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ABSTRACT

Low—Rank Adaptation (LoRA) has become the de-facto parameter-efficient fine-
tuning algorithm. Besides training-efficiency, practitioners observe two striking
benefits: (i) remarkable resistance to catastrophic forgetting, and (ii) indepen-
dently trained adapters can be merged into a single model that performs well
on multiple tasks. Despite their practical importance, these phenomena have
lacked rigorous theoretical explanation. In this work, we provide the first theoret-
ical justification for the aforementioned phenomena by analyzing the structure of
LoRA solutions in multiclass linear classification problems for orthogonal tasks.
Our analysis shows that, under suitable weight regularization, the optimal LoRA
adapter aligns exactly with the max-margin (hard-margin SVM) solution for the
fine-tuning data. This alignment lets us track in closed form how the normalized
margins on the pre-training data, fine-tuning data and their union vary with the
regularization parameter. For (i), we observe a trade-off: decreasing the regular-
ization parameter enlarges the fine-tuning margin while proportionally shrinking
the pre-training margin, never collapsing it to zero. Concerning (ii), we view the
merged weights through the same margin lens, we prove why merging succeeds
and derive optimal mixing coefficients that maximize the margin on the union of
all tasks. Finally, we numerically validate our theory across multiple deep learn-
ing architectures and task configurations. The empirical results closely match our
theoretical predictions. Taken together, our results give the first principled expla-
nation for LoORA’s resistance to forgetting and its surprising merging ability.

1 INTRODUCTION

Foundation models like GPT-4, Gemini, and Deepseek-v3 have revolutionized Artificial Intelligence
(AI) capabilities across numerous domains (OpenAll 2023} Team et al., 2023} [Liu et al., [2024).
However, deploying these models in real-world applications typically requires fine-tuning on spe-
cialized datasets to meet accuracy, safety, and alignment requirements. Traditional full fine-tuning,
which requires optimizing over all parameters of the pre-trained model, presents prohibitive com-
putational barriers, requiring massive memory footprints, extended training times, and substantial
storage resources. Low-Rank Adaptation (LoRA) (Hu et al.| 2022)) has emerged as a breakthrough
solution, augmenting pre-trained weight matrices W with low-rank adapters B, A while keeping
W frozen during fine-tuning. Empirically, LoORA achieves accuracy comparable to full fine-tuning
while training less than one percent of the original parameters. While LoRA’s primary appeal was
initially its efficiency, practitioners have discovered two remarkable additional benefits that lack a
formal explanation:

Resistance to catastrophic forgetting. In fine-tuning and continual learning, catastrophic forget-
ting, i.e., the performance degradation on previously learned tasks after adapting to new ones, repre-
sents a fundamental challenge (Kirkpatrick et al., 2017;McCloskey & Cohenl |1989; Ramasesh et al.,
2021). Surprisingly, recent empirical studies have consistently shown that LoRA exhibits a strong
resistance to catastrophic forgetting, retaining prior knowledge even after extensive adaptation (Bi-
derman et al.| [2024; |Qiao & Mahdavi, [2024; Wistuba et al.| 2023). This unexpected robustness
has made LoRA particularly valuable for incremental adaptation scenarios, yet without theoretical
understanding of why this occurs.
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Effective adapter merging. In the context of learning multiple tasks, maintaining separate fine-
tuned models for each task requires substantial storage. Remarkably, studies have shown that LoRA
adapters independently trained on distinct tasks can be directly merged through simple weighted
summation of adapter weights into a single unified adapter that maintains high performance across
all original tasks (Huang et al.l [2023}; |Yadav et al., [2023} Wang et al., 2024; |Zhao et al., 2024; |Yu
et al.| 2024). This property enables extraordinary flexibility in model deployment and management,
but lacks principled explanation for its effectiveness.

Despite these empirical benefits, the theoretical mechanisms underlying LoRA’s resistance to catas-
trophic forgetting and its adapter merging capabilities have remained elusive. In this work, we take
the first step toward closing this gap by providing theoretical explanations for these phenomena.

Paper contributions. In this work, we characterize the global minimizer of LoRA in the context of
multiclass linear classification problems, focusing on an orthogonal-tasks regime where each fine-
tuning dataset is orthogonal to both the pre-training data and other fine-tuning tasks. Compared with
prior works on theoretical analysis of LoORA (Please see Appendix [B|for a detailed literature review),
our contributions are as follows:

* Characterization of optimal solution: We provide the first complete characterization of LoORA’s
global minimizer across different regularization regimes (Theorem [3.1). (i) high-penalty
regime: when the regularization parameter is large, LoRA adapters learn nothing, and equal
zero at the global minimum. (ii) intermediate regime: when the regularization parameter is
moderate, LoRA adapters align with the hard—margin SVM direction on the fine-tuning data.
(iii) low-penalty regime: when the regularization parameter is small, LoRA adapters align with
a non-max-margin classifier whose direction generally does not have a clear closed-form ex-
pression. Nevertheless, as the regularization parameter approaches zero, we show that its di-
rection converges to a simple and interpretable structure.

» Theory for reduced forgetting: We define forgetting as the reduction in margin that the fine-
tuned model exhibits on the pre-training data, and derive closed-form expressions for normal-
ized margins on pre-training data, fine-tuning data and their union (Theorem [3.2). We theo-
retically characterize that LoRA’s margins are governed by the regularization parameter, and
observe the following trade-off: smaller regularization parameter leads to larger Frobenius-
norm ratio of the adapter to the pre-trained weights, which leads to more forgetting. At the
same time, the margin on the fine-tuning task increases. Finally, we identify the regulariza-
tion parameter that maximizes the margin of the union of pre-training and fine-tuning tasks,
optimally balancing retention of the old task with performance on the new one.

Theoretical foundation for adapter merging: We derive closed-form expressions for the merged
model’s margin on each task under the assumption that the level of regularization for each task
lies in the intermediate regime (see Theorem[3.3). We show that the margin of the unified model
on each task remains strictly positive, and this result explains why adapter merging works in
theory. Moreover, we prove that properly chosen mixing coefficients, which can be obtained in
closed form, maximize the margin of the merged model on the union of all tasks.

Numerical validations: We complement our theoretical analysis with empirical evaluations on
real-world datasets using modern deep learning architectures. Our experiments confirm the
following: (i) the existence of an optimal regularization level that maximizes the performance
of the fine-tuned model, with our theoretically derived value matching the empirical optimum,
and (ii) the effectiveness of our closed-form mixing coefficients for adapter merging.

2 PRELIMINARIES

In this section, we begin by introducing the multiclass linear classification problem and the corre-
sponding hard-margin SVM formulation. We then describe the specific problem setup considered
in this work, which consists of a pre-training and fine-tuning phase. Finally, we outline the key
assumptions that underpin our analysis, and discuss their motivation and implications.
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2.1 BACKGROUND ON MULTICLASS LINEAR CLASSIFICATION

We begin by reviewing the standard K -class linear classification problem, which serves as the foun-
dation for our analysis. Given a dataset D, the goal is to learn a weight matrix W € RX*4 that
minimizes the empirical cross-entropy loss:

minWERKXd L(Wv D) = Z(m,y)eD ‘CCE(yv Wm)? (D

where & € R is the input and y € R¥ is a one-hot label vector. The cross-entropy loss is given by:

o) o — K . — exp(Jec)
Lon(y,§) = = Loy Ye - 10g(2e),  where 2o = bl 2

Here, y = W represents the class logits, and z.. is the softmax probability assigned to class c.

Recent studies have shown that when data is linearly separable, gradient descent (GD) implicitly
biases the solution of (T)) toward the max-margin classifier (Cyu & Li| 2019} [Soudry et al], 2018}
Gunasekar et al.l |2018; |[Fre1 et al.| 2022; Ravi et al., [2024). More specifically, the limiting solution
(as the iteration of GD tends to infinity) satisfies the following hard-margin SVM problem:

minyyepxxa [|[W]|%  subjectto C(W;D) > 1, (3)
where C'(W; D) is the minimum margin over the dataset:
C(W;D) := mineg y)ep k?érg}gi/rj:l ('wjm — w,jcc) , with W = [wy;...;wg]".

The Hard-margin SVM problem in (3) seeks a weight matrix with minimal norm that separates all
examples with at least unit margin between the correct class and the nearest competing class.

Intuitively, classification decisions depend primarily on the direction of the weight matrix rather than
its scale. To enable comparisons across different scales of W, we define the normalized margin:

. ._ C(W:D)
'Y(va) = OwilE €]

While margin is well understood in binary classification (X = 2), there is no universally accepted
definition in the multiclass setting. We adopt the formulation of |(Crammer & Singer| (2001)), which
has been used in recent theoretical studies (Lyu & Li, |2019; |Ravi et al., 2024).

2.2  PRE-TRAINING AND FINE-TUNING SETUP

We now describe the specific pre-training and fine-tuning framework that is the focus of this work.
This setup is common in practice and serves as the foundation for our theoretical analysis.

Pre-training stage. Let D, be a labeled dataset with K classes. We assume a pre-trained linear
classifier Wi,e € RE >4 has been obtained by minimizing the cross-entropy loss:

Whire € argminy, cpxxa L(W; Dpre). 5)

Fine-tuning stage. In the fine-tuning stage, we aim to adapt the pre-trained model to a down-
stream task with dataset Dy, which contains K < K new classes, each with n samples. This
pre-training and fine-tuning setup, where the fine-tuning stage involves new samples that are a sub-
set of the classes present during pre-training, reflects several practical scenarios. These include
domain-incremental learning (Esaki et al.| 2024), domain shift adaptation (Zohrizadeh et al., 2019;
Zhang et al.,|2022), and bias-rebalancing fine-tuning (L1 & Xu, |2021}|ValizadehAslani et al., 2024)).

When LoRA is applied to adapt the pre-trained model to the fine-tuning task, we introduce a low-
rank update to the weights, parameterized by matrices B € R¥*" and A € R™*:

ming 4 L(Wpre + BA; Dy) + 3 (| B|1% + || A]|%). (6)

Here, the Frobenius-norm penalties explicitly constrain the adapters in weight space, limiting the
deviation of the fine-tuned model from the pretrained initialization. Such regularization has been
adopted in prior empirical studies (Hu et al., 2022; Biderman et al., 2024; Wistuba et al., [2023)),
making it a natural and widely used variant of the standard LoRA formulation.

Our goal is to understand the structure of the optimal solution to (6), and how it explains LoRA’s
resistence to catastrophic forgetting, and effectiveness in enabling adapter merging.



Under review as a conference paper at ICLR 2026

2.3 ASSUMPTIONS AND THEIR IMPLICATIONS

Throughout the paper, we make the following assumptions.
Assumption 2.1. The input data dimension is larger than the total number of classes, i.e., d > K.

Assumption 2.2. The rank of the LoRA adapters is larger than or equal to the number of classes in
the fine-tuning dataset, i.e., v > K.

