine-tuning induce different implicit biases. An important open direction is to characterize the regimes in which LoRA has an advantage over full fine-tuning, for example by comparing their respective generalization errors.

486 REFERENCES
487

488 Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
489 Memory aware synapses: Learning what (not) to forget. In *Proceedings of the European Conference
490 on Computer Vision (ECCV)*, pp. 139–154, 2018.

491 Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
492 Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
493 forgets less. *arXiv preprint arXiv:2405.09673*, 2024.

494 Etienne Boursier, Loucas Pullaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of
495 shallow relu networks for square loss and orthogonal inputs. In *Advances in Neural Information
496 Processing Systems*, volume 35, pp. 20105–20118, 2022.

497

498 Phuong Bui Thi Mai and Christoph Lampert. The inductive bias of relu networks on orthogonally
499 separable data. In *9th International Conference on Learning Representations*, 2021.

500 Christopher J Burges and David Crisp. Uniqueness of the svm solution. *Advances in neural infor-
501 mation processing systems*, 12, 1999.

502

503 Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
504 vector machines. *Journal of machine learning research*, 2(Dec):265–292, 2001.

505

506 Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
507 A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In *International
508 Conference on Artificial Intelligence and Statistics*, pp. 1072–1080. PMLR, 2021.

509

510 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
511 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
512 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
513 arXiv:2010.11929*, 2021.

514

515 Yasushi Esaki, Satoshi Koide, and Takuro Kutsuna. One-shot domain incremental learning. In *2024
516 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2024.

517

518 Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
519 can catastrophic forgetting be in linear regression? In *Conference on Learning Theory*, pp. 4028–
520 4079. PMLR, 2022.

521

522 Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Exploring deep neural networks via layer-
523 peeled model: Minority collapse in imbalanced training. *Proceedings of the National Academy
524 of Sciences*, 118(43):e2103091118, 2021.

525

526 Spencer Frei, Gal Vardi, Peter L Bartlett, Nathan Srebro, and Wei Hu. Implicit bias in leaky relu
527 networks trained on high-dimensional data. *arXiv preprint arXiv:2210.07082*, 2022.

528

529 Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
530 terms of optimization geometry. In *International Conference on Machine Learning*, pp. 1832–
531 1841. PMLR, 2018.

532

533 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
534 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
535 (CVPR)*, June 2016.

536

537 Wanli Hong and Shuyang Ling. Neural collapse for unconstrained feature model under cross-
538 entropy loss with imbalanced data. *arXiv preprint arXiv:2309.09725*, 2023.

539

Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.

540

541 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
542 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

543

544 Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
545 cient cross-task generalization via dynamic lora composition. *arXiv preprint arXiv:2307.13269*,
546 2023.

540 Uijeong Jang, Jason D Lee, and Ernest K Ryu. Lora training in the ntk regime has no spurious local
 541 minima. *arXiv preprint arXiv:2402.11867*, 2024.

542

543 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 544 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
 545 ing catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*,
 546 114(13):3521–3526, 2017.

547

548 Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
 549 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2661–
 550 2671, 2019.

551

552 Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu
 553 and leaky relu networks on nearly-orthogonal data. *Advances in Neural Information Processing
 Systems*, 36:30167–30221, 2023.

554

555 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
 556 ages.(2009), 2009.

557

558 Xuhong Li, Yves Grandvalet, and François Davoine. Explicit inductive bias for transfer learning
 559 with convolutional networks. In *International Conference on Machine Learning (ICML)*, pp.
 2825–2834, 2018.

560

561 Zhiheng Li and Chenliang Xu. Discover the unknown biased attribute of an image classifier. In
 562 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 14970–14979,
 563 2021.

564

565 Zhizhong Li and Derek Hoiem. Learning without forgetting. In *European Conference on Computer
 Vision (ECCV)*, pp. 614–629, 2016.

566

567 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 568 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 arXiv:2412.19437*, 2024.

569

570 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 571 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and
 572 pattern recognition*, pp. 11976–11986, 2022.

573

574 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
 575 *arXiv preprint arXiv:1906.05890*, 2019.

576

577 Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets:
 578 Margin maximization and simplicity bias. *Advances in Neural Information Processing Systems*,
 579 34:12978–12991, 2021.

580

581 Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
 582 view of language model fine-tuning. In *International Conference on Machine Learning*, pp.
 23610–23641. PMLR, 2023.

583

584 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 585 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 Elsevier, 1989.

586

587 OpenAI. Gpt-4 technical report. <https://arxiv.org/abs/2303.08774>, 2023.

588

589 Fuli Qiao and Mehrdad Mahdavi. Learn more, but bother less: parameter efficient continual learning.
 590 *Advances in Neural Information Processing Systems*, 37:97476–97498, 2024.

591

592 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 593 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.

594 Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
 595 forgetting in neural networks. In *International conference on learning representations*, 2021.

596

597 Hrithik Ravi, Clay Scott, Daniel Soudry, and Yutong Wang. The implicit bias of gradient descent on
 598 separable multiclass data. *Advances in Neural Information Processing Systems*, 37:81324–81359,
 599 2024.

600 Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear
 601 matrix equations via nuclear norm minimization. *SIAM review*, 52(3):471–501, 2010.

602

603 Kurt S Riedel. A sherman–morrison–woodbury identity for rank augmenting matrices with applica-
 604 tion to centering. *SIAM Journal on Matrix Analysis and Applications*, 13(2):659–662, 1992.

605

606 Bernhard Scholkopf and Alexander J Smola. *Learning with kernels: support vector machines,*
 607 *regularization, optimization, and beyond*. MIT press, 2018.

608

609 Jonathan Schwarz, Wojciech M Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
 610 Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
 611 for continual learning. In *International Conference on Machine Learning (ICML)*, pp. 4528–4537,
 612 2018.

613

614 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 615 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):
 616 1–57, 2018.

617

618 Rangarajan K Sundaram. *A first course in optimization theory*. Cambridge university press, 1996.

619

620 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 621 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 622 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

623

624 Taha ValizadehAslani, Yiwen Shi, Jing Wang, Ping Ren, Yi Zhang, Meng Hu, Liang Zhao,
 625 and Hualou Liang. Two-stage fine-tuning with chatgpt data augmentation for learning class-
 626 imbalanced data. *Neurocomputing*, 592:127801, 2024.

627

628 Hanqing Wang, Bowen Ping, Shuo Wang, Xu Han, Yun Chen, Zhiyuan Liu, and Maosong Sun.
 629 Lora-flow: Dynamic lora fusion for large language models in generative tasks. *arXiv preprint*
 630 *arXiv:2402.11455*, 2024.

631

632 Martin Wistuba, Prabhu Teja Sivaprasad, Lukas Balles, and Giovanni Zappella. Continual learning
 633 with low rank adaptation. *arXiv preprint arXiv:2311.17601*, 2023.

634

635 Ziqing Xu, Hancheng Min, Lachlan Ewen MacDonald, Jinqi Luo, Salma Tarmoun, Enrique Mal-
 636 lada, and Rene Vidal. Understanding the learning dynamics of lora: A gradient flow perspective
 637 on low-rank adaptation in matrix factorization. *arXiv preprint arXiv:2503.06982*, 2025.

638

639 Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interfer-
 640 ence when merging models. *arXiv preprint arXiv:2306.01708*, 1, 2023.

641

642 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
 643 sorbing abilities from homologous models as a free lunch. In *Forty-first International Conference*
 644 *on Machine Learning*, 2024.

645

646 Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. *arXiv preprint*
 647 *arXiv:2310.17513*, 2023.

648

649 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 650 In *International conference on machine learning*, pp. 3987–3995. PMLR, 2017.

651

652 Wenyu Zhang, Li Shen, Wanyue Zhang, and Chuan-Sheng Foo. Few-shot adaptation of pre-trained
 653 networks for domain shift. *arXiv preprint arXiv:2205.15234*, 2022.

654

655 Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu Zhou, Hongxia Yang, Kun Kuang, and Fei
 656 Wu. Loraretriever: Input-aware lora retrieval and composition for mixed tasks in the wild. *arXiv*
 657 *preprint arXiv:2402.09997*, 2024.

648
649 Fariba Zohrizadeh, Mohsen Kheirandishfard, and Farhad Kamangar. Class subset selection for
650 partial domain adaptation. In *CVPR Workshops*, 2019.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A USAGE OF LARGE LANGUAGE MODEL
703704
705 We used GPT-5 to assist with revising the writing and setting up the basic experimental pipeline
706 (e.g., loading pretrained models and extracting features). All algorithmic implementations were
707 written by us.708
709 B RELATED WORK
710711
712 **Theory of LoRA.** There are many works theoretically studying the expressiveness, characterizing
713 the loss landscape, and understanding the learning dynamics of LoRA. Zeng & Lee (2023) prove
714 that, under mild assumptions, LoRA can approximate any deep linear, feed-forward, or transformer
715 network. Within the NTK regime, Malladi et al. (2023) characterize the conditions under which
716 one can study LoRA in the NTK regime, while Jang et al. (2024) show that when the LoRA rank is
717 $r_i \gtrsim \sqrt{N}$, where N is the number of samples, the optimization landscape of LoRA has no spurious
718 local minima, and GD can find $\mathcal{O}(\sqrt{N})$ -rank solutions that generalize well. Moreover, Xu et al.
719 (2025) study the learning dynamics of LoRA in the context of matrix factorization, and show that
720 smaller initialization leads to longer training time and lower training error. However, none of these
721 studies theoretically characterize why LoRA reduces *catastrophic forgetting* and support effective
722 *adapter merging*.723
724 **LoRA merging.** A variety of techniques have been proposed to *merge* task-specific LoRA adapters
725 by forming a weighted average of their parameters. For example, *LoRA-Hub* (Huang et al., 2023)
726 learns per-task mixing coefficients first, and then applies a weighted average of LoRA weight
727 matrices B and A separately. *LoRA-Flow* (Wang et al., 2024) introduces token-level gates that
728 dynamically assign merging coefficients to each LoRA adapter before taking weighted averaging.
729 *LoRA-Retriever* (Zhao et al., 2024) first retrieves the most relevant adapters for each input, and
730 then averages the selected LoRA adapters. Beyond weighted averaging, another line of work at-
731 tempts to address redundancy and conflicting updates directly. *TIES* (Yadav et al., 2023) proceeds
732 in three steps: trimming redundant parameters, resolving sign conflicts into an aggregate vector, and
733 averaging only the parameters consistent with the aggregate sign, thereby mitigating degradation
734 from redundant or conflicting updates. *DARE* (Yu et al., 2024) can be used as a preprocessing step
735 for other merging methods, where parameters are randomly dropped according to a specified rate
736 and the remaining ones are rescaled, reducing redundancy and potential interference among merged
737 adapters. However, all these methods remain largely heuristic and lack theoretical guarantees.738
739 **Regularization and task orthogonality help reduce forgetting.** A large body of work in fine-
740 tuning and continual learning shows that *controlling deviation of the fine-tuned model from the pre-
741 trained model* reduces catastrophic forgetting. Concretely, these approaches impose *weight-space*
742 penalties that restrict the magnitude and direction of parameter updates away from the pretrained
743 solution. Weight-anchoring and importance-aware penalties exemplify this idea: Kirkpatrick et al.
744 (2017) penalize movement along directions identified by the Fisher information matrix, while Zenke
745 et al. (2017) accumulate path-wise importance during training. Schwarz et al. (2018) extend this idea
746 to long sequences of tasks. Related approaches estimate parameter sensitivity (Aljundi et al., 2018),
747 apply output-level distillation to preserve prior behavior (Li & Hoiem, 2016), or explicitly regu-
748 larize parameters toward the pretrained anchor (Li et al., 2018). Although these approaches differ
749 in how importance or anchoring is computed, the common mechanism is the same: *weight-space*
750 *regularizers constrain updates during fine-tuning relative to the pretrained model to mitigate catas-
751 troptic forgetting*. Another complementary perspective highlights the role of task relations. When
752 task representations are sufficiently decorrelated, interference between tasks is naturally reduced
753 and forgetting is alleviated. In linear and kernelized models, it has been shown that when tasks are
754 orthogonal or nearly orthogonal, cross-task gradient interference vanishes in expectation, implying
755 negligible forgetting (Doan et al., 2021; Evron et al., 2022). These insights resonate with our anal-
756 ysis of LoRA, where we explicitly study a regularized objective on low-rank adapters and make
757 the simplifying assumption that the fine-tuning data are orthogonal to the pretraining data. This
758 assumption directly connects to prior findings on task orthogonality and provides a tractable setting
759 in which we can isolate and analyze the role of regularization in mitigating forgetting.

