
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT ORTHOGONAL FINE-TUNING WITH
PRINCIPAL SUBSPACE ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Driven by the rapid growth of model parameters, parameter-efficient fine-tuning
(PEFT) has become essential for adapting large models to diverse downstream
tasks under constrained computational resources. Within this paradigm, orthogonal
fine-tuning and its variants preserve semantic representations of pre-trained models,
but struggle to achieve both expressiveness and efficiency in terms of parame-
ter counts, memory, and computation. To overcome this limitation, we propose
efficient Orthogonal Fine-Tuning with Principal Subspace adaptation (PSOFT),
which confines orthogonal transformations to the principal subspace of pre-trained
weights. Specifically, PSOFT constructs this subspace via matrix decomposition to
enable compatible transformations with higher rank, establishes a theoretical con-
dition that strictly maintains the geometry of this subspace for essential semantic
preservation, and introduces efficient tunable vectors that gradually relax orthogo-
nality during training to enhance adaptability. Extensive experiments on 35 NLP
and CV tasks across four representative models demonstrate that PSOFT offers a
practical and scalable solution to simultaneously achieve semantic preservation,
expressiveness, and multi-dimensional efficiency in PEFT.

1 INTRODUCTION

Pre-trained foundation models including large language models (LLMs) (Dubey et al., 2024) and
vision transformers (ViT) (Dosovitskiy et al., 2021) have transformed natural language processing
(NLP) (Qin et al., 2023) and computer vision (CV) (Liu et al., 2023). This success is attributed to
emergent abilities (Wei et al., 2022) that arise as these models are scaled up. However, their ever-
growing scale poses a practical barrier to efficiently tailoring (i.e., fine-tuning) these sophisticated
foundation models to specific downstream tasks. To address this challenge, parameter-efficient fine-
tuning (PEFT) has emerged as a promising paradigm that adapts models by updating only a minimal
subset of parameters (Houlsby et al., 2019; Lester et al., 2021; Li & Liang, 2021; Hu et al., 2021;
Meng et al., 2024; Liu et al., 2024a). Among PEFT studies, reparameterization-based methods (Hu
et al., 2021; Qiu et al., 2023) are widely adopted because they seamlessly integrate with pre-trained
weights without adding inference latency.

Pretrained
Weights

Wpre∈ℝd×n

A∈ℝd×r

B∈ℝr×n

x

h

LoRA

x

h

Pretrained
Weights

Wpre∈ℝd×n

Orthogonal
Weights
R⊥∈ℝd×d

OFT

Residual
Weights

Wres∈ℝd×n

A⊥∈ℝd×r

Principal Weights

Principal Weights
B∈ℝr×n

x

h

PSOFT

R⊥ ∈ℝr×r

+

×

+

×

a
lp

h
a
∈
ℝ

r

beta∈ℝr

Figure 1: Overview of the architectures of LoRA,
OFT, and the proposed PSOFT.

As illustrated in the left panel of Figure 1,
reparameterization-based methods include Low-
Rank Adaptation (LoRA) (Hu et al., 2021) and
Orthogonal Fine-Tuning (OFT) (Liu et al., 2021;
Qiu et al., 2023). LoRA has been widely
adopted for its efficient low-rank structure, but
it may distort semantic representations embed-
ded in the pre-trained weights. These semantic
representations can be understood as the geo-
metric structure of weight vectors, specifically
the pairwise angles and norms among columns,
which encode relational information learned dur-
ing pre-training. Distorting this structure may
weaken the model’s ability to transfer knowl-
edge to downstream tasks (Wang et al., 2023).
In contrast, OFT applies isometric orthogonal

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of LoRA, OFT variants, and the proposed PSOFT. The table summarizes the
trade-off among semantic preservation, multi-dimensional efficiency, and expressiveness (as reflected
in performance) across PEFT methods.