Assumption 2.3. The combined pre-training and fine-tuning datasets are linearly separable. Ev-
ery fine-tuning feature vector has unit Euclidean norm, is orthogonal to every pre-training feature
vector, and is also orthogonal to every other fine-tuning feature vector, i.e.,

(@) |Z|=1,2" =0, Vz& & €Dy, (b) 'x=0, Y& €Dy, VT € Dy .

Assumption 2.4. The pre-trained classifier Wy, is a scaled version of the hard-margin SVM so-
lut{'on on Dp.re: Wpre = Ppre - WETXM / ||W§¥M|| F, for some scalar ppre > 0, where ngéM is the
unique solution to:

SVM
Wiie

= argminy cprxa 5| W% subjectto C(W;Dpre) > 1
We now briefly justify our assumptions and illustrate how they represent valid simplifications of
real-world scenarios, preserving essential characteristics needed for theoretical analysis.

Assumption [2.1)is mild since for most machine learning tasks, the input dimension is greatly larger
than the number of classes, i.e., d = 3072 > 100 = K in CIFAR-100 (Krizhevsky et al., 2009). As-
sumption nrequlres only > K, meaning the LoRA rank needs only to exceed the number of new
classes, and is independent of the number of samples, which aligns with practical implementations
where LoRA with rank ranging from 8 to 64 successfully handles tasks with thousands of samples
per class. Additionally, the orthogonality condition in Assumption while restrictive, is common
in theoretical analyses (Frei et al., |2022; Bui Thi Mai1 & Lampert, 2021; |[Boursier et al., 2022} |Kou
et al., [2023), as it provides essential simplifications that facilitate deriving theoretical insights. We
further support this assumption with numerical evidence, presented in Appendix Finally, As-
sumption is motivated by recent theoretical results on the implicit bias of gradient descent in
multiclass classification (Ravi et al.|, 2024; [Lyu et al.,[2021)), as discussed in §2.1]

Implications. The assumptions introduced above lead to a clean closed-form expression for the K-
class hard-margin SVM solution for the fine-tuning task, and also imply orthogonality between the
pre-trained weights W, and the fine-tuning dataset Dy, which lays a foundation for our subsequent
theoretical analysis in §3] To formalize these implications, we begin by introducing the concept of
a simplex equiangular tight frame (simplex ETF), which characterizes the geometry of the hard-
margin SVM solution in our setting.

Definition 2.1 (Simplex ETF). A m-simplex ETF is a collection of m vectors in R¢ given by the
columns of My, =, /% P (Im — %1,,;;), where P € R4x™ satisfies PTP=1,,.

Using this definition, we now present a proposition that characterizes the structure of the hard-
margin SVM solution for the fine-tuning data (Dy), and the orthogonality between the pre-trained
weight (W) and fine-tuning data, under Assumptions[2.3|and

Proposition 2.1. Under Assumptions[2.3|and the following properties hold:

(i) Under condition (a) of Assumption the K-class hard-margin SVM solution for the fine-
tuning task Dy, defined as

WEVM = argmin ~ ||W||2F subject to  C(W;Dg) > 1,
WeRrkxa 2

admits the closed-form solution: WSVM (M ® 1T) Xft, where x; ; denoting the j-th
sample from class i, and Xy = [331,1, N TR T wKﬁn] is the fine-tuning data matrix.

(ii) Under condition (b) of Assumption [2.3| and Assumption the pre-trained weights are or-
thogonal to the fine-tuning data: Wye@ = 0, V& € Dy.
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Remark on Proposition[2.1} The first result in Prop0s1t10n-reveals that the hard-margin SVM so-
lution for the fine-tuning task admits a compact closed-form expression: WM = (Mz @ 1)) X .

However, this form does not immediately reveal how the classifier aggregates information from the
fine-tuning data. To provide insight, we explicitly derive the expression for the first row of WSVM
(the remaining rows follow symmetrically), yielding:

VAP (B2 S @ - + T Y &) -
Intuitively, each row of WSYM encodes a direction that emphasizes its corresponding class mean
while uniformly suppressing the influence of all other classes, leading to class separation in max-
margin classification. The second result in Proposition [2.1] arises naturally due to the representer
theorem for SVMs, which implies that the hard-margin SVM solution for pre-training task is a
linear combination of pre-training data only. Under condition (b) in Assumption [2.3] each row of
Wre is consequently orthogonal to the fine-tuning data.

Building upon these assumptions and propositions, we develop a rigorous theoretical framework
that for the first time provides a principled explanation for LoRA’s empirical advantages in the
subsequent section. Our analysis reveals properties that enables precise quantification of LoRA’s
benefits in terms of margin preservation and multi-task performance.

3 MAIN RESULTS

In this section, we first analyze the optimization landscape of the LoRA objective and characterize
its global minimum in §3.T] We then derive closed-form expressions for the margins on the union of
pre-training and fine-tuning datasets, demonstrating why LoRA mitigates catastrophic forgetting in
§3.2] Finally, in §3.3] we extend our margin-based analysis to the multi-task setting, providing the
first theoretical explanation for the effectiveness of adapter merging and deriving optimal mixing
coefficients that maximize the margin on the union of all tasks.

3.1 GLOBAL MINIMUM OF LORA OBJECTIVE

In this section, we present our main theoretical result on the characterization of the global minimizer
of the LoRA objective in (6). Interestingly, under suitable regulanzatlon we find that part of the
optimal LoRA adapters aligns exactly with the K -class hard-margin SVM solution (WSVM) for the
fine-tuning data (see Proposition [2.1] for definition). While our analysis does not assume or rely on
this, its emergence highlights a geometric alignment that partially explains LoRA’s effectiveness.

Theorem 3.1. There exists a critical regularization weight Ae;iy € (0, %\/ﬁ) and scalar functions
ax, bx, cx, O of X such that for any global minimizer (Bf\, A;) of (6) with A>0, we have

1 ax+by) Iz — by1z1l . i
Biag = (0 = bId) oy r) xr Biasle=0y. @)
clelefq

When K >2, the scalar functions ay, by, cx, Oy are characterized as follows:

(i) High-penalty regime ()\2 %ﬁ) ax=byx=cy=0,=0, thus B{A;=0xxaq .

.. . . . _ 6.
(ii) Int.ermedlate regime '(/\cm <A< Kf) a,\. = \/ﬁ,.b,\ KW’C’\ =0, and ©) is the
unique root of a nonlinear equation (see (28)) in Appendix[E)), thus the minimizer is

M,
* Ak [S] K T T
BjAy = & ((O(K—I_()XI_(> ®1n> X7 (8)

(iii) Low-penalty regime ()\ < )\Cm): in general ay, by, cy, ©y are positive. Nevertheless,

. . YAX K
limysor Ox=00,  limyLor aiier =/ ik (M‘ '® 1T) X7, ©)

where K is the number of pre-training classes and M g{) is the first K columns of the K-ETF
matrix My.
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The proof of the above theorem is provided in Appendix [E] Theorem [3.1] shows that the product of
the optimal LoRA adapter has a unified form as is shown in (7)), and identifies three different regimes
based on the regularization parameter \. We make the following remarks:

Effect of regularization and connection with max-margin classifier. In the above theorem, the
regularization parameter determines the structure of the optimal LoRA adapters. In the high-penalty
regime (large regularization), the regularization term dominates, forcing optimal adapters toward
zero. In the intermediate regime (medium regularization), the LoRA adapters balance between
minimizing cross-entropy and regularization, resulting in the explicit structure given in (8). Notably,
the first / rows of the product B} A align with the K -class hard-margin SVM solution for the fine-
tuning data (see Proposition for comparison). This alignment offers a clear interpretation of the
learned solution and partially explains the strong empirical performance of LoRA in practice. In
the low-penalty regime (small regularization), explicit solutions for the scalar functions ay, by are
difficult to derive. However, as A — 07, the cross-entropy term dominates, pushing the optimal
solution toward infinity, as indicated by lim,_,o+ ©) = co. Additionally, our asymptotic analysis
characterizes the limiting direction of B} A3 as is shown in (9). We emphasize that this asymptotic
direction does not align with the hard-margin SVM solution for the fine-tuning data unless K = K.

Implication for fine-tuned model. The structured form of the optimal LoRA adapters in (7)) nat-
urally enables Wﬁ\oR A := Wpre + B3 A} to perform well on both pre-training and fine-tuning data.
Under Assumptions [2.3] and Proposition [2.1] and Theorem [3.1] imply that W,,.Z = 0 for all
Z € Dy and B{Ajx = 0 for all ® € Dp,. That is, the two components operate independently:
Wore classifies the pre-training data, while B} A% adapts to the fine-tuning data:

Worex  if @ € Dpye,

hol . 1
BidAiw ifmepy oS VA0 (19)

VZC E Dpre U th 5 WI)A\ORA:B - {

This clean separation allows us to derive the margin of W7\ ; , for any data in the combined dataset:

Wprem HWpreHF

. ifxeD

WorelF * TWopa I & “pre: (11)
AT ‘ﬁB,\AwaF if.’BGth

B Azl r HWIf\oRAHF

The expression in shows that the normalized margin on the combined dataset depends not only
on the individual normalized margins of W, and B} A} on the Dy, and Dy respectively, but also
on the relative Frobenius norms of these components. In the following sections, we use (II)) to
derive closed-form expressions for the normalized margin on the combined dataset and to compute
the optimal mixing coefficients for adapter merging. For clarity of presentation, we focus on the
case K = K and refer the reader to Appendix@] and Appendix [H|for the full version of our results.

3.2 LORA PROVABLY REDUCES FORGETTING

In this section, we demonstrate that LoRA provably reduces forgetting through the lens of nor-
malized margin, and identify an optimal regularization level achieving max-margin over the
combined datasets. For convenience, we define the following shorthand for margins: vpe =
(Wpre; Dpre), .0 =7(B{ A3; D) (motivated by (TT)).

With these definitions in place, we now present our main theorem.

Theorem 3.2. Adopt the setup of Theorem @] let 7y, be the max normalized margin any linear
classifier can obtain on the fine-tuning data Dy, and recall the scalar pyre from Assumption
Then, the normalized margins of Wﬁ\oR A on the union of pre-training and fine-tuning data can be
characterized uniformly over all X as follows:

O,

Ppre
’Y(Wf}oRM Dprc) = Ypre ;72 ) ’Y(Wf,\oRA; th) =7t A 272 )
\/ ®A+ppre \/ @)\ + ppre
,Y(WITORA; Dpre U th) :min{W(WIi\oRA; Dpre) ’ W(WSORA; th) } (12)

Moreover, ©, g\ take different values depending on the regime ) is in:
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(i) High—penalty regime: \ > %ﬁ Ox =711 =0.
(ii) Intermediate and low-penalty regime: A< %\/ﬁ Ve, ) =5, and Oy is a decreasing function.