756 **C PRELIMINARY LEMMAS**
 757

758 In this section, we provide several preliminary lemmas that will be used in the proof.
 759

760 **Lemma C.1** (Theorem 3 in Riedel (1992)). *Let $A \in \mathbb{R}^{l \times l}$ with $\text{rank}(A) < l$, and $v_i, w_i, i = 1, 2$ be
 761 vectors in \mathbb{R}^l . Let $v_1 \in M(A)$, $w_1 \perp M(A)$, and $v_2 \in M(A^*)$, $w_2 \perp M(A^*)$, where $M(A)$ denotes
 762 the range of A . Assume $w_2 \parallel w_1$ and $w_i \neq 0, i = 1, 2$. Let $\Omega = A + (v_1 + w_1)(v_2 + w_2)^*$, Then*

$$763 \Omega^\dagger = A^\dagger - \frac{w_2 v_2^* A^\dagger}{\|w_2\|^2} - \frac{A^\dagger v_1 w_1^*}{\|w_1\|^2} + (1 + v_2^* A^\dagger v_1) \cdot \frac{w_2 w_1^*}{\|w_1\|^2 \|w_2\|^2}.$$

764

765 We refer the readers to Riedel (1992) for the proof.
 766

767 **Lemma C.2** (Variational form of the nuclear norm). *For any fixed $Z \in \mathbb{R}^{K \times m}$, we have*

$$768 \|Z\|_* = \min_{Z=BA} \frac{1}{2} (\|B\|_F^2 + \|A\|_F^2).$$

769

770 We refer the readers to Recht et al. (2010) for the proof.
 771

772 **Lemma C.3.** *For any fixed $Z \in \mathbb{R}^{K \times m}$, $K \geq m$, we have*

$$773 \|Z\|_* = \max_{V \in \mathbb{R}^{m \times m}, V^\top V = I_m} \text{Tr}(ZV),$$

774

775 if $K < m$, we have

$$776 \|Z\|_* = \max_{U \in \mathbb{R}^{K \times K}, U^\top U = I_K} \text{Tr}(UZ).$$

777

778 Moreover, for any two matrices $A, B \in \mathbb{R}^{K \times m}$, one has

$$779 \sum_{i=1}^m \sigma_i(AB^\top) \leq \sum_{i=1}^m \sigma_i(A)\sigma_i(B).$$

780

782 We refer the readers to Horn & Johnson (2012) for the proof.
 783

784 **Lemma C.4** (Berge's Maximum Theorem). *Let X, Θ be topological spaces, $f : X \times \Theta \rightarrow \mathbb{R}$ be a
 785 continuous function on the product $X \times \Theta$, and $C : \Theta \rightarrow X$ be a compact-valued correspondence
 786 such that $C(\theta) \neq \emptyset$ for all $\theta \in \Theta$. Define the marginal function $f^* : \Theta \rightarrow \mathbb{R}$ and the set of
 787 minimizers $C^* : \Theta \rightarrow X$ by*

$$788 f^*(\theta) = \sup\{f(x, \theta) : x \in C(\theta)\}$$

$$789 C^*(\theta) = \arg \max\{f(x, \theta) : x \in C(\theta)\} = \{x \in C(\theta) : f(x; \theta) = f^*(\theta)\}.$$

790 If C is continuous at θ , then the value function $f^*(\theta)$ is continuous, and the set of maximizers $C^*(\theta)$
 791 is upper-hemicontinuous with nonempty and compact values. Moreover, if $C^*(\theta)$ is single-valued,
 792 and thus is a continuous function rather than a correspondence.

793 We refer the readers to Sundaram (1996) for the proof.
 794

795 **Lemma C.5** (Invariance under Permutation). *Suppose X satisfies $\Pi X \Pi^\top = X$ for any permutation
 796 Π , then $X = aI + c\mathbf{1}\mathbf{1}^\top$ for any constants $a, c \in \mathbb{R}$.*

797 We refer the readers to Lemma 10 in Hong & Ling (2023) for the proof.
 798

799 **Proposition C.1** (Representer Theorem for Hard-margin SVM Problem). *Let $\{(\mathbf{x}_{c,i}, \mathbf{y}_c)\}_{i=1,c=1}^{n_c, K}$
 800 be the dataset with features $\mathbf{x}_{c,i} \in \mathbb{R}^d$ and class labels $\mathbf{y}_c \in \mathbb{R}^K$. Then, let W^{mm} be the solution of
 801 the following hard-margin SVM problem, i.e.,*

$$802 \min_{W \in \mathbb{R}^{K \times d}} \frac{1}{2} \|W\|_F^2 \quad \text{s.t.} \quad \forall i \in [K], \forall j \in [n_i], \forall k \neq i : \mathbf{w}^\top \mathbf{x}_{i,j} \geq \mathbf{w}^\top \mathbf{x}_{i,j} + 1,$$

803

804 where $W = [\mathbf{w}_1, \dots, \mathbf{w}_K]^\top$. Then, there exists a set of scalars $\{\alpha_{i,c,j}\}_{i=1,c=1,j=1}^{K, K, n_i}$ such that each
 805 row of W^{mm} has the following structure

$$806 \mathbf{w}_i^{\text{mm}} = \sum_{c=j=1}^{K, n_c} \alpha_{i,c,j} \mathbf{x}_{c,j}.$$

807

808 We refer the readers to Scholkopf & Smola (2018) for the proof.
 809

810 **D CHARACTERIZATION OF HARD-MARGIN SVM SOLUTION FOR**
 811 **OTHORGONAL DATA**
 812

813 In this section, we characterize the hard-margin SVM solution for \bar{K} -class classification problem
 814 for orthogonal data. We show the solution is closely related to the \bar{K} -ETF simplex.

815
 816 **Problem Formulation.** Consider a \bar{K} -class classification problem with data $\{(x_{i,j}, y_i)\}_{i=1, j=1}^{\bar{K}, n}$
 817 where:

818 • \bar{K} is the number of classes in the dataset
 819 • n is the number of samples per class
 820 • $y_i \in [\bar{K}]$ denotes the class label for samples $x_{i,j}$
 821 • All data vectors $x_{i,j}$ have unit norm: $\|x_{i,j}\| = 1$
 822 • All data vectors are mutually orthogonal: $x_{i,j}^T x_{k,l} = 0$ for $(i, j) \neq (k, l)$

823 Let $W \in \mathbb{R}^{\bar{K} \times d}$ be a weight matrix for a linear classifier, where the predicted class for input x
 824 is $\arg \max_k (W_k x)$. For simplicity, we use the following notation to denote all the data points:
 825 $X = [x_{1,1}, \dots, x_{\bar{K},n}]$.

826 Now, we are ready to present the main result.

827 **Theorem D.1** (Maximum Margin with Frobenius Norm). *Under the above data assumption, the*
 828 *largest normalized margin any linear classifier can achieve is:*

$$829 \quad \gamma^* = \frac{1}{\sqrt{n(\bar{K} - 1)}} \quad (18)$$

830 The optimal weight matrix that achieves this margin has the form: $W = (M_{\bar{K}} \otimes \mathbf{1}_n^\top) X^\top$.

831 *Proof.* Due to Proposition C.1, there exists $A^* \in \mathbb{R}^{\bar{K} \times \bar{K}n}$ such that the optimal solution $W^* =$
 832 $A^* X^\top$, and the corresponding logits is $W^* X = A^*$. Then, we know that A^* is the solution of the
 833 following optimization problem

$$834 \quad A^* \in \arg \max_{A \in \mathbb{R}^{\bar{K} \times \bar{K}}} \frac{\min_{i,j \in [\bar{K}], k \in [n], j \neq i} A_{i,(i-1)n+k} - A_{j,(i-1)n+k}}{\|A\|_F} := \mathcal{L}(A). \quad (19)$$

835 SVM has been well studied in the literature Burges & Crisp (1999), and it has been proved that SVM
 836 has a unique solution. Then, we list several permutation invariance of the problem, and it leads to
 837 certain structures of A^* . We first decompose A^* into block matrices, i.e., $A^* = [A_1^* \ \dots \ A_{\bar{K}}^*]$
 838 where $A_i^* \in \mathbb{R}^{\bar{K} \times n}, i \in [\bar{K}]$.

839 **Invariance under column permutation within block matrices.** We first observe that one can arbitri-
 840 rally permute any columns of A^* within the block, and it still yields the solution to (19). Formally,
 841 for any permutation matrix $\Pi_i \in \mathbb{R}^{n \times n}$, one has $[A_1^* \Pi_1 \ \dots \ A_{\bar{K}}^* \Pi_{\bar{K}}]$ still is the solution to (19).
 842 Since (19) has a unique solution, then $A_i^* \Pi_i = A_i^*$ must hold for arbitrary permutation matrices
 843 Π_i . This leads to the conclusion that all columns of A_i^* must be equal, i.e., $A_i^* = \mathbf{v}_i \mathbf{1}_n^\top$ for some
 844 $\mathbf{v}_i \in \mathbb{R}^{\bar{K}}$.

845 **Invariance under permutation across block matrices.** We randomly pick one column from each
 846 block, and form a matrix, i.e., $V = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{\bar{K}}]$. Let $\Pi' \in \mathbb{R}^{\bar{K} \times \bar{K}}$ be any permutation matrix,
 847 then one also have $\bar{V} = \Pi' V \Pi'^\top$ also yields a solution of (19). Specifically, let $\bar{V} = [\bar{\mathbf{v}}_1, \dots, \bar{\mathbf{v}}_{\bar{K}}]$,
 848 one has $[\bar{\mathbf{v}}_1 \mathbf{1}_n^\top \ \dots \ \bar{\mathbf{v}}_{\bar{K}} \mathbf{1}_n^\top]$ is also a solution of (19). Based on Lemma C.5, one has $V =$
 849 $a \mathbf{I}_{\bar{K}} - b \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top$ where $a, b \in \mathbb{R}$.

850 **Scalar optimization.** Based on the above reasoning, we have concluded that A^* has a simple
 851 expression which depends on two scalars, i.e., a, b . Now, we solve for the optimal a, b . we can first

864 derive the following closed form expression for $\mathcal{L}(A)$,

$$\begin{aligned}
 865 \quad \mathcal{L}(A) &= \frac{a}{\sqrt{n\bar{K}(a-b)^2 + n\bar{K}(\bar{K}-1)b^2}} \\
 866 \quad &= \frac{1}{\sqrt{n\bar{K} + n\bar{K}^2(\frac{b}{a})^2 - 2n\bar{K}\frac{b}{a}}} \\
 867 \quad &= \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{\bar{K} - 1 + (\bar{K}\frac{b}{a} - 1)^2}} \\
 868 \quad &\leq \frac{1}{\sqrt{n(\bar{K} - 1)}},
 \end{aligned}$$

869 where the last inequality achieves equality when $\frac{b}{a} = \frac{1}{\bar{K}}$. \square

870 E PROOF OF THEOREM 3.1

871 In this section, we present the proof of Theorem 3.1. We first present the following functions that
872 will be used in the proof of Theorem 3.1.

$$\begin{aligned}
 873 \quad g_N(x) &:= \sqrt{\frac{\rho(K - \bar{K})}{\bar{K}(K - \bar{K})x^2 + \bar{K}K(1 - x)^2}} \\
 874 \quad g_a(x) &:= \exp\left(\frac{g_N(x)\sqrt{\frac{\rho}{Kn}}}{\sqrt{x^2 + \frac{K}{K-\bar{K}}(1-x)^2}}[x^2 + \sqrt{\frac{K}{K-\bar{K}}}(1-x)^2]\right) \\
 875 \quad g_b(x) &:= \exp\left(\frac{g_N(x)\sqrt{\frac{\rho}{Kn}}}{\sqrt{x^2 + \frac{K}{K-\bar{K}}(1-x)^2}}[-\frac{x^2}{\bar{K}-1} + \sqrt{\frac{K}{K-\bar{K}}}(1-x)^2]\right) \\
 876 \quad g_c(x) &:= \exp\left(\frac{g_N(x)\sqrt{\frac{\rho}{Kn}}}{\sqrt{x^2 + \frac{K}{K-\bar{K}}(1-x)^2}}[-\frac{\bar{K}}{K-\bar{K}} \cdot \sqrt{\frac{K}{K-\bar{K}}}(1-x)^2]\right). \quad (20)
 \end{aligned}$$

877 Moreover, let $x_0 \in [0, 1]$ be the root of the equation

$$\frac{g_b(x)}{g_c(x)} = \frac{1}{\sqrt{\frac{K}{K-\bar{K}}} + 1}.$$

878 **Remark E.1.** Our proof technique follows Fang et al. (2021), and the readers can see the same
879 definition of $g_a(x)$, $g_b(x)$, $g_c(x)$ and x_0 in Fang et al. (2021). Moreover, the authors prove the
880 existence of x_0 under certain conditions.

881 Now, we begin the proof of Theorem 3.1.

882 **Theorem E.1** (Restatement of Theorem 3.1). *Let $(B_\lambda^*, A_\lambda^*)$ be any minimizer of (6). There exists a
883 critical regularization weight $\lambda_{\text{crit}} \in (0, \frac{1}{K\sqrt{n}})$ and scalar functions $a_\lambda, b_\lambda, c_\lambda, \Theta_\lambda$ of λ such that
884 for any global minimizer $(B_\lambda^*, A_\lambda^*)$ of (6) with $\lambda > 0$, we have*

$$885 \quad B_\lambda^* A_\lambda^* = \left(\begin{pmatrix} (a_\lambda + b_\lambda) \mathbf{1}_{\bar{K}} & -b_\lambda \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top \\ -c_\lambda \mathbf{1}_{K-\bar{K}} \mathbf{1}_{\bar{K}}^\top \end{pmatrix} \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top, \quad \|B_\lambda^* A_\lambda^*\|_F = \Theta_\lambda. \quad (21)$$

886 When $\bar{K} \geq 2$, the scalar functions $a_\lambda, b_\lambda, c_\lambda, \Theta_\lambda$ are characterized as follows:

887 (i) *High-penalty regime* ($\lambda \geq \frac{1}{K\sqrt{n}}$): $a_\lambda = b_\lambda = c_\lambda = \Theta_\lambda = 0$, thus $B_\lambda^* A_\lambda^* = \mathbf{0}_{K \times d}$.

888 (ii) *Intermediate regime* ($\lambda_{\text{crit}} < \lambda < \frac{1}{K\sqrt{n}}$): $a_\lambda = \frac{\Theta_\lambda}{\sqrt{Kn}}$, $b_\lambda = \frac{\Theta_\lambda}{\bar{K}\sqrt{Kn}}$, $c_\lambda = 0$, and Θ_λ is the
889 unique root of a nonlinear equation (see (28) in Appendix E), thus the minimizer is

$$890 \quad B_\lambda^* A_\lambda^* = \frac{\Theta_\lambda}{\sqrt{\bar{K}n}} \left(\left(\mathbf{0}_{(K-\bar{K}) \times \bar{K}} \right) \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top. \quad (22)$$

918 (iii) *Low-penalty regime* ($\lambda \leq \lambda_{\text{crit}}$): in general $a_\lambda, b_\lambda, c_\lambda, \Theta_\lambda$ are positive. Nevertheless,

$$919 \quad \lim_{\lambda \rightarrow 0^+} \Theta_\lambda = \infty, \quad \lim_{\lambda \rightarrow 0^+} \frac{B_\lambda^* A_\lambda^*}{\|B_\lambda^* A_\lambda^*\|_F} = \sqrt{\frac{1}{nK}} \left(M_K^{(\bar{K})} \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top, \quad (23)$$

920 where K is the number of pre-training classes and $M_K^{(\bar{K})}$ is the first \bar{K} columns of the K -ETF
921 matrix M_K .