Methods Semantic Representations
(explicitly preserved)

Parameter-efficiency
Mechanism

Memory
Usage

Computational
Overhead Performance

LoRA (Hu et al., 2021) ✗ Low-rank Low Low Medium
Full OFT (Liu et al., 2021) Full space ✗ Very High Very High High

Block-diagonal OFT (Qiu et al., 2023) Full space Block-diagonal Medium Medium Medium-High
BOFT (Liu et al., 2024b)

& qGOFT (Ma et al., 2024) Full space Butterfly factorization
/ Givens rotation High High High

PSOFT (Ours) Principal subspace Low-rank* Low ↓ Low ↓ High ↑
* PSOFT attains a higher rank than LoRA with the same number of parameters, since it freezes the

projections and assigns all trainable parameters to the orthogonal matrix.

transformations, which strictly maintain this geometric structure and thereby preserve semantic
representations. However, full-dimensional orthogonal transformations are inefficient in terms of
parameter counts, memory, and computation, rendering them impractical for large-scale applications.

This contrast leaves a gap in PEFT between the efficiency of LoRA and the semantic preservation of
OFT. Building on OFT’s advantages, several studies have explored ways to improve its efficiency
while retaining its core strength. Early attempts such as block-diagonal OFT (Qiu et al., 2023)
reduced parameter counts and partially alleviated computational and memory overhead through
block-diagonal sparsity. However, the rigid block structure restricts the model’s expressiveness
(its ability to capture diverse transformations) and consequently limits the performance that can
be empirically attained. To address this limitation, later variants such as BOFT (Liu et al., 2024b)
and qGOFT (Ma et al., 2024) have sought to restore expressiveness while maintaining parameter
efficiency by composing multiple sparse orthogonal matrices in sequence. Yet this design incurs a new
drawback: chaining multiple sparse matrices introduces substantial intermediate states that dominate
runtime and memory consumption. Empirically, qGOFT has been reported to run nearly 6× slower
than LoRA during training (Ma et al., 2024), while BOFT and qGOFT frequently consume more than
80 GB of memory in large-scale model settings. Such overhead inflates training costs and undermines
their practicality. Thus, sparsity-driven OFT variants struggle to achieve both expressiveness and
efficiency across multiple dimensions. This tension underlies the central challenge of our work:

How to design a PEFT method that simultaneously achieves semantic preservation, expressiveness,
and multi-dimensional efficiency (parameter counts, memory, and computation)?

To address this challenge, motivated by evidence that both pre-trained models and their task-specific
adaptations reside in a low intrinsic rank (Li et al., 2018; Aghajanyan et al., 2021; Hu et al., 2021),
we propose efficient Orthogonal Fine-Tuning with Principal Subspace adaptation (PSOFT), as
illustrated in the right panel of Figure 1. The key idea is to confine orthogonal transformations
to the low-rank principal subspace of pre-trained weights, thereby overcoming the limitations of
conventional OFT operating in the full parameter space and simultaneously achieving semantic
preservation, expressiveness, and multi-dimensional efficiency.

However, realizing this idea is non-trivial, as it entails overcoming several technical difficulties:
1) Compatibility. A low-dimensional orthogonal transformation cannot be directly applied to the
high-dimensional weight matrix, leading to dimensional incompatibility with the pre-trained model.
2) Geometry preservation. Naively applying low-rank orthogonal transformations may distort
the geometry of the subspace, thereby undermining the strict preservation of essential semantic
representations. 3) Adaptability. Strict orthogonality constraints can hinder adaptation to slight
task-specific drifts, resulting in suboptimal performance on downstream tasks.

PSOFT resolves these difficulties through principled designs. First, it constructs a principal subspace
of pre-trained weights through matrix decomposition, enabling compatible orthogonal transformations
and yielding a higher rank that enhances expressiveness. Next, it establishes a theoretical condition
to strictly maintain the geometry of the subspace, thereby ensuring essential semantic preservation.
Finally, it introduces efficient tunable vectors to gradually relax orthogonality during training at
negligible cost, improving adaptability across diverse downstream tasks.

We validate PSOFT through extensive experiments on 35 NLP and CV tasks with four representative
pre-trained models. Compared with OFT variants, PSOFT consistently avoids out-of-memory (OOM)
failures and accelerates training. On small-scale models, it achieves up to 18× higher parameter

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

efficiency with the lowest memory footprint among baselines, without compromising average per-
formance. On larger models, PSOFT lowers the memory footprint of OFT to a level comparable
with LoRA-like methods while outperforming LoRA on GSM-8K (+2.3%) and Commonsense Rea-
soning (+1.4%) with comparable parameter counts. As summarized in Table 1, PSOFT preserves
semantic representation in the principal subspace while minimizing parameter counts, memory, and
computation overhead, and simultaneously maintains expressiveness as reflected in high performance.