Optimal trade-off choice of \. There exists a unique \* such that
-1/2
maxysq 'y(WI:\()RA; Dpre UDg) = (ﬁ + ﬁ) , attained at A = \* . (13)

Remark 3.1. Notably, the intermediate and low-penalty regimes coincide when K = K. This
merging is specific to the case K = K; when K < K, the two regimes remain distinct.

Interpretation of the normalized margin. Theorem characterizes the margins of the LoRA
fine-tuned model Wﬁ‘oR A on the pre-training and fine-tuning datasets. Notably, the margin on the
pre-training data remains positive in both the intermediate and low-penalty regimes, indicating that
LoRA mitigates catastrophic forgetting. Furthermore, the margin on the combined dataset, given
in (I2)), is defined as the minimum of two terms: the margin on the pre-training data weighted by the
relative magnitude of the pre-trained weights, and the margin on the fine-tuning data weighted by the
norm of the LoRA adapters. This structure reveals a clear trade-off: decreasing the regularization
parameter A increases the adapter norm ©,, which decreases the pre-training margin contribution
while increasing the fine-tuning margin contribution.

Uniqueness of the optimal A\. Due to the opposing effects of ©, on the two components of the
combined margin, the maximum of 'y(Wﬁ‘OR A DprdDyy) is achieved when the weighted margins are
equal. This balance determines a unique value of ©). Since O, is a strictly decreasing function, it
follows that there exists a unique A that maximizes the normalized margin on the combined datasets.

Full fine-tuning as an alternative method. While our work focuses on LoRA, it is instructive to
briefly contrast it with the more conventional strategy of full fine-tuning. Full fine-tuning updates
all parameters of the pretrained model, which is considerably less efficient in both computation and
storage, whereas LoRA achieves adaptation through a compact low-rank parameterization. In the
linear classification setting, the two approaches correspond to the following regularized objectives:

min L(Wpre + BA; Di) + 2(1BI% + A7) LoRA objective , (14)
mmi/n L(W; Dg) + 5 |W — Wpee| Full fine-tuning objective . (15)

Beyond efficiency, the two formulations induce fundamentally different (implicit) biases. By ex-
ploiting the variational form of the nuclear norm (Recht et al.l 2010), one can show that for any
solution (B*, A*) of (T4), the induced update W7} ; , is equivalently the solution of

W,rank(%li}lwpm)gr L(W; D) + 3 |W — Weells Implicit bias of LoRA fine-tuning, (16)
which highlights LoRA’s connection to nuclear-norm regularization under rank constraints. We refer
the readers to|Jang et al.| (2024) for the proof of the argument. Understanding the consequences of
this distinction of nuclear norm regularization and Frobenius norm regularization remains an open
direction for future work. Importantly, our goal is not to compare LoRA and full fine-tuning, but
to rigorously analyze why LoRA exhibits reduced forgetting and to provide principled guidance for
selecting regularization parameters in adapter-based fine-tuning.

3.3 LORA SUPPORTS ADAPTER MERGING

In this section, we explain why LoRA supports adapter merging through the same margin lens.

We now consider a scenario where a single pre-trained network is fine-tuned independently on 7'
datasets, denoted by D1, ..., Dr. Let (B;‘, Af) represent the LoRA adapter obtained from training
on dataset D;, for each i € [T]. Our goal is to merge these adapters into a unified model that performs
well simultaneously on the original pre-training task and on all fine-tuning tasks D, ..., Dp. To
achieve this, we merge all adapters with the pre-trained weight matrix as follows:

Wiora(@) == Wpre + Y1, a; Bf A? a1,...,ar ER, (17

i
where @ = (v, ..., ar) are user-specified mixing coefficients. Moreover, we generalize the As-
sumption [2.3]to the setting of learning multiple tasks as follows.
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Figure 1: Accuracy of the fine-tuned model across varying regularization levels for four different
pre-trained models. Each line represents a fine-tuning task, indicated by color. Stars highlight the
best-performing regularization value for each task. Vertical dashed lines indicate the theoretically
predicted optimal regularization parameter for each setting. Alignment between the star and the
dashed line of the same color reflects how well our theory predicts the empirically optimal regular-
ization level.

Assumption 3.1. For each fine-tuning task D; the dataset consists of m; classes, each containing n;
samples. All fine-tuning feature vectors have unit norm, are pairwise orthogonal, and are orthogonal
to every pre-training feature vector.

The following theorem characterizes the optimal mixing coefficients. See Appendix [H|for the proof.

Theorem 3.3. Under Assumption and suppose each fine—tuning task D; (i = 1,...,T) is
trained with a regularization parameter in the intermediate or low-penalty regime. Let ©) ; =

| Bf A%\ F and v; =~(B} AY; D;). For an arbitrary coefficient vector o = (a1, . . ., ar) the merged
model achieves the normalized margins on each task as follows
W, -D ’Yprcppm 1% D, Vi Ox i
f}/( LORA(a)7 pre) \/P})re+ j= 10&20?\@ ’ ’Y( LORA(a)’ Z) \/PpleJrZ, 1Ot202 . ’
W(WLORA(Q); Dpre U {Dz}lzl) = min {’Y(WLORA (a)’ Dpre) (WLORA ) } [ 6
_ Porepre

Choosing the weights o; , @ € [T], maximizes the margin on the union of all tasks:

YiOx,i
T 1 T L\ 2
maXeq V(WLORA(Q% Dpre ) {Dz}qzl) = (ﬁ + Zj:l W) .

Theorem (3.3|characterizes the optimal mixing coefficients, i.e., p‘g"‘e based on two key quantities:

the ratio between the Frobenius norms of the pre-trained weight matrix and each LoRA adapter
product, i.e., ppre/© 2 ;, and the ratio between the margins for the pre-training task and for each task,
i.e., Ypre/7vi- As either ratio decreases, the optimal mixing coefficient for the corresponding adapter
should increase. Intuitively speaking, a larger ppre/©.,; implies the adapter has a weaker impact
relative to the pre-trained model, necessitating a larger weighting to achieve a balanced contribution.
Similarly, a larger ypre /7 indicates that task ¢ is inherently more challenging compared to the pre-
trained task, thus requiring a larger weight for its adapter to ensure satisfactory performance in the
unified model, i.e., Wp,ora (). Finally, we point out that the optimal mixing coefficients proposed
in Theorem 3.3]can be computed after the training as long as the regularization parameter lies in the
intermediate regime, making the approach practical and easy to implement.

So far, we have characterized the optimal solutions to the LoRA objective in §3.1] explained
why LoRA mitigates catastrophic forgetting by analyzing margins on pre-training and fine-tuning
datasets in and derived optimal mixing coefficients for adapter merging through the same mar-
gin perspective in §4.2] In the next section, we numerically validate these theoretical insights.

4 EXPERIMENTS

In this section, we evaluate our theoretical predictions in realistic settings where assumptions are
not strictly satisfied (Assumption and Assumption [2.4). Specifically, we test: (i) the effect of
regularization on LoRA’s performance across architectures and tasks, and (ii) the accuracy of our
predicted mixing coefficients for adapter merging.

Setup. We use four popular pre-trained models, ResNet-50, ViT-B/16, ConvNeXt, and
CLIP (He et al.l[2016; |[Dosovitskiy et al., 2021} [Liu et al., 2022; Radford et al., |2021)), as frozen
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Figure 2: Merged-model accuracy across architectures. Each panel shows the accuracy of the
merged model evaluated on the combined dataset, across a 50 x 50 grid of mixing coefficients
(a1, a2) € (0,1)2. For each architecture, the red star indicates the theoretically predicted optimal
coefficients from Theorem [3.3] while the red triangle marks the empirically optimal coefficients.

feature extractors on CIFAR-100 (Krizhevsky et al., [2009). We apply LoRA to the final linear clas-
sification layer only, following the standard linear probing protocol (Kornblith et all, 2019). Tasks
are constructed using CIFAR-100’s superclass hierarchy. All training and task construction details
are provided in Appendix [l

Metric. Though our theory is developed for normalized margin, real-world classification problems
are more challenging, and perfect accuracy is typically unattainable, which leads to negative normal-
ized margin of the fine-tuned model. Therefore, we report classification accuracy as a more practical
measure of performance in this setting.

4.1 EFFECT OF REGULARIZATION

We first pre-train a linear classifier on the pretraining task, and then fine-tune it using LoRA across
50 logarithmically spaced regularization strengths, with A € [107°,107!]. Figure [1| shows that
LoRA’s performance exhibits a non-monotonic relationship with A, peaking at a moderate value.
Notably, our theoretically predicted optimal A aligns well with the best empirical choice when the

pre-trained models are VIT, RESNET and CLIP. Detailed comparisons are reported in Appendix [I}
4.2  OPTIMAL MIXING COEFFICIENTS FOR ADAPTER MERGING: THEORY VS. GRID SEARCH

We fine-tune LoRA adapters on two disjoint tasks (D;, Ds), then merge them with the pre-trained
weights using mixing coefficients (a1, az). We evaluate the merged model’s performance on the
combined dataset Dy, U D1 U Dy. As shown in FigureEl, our predicted mixing coefficients closely
match the grid-searched optima, confirming the practical accuracy of our merging theory. In Ap-
pendixm we provide more experimental results when K = 5, 20.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we provide a theoretical analysis of LoRA fine-tuning through the lens of normal-
ized margin. We characterize the structure of optimal LoRA adapters under varying regularization
regimes and show how LoRA mitigates catastrophic forgetting. Our results reveal a clean separa-
tion of responsibility between the pre-trained weights and LoRA adapters, enabling margin-based
analysis on pre-training and fine-tuning tasks. We further extend our framework to the setting of
adapter merging and derive closed-form expressions for the optimal mixing coefficients. Empirical
results across multiple architectures validate our theoretical predictions, even when the underlying
assumptions (e.g., data orthogonality) are mildly violated in practice.

Limitations and future work. Our analysis relies on several simplifying assumptions. In partic-
ular, we assume orthogonal task structure (Assumption [2.3), perfect alignment between pre-trained
weights and pre-training tasks (Assumption [2.4), and balanced class sizes in the fine-tuning data.
While these assumptions enable closed-form characterization, they limit the generality of our re-
sults. An important direction for future work is to relax these constraints and explore how LoRA
behaves under more realistic data distributions and pre-training conditions. Extending the margin-
based perspective to non-linear models is another promising avenue. Finally, as discussed in §3.2}
full fine-tuning and LoRA fine-tuning induce different implicit biases. An important open direction
is to characterize the regimes in which LoRA has an advantage over full fine-tuning, for example by
comparing their respective generalization errors.
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A USAGE OF LARGE LANGUAGE MODEL

We used GPT-5 to assist with revising the writing and setting up the basic experimental pipeline
(e.g., loading pretrained models and extracting features). All algorithmic implementations were
written by us.