922 *Proof.* We first show that one can simplify the objective in (6) based on the following Lemma.

923 **Lemma E.1.** *Under Assumptions 2.3 and 2.4, the original fine-tuning problem in (6) is equivalent
924 to the following symmetric formulation:*

$$925 \quad \min_{B, \tilde{A}} \mathcal{L}(B, \tilde{A}) := \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)+j}) + \frac{\lambda}{2} (\|B\|_F^2 + \|\tilde{A}\|_F^2), \quad (24)$$

926 where $X_{\text{ft}} = [\bar{x}_{1,1}, \dots, \bar{x}_{1,n}, \dots, \bar{x}_{\bar{K},1}, \dots, \bar{x}_{\bar{K},n}]$, $B \in \mathbb{R}^{K \times r}$, $\tilde{A} = AX_{\text{ft}} \in \mathbb{R}^{r \times \bar{K}n}$.

927 Let $X_{\text{ft},\perp}$ be an orthonormal complement of X_{ft} . Then:

928 1. If (B^*, \tilde{A}^*) is any global minimizer of (6), then

$$929 \quad (B^*, \tilde{A}^*) \quad \text{with} \quad \tilde{A}^* = A^* X_{\text{ft}}$$

930 is a global minimizer of (24).

931 2. Conversely, if (B^*, \tilde{A}^*) is any global minimizer of (24), then $(B^*, \tilde{A}^* X_{\text{ft}}^\top)$ yields a global
932 minimizer of the original problem in (6).

933 We refer the readers to Appendix F.1 for the proof of Lemma E.1. Lemma E.1 indicates that to
934 characterize the global minimizer of the objective in (6), one can instead characterize the global
935 minimizer of the objective in (24).

936 We start with the following equations that characterize the global minimizer of (24)

$$937 \quad \frac{\partial \mathcal{L}(B, \tilde{A})}{\partial B} = \lambda B + \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \frac{\partial}{\partial B \tilde{A}} \left(\mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)+j}) \right) e_{(c-1)+j}^\top \tilde{A}^\top = 0$$

$$938 \quad \frac{\partial \mathcal{L}(B, \tilde{A})}{\partial \tilde{A}} = \lambda \tilde{A} + B^\top \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \frac{\partial}{\partial B \tilde{A}} \left(\mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)+j}) \right) e_{(c-1)+j}^\top = 0.$$

939 Based on the above equation, we can conclude that any minimizer (B, \tilde{A}) of (24) must satisfy

$$940 \quad \lambda B^\top B = \lambda \tilde{A} \tilde{A}^\top \Rightarrow \|B\|_F^2 = \|\tilde{A}\|_F^2. \quad (25)$$

941 Our second step is to converge the problem into a constraint optimization problem. The following
942 lemma characterizes this.

943 **Lemma E.2.** *Let $B \in \mathbb{R}^{K \times r}$, $\tilde{A} \in \mathbb{R}^{r \times \bar{K}}$. For each $\lambda > 0$, there exists a unique non-negative value
944 ρ_λ such that the solution set for the following optimization problems are equivalent*

$$945 \quad \min_{B, \tilde{A}} \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)+j}) + \frac{\lambda}{2} (\|B\|_F^2 + \|\tilde{A}\|_F^2), \quad (\text{Problem one})$$

$$946 \quad \min_{B, \tilde{A}} \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)+j}) \quad \text{s.t.} \|B\|_F^2 \leq \rho_\lambda, \|\tilde{A}\|_F^2 \leq \rho_\lambda. \quad (\text{Problem two})$$

947 Moreover, the map $\lambda \mapsto \rho_\lambda$ enjoys the following properties:

948 (i) **Monotonicity and continuity.** ρ_λ is continuous and non-increasing on $(0, \infty)$.

972 (ii) **Asymptotic behaviour.**
 973 $\lim_{\lambda \rightarrow 0^+} \rho_\lambda = \infty, \quad \lim_{\lambda \rightarrow \infty} \rho_\lambda = 0.$
 974
 975 (iii) **Flat regions.** For any $0 < \lambda_1 < \lambda_2$, $\rho(\lambda_1) = \rho(\lambda_2) \iff \rho(\lambda_1) = \rho(\lambda_2) = 0.$
 976
 977 We refer the readers to Appendix F.2 for the proof. For simplicity, we will use ρ to denote ρ_λ for
 978 convenience.
 979

980 **Characterization to solution of** (Problem two). (Problem two) can be viewed as a special case of
 981 the neural collapse phenomenon in the extreme setting of an imbalanced dataset: for the first \bar{K}
 982 classes we observe n data points per class, while all remaining classes have zero samples. In this
 983 context, we directly invoke the following result from Fang et al. Fang et al. (2021) (see p. 26 in
 984 . Fang et al. (2021)).

985 **Lemma E.3** (Neural collapse under extreme imbalance; (Fang et al., 2021, Page 26)). *For any*
 986 *constants $c_1, c_2, c_3, \rho > 0$, define*

$$\begin{aligned} c'_1 &= \frac{c_1}{c_1 + (\bar{K} - 1)c_2 + (K - \bar{K})c_3} \\ c'_2 &= \frac{c_2}{c_1 + (\bar{K} - 1)c_2 + (K - \bar{K})c_3} \\ c'_3 &= \frac{c_3}{c_1 + (\bar{K} - 1)c_2 + (K - \bar{K})c_3} \\ c_4 &= -c'_1 \log c'_1 - c'_2 (\bar{K} - 1) \log c'_2 - (K - \bar{K})c'_3 \log(c'_3) \\ c_5 &= \frac{\bar{K}c_2}{\bar{K}c_2 + (K - \bar{K})c_3} \\ c_6 &= \frac{(K - \bar{K})c_3}{\bar{K}c_2 + (K - \bar{K})c_3} \\ c_7 &= \frac{\bar{K}c_2 + (K - \bar{K})c_3}{c_1 + (\bar{K} - 1)c_2 + (K - \bar{K})c_3} \end{aligned}$$

1002 For any feasible solution (B, \tilde{A}) of (Problem two), the objective value of (Problem two) can be
 1003 simplified to
 1004

$$1005 \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)n+j}) \stackrel{a}{\geq} -\frac{c_7}{\bar{K}} \sqrt{\frac{\rho}{n}} \sqrt{\sum_{i=1}^{\bar{K}} \|c_5 w_1 + c_6 w_2 - b_i\|^2 + c_4}$$

1009 where $w_1 = \frac{1}{\bar{K}} \sum_{i=1}^{\bar{K}} b_i$, $w_2 = \frac{1}{K - \bar{K}} \sum_{i=\bar{K}+1}^K b_i$, and $\stackrel{a}{\geq}$ becomes equality under certain choices of
 1010 c_1, c_2, c_3 .
 1011

1012 Readers are referred to Fang et al. (2021) for the full proof. Note the following distinction between
 1013 Lemma E.3 and its analogue in Fang et al. (2021): the inequality in Fang et al. (2021) becomes
 1014 tight only when all minority-class features are zero and certain choices of c_1, c_2, c_3 , whereas in
 1015 our lemma, we do not require that all minority-class features are zero. This difference is resolved
 1016 by our change of variables $\tilde{A} = AX_{\text{ft}}$, which effectively confines \tilde{A} to the subspace of observed
 1017 (majority-class) features and thus guarantees equality in Lemma E.3.

1018 Now, we carefully pick the B, \tilde{A} and c_1, c_2, c_3 to achieve the global minimum of the objective in
 1019 (Problem two). The following lemma characterizes this exactly.
 1020

1021 **Lemma E.4** (Lemma 5 in Fang et al. (2021)). *Under the same assumptions in Theorem 3.1, there*
 1022 *exists a*

$$1023 \rho_{\text{crit}} = \sqrt{n\bar{K}(\bar{K}-1)} \log \left(\sqrt{\frac{K}{K-\bar{K}}} + 1 \right)$$

1024 such that the optimal value to (Problem two) is as follows
 1025

1026
1027 • when $\bar{K} \geq 2$ and $\rho_\lambda < \rho_{\text{crit}}$, we choose $c_1 = \exp\left(\frac{\rho_\lambda}{K\sqrt{n}}\right)$, $c_2 = \exp\left(\frac{-\rho_\lambda}{\sqrt{n}K(K-1)}\right)$, $c_3 = 1$,
1028 and (Problem two) attain its minimum

1029
1030
$$\lambda\rho_\lambda - \frac{\rho_\lambda}{\sqrt{n}\bar{K}} + \log\left(K - \bar{K} + (\bar{K} - 1)\exp\left(-\frac{\rho_\lambda}{\sqrt{n}\bar{K}(\bar{K}-1)}\right) + \exp\left(\frac{\rho_\lambda}{\sqrt{n}\bar{K}}\right)\right),$$

1031

1032 where B^*, \tilde{A}^* takes the following form

1033
1034
$$[b_1^*, b_2^*, \dots, b_{\bar{K}}^*] = \sqrt{n} [\bar{a}_1^*, \bar{a}_2^*, \dots, \bar{a}_{\bar{K}}^*] = \sqrt{\frac{\rho}{\bar{K}}} M_n,$$

1035

1036
1037
$$a_i^* = \bar{a}_{\lceil i/n \rceil}^*, \quad i = 1, \dots, \bar{K}n,$$

1038
$$b_j^* = 0, \quad j > \bar{K}.$$

1039 Moreover, $B^* \tilde{A}^*$ takes the following form

1040
1041
$$B^* A^* = \frac{\rho_\lambda}{\sqrt{\bar{K}n(\bar{K}-1)}} \begin{pmatrix} M_{\bar{K}} \\ \mathbf{0}_{(K-\bar{K}) \times \bar{K}} \end{pmatrix} \otimes \mathbf{1}_n^\top. \quad (26)$$

1042

1043 • when $\bar{K} \geq 2$ and $\rho \geq \rho_{\text{crit}}$, one choose

1044
1045
$$c_1 = g_a(x_0), \quad c_2 = g_b(x_0), \quad c_3 = g_c(x_0),$$

1046 where $g_a(x), g_b(x), g_c(x)$ and x_0 are defined in (20). Then, (Problem two) attain its mini-
1047 mum

1048
1049
$$\lambda\rho_\lambda + \log\left(\frac{g_a(x_0) + (\bar{K}-1)g_b(x_0) + (K-\bar{K})g_c(x_0)}{g_a(x_0)}\right),$$

1050

1051 where

1052
1053
$$b_i^* = \begin{cases} g_N(x_0) P_A \left[\frac{\bar{K}x_0}{\sqrt{K(\bar{K}-1)}} \bar{y}_i + \left(\frac{1-x_0}{\sqrt{\bar{K}}} - \frac{x_0}{\sqrt{K(\bar{K}-1)}} \right) \mathbf{1}_{\bar{K}} \right], & i \leq \bar{K}, \\ -\frac{g_N(x_0) \sqrt{\bar{K}}(1-x_0)}{K-\bar{K}} P \mathbf{1}_{\bar{K}}, & i > \bar{K}. \end{cases}$$

1054
1055
1056
1057
1058
$$\bar{a}_i^* = \begin{cases} g_N(x_0) P \left[x_0 \sqrt{\frac{\bar{K}}{\bar{K}-1}} \bar{y}_i + \left(\frac{(1-x_0)g_N(x_0)\sqrt{\frac{K}{K-\bar{K}}}}{\sqrt{\bar{K}}} - \frac{g_N(x_0)x_0}{\sqrt{K(\bar{K}-1)}} \right) \mathbf{1}_{\bar{K}} \right], & c-1 \leq \frac{i}{n} < c, \\ 0, & i > n\bar{K}. \end{cases}$$

1059
1060

1061 where $\bar{y}_c \in \mathbb{R}^{\bar{K}}$ and is a one-hot vector with i -th entry equals one, and $P \in \mathbb{R}^{r \times \bar{K}}$ is a
1062 partial orthogonal matrix such that $P^\top P = \mathbf{I}_{\bar{K}}$. Moreover, $B^* \tilde{A}^*$ takes the following form

1063
1064
$$B^* \tilde{A}^* = \begin{pmatrix} (\log g_a(x_0) + \log g_b(x_0)) \mathbf{1}_{\bar{K}} - \log g_b(x_0) \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top \\ \log g_c(x_0) \mathbf{1}_{K-\bar{K}} \mathbf{1}_{\bar{K}}^\top \end{pmatrix} \otimes \mathbf{1}_n^\top.$$

1065

1066 Lemma E.4 is Lemma 5 in Fang et al. (2021). We refer the readers to Fang et al. (2021) for the proof.
1067 Lemma E.4 exactly characterize the optimal solution and value of the objective in (Problem two).

1068
1069 **Computation of the product of LoRA adapters.** Based on Lemma E.4, we can characterize the
1070 solution to the LoRA objective in (6), then it suffices to compute the product of the minimizer to
1071 prove Theorem 3.1.