The main contributions of this work are summarized as follows:

• We introduce a new low-rank perspective that unifies efficiency and expressiveness in OFT, bridging
the gap between low-rank adaptation and orthogonal fine-tuning.

• We establish a theoretical condition under which low-dimensional orthogonal fine-tuning strictly
preserves the geometric structure of the subspace.

• We propose PSOFT, a framework that confines OFT to the principal subspace with theoretical
guarantees and practical adaptability.

• We validate PSOFT through extensive experiments, establishing a practical and scalable solution to
simultaneously achieve semantic preservation, expressiveness, and multi-dimensional efficiency.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT). PEFT adapts pre-trained models to diverse down-
stream tasks by fine-tuning only a small subset of parameters. Specifically, existing PEFT meth-
ods fall into three categories: 1) Selection-based methods select specific components of the pre-
trained model without altering its architecture (Zaken et al., 2022; Song et al., 2024; Xu & Zhang,
2024). 2) Addition-based methods insert prompts or adapters at the input or within Transformer
blocks (Houlsby et al., 2019; Pfeiffer et al., 2020; Lester et al., 2021; Li & Liang, 2021; Liu et al.,
2022). 3) Reparameterization-based methods reparameterize weights in parallel with minimal
parameters (Hu et al., 2021; Azizi et al., 2024; Bałazy et al., 2024; Gao et al., 2024; Kopiczko
et al., 2024; Lingam et al., 2024; Liu et al., 2024a; Meng et al., 2024). Reparameterization-based
methods are particularly appealing since they incur no additional inference latency, with represen-
tative examples including LoRA (Hu et al., 2021) and OFT (Qiu et al., 2023). LoRA’s variants,
such as PiSSA (Meng et al., 2024) and DoRA (Liu et al., 2024a), improve convergence through
re-initialization and enhance performance via weight decomposition, respectively. DoRA decomposes
the low-rank update into direction and magnitude components, but it may introduce additional mem-
ory and computational overhead for computing these components. In addition, LaMDA (Azizi et al.,
2024) and LoRA-XS (Bałazy et al., 2024) reduce the parameter count and resource usage of LoRA
by employing more compact matrices. In LoRA-XS, the learnable square matrix is constrained by the
fixed LoRA matrices, which may limit its expressiveness. However, these LoRA-based methods may
induce semantic drift from the pre-trained representations (Wang et al., 2023), which can degrade
output quality in generative tasks.

Orthogonal Fine-Tuning (OFT). Unlike additive methods such as LoRA, multiplicative OFT
preserves semantic representations of pre-trained models through orthogonal transformations, which
maintains the hyperspherical energy among neurons (Liu et al., 2021; Qiu et al., 2023). To mitigate
the prohibitive cost of applying orthogonal transformations over the full parameter space, prior studies
typically introduce sparsity constraints. For instance, block-diagonal OFT (Qiu et al., 2023) adopts a
block-diagonal sparse structure to reduce parameter counts, though at the risk of undesired inductive
biases (Liu et al., 2024b). BOFT (Liu et al., 2024b) and qGOFT (Ma et al., 2024) address this issue
by replacing dense matrices with sequences of sparse multiplications, thereby improving parameter
efficiency while restoring expressiveness. Nevertheless, these variants remain less efficient in memory
and computation than LoRA and its variants. In parallel, AdapterR (Zhang & Pilanci, 2024) rotates the
top spectral space using orthogonal transformations to preserve spectral characteristics of pretrained
weights, in contrast to the geometric structure emphasized in OFT. Overall, existing OFT variants
struggle to achieve both expressiveness and efficiency across multiple dimensions.

These limitations motivate our PSOFT algorithm, which confines orthogonal transformations to
the principal subspace with a theoretical guarantee of preserving essential semantic representations,
followed by a relaxation of strict orthogonality at negligible cost to enhance adaptability.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

In this section, we formalize LoRA and OFT variants in mathematical notation, providing a unified
view of their parameterization strategies.