B RELATED WORK

Theory of LoRA. There are many works theoretically studying the expressiveness, characterizing
the loss landscape, and understanding the learning dynamics of LoRA. |Zeng & Lee| (2023) prove
that, under mild assumptions, LoRA can approximate any deep linear, feed-forward, or transformer
network. Within the NTK regime, Malladi et al.| (2023) characterize the conditions under which
one can study LoRA in the NTK regime, while |Jang et al.| (2024) show that when the LoRA rank is
r; > /N, where N is the number of samples, the optimization landscape of LoRA has no spurious

local minima, and GD can find O(\/ﬁ )-rank solutions that generalize well. Moreover, Xu et al.
(2025) study the learning dynamics of LoRA in the context of matrix factorization, and show that
smaller initialization leads to longer training time and lower training error. However, none of these
studies theoretically characterize why LoRA reduces catastrophic forgetting and support effective
adapter merging.

LoRA merging. A variety of techniques have been proposed to merge task-specific LoRA adapters
by forming a weighted average of their parameters. For example, LoRA-Hub (Huang et al., 2023)
learns per-task mixing coefficients first, and then applies a weighted average of LoORA weight ma-
trices B and A separately. LoRA-Flow (Wang et all] 2024) introduces token-level gates that dy-
namically assign merging coefficients to each LoRA adapter before taking weighted averaging.
LoRA-Retriever (Zhao et al., |2024) first retrieves the most relevant adapters for each input, and
then averages the selected LoRA adapters. Beyond weighted averaging, another line of work at-
tempts to address redundancy and conflicting updates directly. 7/ES (Yadav et al.| 2023)) proceeds
in three steps: trimming redundant parameters, resolving sign conflicts into an aggregate vector, and
averaging only the parameters consistent with the aggregate sign, thereby mitigating degradation
from redundant or conflicting updates. DARE (Yu et al.| 2024) can be used as a preprocessing step
for other merging methods, where parameters are randomly dropped according to a specified rate
and the remaining ones are rescaled, reducing redundancy and potential interference among merged
adapters. However, all these methods remain largely heuristic and lack theoretical guarantees.

Regularization and task orthogonality help reduce forgetting. A large body of work in fine-
tuning and continual learning shows that controlling deviation of the fine-tuned model from the pre-
trained model reduces catastrophic forgetting. Concretely, these approaches impose weight-space
penalties that restrict the magnitude and direction of parameter updates away from the pretrained
solution. Weight-anchoring and importance-aware penalties exemplify this idea: Kirkpatrick et al.
(2017) penalize movement along directions identified by the Fisher information matrix, while|Zenke
et al.| (2017) accumulate path-wise importance during training. |Schwarz et al.|(2018) extend this idea
to long sequences of tasks. Related approaches estimate parameter sensitivity (Aljundi et al.||2018),
apply output-level distillation to preserve prior behavior (Li & Hoieml 2016)), or explicitly regu-
larize parameters toward the pretrained anchor (Li et al.| 2018). Although these approaches differ
in how importance or anchoring is computed, the common mechanism is the same: weight-space
regularizers constrain updates during fine-tuning relative to the pretrained model to mitigate catas-
trophic forgetting. Another complementary perspective highlights the role of task relations. When
task representations are sufficiently decorrelated, interference between tasks is naturally reduced
and forgetting is alleviated. In linear and kernelized models, it has been shown that when tasks are
orthogonal or nearly orthogonal, cross-task gradient interference vanishes in expectation, implying
negligible forgetting (Doan et al., 2021} |[Evron et al., 2022)). These insights resonate with our anal-
ysis of LoRA, where we explicitly study a regularized objective on low-rank adapters and make
the simplifying assumption that the fine-tuning data are orthogonal to the pretraining data. This
assumption directly connects to prior findings on task orthogonality and provides a tractable setting
in which we can isolate and analyze the role of regularization in mitigating forgetting.
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C PRELIMINARY LEMMAS

In this section, we provide several preliminary lemmas that will be used in the proof.

Lemma C.1 (Theorem 3 in Riedel|(1992)). Let A € R*! with rank(A) < I, and vi, w;,i = 1,2 be
vectos in R, Let vy € M(A),w; L M(A), and vy € M(A*),wy 1. M(A*), where M(A) denotes
the range of A. Assume ws || wy and w; # 0,1 =1,2. Let Q = A+ (v1 + w1 )(ve + we)*, Then

Wa W]

Qf = A" - + (14 v3Avy)

[ [ [Jwal|* -

We refer the readers to Riedel| (1992) for the proof.
Lemma C.2 (Variational form of the nuclear norm). For any fixed Z € RE*™, we have

1
2]l = gmin S (IBI% + [A]3).

We refer the readers to |Recht et al.[(2010) for the proof.
Lemma C.3. For any fixed Z € REX™ K > m, we have

1 Z]|« = max Tr(ZV),
VeRmxm VTV=],

if K < m, we have

121« = T (UZ).

max
UeRKXK UTU=Ig

Moreover, for any two matrices A, B € RE*™ one has
> 0i(ABT) <> 0i(A)oy(B).
i=1 i=1

We refer the readers to Horn & Johnson| (2012)) for the proof.

Lemma C.4 (Berge’s Maximum Theorem). Let X, © be topological spaces, f : X X © — R be a
continuous function on the product X x ©, and C : © — X be a compact-valued correspondence
such that C(0) # 0 for all § € ©. Define the marginal function f* : © — R and the set of
minimizers C* : © — X by

f7(0) = sup{f(z,0) : . € C(6)}

C*(0) = argmax{f(z,0) :x € C(O)} ={x € CO) : f(x;0) = f*(6)}.
If C is continuous at 0, then the value function f*(0) is continuous, and the set of maximizers C* ()

is upper-hemicontinuous with nonempty and compact values. Moreover, if C*(0) is single-valued,
and thus is a continuous function rather than a correspondence.

We refer the readers to|Sundaram| (1996)) for the proof.

Lemma C.5 (Invariance under Permutation). Suppose X satisfies UXI1" = X for any permutation
II, then X = aI + c117 for any constants a,c € R.

We refer the readers to Lemma 10 in|Hong & Ling|(2023) for the proof.

Proposition C.1 (Representer Theorem for Hard-margin SVM Problem). Ler {(z.;, yc)}?:”’fczl

be the dataset with features x. ; € R? and class labels y. € R¥. Then, let W™™ be the solution of
the following hard-margin SVM problem, i.e.,

min  3|W|% st Vie[K], Vjien], Vk#i: w'a; > wix;+1,

WEeRK xd

. K,Kn;
where W = [wy, -+, wi]". Then, there exists a set of scalars {c c.;};21 0wy ;_, such that each
row of W™™ has the following structure

Kn.
mm
w; = E Qic,jTe,j -
c=j5=1

We refer the readers to|Scholkopf & Smolal (2018) for the proof.
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D CHARACTERIZATION OF HARD-MARGIN SVM SOLUTION FOR
OTHORGONAL DATA

In this section, we characterize the hard-margin SVM solution for K -class classification problem
for orthogonal data. We show the solution is closely related to the K-ETF simplex.

Problem Formulation. Consider a K-class classification problem with data {(z; ;,y; )}fif j=1
where: ‘

* K is the number of classes in the dataset

* n is the number of samples per class

* y; € [K] denotes the class label for samples z; ;
* All data vectors x; ; have unit norm: ||z; ;|| =1

* All data vectors are mutually orthogonal: xg:jxw = 0 for (4,7) # (k,1)

Let W € RE*d pe a weight matrix for a linear classifier, where the predicted class for input x
is arg max;, (Wyx). For simplicity, we use the following notation to denote all the data points:
X = [1‘171, e aml_(,n]'

Now, we are ready to present the main result.

Theorem D.1 (Maximum Margin with Frobenius Norm). Under the above data assumption, the
largest normalized margin any linear classifier can achieve is:

. 1

Y K1) (18)

The optimal weight matrix that achieves this margin has the form: W = (Mf( & ljl) X',

Proof. Due to Proposition there exists A* € REXEn guch that the optimal solution W* =
A*X T, and the corresponding logits is W*X = A*. Then, we know that A* is the solution of the
following optimization problem

Min; ;e () ken],jzi Aisi—Dntk — Aji—1)ntk

A* € argmax

= L(A). (19)
s oo T4r (4)

SVM has been well studied in the literature Burges & Crisp|(1999), and it has been proved that SVM
has a unique solution. Then, we list several permutation invariance of the problem, and it leads to
certain structures of A*. We first decompose A* into block matrices, i.e., A* = [A’{ e A*]—(]

where A* € RE*" j e [K].

Invariance under column permutation within block matrices. We first observe that one can arbi-
trarily permute any columns of A* within the block, and it still yields the solution to (I9). Formally,
for any permutation matrix IT; € R"*", one has [A{Il; ---  A%LTIx] still is the solution to (T9).
Since (I9) has a unique solution, then A}II; = A¥ must hold for arbitrary permutation matrices
I1;. This leads to the conclusion that all columns of A} must be equal, i.e., A} = 1;7;11 for some

v; € RE.

Invariance under permutation across block matrices. We randomly pick one column from each

block, and form a matrix, i.e., V = [v1,v2, -+ ,vg]. LetIl' € REXK pe any permutation matrix,
then one also have V = IIVIIT also yields a solution of (T9). Specifically, let V = [v7,--- , ¥z],
one has [v11) -+ ®gl)] is also a solution of (I9). Based on Lemma [C.5] one has V =

alg —blg1L wherea,b € R.

Scalar optimization. Based on the above reasoning, we have concluded that A* has a simple
expression which depends on two scalars, i.e., a, b. Now, we solve for the optimal a, b. we can first
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derive the following closed form expression for £(A),

L= VnK(a—0b)?2 +nK(K — 1)b?

1
\/nf( +nk2(2)2 —2nKb

where the last inequality achieves equality when

N'"’—‘

E PROOF OF THEOREM
In this section, we present the proof of Theorem [3.1] We first present the following functions that

will be used in the proof of Theorem 3.1

_ p(K — K)
gn(@) = \/K(K “RK)2? + KK(1 — )2

gn()\/ K

ga(z) :

[
@
»
T
7 N
=
8
[\V)
+
=
™
\
8
e
=
\
=

N (@) 75 K K )
gc(x):exp(\/zhrKK:{/Ex)z N KK(l—x)]>~ (20)

Moreover, let 2o € [0, 1] be the root of the equation
g(x) 1

wle)  [E e

Remark E.1. Our proof technique follows |Fang et al.|(2021)), and the readers can see the same
definition of g.(x), gp(x), gc(z) and xo in |Fang et al| (2021). Moreover, the authors prove the
existence of xo under certain conditions.