1072 In the **Intermediate regime**, one can first compute

1073
1074
$$B^* [\bar{a}_1^*, \bar{a}_2^*, \dots, \bar{a}_{\bar{K}}^*] = \frac{\rho_\lambda}{\bar{K}\sqrt{n}} M_n^\top M_n$$

1075
1076
$$= \frac{\rho_\lambda}{\bar{K}\sqrt{n}} \frac{\bar{K}}{\bar{K}-1} (\mathbf{I}_{\bar{K}} - \frac{1}{\bar{K}} \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top)$$

1077
1078
$$= \frac{\rho_\lambda}{\sqrt{K}n(\bar{K}-1)} M_{\bar{K}},$$

1079

1080 and it leads to the product of final solution
 1081

$$1082 B^* \tilde{A}^* = \frac{\rho_\lambda}{\sqrt{\bar{K}n(\bar{K}-1)}} \begin{pmatrix} M_{\bar{K}} \\ \mathbf{0}_{(K-\bar{K}) \times \bar{K}} \end{pmatrix} \otimes \mathbf{1}_n^\top. \quad (27)$$

1085 In the **Low penalty regime**, in Fang et al. (2021), the authors further show that
 1086

$$1087 (b_i^*)^\top \tilde{a}_j^* = \begin{cases} \log g_a(x_0) & i = j \leq \bar{K} \\ 1088 \log g_b(x_0) & i \neq j, i \leq \bar{K} \\ 1089 \log g_c(x_0) & \bar{K} < i \leq K \end{cases}$$

1090 Thus, one can show that
 1091

$$1092 B^* \tilde{A}^* = \begin{pmatrix} (\log g_a(x_0) + \log g_b(x_0)) \mathbf{I}_{\bar{K}} - \log g_b(x_0) \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top \\ 1093 \log g_c(x_0) \mathbf{1}_{K-\bar{K}} \mathbf{1}_{\bar{K}}^\top \end{pmatrix} \otimes \mathbf{1}_n^\top.$$

1095 **Characterization of λ_{crit} .** In Lemma E.4, when $m \geq 2$, we see that the solution takes different
 1096 form based on whether $\rho_\lambda < \rho_{\text{crit}}$ or $\rho_\lambda \geq \rho_{\text{crit}}$. Moreover, based on Lemma E.2, there must exist a
 1097 unique λ_{crit} such that $\rho_{\text{crit}} = \rho(\lambda_{\text{crit}})$. Now, we characterize the range of λ_{crit} here.
 1098

1099 Due to Lemma E.4, we know when $\lambda > \lambda_{\text{crit}}$, the solution takes the form
 1100

$$1101 B^* \tilde{A}^* = \begin{pmatrix} \frac{\rho}{\sqrt{n\bar{K}}} \mathbf{I}_{\bar{K}} \\ \mathbf{0}_{(K-\bar{K}) \times \bar{K}} \end{pmatrix} \otimes \mathbf{1}_n^\top,$$

1103 and the corresponding minimum objective is
 1104

$$1105 \psi(\rho) := \lambda\rho - \frac{\rho}{\sqrt{n\bar{K}}} + \log \left(K - \bar{K} + (\bar{K} - 1) \exp\left(-\frac{\rho}{\sqrt{n\bar{K}}(\bar{K}-1)}\right) + \exp\left(\frac{\rho}{\sqrt{n\bar{K}}}\right) \right),$$

1107 Now, we take the derivative of $\psi(\rho)$
 1108

$$1109 \frac{d\psi(\rho)}{d\rho} = 0$$

$$1110 \iff (\lambda - \frac{1}{\sqrt{n\bar{K}}}) + \frac{1}{\sqrt{n\bar{K}}} \cdot \frac{\exp(\frac{\rho}{\sqrt{n\bar{K}}}) - \exp(-\frac{\rho}{\sqrt{n\bar{K}}(\bar{K}-1)})}{K - \bar{K} + (\bar{K} - 1) \exp(-\frac{\rho}{\sqrt{n\bar{K}}(\bar{K}-1)}) + \exp(\frac{\rho}{\sqrt{n\bar{K}}})} = 0$$

$$1114 \iff (\lambda - \frac{1}{\sqrt{n\bar{K}}}) + \frac{1}{\sqrt{n\bar{K}}} \cdot \frac{\exp(\frac{\rho}{\sqrt{n\bar{K}}}) - 1}{(K - \bar{K}) \exp(\frac{\rho}{\sqrt{n\bar{K}}(\bar{K}-1)}) + (\bar{K} - 1) + \exp(\frac{\rho}{\sqrt{n\bar{K}}(\bar{K}-1)})} = 0 \quad (28)$$

1117 Based on (28), one know if $\lambda_{\text{crit}} > \frac{1}{\sqrt{n\bar{K}}}$, then $\frac{d\psi(\rho)}{d\rho} > 0$, and the minimum is achieved when
 1118 $\rho_\lambda = 0$. On the other hand, we know that when $\lambda < \lambda_{\text{crit}}$, one has $\rho_\lambda \geq \rho_{\text{crit}}$. Thus, ρ_{crit} is a
 1119 dis-continuous point of ρ_λ . However, based on Lemma E.2, we know ρ_λ is a continuous function.
 1120 Thus, one must have
 1121

$$1122 \lambda_{\text{crit}} < \frac{1}{\sqrt{n\bar{K}}}. \quad 1123$$

1124 **Characterization of ρ_λ .** In this part, we characterize the ρ_λ when $\lambda > \lambda_{\text{crit}}$. Based on Lemma E.4,
 1125 we know $\psi(\rho)$ is the optimal value of (Problem one) and (Problem two). Thus, ρ_λ must attain the
 1126 minimum of $\psi(\rho)$. Based on (28), one can first see that if $\lambda \geq \frac{1}{\sqrt{n\bar{K}}}$, $\frac{d\psi(\rho)}{d\rho} > 0$, and the minimum is
 1127 attained when $\rho_\lambda = 0$. When $\lambda_{\text{crit}} < \lambda < \frac{1}{\sqrt{n\bar{K}}}$, one can solve let $\frac{d\psi(\rho)}{d\rho} = 0$ in (28) to seek for ρ_λ .
 1128

1130 **Asymptotic behaviour of ρ_λ .** On one hand, as $\lambda \rightarrow 0+$, one obviously has $\lim_{\lambda \rightarrow 0+} \|B^* \tilde{A}^*\|_F =$
 1131 ∞ due to the fact that $B^* \tilde{A}^*$ is the solution of (Problem three). Then, we characterize its asymptotic
 1132 direction, which is equivalent to study the limit of $\frac{\log g_a(x_0)}{\log g_b(x_0)}$ and $\frac{\log g_a(x_0)}{\log g_c(x_0)}$ as $\lambda \rightarrow 0+$. We will use
 1133 $x_{0,\lambda}$ denote the choice of x_0 for fix regularization effect λ .
 1134

1134 First, the equation to derive for x_0 is as follows
 1135

$$1136 \frac{g_b(x)}{g_c(x)} = \frac{1}{1 + \sqrt{\frac{K}{K-\bar{K}}}} \\ 1137 \iff \frac{\rho_\lambda}{\bar{K}\sqrt{n}} \cdot \frac{-\frac{x^2}{K-1} + (\frac{K}{K-\bar{K}})^{3/2}(1-x)^2}{x^2 + \frac{K}{K-\bar{K}}(1-x)^2} = -\log(1 + \sqrt{\frac{K}{K-\bar{K}}}) \\ 1140 \\ 1141$$

1142 Since $\lim_{\lambda \rightarrow 0+} \rho_\lambda = \infty$, one must have $x_{0,\lambda}$ approaches the solution of the following quadratic
 1143 equation

$$1144 \frac{x_{0,\lambda}^2}{\bar{K}-1} = \left(\frac{K}{K-\bar{K}}\right)^{3/2}(1-x_{0,\lambda})^2. \\ 1145 \\ 1146$$

1147 Moreover, one can see that the expression for $\frac{\log g_a(x_{0,\lambda})}{\log g_b(x_{0,\lambda})}$ and $\frac{\log g_a(x_{0,\lambda})}{\log g_c(x_{0,\lambda})}$ takes the following form
 1148

$$1149 \frac{\log g_a(x_{0,\lambda})}{\log g_b(x_{0,\lambda})} = \frac{x_{0,\lambda}^2 + \sqrt{\frac{K}{K-\bar{K}}}(1-x_{0,\lambda})^2}{-\frac{x_{0,\lambda}^2}{K-1} + \sqrt{\frac{K}{K-\bar{K}}}(1-x_{0,\lambda})^2} \\ 1150 \\ 1151 \frac{\log g_a(x_{0,\lambda})}{\log g_c(x_{0,\lambda})} = \frac{x_{0,\lambda}^2 + \sqrt{\frac{K}{K-\bar{K}}}(1-x_{0,\lambda})^2}{-\frac{K}{K-\bar{K}} \cdot \sqrt{\frac{K}{K-\bar{K}}}(1-x_{0,\lambda})^2}. \\ 1152 \\ 1153 \\ 1154 \\ 1155 \\ 1156$$

1157 Thus, combine the above two equations, we can compute that

$$1158 \lim_{\lambda \rightarrow 0+} \frac{\log g_a(x_{0,\lambda})}{\log g_b(x_{0,\lambda})} = \lim_{\lambda \rightarrow 0+} \frac{\log g_a(x_{0,\lambda})}{\log g_c(x_{0,\lambda})} = -(K-1). \\ 1159 \\ 1160$$

1161 **Connection between ρ_λ and Θ_λ .** In previous analysis, we have shown that
 1162

$$1163 \rho_\lambda = \|B_\lambda^* A_\lambda^*\|_*, \quad \Theta_\lambda = \|B_\lambda^* A_\lambda^*\|_F \quad (29) \\ 1164$$

1165 Thus, what is left is to show that under different regularization parameter, what is the relation between
 1166 ρ_λ and Θ_λ .

1167 First, it is obvious in the high-penalty regime, $\rho_\lambda = \Theta_\lambda = 0$.

1168 Second, in the *intermediate regime*, the product of the optimal LoRA adapters are
 1169

$$1170 B^* A^* = \frac{\rho_\lambda}{\sqrt{\bar{K}n(\bar{K}-1)}} \begin{pmatrix} M_{\bar{K}} \\ \mathbf{0}_{(K-\bar{K}) \times \bar{K}} \end{pmatrix} \otimes \mathbf{1}_n^\top. \\ 1171 \\ 1172$$

1173 After some simple calculations, one can show that

$$1174 \rho_\lambda = \|B_\lambda^* A_\lambda^*\|_*, \quad \Theta_\lambda := \|B_\lambda^* A_\lambda^*\|_F = \frac{\rho_\lambda}{\sqrt{\bar{K}-1}} \\ 1175 \\ 1176$$

1177 Thus, one can alternatively represent the product of the optimal LoRA adapters in the *intermediate*
 1178 *regime* as

$$1179 B^* A^* = \frac{\Theta_\lambda}{\sqrt{n(\bar{K}-1)}} \begin{pmatrix} M_{\bar{K}} \\ \mathbf{0}_{(K-\bar{K}) \times \bar{K}} \end{pmatrix} \otimes \mathbf{1}_n^\top. \\ 1180 \\ 1181$$

1182 Third, in the *low-penalty regime*, one can first see that g_a, g_b, g_c go to infinity as the $\lambda \rightarrow 0_+$,
 1183 thus, $\lim_{\lambda \rightarrow 0_+} \|B^* \tilde{A}^*\|_F = \infty$. Then, the directions of the limiting behaviour is characterized right
 1184 above.

1185 **The solution of (6).** Finally, one can use Lemma E.1 to characterize the optimal solution of (6)
 1186 based on the above results.

1187

□

1188 F PROOF OF SEVERAL LEMMAS
11891190 F.1 PROOF OF LEMMA E.1
11911192 *Proof.* We first observe that based on Proposition C.1, Assumption 2.3 and Assumption 2.4, one has
1193

1194
$$W_{\text{pre}} X_{\text{ft}} = 0. \quad (30)$$

1195

1196 Moreover, under Assumption 2.3, we have $X_{\text{ft}}^\top X_{\text{ft}} = \mathbf{I}_{\bar{K}n}$. We apply change of variable as follows:
1197 $\tilde{A} = AX_{\text{ft}} \in \mathbb{R}^{r \times \bar{K}n}$.1198 Under this transformation, the objective in (6) can be rewritten as follows
1199

1200
$$\begin{aligned} & \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, (W_{\text{pre}} + BA)x_{c,j}) + \frac{\lambda}{2} (\|B\|_F^2 + \|A\|_F^2) \\ &= \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, BAX_{\text{ft}}e_{(c-1)n+j}) + \frac{\lambda}{2} (\|B\|_F^2 + \|A\|_F^2) \\ &= \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)n+j}) + \frac{\lambda}{2} (\|B\|_F^2 + \|AX_{\text{ft}}\|_F^2 + \|AX_{\text{ft},\perp}\|_F^2) \\ &= \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, B\tilde{A}e_{(c-1)n+j}) + \frac{\lambda}{2} (\|B\|_F^2 + \|\tilde{A}\|_F^2 + \|AX_{\text{ft},\perp}\|_F^2). \end{aligned}$$

1211

1212 Notice that the component $AX_{\text{ft},\perp}$ contributes only to the *regularization* term and does not affect
1213 the cross-entropy loss. Hence at any global minimizer (B^*, A^*) of (6) we must have
1214

1215
$$AX_{\text{ft},\perp} = 0.$$

1216

1217 Moreover, if (B^*, A^*) is a global minimizer of the original problem, then
1218

1219
$$(B^*, A^* X_{\text{ft}})$$

1220

1221 is a global minimizer of the objective in (24). Conversely, let (B^*, \tilde{A}^*) be any global minimizer of
1222 the following equation to obtain (B^*, A^*) which is a global minimizer of
1223 the original objective in (6).
1224

1225
$$A^* X_{\text{ft}} = \tilde{A}^*, \quad A^* X_{\text{ft},\perp} = 0. \quad (31)$$

1226

□

1227 F.2 PROOF OF LEMMA E.2
12281229 *Proof.* To show that there exists a unique value ρ_λ such that the (Problem one) and (Problem two)
1230 enjoys the same set of solutions, we first introduce two additional optimization problems.
1231

1232
$$\min_Z \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, Ze_{(c-1)n+j}) + \lambda \|Z\|_*, \quad (\text{Problem three})$$

1233

1234
$$\min_Z \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, Ze_{(c-1)n+j}) \quad \text{s.t.} \|Z\|_* \leq \rho_\lambda. \quad (\text{Problem four})$$

1235

1236 where $Z \in \mathbb{R}^{K \times \bar{K}n}$. Let $S_i(\lambda), i = 1, 2, 3, 4$ be the solution sets of the above four optimization
1237 problems for the same fixed λ . We will show that
12381239

- $S_1(\lambda) = S_2(\lambda), S_3(\lambda) = S_4(\lambda)$.
- $S_3(\lambda), S_4(\lambda)$ contains only one element for any fixed $\lambda > 0$.