Conventional full fine-tuning (FFT) updates the entire pre-trained weight matrix Wpre ∈ Rd×n to
obtain W , whereas PEFT methods freeze Wpre and introduce only a small set of trainable parameters.
For LoRA (Hu et al., 2021), the update is parameterized by a low-rank decomposition:

h = W⊤x = (Wpre +AB)⊤x, s.t. rank(AB) = r, (1)

where A ∈ Rd×r and B ∈ Rr×n are trainable matrices. Following standard practice, A is initialized
with Kaiming initialization (He et al., 2015) and B with zeros, so training begins from Wpre.

For OFT (Liu et al., 2021; Qiu et al., 2023), the update is parameterized by an orthogonal matrix R,
which fine-tunes Wpre in the full parameter space, i.e., Wfs-tuned = RWpre. The forward pass is given
by:

h = W⊤
fs-tunedx = (RWpre)

⊤x, s.t. R⊤R = RR⊤ = Id, (2)
where R ∈ Rd×d is initialized as the identity matrix so that training begins from Wpre. By construc-
tion, orthogonal transformations in the full parameter space preserve both angles and norms, thereby
maintaining the geometric structure of Wpre.

To reduce parameter overhead, block-diagonal OFT (Qiu et al., 2023) constrains R to a block-
diagonal form R = diag(R1, · · · ,Ri, · · · ,Rd/r), where each Ri ∈ O(d/r). Although efficient,
this structure may introduce undesirable inductive bias. BOFT (Liu et al., 2024b) and qGOFT (Ma
et al., 2024) mitigate this by factorizing R into sparse matrices, R =

∏log d
m=1 R̃m, with each

R̃m ∈ Rd×d sparse. Assuming d is a power of two, log d is integral, ensuring a valid factorization.
This construction restores the expressiveness of dense rotations with reduced parameters.

4 METHODOLOGY

As discussed in Section 1, existing OFT variants such as BOFT and qGOFT still incur substantial
computational and memory overhead. Prior studies (Li et al., 2018; Aghajanyan et al., 2021; Hu
et al., 2021) further suggest that both pre-trained models and their task-specific adaptations lie in a
low-rank intrinsic subspace. Motivated by this insight, we propose Orthogonal Fine-Tuning with
Principal Subspace adaptation (PSOFT), which confines orthogonal transformations to the low-rank
principal subspace of Wpre. The complete algorithm is given in Appendix A, and the remainder of
this section details its design.

4.1 DIMENSION-COMPATIBLE ORTHOGONAL TRANSFORMS

Realizing orthogonal fine-tuning in the subspace requires a projection of high-dimensional weights
onto a low-dimensional subspace, since directly applying the orthogonal matrix R ∈ Rr×r to
Wpre ∈ Rd×n is infeasible due to dimensional incompatibility. To construct this projection, we
perform Singular Value Decomposition (SVD), Wpre = UΣV ⊤, and decompose it into Wpri and
Wres, such that Wpre = Wpri + Wres. Here, the subscript “pri” denotes the principal component
reconstructed from the top-r singular values and vectors, while “res” denotes the residual component.
The principal component Wpri is then used to derive symmetric low-rank matrices A and B as:

Wpri = U[:,:r]

√
Σ[:r,:r]︸ ︷︷ ︸

A∈Rd×r

√
Σ[:r,:r]V

⊤
[:,:r]︸ ︷︷ ︸

B∈Rr×n

∈ Rd×n (Symmetric), (3)

where A projects weights into the r-dimensional principal subspace, while B reconstructs them back.
The residual component Wres is then obtained from the remaining singular values and vectors:

Wres = Wpre −Wpri = U[:,r:]Σ[r:,r:]V
⊤
[:,r:] ∈ Rd×n. (4)

Building on this, we regard Wpri = AB as representing the initial principal subspace of Wpre. This
subspace enables dimension-compatible orthogonal transformations, yielding Wps-tuned = ARB,
where the subscript “ps-tuned” denotes the fine-tuned weights in the principal subspace for PSOFT.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Sparse Orthogonal Fine-Tuning
(OFT variants)

·········

d

d

···
Orthogonal
Weights R d

n

Preserve angles and norms
in the full space

Wfs-tuned = R · Wpre

BOFT,
GOFT ...