Now, we begin the proof of Theorem 3.1
Theorem E.1 (Restatement of Theorem . Let (B}, A}) be any minimizer of (6). There exists a
critical regularization weight Aeit € (0, %\/ﬁ) and scalar functions ay, by, cx, O of A such that

for any global minimizer (Bj‘\7 A’;\) of (6) with A>0, we have

. ayx+b\) Iz — by1g1k . 1%
gy = (e = DI o) xT Bt =0r. @)
CA]‘K*K]‘R

When K >2, the scalar functions ay, by, cx, ©) are characterized as follows:

(i) High-penalty regime ()\2 %ﬁ) ax=byx=cy=0,=0, thus B{A; =0xxaq .

.. . . 1 . _ _© _ _© — ;
(ii) Intermediate regime (/\Cm <A< 1’{7\/71) ay = \/ﬁ,m = RV;?T’CA =0, and ©) is the
unique root of a nonlinear equation (see (28)) in Appendix[E)), thus the minimizer is

O, Mz
BrAY = 22 K 17 ) X1, 22
AT VEn (<0<K—R>xf‘<)® "> i 22
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(iii) Low-penalty regime ()\ < )\Cm): in general ay, by, cy, ©y are positive. Nevertheless,

Bt A 1 .
lim O, = lim —APA [ (M(K) 1T) X7 23
Ao SAT vt | Bx A%l r nk Ko Oln ) A (23)

where K is the number of pre-training classes and M I((K) is the first K columns of the K-ETF
matrix Mg.
Proof. We first show that one can simplify the objective in (6) based on the following Lemma.

Lemma E.1. Under Assumptions[2.3|and the original fine-tuning problem in (6) is equivalent
to the following symmetric formulation:

K n
o 1 bt A 2 A2
B}‘l L(B,A):= Zn CE:1 JEZl Lcg (Yo, BAeye—1y4j) + §(||BHF +Al%) 24)
where Xg = [Z1,1, ..., Z1n, VTR, Ef()n}, Be RK”,A = AXy € R*EKn,

Let X¢ | be an orthonormal complement of Xy. Then:

1. If (B*, A*) is any global minimizer of (6), then
(B, ) with A = A"Xq
is a global minimizer of 24).

2. Conversely, if (B*, A*) is any global minimizer of @4), then (B*, A* X ) yields a global
minimizer of the original problem in ().

We refer the readers to Appendix [FI] for the proof of Lemma [E-I] Lemma [E-] indicates that to
characterize the global minimizer of the objective in (6), one can instead characterize the global
minimizer of the objective in (24).

We start with the following equations that characterize the global minimizer of (24)

oL (B, A) 1 E& 9 _ . .

87B = \B + E ;; 63/1 LcE (yc, BAe(Cfl),nﬁi,j) e(cfl)n+jA =0

oL(B,A) : 1 & 0 -

¥ =)\A + BT ZZ (ACCE (yC,BAe(C_l)n_,_j) >62;—1)n+j =0.
1j=

0A Kn & OBA
c= 1

Based on the above equation, we can conclude that any minimizer (B, /Nl) of (24) must satisfy
ABTB=MAT = ||B|% = [|All7- (25)

Our second step is to converge the problem into a constraint optimization problem. The following
lemma characterizes this.

LemmaE.2. Let B e RE*" A e R™*K For each \> 0, there exists a unique non-negative value
P such that the solution set for the following optimization problems are equivalent

K n
o L : A "
min =3 > Low(ye, BAeeniy) + 5 (1BIF + I141%) (Problem one)

c=1 j=1

K n
.1 1 2 1112
min E E Lcr (Ye, BAete—1ynts)  sLIBIE < pa, |AlF < pa. (Problem two)

’ c=1 j=1

Moreover, the map \ — py enjoys the following properties:

(i) Monotonicity and continuity. p) is continuous and non-increasing on (0, 00).

18
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(ii) Asymptotic behaviour.
lim py = oo, lim py = 0.
A—0F A—00

(iii) Flat regions. For any 0 < A\; < Ag, p(A1) = p(A2) <= p(A1) = p(A2) =0.

We refer the readers to Appendix [F2] for the proof. For simplicity, we will use p to denote py for
convenience.

Characterization to solution of (Problem two). (Problem two) can be viewed as a special case of
the neural collapse phenomenon in the extreme setting of an imbalanced dataset: for the first K
classes we observe n data points per class, while all remaining classes have zero samples. In this
context, we directly invoke the following result from Fang et al. Fang et al.| (2021) (see p. 26 in
.[Fang et al.| (2021)).

Lemma E.3 (Neural collapse under extreme imbalance; (Fang et al., 2021, Page 26)). For any
constants c1, ¢z, cs, p > 0, define

/ C1
¢ = = _
YT+ (K —1Dea+ (K — K)es
C/ = — C2 —
2T 4+ (K —1)ey+ (K — K)es
Cl = — C3 —
BT+ (K —1)ey+ (K — K)es
cy = —cylogc) — cy(K —1)logch — (K — K)cjlog(ch)
KCQ

05 = = —

Kco + (K — K)es
o — (K —K)Cg
6= RCQ+(K—I_{)C3

[_((32 + (K — R)Cg

C7 =

C1 —+ (K* 1)02+(K*R)Cg

For any feasible solution (B, A) of (Problem two), the objective value of can be
simplified to

n K
a

>3 Lonlve BAeyur) 2 -3 B llesws + cows = bil]> + e

j=1 i=1

fi Mw

K K @ . . .
where wy = }{ > 1 b, wo = Zi:f(Jrl b;, and > becomes equality under certain choices of

i= K if(
C1,C2,C3.

Readers are referred to |[Fang et al.| (2021) for the full proof. Note the following distinction between
Lemma [E.3] and its analogue in [Fang et al| (2021): the inequality in [Fang et al.| (2021) becomes
tight only when all minority-class features are zero and certain choices of ci, co, c3, whereas in
our lemma, we do not require that all minority-class features are zero. This difference is resolved
by our change of variables A = AXy;, which effectively confines A to the subspace of observed
(majority-class) features and thus guarantees equality in Lemma[E.3]

Now, we carefull pick the B, A and c1, Ca, cg to achieve the global minimum of the objective in
(Problem two). The following lemma characterizes this exactly.

Lemma E.4 (Lemma 5 in Fang et al.|(2021)). Under the same assumptions in Theorem [31] there
exists a

_ K
Perit = VK (K —1) log( - K+1>

such that the optimal value to (Problem two) is as follows

19



Under review as a conference paper at ICLR 2026

o when K > 2 and py < perit, we choose ¢ :exp(K’fﬁJ ,C2 :eXp<\/ﬁK(”§_1)) ,e3=1,
and (Problem twol) attain its minimum

P % 7 2 P
)\pA—\/ﬁK—&-log(K—K—i-(K — 1)eXp(_\/ﬁK(K1))+eXP(\/ﬁK)> ,

where B*, A* takes the following form

[b%,05,...,b%] = v/n [a], a5, ... a%] :1/% M,,
Kn

ar:d?z/nw7 Z:_1,7 s
b; =0, i>K.
Moreover, B* A* takes the following form
BrAT = P (0 Mz ) ®1]. (26)
Kn(K —1) \"(K-K)xK
o when K > 2 and 0P > Perit, One choose
c1 = ga(®o), c2=go(z0), 3= ge(o),

where g, (), gp(x), gc(x) and o are defined in 20). Then, attain its mini-

mum
K-1 K — K)g.
)\pk—i—log(g“(%) + ( )g(w0) + ( )9a($0)>7
ga(xO)
where
KZL'O _ ].—(EO i) . >
zg) P, —F i t+ = — —— 15 5 ZSK,
b o (z0) Pa KE—1)" ( NI \/K(K—l)) K]
3 —
_onlao) VE( = m0) 5y i>K
K- K K> .
(20) P K +<(1—1’0)9N(5170)\/ KI_{I_( gn (zo)xo )1 } l<ic
— x T = B = — <, c—1<t<e,
ai = IVEOTV R VK K(E-1 " "
07 7/>'I’L[_(

where Y. € RX and is a one-hot vector with i-th entry equals one, and P € R™K isa
partial orthogonal matrix such that PT P = 1. Moreover, B* A* takes the following form

B A — ((10g9a(330) +log gy (0)) I — lgggb($0)1K11T<> 1.
IOggc(‘TO)lef(lf{

Lemma is Lemma 5 in|Fang et al.| (2021)). We refer the readers toFang et al.|(2021)) for the proof.
Lemma exactly characterize the optimal solution and value of the objective in (Problem two).

Computation of the product of LoRA adapters. Based on Lemma [E.4] we can characterize the
solution to the LoRA objective in (6), then it suffices to compute the product of the minimizer to
prove Theorem 3.1}

In the Intermediate regime, one can first compute

=% —x% % P
B*[a},a},....a%] = I_{\/ﬁMJMn
P K 1 T
= — " (I — =1=1°L
KﬁK—l( K~ g ete)
P

= = Mg,

VEn(K —1)
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and it leads to the product of final solution

BA* = P (0 M )@12. 27)
Kn(K —1) \"(K-K)xK

In the Low penalty regime, in Fang et al.|(2021), the authors further show that

log go(w0) i=j<K
(b;)"a; = < log gy (x0) i F i< K
logge(xg) K<i<K

Thus, one can show that

p*ir — ({108 ga(wo) +log g(w0))Ix — loggb(wo)lKl 217
log ge(20)1 Kl ’

Characterization of ). In Lemma [E.4, when m > 2, we see that the solution takes different
form based on whether py < pcrit O P > Perit- Moreover, based on Lemma there must exist a
unique Aepit such that peyiy = p(Aerit). Now, we characterize the range of A, here.

Due to Lemmal|E.4] we know when A > A.¢, the solution takes the form
- P _T1-
B*A*:( VKK )@127
O k-R)xK

and the corresponding minimum objective is

P(p) == )\p—ﬁﬁ—log (K—K—I—(K - l)exp(—\/ﬁr_{(';(_))—l-exp(fl{))
Now, we take the derivative of ¥(p)
d(p) _
dp
e ! )4 1 eXp(fK) exp(—%) 0
1 1 exp(mcf—y) —1
A — )+ . _ _ =0 (28
= O AR AR ek exp( et FHE — Dt exp(mip) (28)

Based on (28), one know if Aeig > ﬁ, then dﬁ;” ) > 0, and the minimum is achieved when

px = 0. On the other hand, we know that when A\ < A, one has py > perit. Thus, peit is @
dis-continuous point of p5. However, based on Lemma[E.2} we know pj is a continuous function.
Thus, one must have

1
N

)\crit <
Characterization of p). In this part, we characterize the p) when A > \.;;. Based on Lemma
we know 1)(p) is the optimal value of (Problem one)) and (]Problem two)). Thus, py must attain the

minimum of ¢)(p). Based on (28)), one can first see that if A > f o dw( ) >0, and the minimum is

one can solve let dlg(pp ) = 0 in (28) to seek for py.

attained when p) =0. When Ay < A < W’
Asymptotic behaviour of py. On one hand, as A — 0+, one obviously has limy_ o ||B*A*||r =
oo due to the fact that B* A* is the solution of (Problem three). Then, we characterize its asymptotic
direction, which is equivalent to study the limit of & g“(log and 1°892(20) a5 X\ 5 04, We will use

i 7 loggu(zo log ge(xo)
xo,» denote the choice of xg for fix regularization effect .
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First, the equation to derive for x is as follows

gn(z) _

1
gel@) 14 [ K
o~ ()P0
KV~ a2+ K _(1—ap
Since' limy_,04+ px = o0, one must have x ) approaches the solution of the following quadratic
equation

K
= —10g(1+ m)

5\ _ K )3/2(

N = _ 1— Z,
o1 k& Z0.)