1240

1242 • $\forall B^*, \tilde{A}^* \in S_1(\lambda)$, one has $B^* \tilde{A}^* \in S_3(\lambda)$.
 1243
 1244 • Let $S_3(\lambda) = S_4(\lambda) = \{Z_\lambda^*\}$, then there exists $B^* \tilde{A}^* = Z_\lambda^*$ such that $(B^*, \tilde{A}^*) \in S_1(\lambda)$.
 1245

1246 Based on Lemma C.2, one can see that (Problem three) is a convex version of (Problem one) in the
 1247 sense that $\forall (B^*, \tilde{A}^*) \in S_1(\lambda)$, $B^* \tilde{A}^* \in S_3(\lambda)$. Moreover, $\forall Z^* \in S_3(\lambda)$, let the SVD of Z^* be
 1248 $Z^* = U\Sigma V^\top$. Then, $B^* = U\Sigma^{1/2}, \tilde{A}^* = \Sigma^{1/2}V^\top$ is also a solution for (Problem one). Generally
 1249 speaking, $\forall (B^*, \tilde{A}^*) \in S_1(\lambda)$ must satisfy

$$1250 \quad 2\|B^* \tilde{A}^*\|_* = \|B^*\|_F^2 + \|\tilde{A}^*\|_F^2. \\ 1251$$

1252 Now we show (Problem three) has a unique solution, and it leads to $S_3(\lambda) = S_4(\lambda)$ with certain
 1253 choices of ρ_λ . Our analysis is based on the following lemma.
 1254

1255 **Lemma F.1** (Cross entropy loss with nuclear norm has a unique minimizer). *For any $\lambda > 0$, define*

$$1256 \quad \phi(Z; \lambda) = \frac{1}{Kn} \sum_{c=1}^K \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, Z e_{(c-1)n+j}) + \lambda \|Z\|_*, \\ 1257 \quad 1258$$

1259 where y_c is a one-hot vector with c -th index equals one. Then $\phi(Z; \lambda)$ has a unique solution.
 1260

1261 We refer the readers to later sections in Appendix F.3 for the proof.
 1262

1263 Based on Lemma F.1, (Problem three) has a unique solution, denoted by Z_λ^* . Then, one can choose
 1264 $\rho_\lambda = \|Z_\lambda^*\|_*$, and based on strong duality, (Problem three) and (Problem four) admits the same set
 1265 of solutions, i.e., $S_3(\lambda) = S_4(\lambda)$.

1266 Next, we show that $\forall (B^*, \tilde{A}^*) \in S_2(\lambda)$, it must satisfy
 1267

$$1268 \quad B^* \tilde{A}^* \in S_4(\lambda), \quad 2\|B^* \tilde{A}^*\|_* = \|B^*\|_F^2 + \|\tilde{A}^*\|_F^2.$$

1269 This is because first, the minimum objective value of (Problem two) and (Problem four) must be
 1270 equal. Given $Z_\lambda^* \in S_4(\lambda)$, one can do balanced factorization, and obtain the corresponding B^*, \tilde{A}^* .
 1271 This implies the minimum objective value of (Problem two) must be larger or equal than the one of
 1272 (Problem four). On the other hand, $\forall (B^*, \tilde{A}^*) \in S_2(\lambda)$, one has $\|B^* \tilde{A}^*\|_* \leq \frac{\|B^*\|_F^2 + \|\tilde{A}^*\|_F^2}{2} \leq \rho_\lambda$
 1273 which implies $B^* \tilde{A}^*$ is a feasible solution of (Problem four). Thus, this further implies the minimum
 1274 objective value of (Problem four) must be larger or equal than the one of (Problem two). Combine
 1275 these together, we conclude that the minimum objective value of (Problem two) and (Problem four)
 1276 must be equal, and $\forall (B^*, \tilde{A}^*) \in S_2(\lambda)$, $B^* \tilde{A}^* \in S_4(\lambda)$ must hold.
 1277

1278 Finally, we show $S_1(\lambda) = S_2(\lambda)$.
 1279

1280 This is because, on one hand, $\forall B_1^*, \tilde{A}_1^* \in S_1(\lambda)$, from previous reasoning, they must satisfy
 1281

$$1282 \quad B_1^* \tilde{A}_1^* \in S_3(\lambda) = S_4(\lambda), \quad \|B_1^*\|_F^2 = \|\tilde{A}_1^*\|_F^2 = \rho_\lambda,$$

1283 and this indicates $B_1^*, \tilde{A}_1^* \in S_2(\lambda)$.
 1284

1285 On the other hand, $\forall B_2^*, \tilde{A}_2^* \in S_2(\lambda)$, they must satisfy
 1286

$$1287 \quad B_2^* \tilde{A}_2^* \in S_3(\lambda) = S_4(\lambda), \quad \|B_2^*\|_F^2 = \|\tilde{A}_2^*\|_F^2 = \rho_\lambda,$$

1288 and this indicates $B_2^*, \tilde{A}_2^* \in S_2(\lambda)$. Thus, we finish the proof for $S_1(\lambda) = S_2(\lambda)$.
 1289

1290 The last step is to show ρ_λ is a continuous and non-increasing function of λ that satisfies
 1291

$$1292 \quad \lim_{\rho \rightarrow 0^+} \rho_\lambda = \infty, \quad \lim_{\rho \rightarrow \infty} \rho_\lambda = 0.$$

1293 **Continuity of ρ_λ .** In this part, we will use Lemma C.4 to prove the solution to (Problem three) is
 1294 continuous, which implies that ρ_λ is a continuous function w.r.t. λ . Notice Lemma C.4 is presented
 1295 for maximization problem, one can replace the objective f to $-f$ to extend it to minimization problem.
 1296 Moreover, it is obvious that the objective function is continuous, convex, and the set of minimizers
 1297 is single-valued for any fixed $\lambda > 0$. Thus, in order to apply Lemma C.4 to show the continuity

of ρ_λ , we only need to check $C(\lambda)$, which is the range of Z , is a compact-valued correspondence. At first glance, this seems wrong since Z can take any values in $\mathbb{R}^{K \times \bar{K}n}$ in (Problem three). However, we will show that one can constrain the domain of Z which leads to the same minimizer. Notice that when $Z = \mathbf{0}$, the objective in (Problem three) takes the value $\log K$. Thus, we can choose $C(\lambda) = \left\{ Z \mid \|Z\|_* \leq \frac{\log K}{\lambda} \right\}$, which is a compact set. Therefore, for any fix λ , one can apply Lemma C.4 to show Z_λ^* is continuous w.r.t. λ , which implies $\rho_\lambda := \|Z_\lambda^*\|_*$ is also continuous w.r.t. λ .

ρ_λ is a non-increasing function. For any $0 < \lambda_1 < \lambda_2$, let $Z_{\lambda_1}, Z_{\lambda_2}$ be the solution for (Problem three) with the corresponding regularization penalty. Then, our first observation is

$$\begin{aligned} \phi(Z_{\lambda_2}; \lambda_2) &\leq \phi(Z_{\lambda_1}; \lambda_2) \\ \iff \phi(Z_{\lambda_2}; \lambda_1) + (\lambda_2 - \lambda_1)\|Z_{\lambda_2}\|_* &\leq \phi(Z_{\lambda_1}; \lambda_1) + (\lambda_2 - \lambda_1)\|Z_{\lambda_1}\|_* \\ \iff \phi(Z_{\lambda_2}; \lambda_1) - \phi(Z_{\lambda_1}; \lambda_1) &\leq (\lambda_2 - \lambda_1)(\|Z_{\lambda_1}\|_* - \|Z_{\lambda_2}\|_*) \\ \iff \phi(Z_{\lambda_2}; \lambda_1) - \phi(Z_{\lambda_1}; \lambda_1) &\leq (\lambda_2 - \lambda_1)(\rho(\lambda_1) - \rho(\lambda_2)). \end{aligned}$$

Notice $Z_{\lambda_1} \in \arg \min \phi(Z; \lambda_1)$, thus, we have $\phi(Z_{\lambda_2}; \lambda_1) - \phi(Z_{\lambda_1}; \lambda_1) \geq 0$, and it leads to $\rho(\lambda_1) \geq \rho(\lambda_2)$. Therefore, ρ_λ is non-increasing in λ . Moreover, $\rho(\lambda_1) = \rho(\lambda_2)$ is achieved iff $\phi(Z; \lambda_1)$ and $\phi(Z; \lambda_2)$ admits a common solution and enjoys the same minimum objective value, i.e., $Z_{\lambda_1} = Z_{\lambda_2}$. When this happen, we study the optimality condition

$$\frac{\partial}{\partial Z} \phi(Z_{\lambda_1}; 0) + \lambda_1 \partial \|Z_{\lambda_1}\|_* = \frac{\partial}{\partial Z} \phi(Z_{\lambda_2}; 0) + \lambda_2 \partial \|Z_{\lambda_2}\|_*.$$

Therefore, one has

$$\partial \|Z_{\lambda_1}\|_* = \frac{\lambda_2}{\lambda_1} \partial \|Z_{\lambda_1}\|_*. \quad (32)$$

If $Z_{\lambda_1} = 0$ or $Z_{\lambda_2} = 0$, due to the condition that $\rho(\lambda_1) = \rho(\lambda_2)$, one must have $Z_{\lambda_1} = Z_{\lambda_2} = 0$. If they are both non-zero, due to the definition of subdifferential of nuclear norm, one has

$$\left\| \partial \|Z_{\lambda_1}\|_* \right\|_2 = \left\| \partial \|Z_{\lambda_2}\|_* \right\|_2 = 1,$$

which is contradictory to (32). Thus, when $\rho(\lambda_1) = \rho(\lambda_2)$ holds, one must have $Z_{\lambda_1} = Z_{\lambda_2} = 0$.

Asymptotic behaviour of ρ_λ . In this part, we aim to show

$$\lim_{\lambda \rightarrow 0} \rho_\lambda = \infty, \lim_{\lambda \rightarrow \infty} \rho_\lambda = 0.$$

We first use proof by contradiction to show that $\lim_{\lambda \rightarrow \infty} \rho_\lambda = 0$. Assume there exists $M > 0$ such that $\forall \lambda > 0$, one has $\rho_\lambda \geq M$. Then, we take a series λ_i such that $\lim_{i \rightarrow \infty} \lambda_i = \infty$, and let $S = \{\rho(\lambda_i)\}_{i=1}^\infty$. Based on the assumption, we know all the elements in S has a lower bound M . Moreover, we know $\forall \lambda_i, \rho(\lambda_i) \leq \frac{\log K}{\lambda_i}$. This is because $\phi(0; \lambda) = \log K$ which is independent of the choices of λ_i . Thus, there exists M' such that $\forall \rho_\lambda \in S$, we have $\rho_\lambda \leq M'$. Based on Bolzano–Weierstrass theorem, there exists a subsequence λ_{i_k} such that $\lim_{k \rightarrow \infty} \rho(\lambda_{i_k}) = M^*$ where $M \leq M^* \leq M'$. However, in this case, $\lim_{k \rightarrow \infty} \phi(Z_{\lambda_{i_k}}^*; \lambda_{i_k}) \geq \lim_{k \rightarrow \infty} \rho(\lambda_{i_k}) \lambda_{i_k} \rho(\lambda_{i_k}) = \infty$. This is in contradictory to the assumption that $Z_{\lambda_{i_k}}^*$ minimizes $\phi(Z; \lambda_{i_k})$ and $\phi(0; \lambda) = \log K$. Thus, one must have $\lim_{\lambda \rightarrow \infty} \rho_\lambda = 0$.

Next, we first use proof by contradiction to show that $\lim_{\lambda \rightarrow 0} \rho_\lambda = \infty$. Assume there exists $N > 0$ such that $\forall \lambda > 0$, one has $\rho_\lambda \leq N$. Let $L^* = \min_Z \phi(Z; 0)$. Our first observation is that the minimum L^* is achieved when the norm of Z diverges. Moreover, for every $R > 0$, there exists a $\epsilon_R > 0$ such that

$$\begin{aligned} L_R^* &\geq \epsilon_R \\ L_R^* &:= \min_Z \phi(Z; 0) \quad \text{s.t.} \|Z\|_* \leq R. \end{aligned}$$

Then, we pick a series $\lambda_k = \frac{1}{k^2}$, $R_k = k$, and choose

$$\tilde{Z}_k = k \begin{pmatrix} \mathbf{1}_n^\top & \mathbf{0}_n^\top & \mathbf{0}_n^\top & \cdots & \mathbf{0}_n^\top \\ \mathbf{0}_n^\top & \mathbf{1}_n^\top & \mathbf{0}_n^\top & \cdots & \mathbf{0}_n^\top \\ \mathbf{0}_n^\top & \mathbf{0}_n^\top & \cdots & \mathbf{0}_n^\top & \mathbf{1}_n^\top \\ & & & \mathbf{0}_{(K-mn) \times mn} & \end{pmatrix}$$

1350 Based on the optimality of $Z_{\lambda_k}^*$, one must have
 1351

$$1352 \quad \phi(Z_{\lambda_k}^*; \lambda_k) \leq \phi(\tilde{Z}_k; \lambda_k) = \log(1 + (\bar{K} - 1) \exp(-k)) + \frac{\bar{K}\sqrt{n}}{k}.$$

1354 On the other hand,

$$1356 \quad \phi(Z_{\lambda_k}^*; \lambda_k) \geq \phi(Z_{\lambda_k}^*; 0) \geq \epsilon_N > 0.$$

1357 Combine these two inequalities together, one has

$$1359 \quad \epsilon_N \leq \log(1 + (\bar{K} - 1) \exp(-k)) + \frac{\bar{K}\sqrt{n}}{k}.$$

1360 However, one can choose k sufficiently large that the above inequality breaks. Thus, there cannot
 1361 exist a $N > 0$ such that $\rho_\lambda \leq N$ holds $\forall \lambda > 0$. Therefore, one must have $\lim_{\lambda \rightarrow 0} \rho_\lambda = \infty$. \square
 1362

1363 F.3 PROOF OF LEMMA F.1

1364 *Proof.* Our starting point is the following lemma which is developed in Hong & Ling (2023).