Moreover, one can see that the expression for 12892(£0:) 44 19890 (o0) tapes the following form
log gy (o, x) log ge(xo,x)
2 K 2
10g ga(Io)\) . xO,)x + K7K(1 - 1'0’)\)
log gp(x0,x)  _ Tba K_(1_ 2
’ 1 TV mr —on)

2 K 2
log ga(w0,) _ “oa TRk (L —70)

log ge(0) K [ (1~ w000

Thus, combine the above two equations, we can compute that

log ga(zox) im log ga(20,x)

= =—(K-1).
A—=0+ log gn(xo,n)  A—0+ log ge(zo, 1) ( )

Connection between p, and O,. In previous analysis, we have shown that
px=IBXAX«,  Ox=BALlr (29)

Thus, what is left is to show that under different regularization paramter, what is the relation between
P and © A-

First, it is obvious in the high-penalty regime, p)y = O = 0.
Second, in the intermediate regime, the product of the optimal LoRA adapters are
S S T
Kn(K —1) \"(K-K)xK

After some simple calculations, one can show that

* Ak * Ak P
x = || BXAX |« , O, :=|BxA = ——
pr = 18343 B33 = 2

Thus, one can alternatively represent the product of the optimal LoRA adapters in the intermediate

regime as
(._) _
b= O (M Yorr,
n(K —1) (K-—K)xK

Third, in the low-penalty regime, one can first see that g,, gy, g. go to infinity as the A — 0,
thus, limy_,o, ||B*A*||r = oco. Then, the directions of the limiting behaviour is characterized right
above.

The solution of (6). Finally, one can use Lemma [E.I] to characterize the optimal solution of (6]
based on the above results.

O
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F PROOF OF SEVERAL LEMMAS

F.1 PRrROOF oF LEMMA[E.T]

Proof. We first observe that based on Proposition[C.1} Assumption[2.3|and Assumption[2:4] one has
WpreXft =0. (30)

Moreover, under Assumption we have X f—tr Xy = Ig,,. We apply change of variable as follows:
A = AXy, € R¥En,
Under this transformation, the objective in (6)) can be rewritten as follows
1 K n A ) )
T 2 D L (Yo, (Wne + BA)ze;) + 5 (1Bl +114]%)

c=1 j=1

K n
1 A
~%n Z ZLCE (Yo, BAXg€(c—1)ntj) + ) (IBlI% + 1AlI%)

c=1 j=1

K n
1 ~ A
:I_(n ZZECE (yc;BAe(c—l)n+j) + 5 (”BH% + HAAXft”%7 + ”AXftL”%‘)

e=1j=1
1 K n B A B
== 2> Lo (v BAeqeyyni ) + 5 (IBIF + 1417 + [AXn. 113 -
c=1 j=1

Notice that the component AX¢ | contributes only to the regularization term and does not affect
the cross-entropy loss. Hence at any global minimizer (B*, A*) of (6) we must have

AXft,J_ - 0
Moreover, if (B*, A*) is a global minimizer of the original problem, then
(B*, A* Xy)

is a global minimizer of the objective in (24). Conversely, let (B*, [1*) be any global minimizer of
(24)), then one can solve the following equation to obtain (B*, A*) which is a global minimizer of
the original objective in (6).

A* Xy = A*, A*Xg, =0. (31)
O

F.2 PROOF OF LEMMAI[E.2]

Proof. To show that there exists a unique value p) such that the (Problem one)) and (Problem twol)
enjoys the same set of solutions, we first introduce two additional optimization problems.

K n
. 1
min Z Z Lcg (Yo, Zee—1yntj) + M Z]lx, (Problem three)
c=1j=1
- 1 K n
min ZE:ECE(yC7 Ze(e—1yn+j) StZ|« < pa- (Problem four)
c=1 j=1

where Z € REXKn_ et Si(N\),i = 1,2,3,4 be the solution sets of the above four optimization
problems for the same fixed A\. We will show that

* S1(A) = S2(A), S3(A) = Sa(A).

* S3()N), S4(N) contains only one element for any fixed A > 0.
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« VB* A* € S1()\), one has B*A* € S3()\).
e Let S3(\) = S4(\) = {Z}}, then there exists B* A* = Z% such that (B*, A*) € S;(\).

Based on LemmalC.2] one can see that (Problem three) is a convex version of (Problem one)) in the

sense that V(B*, A*) € S1(A), B*A* € S3()\). Moreover, VZ* € S3(A), let the SVD of Z* be
Z* =UXVT. Then, B* = UX'/2, A* = 2Y/2V T is also a solution for (Problem one)). Generally
speaking, V(B*, A*) € S1(\) must satisfy

2|B* A%l = | B* |5 + | A%]1%.

Now we show has a unique solution, and it leads to S5(\) = S4()\) with certain
choices of py. Our analysis is based on the following lemma.
Lemma F.1 (Cross entropy loss with nuclear norm has a unique minimizer). For any A > 0, define
1 K n
O(Z:20) = =D Ler (e Zee—vynes) + Al 2],

n
c=1 j=1

where y. is a one-hot vector with c-th index equals one. Then ¢(Z; \) has a unique solution.

We refer the readers to later sections in Appendix [F-3|for the proof.

Based on Lemma [F1] has a unique solution, denoted by Z}. Then, one can choose
px = || Z3||+, and based on strong duality, (Problem three) and (Problem four) admits the same set
of solutions, i.e., S5(A\) = S4(A).

Next, we show that V(B*, A*) € So()\), it must satisfy
B*'A* € S4(N),  2B*A%|. = |B*|% + |A7%.

This is because first, the minimum objective value of and must be
equal. Given Z3 € S4(\), one can do balanced factorization, and obtain the corresponding B*, A,
This implies the minimum objective value of must be larger or equal than the one of
(Problem four). On the other hand, ¥(B*, A*) € Sa()), one has || B* A*|, < w < pa
which implies B* A* is a feasible solution of (Problem four)). Thus, this further implies the minimum
objective value of must be larger or equal than the one of (Problem two). Combine

these together, we concludfi that the minimurp objective value of (Problem two) and (Problem fourj
must be equal, and V(B*, A*) € S3(\), B*A* € S4(\) must hold.

Finally, we show S;(\) = S2(A).

This is because, on one hand, VB7, fl"{ € S1(X), from previous reasoning, they must satisfy
BiA7 € S3(A) = Sa(N),  IBilE = I 45]1% = pa,

and this indicates B}, A} € Sy(\).

On the other hand, YB3, A5 € S()\), they must satisfy
B3A; € S3(\) =Si(N),  IBslE = 1 A5]F = pa,

and this indicates B3, A5 € S»()). Thus, we finish the proof for S3(\) = Sa()).

The last step is to show pj is a continuous and non-increasing function of A that satisfies

lim = lim =0.
Pt pPx = 00, vl P
Continuity of p,. In this part, we will use Lemma [C.4]to prove the solution to (Problem three)) is

continuous, which implies that p) is a continuous function w.r.t. A. Notice Lemma|[C.4]is presented
for maximization problem, one can replace the objective f to — f to extend it to minimization prob-
lem. Moreover, it is obvious that the objective functon is continuous, convex, and the set of minimiz-
ers is single-valued for any fixed A > 0. Thus, in order to apply Lemma[C.4]to show the continuity
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of px, we only need to check C'(X), which is the range of Z, is a compact-valued correspondence.

At first glance, this seems wrong since Z can take any values in R¥ xEKn jp (Problem three). How-
ever, we will show that one can constrain the domain of Z which leads to the same minimizer.
Notice that when Z = 0, the objective in (Problem three) takes the value log K. Thus, we can

choose C'(\) = {Z HZ]« < k’g K } which is a compact set. Therefore, for any fix A, one can apply

Lemma [C.4|to show Zj is contlnuous w.r.t. A, which implies py := || Z§||. is also continuous w.r.t.

px is a non-increasing function. For any 0 < A1 < A, let Zy,, 2y, be the solution for
with the corresponding regularization penalty. Then, our first observation is
D(Zxz3 A2) < ¢(ZA1;>\2)
(23 M) + (A2 = M) 12, [l < (25 A1) + (A2 = M) 2, |l
B(Znsi M) — 6(Zaii M) < Ca = M) (1201 — 1 Z0alle)
= ¢(ZA2, A1) = ¢(Zxy; A1) < (A2 = A)(p(A1) — p(A2)).-

Notice Z), € argmin¢(Z; A1), thus, we have ¢(Zx,; A1) — ¢(Zx,; A1) > 0, and it leads to
p(A1) > p(A2). Therefore, py is non-increasing in A\. Moreover, p(A\1) = p(A2) is achieved iff

d(Z; A1) and ¢(Z; A2) admits a common solution and enjoys the same minimum objective value,
i.e., Zx, = Z»,. When this happen, we study the optimality condition

0 0
aZfb(ZAu 0) + M0 2, [« = éTqu(ZAz;O) + A0 Zx, |« -

Therefore, one has
A
0N 2l = 32001 2 - (32)

If Zy, = 0or Zy, = 0, due to the condition that p(A1) = p(A2), one must have Zy, = Z,, = 0. If
they are both non-zero, due to the definition of subdifferential of nuclear norm, one has

|2, |«

)

_ |a||zx2||*

2 2
which is contradictory to (32). Thus, when p(A1) = p()A2) holds, one must have Z, = Z,, = 0.

Asymptotic behaviour of p,. In this part, we aim to show

li = oo, li =0.
lim px = oo, lim py

We first use proof by contradiction to show that llm,\_>oo px = 0. Assume there exists M > 0
such that VA > 0, one has py > M. Then, we take a series A; such that lim; .., \; = oo,
and let S = {p(X\;)}$2,. Based on the assumption, we know all the elements in S has a
lower bound M. Moreover, we know V\;, p();) < lof\‘—f{ This is because ¢(0;\) = log K
which is independent of the choices of \;. Thus, there exists M’ such that Vp, € S, we have
pr < M’. Based on Bolzano—Weierstrass theorem, there exists a subsequence J;, such that
limg 00 p(Ni,) = M™* where M < M* < M’. However, in this case, limj_, o ¢(Z§7:k;)‘ik) >
limg 00 p(Aiy )N, P(Ni,) = oo. This is in contradictory to the assumption that Z;ik minimizes
d(Z; \i,) and ¢(0; A) = log K. Thus, one must have limy o px = 0.