1365 **Lemma F.2** (Cross entropy loss is strongly convex in restricted direction). *Define*

$$1369 \quad \phi(Z) = \frac{1}{\bar{K}n} \sum_{c=1}^{\bar{K}} \sum_{j=1}^n \mathcal{L}_{\text{CE}}(y_c, Z e_{(c-1)n+j}),$$

1370 where y_c is a one-hot vector with c -th index equals one. Then $\phi(Z)$ is strongly convex in the direction
 1371 $\Delta_Z \in \mathbb{R}^{\bar{K}n \times \bar{K}n}$ that belongs to $\{\Delta_Z : \mathbf{1}_K^\top \Delta_Z = 0\}$.

1372 We refer the readers to Lemma 5.1 in Hong & Ling (2023) for the proof. Based on Lemma F.2, for
 1373 any Z^* that minimizes $\phi(Z; \lambda) := \phi(Z) + \lambda \|Z\|_*$. We first apply a decomposition of Z^* as follows

$$1377 \quad Z^* = \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top Z^* + (I_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top) Z^*.$$

1378 For simplicity, let $P = I_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top$ be the projection matrix onto the space orthogonal to $\mathbf{1}_K$.
 1379 Based on the property of cross entropy loss, $\frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top Z^*$ does not affect the value of the cross entropy
 1380 term, i.e., $\phi(Z^*) = \phi(PZ^*)$. Moreover, let the compact SVD of Z^* be $Z^* = U_Z \Sigma_Z V_Z^\top$. We first
 1381 consider the case when $K \geq \bar{K}n$. Based on Lemma C.3, one has

$$\begin{aligned} 1384 \quad \|PZ^*\|_* &= \max_{V \in \mathbb{R}^{\bar{K}n \times \bar{K}n}, V^\top V = I_{\bar{K}n}} \text{Tr}(PZ^* V) \\ 1385 &= \max_{V \in \mathbb{R}^{\bar{K}n \times \bar{K}n}, V^\top V = I_{\bar{K}n}} \text{Tr}(PU_Z \Sigma_Z V_Z^\top V) \\ 1386 &\leq \max_{V \in \mathbb{R}^{\bar{K}n \times \bar{K}n}, V^\top V = I_{\bar{K}n}} \sum_{i=1}^{\text{rank}(Z^*)} \sigma_i(PU_Z) \sigma_i(\Sigma_Z V_Z^\top V) \\ 1387 &= \sum_{i=1}^{\text{rank}(Z^*)} \sigma_i(PU_Z) \sigma_i(Z^*) \quad V = [V_Z, V_{Z,\perp}] \\ 1388 &= \sum_{i=1}^{\text{rank}(Z^*)} \sigma_i(Z^*) = \|Z^*\|_*, \end{aligned}$$

1389 where the last inequality holds because P is a contraction map, and equality is achieved if and only
 1390 if $\sigma_i(PU_Z) = \sigma_i(U_Z) = 1, \forall i \leq \text{rank}(Z^*)$. On the other hand, P is an orthogonal projection, and
 1391 $\|PU_Z\|_F = \|U_Z\|_F$ if and only if U_Z lies in the range of P , and it leads to

$$1400 \quad Z^* = PZ^*, \quad \mathbf{1}_K^\top Z^* = 0.$$

1401 For the case when $K \leq \bar{K}n$, the analysis is the same. Based on Lemma F.2, constrained on the
 1402 space $\mathbf{1}_K^\top Z = 0$, the problem is strongly convex, and there exists a unique solution. Moreover, we
 1403 also show that the optimal solution must lies in $\mathbf{1}_K^\top Z = 0$. Thus, the solution is unique. \square

1404 **G PROOF OF THEOREM 3.2**
 1405

1406 In this section, we present the full version of Theorem 3.2.
 1407

1408 For convenience, we will first define the following notations. Let $W_{\text{LoRA}}^\lambda = W_{\text{pre}} + B_\lambda^* A_\lambda^*$, and
 1409 define the following shorthand for margins as: $\gamma_{\text{pre}} = \gamma(W_{\text{pre}}; \mathcal{D}_{\text{pre}})$, $\gamma_{\text{ft},\lambda} = \gamma(B_\lambda^* A_\lambda^*; \mathcal{D}_{\text{ft}})$, and
 1410 $\gamma_\lambda = \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}} \cup \mathcal{D}_{\text{ft}})$. Additionally, given an \bar{K} -class max-margin classifier $W_{\text{ft}}^* \in \mathbb{R}^{\bar{K} \times d}$
 1411 on the fine-tuning data, let $\gamma_{\text{ft}}^* = \gamma(([W_{\text{ft}}^*; \mathbf{0}_{(K-\bar{K}) \times d}]); \mathcal{D}_{\text{ft}})$.
 1412

1413 With these definitions in place, we now present our main theorem.
 1414

1415 **Theorem G.1.** *Adopt the setup of Theorem 3.1 and let $\Theta_\lambda := \|B_\lambda^* A_\lambda^*\|_F$, the normalized margins of
 1416 W_{LoRA}^λ on the union of pre-training and fine-tuning data can be characterized uniformly as follows:*

$$\begin{aligned} \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}}) &= \gamma_{\text{pre}} \frac{\rho_{\text{pre}}}{\sqrt{\Theta_\lambda^2 + \rho_{\text{pre}}^2}}, & \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{ft}}) &= \gamma_{\text{ft},\lambda} \frac{\Theta_\lambda}{\sqrt{\Theta_\lambda^2 + \rho_{\text{pre}}^2}}, \\ \gamma_\lambda &= \min \left\{ \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}}), \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{ft}}) \right\} \end{aligned} \quad (33)$$

1422 Moreover, $\Theta_\lambda, \gamma_{\text{ft},\lambda}$ takes different values in:
 1423

1424 (i) **High-penalty regime** $\lambda \geq \frac{1}{K\sqrt{n}}$: $\Theta_\lambda = \gamma_{\text{ft},\lambda} = 0$.
 1425

1426 (ii) **Intermediate regime** $\lambda_{\text{crit}} < \lambda < \frac{1}{K\sqrt{n}}$: $\Theta_\lambda = \frac{\rho_\lambda}{\sqrt{K-1}}$ and $\gamma_{\text{ft},\lambda} = \gamma_{\text{ft}}^*$. Moreover, Θ_λ is a
 1427 strictly decreasing function w.r.t. λ .
 1428

1429 (iii) **Low-penalty regime** $\gamma_{\text{ft},\lambda} < \gamma_{\text{ft}}^*$ and
 1430

$$\Theta_\lambda := \sqrt{n\bar{K}a_\lambda^2 + n\bar{K}(\bar{K}-1)b_\lambda^2 + n\bar{K}(K-\bar{K})c_\lambda^2}, \quad \gamma_{\text{ft},\lambda} = \frac{a_\lambda + c_\lambda}{\Theta_\lambda}.$$

1431 **Optimal trade-off choice of λ .** Assume $\rho_{\text{pre}} \leq \frac{\Theta_{\lambda_{\text{crit}}} \gamma_{\text{ft}}^*}{\gamma_{\text{pre}}}$, then there exists a unique λ^* such that
 1432

$$\max_{\lambda_{\text{crit}} < \lambda < \frac{1}{K\sqrt{n}}} \gamma_\lambda = \frac{\gamma_{\text{ft}}^* \gamma_{\text{pre}}}{\sqrt{(\gamma_{\text{ft}}^*)^2 + \gamma_{\text{pre}}^2}}, \quad \text{attained at } \lambda = \lambda^*. \quad (34)$$

1433
 1434 *Proof.* Our key observation is that when one computes margin of W_{LoRA}^λ on the pre-training and
 1435 fine-tuning dataset, only W_{pre} or $B_\lambda^* A_\lambda^*$ will be activated. This is because due to Theorem 3.1, we
 1436 have shown that the product of the optimal LoRA adapters lies in the span of fine-tuning data, and
 1437 due to Proposition C.1 and Assumption, one also can show that W_{pre} lies in the span of pre-training
 1438 data. Thus, under Assumption 2.3, we can conclude $B_\lambda^* A_\lambda^* x = 0$ if $x \in \mathcal{D}_{\text{pre}}$, and $W_{\text{pre}} x = 0$ if
 1439 $x \in \mathcal{D}_{\text{ft}}$. Before beginning prove the margin takes the structures as is shown in Theorem 3.2, we first
 1440 introduce the following notations. Let $W_{\text{pre}} = [w_1, \dots, w_K]^\top$, $B_\lambda^* A_\lambda^* = [\delta w_{\lambda,1}, \dots, \delta w_{\lambda,K}]^\top$.
 1441

1442 Now, when we compute the margin of W_{LoRA}^λ on pre-training data, one has
 1443

$$\begin{aligned} \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}}) &= \frac{\min_{(x_{i,c}, y_c) \in \mathcal{D}_{\text{pre}}} (w_c + \delta_{\lambda,c})^\top x - \max_{i \neq y} (w_i + \delta_{\lambda,i})^\top x}{\|W_{\text{LoRA}}^\lambda\|_F} \\ &= \frac{\min_{(x_{i,c}, y_c) \in \mathcal{D}_{\text{pre}}} w_c^\top x - \max_{i \neq y} w_i^\top x}{\|W_{\text{pre}}\|_F} \cdot \frac{\|W_{\text{pre}}\|_F}{\|W_{\text{LoRA}}^\lambda\|_F} \\ &= \gamma_{\text{pre}} \cdot \frac{\rho_{\text{pre}}}{\sqrt{\rho_{\text{pre}}^2 + \|B_\lambda^* A_\lambda^*\|_F^2}}. \end{aligned}$$

1458 Then, for the fine-tuning data, one has
 1459

$$\begin{aligned}
 1460 \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{ft}}) &= \frac{\min_{(x_{i,c}, y_c) \in \mathcal{D}_{\text{ft}}} (w_c + \delta_{\lambda,c})^\top x - \max_{i \neq y} (w_i + \delta_{\lambda,i})^\top x}{\|W_{\text{LoRA}}^\lambda\|_F} \\
 1461 &= \frac{\min_{(x_{i,c}, y_c) \in \mathcal{D}_{\text{ft}}} \delta_{\lambda,c}^\top x - \max_{i \neq y} \delta_{\lambda,i}^\top x}{\|B_\lambda^* A_\lambda^*\|_F} \cdot \frac{\|B_\lambda^* A_\lambda^*\|_F}{\sqrt{\rho_{\text{pre}}^2 + \|B_\lambda^* A_\lambda^*\|_F^2}}, \\
 1462 &= \gamma_{\text{ft}, \lambda} \cdot \frac{\|B_\lambda^* A_\lambda^*\|_F}{\sqrt{\rho_{\text{pre}}^2 + \|B_\lambda^* A_\lambda^*\|_F^2}}
 \end{aligned}$$

1463 It suffices to compute $\|B_\lambda^* A_\lambda^*\|_F$ for different regimes of the regularization level.
 1464

1465 **High-penalty regime.** In this regime, $B_\lambda^* A_\lambda^* = 0$, so one has $\|B_\lambda^* A_\lambda^*\|_F = 0$.
 1466

1467 **Intermediate regime.** In the intermediate regime, one has
 1468

$$B_\lambda^* A_\lambda^* = \frac{\rho_\lambda}{\sqrt{K}n(\bar{K}-1)} \left(\left(\mathbf{0}_{(K-\bar{K}) \times \bar{K}} \right) \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top, \quad (35)$$

1469 and one can compute its norm as follows
 1470

$$\begin{aligned}
 1471 \|\bar{B}_\lambda^* \bar{A}_\lambda^*\|_F^2 &= \frac{\rho_\lambda^2}{mn(m-1)} \cdot \frac{\bar{K}}{\bar{K}-1} \left\| \left((\mathbf{I}_{\bar{K}} - \frac{1}{\bar{K}} \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top) \right) \otimes \mathbf{1}_n^\top X_{\text{ft}}^\top \right\|_F^2 \\
 1472 &= \frac{\rho_\lambda^2}{\bar{K}n(\bar{K}-1)} \cdot \frac{\bar{K}}{\bar{K}-1} \cdot \bar{K} \left(n \cdot \left(\frac{\bar{K}-1}{\bar{K}} \right)^2 + \frac{(\bar{K}-1)n}{\bar{K}^2} \right) \\
 1473 &= \frac{\rho_\lambda^2}{\bar{K}-1}.
 \end{aligned}$$

1474 Thus, $\|B_\lambda^* A_\lambda^*\|_F = \|\bar{B}_\lambda^* \bar{A}_\lambda^*\|_F = \frac{\rho_\lambda}{\sqrt{\bar{K}-1}}$.
 1475

1476 **Low-penalty regime.** In this regime, $B_\lambda^* A_\lambda^*$ takes the following form
 1477

$$B_\lambda^* A_\lambda^* = \left(\begin{pmatrix} (a_\lambda + b_\lambda) \mathbf{I}_{\bar{K}} & -b_\lambda \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top \\ -c_\lambda \mathbf{1}_{K-\bar{K}} \mathbf{1}_{\bar{K}}^\top \end{pmatrix} \otimes \mathbf{1}_n^\top \right) X_{\text{ft}}^\top, \quad (36)$$

1478 and Frobenius norm is
 1479

$$\begin{aligned}
 1480 \|\bar{B}_\lambda^* \bar{A}_\lambda^*\|_F^2 &= \sqrt{n} \left\| (a_\lambda + b_\lambda) \mathbf{I}_{\bar{K}} - b_\lambda \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top \right\|_F^2 \\
 1481 &= \sqrt{n} \cdot \sqrt{\bar{K}a_\lambda^2 + \bar{K}(\bar{K}-1)b_\lambda^2},
 \end{aligned}$$