Next, we first use proof by contradiction to show that limy_, px = co. Assume there exists N > 0
such that VA > 0, one has py < N. Let L* = mingz ¢(Z;0). Our first observation is that the

minimum L* is achieved when the norm of Z diverges. Moreover, for every R > 0, there exists a
€r > 0 such that

Ly >e¢r
Ly = mZingZ)(Z;O) st Z]|« < R.

Then, we pick a series A\, = %, Ry, = k, and choose

1; 0; 0; , 0;
~ 0 1 0 N 0
Zk =k n n n n

0, 0 0, 1,

O(Kfmn) xXmn
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Based on the optimality of Z3 , one must have

Kyn
—

A Z3 \) < O(Zis M) = log (1 + (K — 1) exp(—k)) +
On the other hand,
H(Z3,5 M) = d(Z3,;0) > en > 0.

Combine these two inequalities together, one has

Kyn
s

However, one can choose k sufficiently large that the above inequality breaks. Thus, there cannot
exist a N > 0 such that py < N holds VA > 0. Therefore, one must have limy_,¢ p) = co. O

en <log(1 + (K — 1) exp(—Fk)) +

F.3 PROOF oF LEMMA [F]]

Proof. Our starting point is the following lemma which is developed in Hong & Ling| (2023).

Lemma F.2 (Cross entropy loss is strongly convex in restricted direction). Define

K n
1
¢(Z) = n Z ZECE (Yes Ze(c—1yn+j) »

c=1 j=1

where y. is a one-hot vector with c-th index equals one. Then ¢(Z) is strongly convex in the direction
Az € REXE" that belongs to {Az : 1} Az = 0}.

We refer the readers to Lemma 5.1 in[Hong & Ling| (2023) for the proof. Based on Lemma [F.2] for
any Z* that minimizes ¢(Z; \) := ¢(Z) + \|| Z||... We first apply a decomposition of Z* as follows

1 1
7 = E1K1}Z* + (I — E1K1})Z*.
For simplicity, let P = I — %1 &1 be the projection matrix onto the space orthogonal to 1.
Based on the property of cross entropy loss, =151}, Z* does not affect the value of the cross entropy

term, i.e., ¢(Z*) = ¢(PZ*). Moreover, let the compact SVD of Z* be Z* = UZEZVZT. We first
consider the case when K > Kn. Based on Lemma|C.3| one has

|PZ* || = . max Tr(PZ*V)
VERRnxKn yTV=[z
=  max Te(PUZX,V, V)
VERKnXKn VTV=Ig,
rank(Z™")

< VeRmxg}la,éTv:Im ; 0i(PUz)0i(S2V, V)
rank(Z*)
= Y 0i(PUz)0i(2%)  V =[Vz.Vz.]
ranzk(IZ*)
< 3 azn=12]..

i=1

where the last inequality holds because P is a contraction map, and equality is achieved if and only
ifo;(PUz) = 0;(Uz) = 1,Vi < rank(Z*). On the other hand, P is an orthogonal projection, and
|PUz||F = |[Uz||F = if and only if Uy lies in the range of P, and it leads to

Z* = PZ*, 12" =0.

For the case when K < Kn, the analysis is the same. Based on Lemma constrained on the
space 1IT<Z = 0, the problem is strongly convex, and there exists a unique solution. Moreover, we
also show that the optimal solution must lies in ILZ = 0. Thus, the solution is unique. O
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G PROOF OF THEOREM [3.2]

In this section, we present the full version of Theorem[3.2]

For convenience, we will first define the following notations. Let WﬁoR A = Wpee + B A}, and
define the following shorthand for margins as: Ypre = Y(Wpre; Ppre)s Ves,x = V(BXAY; Die), and
Y = ’y(Wﬁ‘OR A5 Dpre U D). Additionally, given an K -class max-margin classifier Wi € RExd
on the fine-tuning data, let v, = v(([Wg; O(x_g)xal); Dst)-

With these definitions in place, we now present our main theorem.

Theorem G.1. Adopt the setup of Theoremand let ©:=||B} A} || F, the normalized margins of
Wﬁ‘OR A on the union of pre-training and fine-tuning data can be characterized uniformly as follows:

p O
’Y(WﬁoRA’ Dprc) :Wprc 2pre R ’Y(WI:\ORA’ th) = ’yft,)\ 5 )
\/ @)\—'_p%)re \/ 9)\ + plz)re
ry/\:min{,Y(WIf\oRA;Dpre)7’y(WI_),\oRA;th)} (33)
Moreover, ©, gz takes different values in:
(i) High—penalty regime )\ > %\/ﬁ Ox=t.x=0.
.. . . 1 . o o .
(ii) Intermediate regime )\ .y < A < VR O, = \/% and g\ = Vg Moreover, ©y is a
strictly decreasing function w.r.t. A
(iii) Low-penalty regime s ) <5, and
O):= \/nf(ai+nK(K71)b§\+nK(Kff()c?\ VA= a)‘(;_ a
A
. . Orerie Ve , S
Optimal trade-off choice of \. Assume pyc < ——"—=, then there exists a unique \* such that
Ypre
*
max =y = M, attained at A = \*. (34)
Acrit <A 77 (v3)? + Ve

Proof. Our key observation is that when one computes margin of W}, on the pre-training and
fine-tuning dataset, only Wy,c or B} A} will be activated. This is because due to Theorem [3.1} we
have shown that the product of the optimal LoRA adapters lies in the span of fine-tuning data, and
due to Proposition and Assumption, one also can show that W}, lies in the span of pre-training
data. Thus, under Assumption@ we can conclude By Az = 0if € Dy, and Wyrex = 0 if
x € Dg. Before beginning prove the margin takes the structures as is shown in Theorem|[3.2] we first
introduce the following notations. Let Wy = [w1, ..., wk] ", B{A% = [Swxq1, -+ ,0wx k]

Now, when we compute the margin of W} , on pre-training data, one has

: T T
MiN(y, | y)eDyre (We 4+ 0xc) & — maxizy (w; +0x,)

0 (Wf,\oRA; Dprc)

Wioralle
_ MiN(g, . y.)€Dpre w) z — max;z, w x . [Worell 7
Worell» IWeorallr

Ppre
Pree + IBXASIIE

= Ypre °
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Then, for the fine-tuning data, one has

MiN(,, | y)eDy (We + Ox,c) | @ — max;zy (w; + 6x;) ' @
Y(Wiora: Dit) = ot et s T L

||WI>4\OR,AHF
_ min(wi,c,yc)Eth §I’Cx — maXiy 5>Tvix . HB;AKHF
BLA; 7
1B A3 Pire + 1 BY AL
) B3 A5l
= Yft,\ ° 5
p123re + ||BT\A§||F

It suffices to compute | B A% || for different regimes of the regularization level.
High-penalty regime. In this regime, B A% = 0, so one has || B} A}||r = 0.
Intermediate regime. In the intermediate regime, one has

mia = (o M Yerl)xr.
Kn(K —1) (K-RK)xK

and one can compute its norm as follows

*A* 2 pi k 1 T TT12
3 K K —1 K—-1
- p_)\ . KTL( _ )2_,_( _)n
Kn(K—-1) K—-1 K K2
K-1
* * A% (|12 __ P
Thus, || BXAX|lF = [| B AL % = VE-1

Low-penalty regime. In this regime, B} A} takes the following form
- (a>\+b,\)1[( — b,\lkl—;—( T T
B/\A/\ - (< —cy 1K*l_(1—[[( ® 1n Xft )

and Frobenius norm is

IBX A3 E = v (ax+bx) Iz — by 1;}1})
F
= Vi \[Ka} + K(K ~ 1),
and
* a,\+b,\ Iz — by lKlT—)
B = K
B3zl = i (2 F2) 5 = et |

= Vi \JKd} + K(K — 1)1 + (K ~ K)Kd,.

(35)

(36)

Finally, we study the optimal choices of . First, it is obvious that v (W}, o3 Dpre) is a decreasing
function w.r.t. © and (W}, o; D) is an increasing function w.r.t.9 . In the intermediate regime

where ©), = O,, the optimal p) is achieved when
Y(Wihra; Pore) = ¥(Wiorai D) -

In Appendix |[E| we have shown that py is a continuous decreasing function w.r.t. A. Thus, ppre <

p()\crit) Vit
VK — 1vpre

Vft

implies p* = VE=1ppre Yore < p(Aeit) which further implies the corresponding

regularization level \* lies in the intermediate regime. Moreover, one can compute that in this case,

* * Y re"r/l§<
W)\ :D — W)\ Dy, ) = p t
7( LoRA pre) 7( LoRA ft) ’Y§re T (VE)Q
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Furthermore, we have shown that p* must be the solution of (Z8) in Appendix [E| We can simply
plug in the expression of p* to get the corresponding optimal \*.

O

H PROOF OF THEOREM 3.3

Proof. Following the same argument as in Appendix [G| one can show that the margin of linear
classifier Wi,ora for each task is

A/(WLORA(Q); Dpre) = “pre Ppre 5 (37)
\/p%)re + Zszl 0‘?63,3'
Y (Wiora(@); D;) = i @O . i=1,...,T. (38)
\/ppz)re + Z?:l O[?@A,j
Then, our goal is to solve the following optimization problem
max min <7pre Ppre . miny ;O ;
Q1,0 \/png + 23‘;1 O[?@%\J» i<T \/p%rc + 2?21 Ol?@)\,j

For convenience, we introduce the following notation z; = «;0, ;,7 € [T, then the above opti-
mization problem can be rewritten as
max mln( ppre’Ypr; ,  min Vitn = ) . 39)
2 ic[T 2
Pove T2 j=1 75 [ Pove T2 j=1 75

Let S :=/p2.. + Z;F:l 2% and t ;= min{Xgt, 2refee b then Problem 39|is equivalent to

max ¢ (40)

t,5,@1, ;o
S.L. Yils Z tS,’L S [T]
YprePpre > 1S,

T
Zm?—i—pgrezsz, S>0.
i=1

We first claim at optimum, the inequalities w.r.t. x; will be tight, i.e., x; = ty—S‘Ni € [T]. In this
case, one can see that

T T 1 1
Szngre+2x§252t2-(zvz+ )

2
j=1 i=1 ’ypre
1

1 T 1
+ L=
Vit

under the condition v;Z; = YprepPpre, Which is equivalent to o;; = %

Thus, the optimal value of the objective is ¢ < , and the equality is achieved

ci=1,...,T.

Finally, we show why the optimum of Problem [0]is achieved when all inequalities w.r.t. ; become
equality.

Suppose one inequality is slack. Assume for the optimal solution (t*,S*,x*) where x* =
(z1,+, @), there exists j € [T] such that ;27 > t*S*.

Shrink xj while fix ¢*. As we decrease :ch slightly, i.e., x;‘ — x;‘ — ¢€,€ > 0. Then, the new S will
be

S= [Pt D@2+ (@) — 02 < 5"
i#j
When e is sufficiently small, all the inequality w.r.t. other index will be slack since S < S, and

vi(x] —€) > t*S. Therefore, one can safely increase ¢* a little until one of the inequality becomes
tight, and it leads a larger objective value. Therefore, none of the inequality can be slack at global
optimum. [
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I EXPERIMENT

In this section, we present the detailed setup of the experiments in

Definition of superclasses of CIFAR-100. CIFAR-100 groups its 100 fine categories into 20 coarse

superclasses as follows

Table 1: CIFAR-100 coarse superclasses and their five fine labels.

Superclass

Fine classes (5 per superclass)

aquatic mammals

fish

flowers

food containers

fruit & vegetables

household electrical devices
household furniture

insects

large carnivores

large man-made outdoor things
large natural outdoor scenes
large omnivores & herbivores

beaver, dolphin, otter, seal, whale

aquarium fish, flatfish, ray, shark, trout
orchid, poppy, rose, sunflower, tulip

bottle, bowl, can, cup, plate

apple, mushroom, orange, pear, sweet pepper
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach
bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo

fox, porcupine, possum, raccoon, skunk
crab, lobster, snail, spider, worm

medium-sized mammals
non-insect invertebrates

people baby, boy, girl, man, woman

reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Construction of pre-training and fine-tuning tasks. For every superclass S, let its ordered fine
labels be [cf, ..., cS]. We build three disjoint labelled sets

Dpre = U{C‘f,cg,cg}, Dy = U{Cf}a Dy = U{C5S}
S S S

Hence D, contains 60 fine classes (three per super-class) while each fine-tuning task D; contains
exactly one new class per superclass, preserving maximal diversity yet zero overlap with Dp,.c.

Frozen feature extractors. We evaluate four widely used backbones, noting their different pre-

training dataset:

* ResNet-50 (He et al., 2016) (torchvision, supervised ImageNet-1K).

* ViT-Base/16 (Dosovitskiy et al [2021) (timm: first self-supervised on ImageNet-21K, then fine-
tuned on ImageNet-1K).

* ConvNeXt-Tiny (Liu et al., 2022) (timm: identical 21K — 1K pipeline as ViT).
» CLIP ViT-B/32 (Radford et al.||2021)) (OpenAT’s contrastive pre-training on web-scale image—text
pairs; no ImageNet supervision).

All models are kept frozen; we extract the CLS token (ViT/CLIP) or the global-average-pooled
penultimate tensor (CNNs) at 224 x 224 resolution for every CIFAR-100 image.

Hardware. All runs were executed on a single NVIDIA RTX A5000 (24 GB). End-to-end required
less than 1 hour of wall-clock time.

30



Under review as a conference paper at ICLR 2026

Pairwise Feature Correlation Distributions Across Architectures
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Figure 3: Distributions of pairwise feature correlation across four pre-trained models. The red
dashed line represent the mean value of correlations, and the dashed lines represent mean plus and
minus one std.

Pre-training stage. A linear classifier W, € R2°%? (d = embedding dimension) is trained from
scratch on Dy, for 2000 epochs with Adam (7 = 0.1). The 20 rows correspond to the super-classes,
not the 60 fine labels; this matches our theoretical model where each task’s labels share a common
output.

1.1  VALIDATION OF ORTHOGONAL DATA ASSUMPTION

In this section, we conduct a comprehensive feature correlation analysis on CIFAR-100. This analy-
sis quantifies both intra-class and inter-class correlations in the feature space to numerically validate

Assumption 2.3}

Let Fp(x) denote the feature extraction function of a neural network with parameters 6, where
x € R3*32X32 represents an input image from CIFAR-100. For each architecture (ResNet-50,
ViT-Base/16, CLIP ViT-B/32, and ConvNeXt-Tiny), we extract features from the penultimate layer,
obtaining feature vectors f; = Fp(x;) € R? for each training sample ;.

We organize the extracted features by class, creating sets S, = {f; : y; = ¢} for each class ¢ €
{0,1,...,99}, where y; is the ground truth label of sample x;.

Correlation Computation. For any two feature vectors f;, f; € R, we compute the Pearson
correlation coefficient:

_Covifify) S - RN -5
N T IRY Iy AT IRY Ly 5
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CLIP RESNET VIT CONVNEXT

Intra-class mean (std)  0.2725(0.0797)  0.2303(0.0701)  0.2535(0.0708)  0.2739(0.0820)

Inter-class mean (std) -0.0022(0.0679) -0.0024(0.0630) -0.0022(0.0573) -0.0026(0.0447)

Table 2: Mean and standard deviation of intra-class and inter-class feature correlations. Values
closer to zero indicate greater orthogonality between features.

where fi(k) denotes the k-th dimension of feature vector f;, and f; = é 22:1 fi(k) is the mean of

fi-

Intra-class Correlation. For each class ¢, we compute the average intra-class correlation:

1
intra ~ Te 1 /lel  1\7/9 i1 42

This measures how similar features are within the same class, indicating the consistency of learned
representations for semantically similar samples.

Inter-class Correlation. For any two distinct classes ¢; # c2, we compute the average inter-class
correlation:

pinter(clyc2) = # Z Z p(fi7fj) (43)

|561 | : |SC2 | Fi€8e, f5E€Se,

This quantifies the similarity between features from different classes, with lower values indicating
better class separation.

Correlation Matrix Construction. We construct a 100 x 100 correlation matrix R where:

pintra(i) ifi=j
Ri; = Jo 44)
! {pinter(l,j) if 7 75 7 (

Implementation Details. To ensure computational efficiency while maintaining statistical reliabil-
ity, we subsample feature pairs for correlation computation. Specifically, for each class we randomly
sample 100 points (100,000 in total). We first report the distribution of pairwise correlations across
all sampled points in Figure |3} To further distinguish intra-class and inter-class relationships, we
visualize the corresponding correlations as a heatmap in Figure 4] For intra-class correlations, we
randomly sample up to 100 pairs per class when the number of possible pairs exceeds this threshold;
for inter-class correlations, we sample up to 100 pairs for each class pair. This subsampling strategy
yields robust correlation estimates while keeping the computation tractable.

Figure [3] highlights two key observations: (1) most correlations are concentrated around zero, sup-
porting Assumption of orthogonal features; and (2) the mean correlation + one standard devi-
ation remains below 0.14, indicating that although the features are not perfectly orthogonal, their
pairwise angles are sufficiently close to orthogonal for our analysis.

Figure 4] illustrates three key observations: (1) higher diagonal values indicate consistent within-
class representations; (2) lower off-diagonal values suggest strong class separation; and (3) the em-
pirical mean correlations for intra-class inter-class, indicate that features across classes are nearly or-
thogonal while within-class features exhibit only moderate correlation (See Table[2). These findings
provide empirical support for Assumption [2.3] which posits orthogonality across both inter-class
and intra-class features. Extending the analysis to settings with more complex cluster structure or
stronger intra-class correlations remains an important direction for future work.
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CIFAR-100 Feature Correlation Analysis Across Architectures
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Figure 4: Feature correlation analysis across different pretrained models.

[.2 DETAILS FOR EXPERIMENTS IN §4.1]

For each fine-tuning task, we freeze the pre-trained weights W, and attach a rank-r LoRA block,
where 7 is set to the number of classes in the fine-tuning task. This satisfies Assumption[2.2] We
evaluate performance across three fine-tuning tasks with varying class counts: K = 5, 10, 20. Each
task is constructed by selecting the top K superclasses from Ds.

We fine-tune the model on each task using SGD for 3000 steps with a learning rate of 0.5, sweeping
over regularization values A € [107°,107!] with 50 logarithmically spaced regularization strengths.
For each K and each frozen feature extractor, we record both the empirically optimal regularization
parameter and the theoretically predicted one from Theorem [3.2] The detailed figures are given as
follows:

1.3 DETAILS FOR EXPERIMENTS IN §4.7|

For the experiments in we fine-tune Dy, D, using different LoRA adapters (B;, A;),i = 1,2
with LoRA rank 20. We fine-tune the LoRA adapters using Adam (n = 0.1) with regularization
parameter A = 5 x 10~7. Let (B}, A}),i = 1,2 be the optimal LoRA adapters we achieve at the
end of fine-tuning, we merge them together as follows

Wira (1, a2) = Wie + a1 BY A} + aa B; A

To seek for the optimal mixing coefficients (a, «s), we run grid search over a 50 x 50 lattice on
(0,1)2, and compare it with the optimal theoretical mixing coefficients presented in Theorem
We test different number of classes in the fine-tuning datasets, i.e., K = 5, 10, 20, and reports their
results here.
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1782
1783 Table 3: Empirical (Emp) and theoretical (Thm) optimal regularization parameters A for different
1784 pre-trained models and fine-tuning task sizes (K).
1785 Model K=5 K =10 K =20
1;23 reotot_ 5o Emp:0.002189  Emp:0.002189  Emp: 0.001092
Thm: 0.007424 Thm: 0.004158 Thm: 0.002121

1788 _ Emp: 0.000918 Emp: 0.001299 Emp: 0.000648
1789 VAITB/16  Thm:0.003304  Thm: 0.002763  Thm: 0.001551
1790 ConvNext Emp: 0.000458 Emp: 0.001299 Emp: 0.000648
1791 Thm: 0.006709 Thm: 0.003114 Thm: 0.002039
1792 CLIP Emp: 0.003687 Emp: 0.001839 Emp: 0.000771
1793 Thm: 0.001904 Thm: 0.001185 Thm: 0.001032
1794
1795 _
1796 Merged-model Accuracy across Architectures and K Values
- 1o 1o RESNET 10w CONVNEXT 1o CLIP
1798 . 0.8 0.8 0.8 0.8
1799 'E 0.6 0.6 0.6 0.6
1800 EOA 0.4 - 0.4 0.4
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e 0'8.00 0.25 0.50 0.75 1.00 0'8.00 0.25 0.50 0.75 1.00 0'8.00 0.25 0.50 0.75 1.00 06).00 0.25 0.50 0.75 1.00
1816 az az a az
1817
1818 * optimal (a1, a;) by Theorem 3.4 A optimal (a1, ;) by grid search
1819
1820
1821 Figure 5: Merged-model accuracy across architectures and different number of classes in the fine-
1300  tuning tasks. Each panel shows the accuracy of the merged model evaluated on the combined dataset,
1525 across a 50 x 50 grid of mixing coefficients (a1, as) € (0,1)2. For each architecture, the red star
1824 indicates the t}'le.oretically' predicted thimal coefficients from Theorem [3.3] while the red triangle
. marks the empirically optimal coefficients.
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