1482 and
 1483

$$\begin{aligned}
 1484 \|\bar{B}_\lambda^* \bar{A}_\lambda^*\|_F &= \sqrt{n} \left\| \begin{pmatrix} (a_\lambda + b_\lambda) \mathbf{I}_{\bar{K}} & -b_\lambda \mathbf{1}_{\bar{K}} \mathbf{1}_{\bar{K}}^\top \\ -c_\lambda \mathbf{1}_{K-\bar{K}} \mathbf{1}_{\bar{K}}^\top \end{pmatrix} \right\|_F \\
 1485 &= \sqrt{n} \cdot \sqrt{\bar{K}a_\lambda^2 + \bar{K}(\bar{K}-1)b_\lambda^2 + (K-\bar{K})\bar{K}c_\lambda^2}.
 \end{aligned}$$

1486 Finally, we study the optimal choices of λ . First, it is obvious that $\gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}})$ is a decreasing
 1487 function w.r.t. $\bar{\Theta}_\lambda$ and $\gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{ft}})$ is an increasing function w.r.t. Θ_λ . In the *intermediate regime*
 1488 where $\Theta_\lambda = \bar{\Theta}_\lambda$, the optimal ρ_λ is achieved when
 1489

$$\gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{pre}}) = \gamma(W_{\text{LoRA}}^\lambda; \mathcal{D}_{\text{ft}}).$$

1490 In Appendix E, we have shown that ρ_λ is a continuous decreasing function w.r.t. λ . Thus, $\rho_{\text{pre}} \leq$
 1491 $\frac{\rho(\lambda_{\text{crit}}) \gamma_{\text{ft}}}{\sqrt{\bar{K}-1} \gamma_{\text{pre}}}$ implies $\rho^* := \frac{\sqrt{\bar{K}-1} \rho_{\text{pre}} \gamma_{\text{pre}}}{\gamma_{\text{ft}}} \leq \rho(\lambda_{\text{crit}})$ which further implies the corresponding
 1492 regularization level λ^* lies in the *intermediate regime*. Moreover, one can compute that in this case,
 1493

$$\gamma(W_{\text{LoRA}}^{\lambda^*}; \mathcal{D}_{\text{pre}}) = \gamma(W_{\text{LoRA}}^{\lambda^*}; \mathcal{D}_{\text{ft}}) = \frac{\gamma_{\text{pre}} \gamma_{\text{ft}}^*}{\gamma_{\text{pre}}^2 + (\gamma_{\text{ft}}^*)^2}.$$

Furthermore, we have shown that ρ^* must be the solution of (28) in Appendix E. We can simply plug in the expression of ρ^* to get the corresponding optimal λ^* .

□

H PROOF OF THEOREM 3.3

Proof. Following the same argument as in Appendix G, one can show that the margin of linear classifier W_{LoRA} for each task is

$$\gamma(W_{\text{LoRA}}(\boldsymbol{\alpha}); \mathcal{D}_{\text{pre}}) = \gamma_{\text{pre}} \frac{\rho_{\text{pre}}}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T \alpha_j^2 \Theta_{\lambda,j}^2}}, \quad (37)$$

$$\gamma(W_{\text{LoRA}}(\boldsymbol{\alpha}); \mathcal{D}_i) = \gamma_i \frac{\alpha_i \Theta_{\lambda,j}}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T \alpha_j^2 \Theta_{\lambda,j}}}, \quad i = 1, \dots, T. \quad (38)$$

Then, our goal is to solve the following optimization problem

$$\max_{\alpha_1, \dots, \alpha_T} \min \left(\gamma_{\text{pre}} \frac{\rho_{\text{pre}}}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T \alpha_j^2 \Theta_{\lambda,j}^2}}, \min_{i \leq T} \gamma_i \frac{\alpha_i \Theta_{\lambda,j}}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T \alpha_j^2 \Theta_{\lambda,j}}} \right)$$

For convenience, we introduce the following notation $x_i = \alpha_i \Theta_{\lambda,i}$, $i \in [T]$, then the above optimization problem can be rewritten as

$$\max_{x_1, \dots, x_T} \min \left(\frac{\rho_{\text{pre}} \gamma_{\text{pre}}}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T x_j^2}}, \min_{i \in [T]} \frac{\gamma_i x_i}{\sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T x_j^2}} \right). \quad (39)$$

Let $S := \sqrt{\rho_{\text{pre}}^2 + \sum_{j=1}^T x_j^2}$ and $t := \min\{\frac{\gamma_i x_i}{S}, \frac{\gamma_{\text{pre}} \rho_{\text{pre}}}{S}\}$, then Problem 39 is equivalent to

$$\begin{aligned} & \max_{t, S, x_1, \dots, x_T} t \\ & \text{s.t.} \quad \gamma_i x_i \geq tS, \quad i \in [T] \\ & \quad \gamma_{\text{pre}} \rho_{\text{pre}} \geq tS, \\ & \quad \sum_{i=1}^T x_i^2 + \rho_{\text{pre}}^2 = S^2, \quad S > 0. \end{aligned} \quad (40)$$

We first claim at optimum, the inequalities w.r.t. x_i will be tight, i.e., $x_i = \frac{tS}{\gamma_i}, \forall i \in [T]$. In this case, one can see that

$$S^2 = \rho_{\text{pre}}^2 + \sum_{j=1}^T x_j^2 \geq S^2 t^2 \cdot \left(\sum_{i=1}^T \frac{1}{\gamma_i^2} + \frac{1}{\gamma_{\text{pre}}^2} \right).$$

Thus, the optimal value of the objective is $t \leq \frac{1}{\sqrt{\frac{1}{\gamma_{\text{pre}}^2} + \sum_{j=1}^T \frac{1}{\gamma_j^2}}}$, and the equality is achieved

under the condition $\gamma_i x_i = \gamma_{\text{pre}} \rho_{\text{pre}}$, which is equivalent to $\alpha_i = \frac{\rho_{\text{pre}} \gamma_{\text{pre}}}{\gamma_i \Theta_{\lambda,i}}$, $i = 1, \dots, T$.

Finally, we show why the optimum of Problem 40 is achieved when all inequalities w.r.t. x_i become equality.

Suppose one inequality is slack. Assume for the optimal solution (t^*, S^*, \mathbf{x}^*) where $\mathbf{x}^* = (x_1^*, \dots, x_T^*)$, there exists $j \in [T]$ such that $r_j x_j^* > t^* S^*$.

Shrink x_j^* while fix t^* . As we decrease x_j^* slightly, i.e., $x_j^* \rightarrow x_j^* - \epsilon, \epsilon > 0$. Then, the new S will be

$$\tilde{S} = \sqrt{\rho_{\text{pre}}^2 + \sum_{i \neq j} (x_i^*)^2 + ((x_j^*) - \epsilon)^2} < S^*$$

When ϵ is sufficiently small, all the inequality w.r.t. other index will be slack since $\tilde{S} < S$, and $\gamma_i (x_j^* - \epsilon) > t^* \tilde{S}$. Therefore, one can safely increase t^* a little until one of the inequality becomes tight, and it leads a larger objective value. Therefore, none of the inequality can be slack at global optimum. □

1566 **I EXPERIMENT**
 1567

1568 In this section, we present the detailed setup of the experiments in §4.
 1569

1570 **Definition of superclasses of CIFAR-100.** CIFAR-100 groups its 100 fine categories into **20 coarse**
 1571 **superclasses** as follows

1573 Table 1: CIFAR-100 coarse superclasses and their five fine labels.
 1574

1575 Superclass	Fine classes (5 per superclass)
1576 aquatic mammals	beaver, dolphin, otter, seal, whale
1577 fish	aquarium fish, flatfish, ray, shark, trout
1578 flowers	orchid, poppy, rose, sunflower, tulip
1579 food containers	bottle, bowl, can, cup, plate
1580 fruit & vegetables	apple, mushroom, orange, pear, sweet pepper
1581 household electrical devices	clock, computer keyboard, lamp, telephone, television
1582 household furniture	bed, chair, couch, table, wardrobe
1583 insects	bee, beetle, butterfly, caterpillar, cockroach
1584 large carnivores	bear, leopard, lion, tiger, wolf
1585 large man-made outdoor things	bridge, castle, house, road, skyscraper
1586 large natural outdoor scenes	cloud, forest, mountain, plain, sea
1587 large omnivores & herbivores	camel, cattle, chimpanzee, elephant, kangaroo
1588 medium-sized mammals	fox, porcupine, possum, raccoon, skunk
1589 non-insect invertebrates	crab, lobster, snail, spider, worm
1590 people	baby, boy, girl, man, woman
1591 reptiles	crocodile, dinosaur, lizard, snake, turtle
1592 small mammals	hamster, mouse, rabbit, shrew, squirrel
1593 trees	maple, oak, palm, pine, willow
1594 vehicles 1	bicycle, bus, motorcycle, pickup truck, train
1595 vehicles 2	lawn-mower, rocket, streetcar, tank, tractor

1598 **Construction of pre-training and fine-tuning tasks.** For every superclass S , let its ordered fine
 1599 labels be $[c_1^S, \dots, c_5^S]$. We build three disjoint labelled sets
 1600

$$1601 \mathcal{D}_{\text{pre}} = \bigcup_S \{c_1^S, c_2^S, c_3^S\}, \quad \mathcal{D}_1 = \bigcup_S \{c_4^S\}, \quad \mathcal{D}_2 = \bigcup_S \{c_5^S\}.$$

1603 Hence \mathcal{D}_{pre} contains 60 fine classes (three per super-class) while each fine-tuning task \mathcal{D}_i contains
 1604 exactly one *new* class per superclass, preserving maximal diversity yet zero overlap with \mathcal{D}_{pre} .
 1605

1606 **Frozen feature extractors.** We evaluate four widely used backbones, noting their different pre-
 1607 training dataset:
 1608

- 1609 • **ResNet-50** (He et al., 2016) (torchvision, *supervised ImageNet-1K*).
- 1610 • **ViT-Base/16** (Dosovitskiy et al., 2021) (timm: first self-supervised on *ImageNet-21K*, then fine-
 1611 tuned on ImageNet-1K).
- 1612 • **ConvNeXt-Tiny** (Liu et al., 2022) (timm: identical 21K → 1K pipeline as ViT).
- 1613 • **CLIP ViT-B/32** (Radford et al., 2021) (OpenAI’s contrastive pre-training on *web-scale image–text*
 1614 pairs; no ImageNet supervision).

1616 All models are kept frozen; we extract the CLS token (ViT/CLIP) or the global-average-pooled
 1617 penultimate tensor (CNNs) at 224×224 resolution for every CIFAR-100 image.
 1618

1619 **Hardware.** All runs were executed on a single NVIDIA RTX A5000 (24 GB). End-to-end required
 less than 1 hour of wall-clock time.

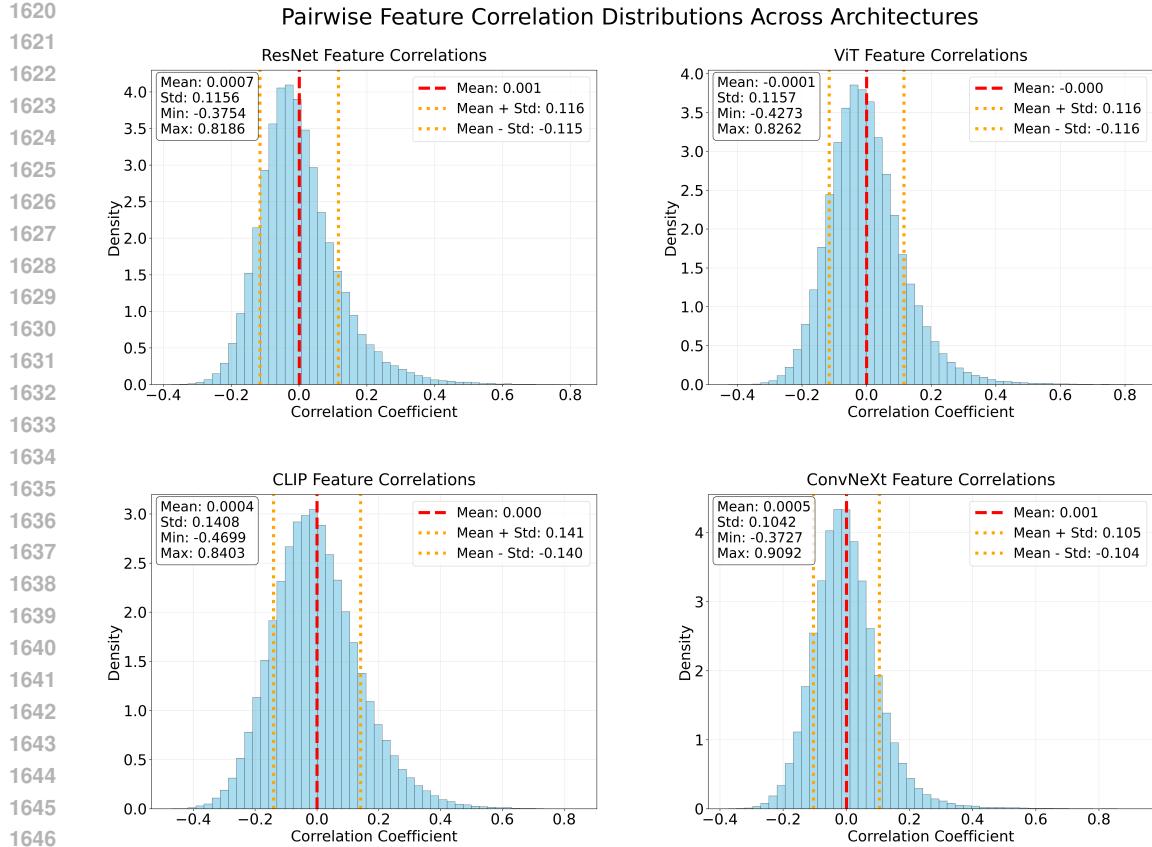


Figure 3: Distributions of pairwise feature correlation across four pre-trained models. The red dashed line represent the mean value of correlations, and the dashed lines represent mean plus and minus one std.

Pre-training stage. A linear classifier $W_{\text{pre}} \in \mathbb{R}^{20 \times d}$ (d = embedding dimension) is trained from scratch on \mathcal{D}_{pre} for 2000 epochs with Adam ($\eta = 0.1$). The 20 rows correspond to the super-classes, not the 60 fine labels; this matches our theoretical model where each task’s labels share a common output.

I.1 VALIDATION OF ORTHOGONAL DATA ASSUMPTION

In this section, we conduct a comprehensive feature correlation analysis on CIFAR-100. This analysis quantifies both intra-class and inter-class correlations in the feature space to numerically validate Assumption 2.3.

Let $\mathcal{F}_\theta(x)$ denote the feature extraction function of a neural network with parameters θ , where $x \in \mathbb{R}^{3 \times 32 \times 32}$ represents an input image from CIFAR-100. For each architecture (ResNet-50, ViT-Base/16, CLIP ViT-B/32, and ConvNeXt-Tiny), we extract features from the penultimate layer, obtaining feature vectors $f_i = \mathcal{F}_\theta(x_i) \in \mathbb{R}^d$ for each training sample x_i .

We organize the extracted features by class, creating sets $\mathcal{S}_c = \{f_i : y_i = c\}$ for each class $c \in \{0, 1, \dots, 99\}$, where y_i is the ground truth label of sample x_i .

Correlation Computation. For any two feature vectors $f_i, f_j \in \mathbb{R}^d$, we compute the Pearson correlation coefficient:

$$\rho(f_i, f_j) = \frac{\text{Cov}(f_i, f_j)}{\sigma(f_i)\sigma(f_j)} = \frac{\sum_{k=1}^d (f_i^{(k)} - \bar{f}_i)(f_j^{(k)} - \bar{f}_j)}{\sqrt{\sum_{k=1}^d (f_i^{(k)} - \bar{f}_i)^2} \sqrt{\sum_{k=1}^d (f_j^{(k)} - \bar{f}_j)^2}} \quad (41)$$

	CLIP	RESNET	VIT	CONVNEXT
Intra-class mean (std)	0.2725(0.0797)	0.2303(0.0701)	0.2535(0.0708)	0.2739(0.0820)
Inter-class mean (std)	-0.0022(0.0679)	-0.0024(0.0630)	-0.0022(0.0573)	-0.0026(0.0447)

Table 2: Mean and standard deviation of intra-class and inter-class feature correlations. Values closer to zero indicate greater orthogonality between features.

where $f_i^{(k)}$ denotes the k -th dimension of feature vector f_i , and $\bar{f}_i = \frac{1}{d} \sum_{k=1}^d f_i^{(k)}$ is the mean of f_i .

Intra-class Correlation. For each class c , we compute the average intra-class correlation:

$$\rho_{\text{intra}}(c) = \frac{1}{|\mathcal{S}_c|(|\mathcal{S}_c| - 1)/2} \sum_{f_i, f_j \in \mathcal{S}_c, i < j} \rho(f_i, f_j) \quad (42)$$

This measures how similar features are within the same class, indicating the consistency of learned representations for semantically similar samples.

Inter-class Correlation. For any two distinct classes $c_1 \neq c_2$, we compute the average inter-class correlation:

$$\rho_{\text{inter}}(c_1, c_2) = \frac{1}{|\mathcal{S}_{c_1}| \cdot |\mathcal{S}_{c_2}|} \sum_{f_i \in \mathcal{S}_{c_1}} \sum_{f_j \in \mathcal{S}_{c_2}} \rho(f_i, f_j) \quad (43)$$

This quantifies the similarity between features from different classes, with lower values indicating better class separation.

Correlation Matrix Construction. We construct a 100×100 correlation matrix \mathbf{R} where:

$$R_{ij} = \begin{cases} \rho_{\text{intra}}(i) & \text{if } i = j \\ \rho_{\text{inter}}(i, j) & \text{if } i \neq j \end{cases} \quad (44)$$

Implementation Details. To ensure computational efficiency while maintaining statistical reliability, we subsample feature pairs for correlation computation. Specifically, for each class we randomly sample 100 points (100,000 in total). We first report the distribution of pairwise correlations across all sampled points in Figure 3. To further distinguish intra-class and inter-class relationships, we visualize the corresponding correlations as a heatmap in Figure 4. For intra-class correlations, we randomly sample up to 100 pairs per class when the number of possible pairs exceeds this threshold; for inter-class correlations, we sample up to 100 pairs for each class pair. This subsampling strategy yields robust correlation estimates while keeping the computation tractable.

Figure 3 highlights two key observations: (1) most correlations are concentrated around zero, supporting Assumption 2.3 of orthogonal features; and (2) the mean correlation \pm one standard deviation remains below 0.14, indicating that although the features are not perfectly orthogonal, their pairwise angles are sufficiently close to orthogonal for our analysis.

Figure 4 illustrates three key observations: (1) higher diagonal values indicate consistent within-class representations; (2) lower off-diagonal values suggest strong class separation; and (3) the empirical mean correlations for intra-class inter-class, indicate that features across classes are nearly orthogonal while within-class features exhibit only moderate correlation (See Table 2). These findings provide empirical support for Assumption 2.3, which posits orthogonality across both inter-class and intra-class features. Extending the analysis to settings with more complex cluster structure or stronger intra-class correlations remains an important direction for future work.

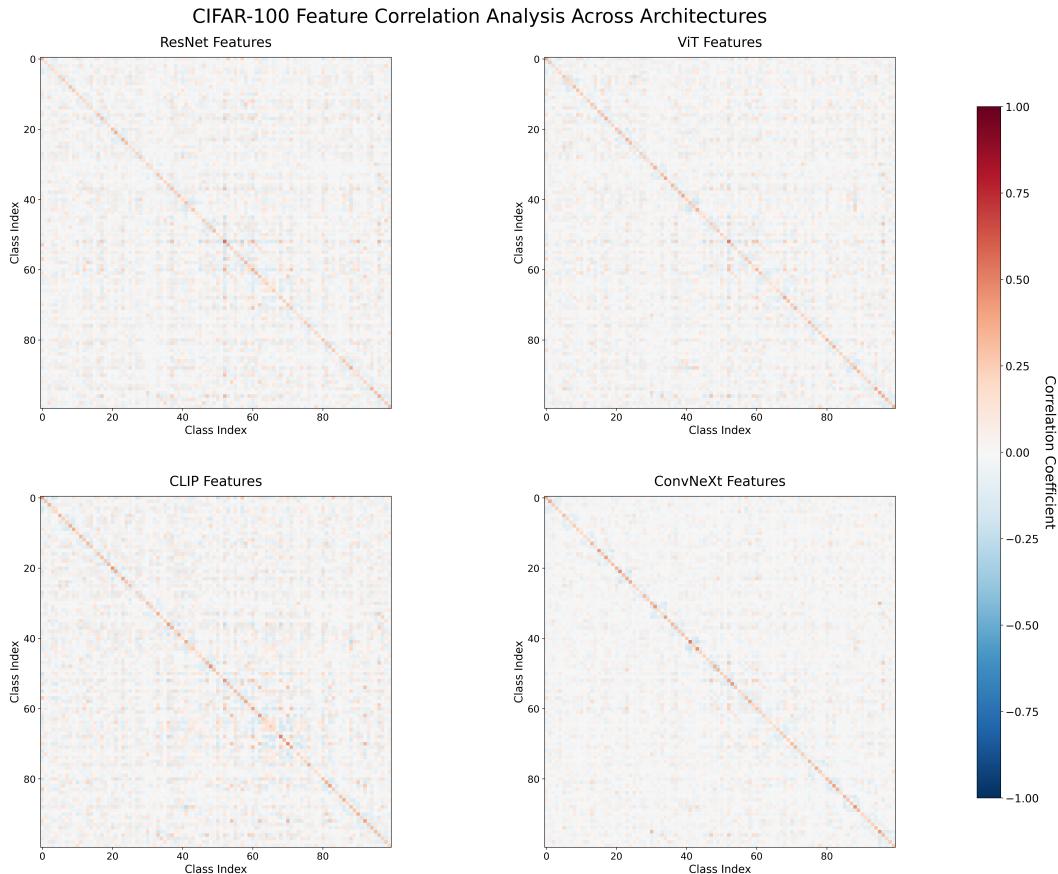


Figure 4: Feature correlation analysis across different pretrained models.

1.2 DETAILS FOR EXPERIMENTS IN §4.1

For each fine-tuning task, we freeze the pre-trained weights W_{pre} and attach a rank- r LoRA block, where r is set to the number of classes in the fine-tuning task. This satisfies Assumption 2.2. We evaluate performance across three fine-tuning tasks with varying class counts: $\bar{K} = 5, 10, 20$. Each task is constructed by selecting the top \bar{K} superclasses from \mathcal{D}_2 .

We fine-tune the model on each task using SGD for 3000 steps with a learning rate of 0.5, sweeping over regularization values $\lambda \in [10^{-5}, 10^{-1}]$ with 50 logarithmically spaced regularization strengths. For each \bar{K} and each frozen feature extractor, we record both the empirically optimal regularization parameter and the theoretically predicted one from Theorem 3.2. The detailed figures are given as follows:

1.3 DETAILS FOR EXPERIMENTS IN §4.2

For the experiments in §4.2, we fine-tune $\mathcal{D}_1, \mathcal{D}_2$ using different LoRA adapters $(B_i, A_i), i = 1, 2$ with LoRA rank 20. We fine-tune the LoRA adapters using Adam ($\eta = 0.1$) with regularization parameter $\lambda = 5 \times 10^{-7}$. Let $(B_i^*, A_i^*), i = 1, 2$ be the optimal LoRA adapters we achieve at the end of fine-tuning, we merge them together as follows

$$W_{\text{LoRA}}^\lambda(\alpha_1, \alpha_2) = W_{\text{pre}} + \alpha_1 B_1^* A_1^* + \alpha_2 B_2^* A_2^*$$

To seek for the optimal mixing coefficients (α_1, α_2) , we run grid search over a 50×50 lattice on $(0, 1)^2$, and compare it with the optimal theoretical mixing coefficients presented in Theorem 3.3. We test different number of classes in the fine-tuning datasets, i.e., $\bar{K} = 5, 10, 20$, and reports their results here.

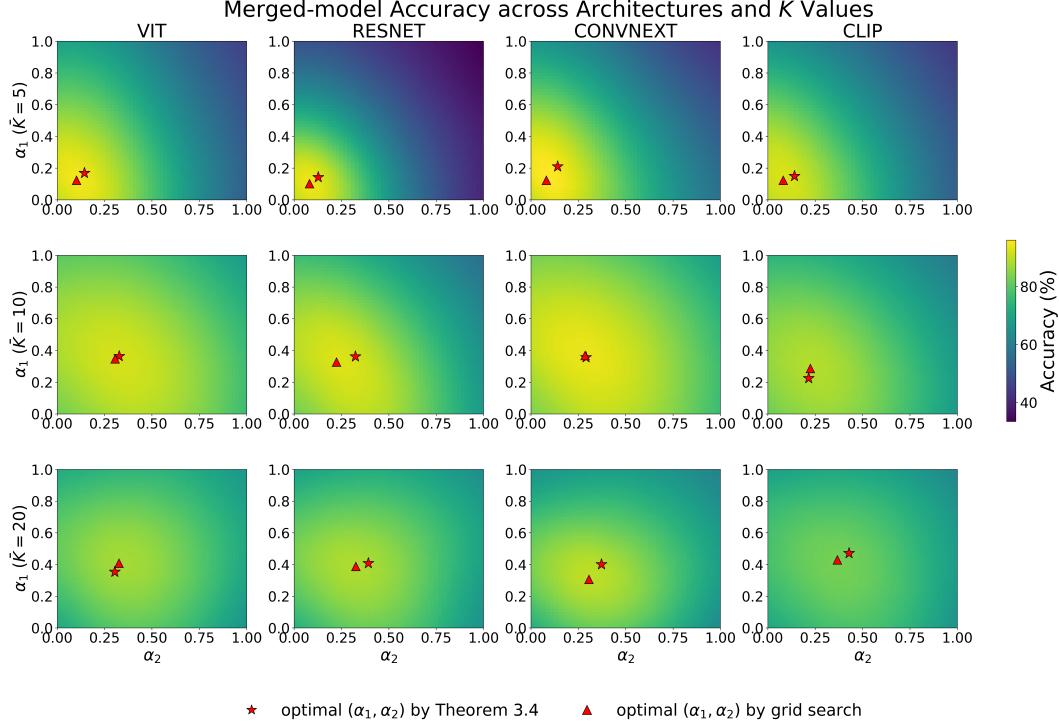
1782

1783 Table 3: Empirical (Emp) and theoretical (Thm) optimal regularization parameters λ for different
1784 pre-trained models and fine-tuning task sizes (\bar{K}).
1785

Model	$\bar{K} = 5$	$\bar{K} = 10$	$\bar{K} = 20$
ResNet-50	Emp: 0.002189	Emp: 0.002189	Emp: 0.001092
	Thm: 0.007424	Thm: 0.004158	Thm: 0.002121
ViT-B/16	Emp: 0.000918	Emp: 0.001299	Emp: 0.000648
	Thm: 0.003304	Thm: 0.002763	Thm: 0.001551
ConvNeXt	Emp: 0.000458	Emp: 0.001299	Emp: 0.000648
	Thm: 0.006709	Thm: 0.003114	Thm: 0.002039
CLIP	Emp: 0.003687	Emp: 0.001839	Emp: 0.000771
	Thm: 0.001904	Thm: 0.001185	Thm: 0.001032

1794

1795

1818 Figure 5: Merged-model accuracy across architectures and different number of classes in the
1819 fine-tuning tasks. Each panel shows the accuracy of the merged model evaluated on the combined dataset,
1820 across a 50×50 grid of mixing coefficients $(\alpha_1, \alpha_2) \in (0, 1)^2$. For each architecture, the red star
1821 indicates the theoretically predicted optimal coefficients from Theorem 3.3, while the red triangle
1822 marks the empirically optimal coefficients.
1823
1824
1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835