Col Vectors
 in Wpre

Col Vectors
 in Wfs-tuned

(OFT variants)

Residual
Weights Wres

Pre-trained
Weights Wpre

Decomposi�on

Orthogonal Fine-Tuning in the
Principal Subspace (PSOFT)

Pre-trained
Weights Wpre

A R

r
B

Principal

Weights Wpri

Wpri = A·B = A'·B'

Preserve angles and norms
in the principal subspace

Wps-tuned = A'·diag(α)· R ·diag(β)· B'

d

n

d d

n n

×

× ×

C1
C1

C2

C3

C2
C3

C1'

C2'

C3'

θ2
θ2

θ2

θ1

θ1

C1

C2

C2C3

C3

C1

θ1

CiCi
Col Vectors

in Wpri
Ci

Col Vectors
in Wps-tuned

(ini�al of PSOFT)
Ci

Col Vectors
in Wps-tuned

(PSOFT)
Ci'

Higher computa�onal cost

Larger GPU memory footprint Smaller GPU memory footprint

Lower computa�onal cost

Figure 2: Our proposed method: PSOFT. The left panel illustrates the principles of OFT variants. On
the right, PSOFT preserves the angles and norms of Wpri (blue) in the fine-tuned Wps-tuned (orange),
while allowing adjustable angles and scalable norms in the sector.

Unlike LoRA (Hu et al., 2021) and PiSSA (Meng et al., 2024), which train both A and B, PSOFT
freezes them and fine-tunes only the orthogonal matrix R. LoRA produces updates ∆W = AB that
span the low-rank manifold {∆W : rank(∆W) ≤ r} of dimension r(d+n−r). In contrast, PSOFT
generates updates ∆W = A(R − I)B parameterized solely by an orthogonal matrix R ∈ O(r),
where O(r) denotes the r(r − 1)/2-dimensional orthogonal group. Because the variability of ∆W
arises only through R, all updates remain confined to the fixed row and column subspaces defined
by A and B. Consequently, LoRA and PSOFT operate on fundamentally different geometric
families of updates (low-rank vs. orthogonal), and their expressiveness is therefore not directly
comparable. The same structural distinction also determines different feasible ranks under an equal
trainable-parameter budget M . LoRA trains two matrices, giving M = (d + n) rLoRA and thus
rLoRA = M/(d + n), whereas PSOFT trains only an orthogonal matrix, yielding M = r2PSOFT

and hence rPSOFT =
√
M . Since typically

√
M ≪ (d + n), we obtain rPSOFT ≫ rLoRA, which

explains why PSOFT empirically operates with much larger ranks under the same parameter budget.

4.2 GUARANTEED GEOMETRY PRESERVATION IN THE PRINCIPAL SUBSPACE

Orthogonal transformations within the constructed principal subspace in Section 4.1 merely ensure
dimensional compatibility but do not strictly preserve subspace geometry. In particular, applying a
low-dimensional orthogonal matrix R to the subspace spanned by symmetric A and B in Eq. 3 may
distort the pairwise angles and norms among the column vectors of Wpri. To address this issue, we
analyze the conditions under which orthogonal fine-tuning preserves the geometry of the principal
subspace, and present an informal Theorem 4.1, with the formal theorem and proof in Appendix B.

Theorem 4.1 (Informal: Angle and norm preservation in the principal subspace). Let Wpri = AB
denote the principal weights and Wps-tuned = ARB denote the fine-tuned weights. For Wps-tuned to
preserve (i) pairwise angles between columns, and (ii) column norms of Wpri, the following condition
must hold:

R⊤A⊤AR = A⊤A. (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We provide an intuitive explanation of Theorem 4.1. The geometry of the principal subspace is
determined by the relative angles and lengths of its column vectors, which are encoded in the Gram
matrix G = A⊤A. Any R satisfying R⊤GR = G can be viewed as a symmetry of this geometry,
similar to a rotation or reflection. In other words, if we first apply R to the columns of B and then
project them using A, their angles and lengths in the high-dimensional space remain unchanged.

In practice, normalizing A so that A⊤A = Ir simplifies the condition, in which case R reduces to a
standard orthogonal matrix. Accordingly, Eq. 3 is modified in PSOFT as:

Wpri = U[:,:r]︸ ︷︷ ︸
A′∈Rd×r

Σ[:r,:r]V
⊤
[:,:r]︸ ︷︷ ︸

B′∈Rr×n

∈ Rd×n (Asymmetric), (6)

where asymmetric A′ and B′ are derived from the top-r principal components of the SVD. The
residual Wres remains as in Eq. 4, and the forward computation becomes:

h = (Wps-tuned +Wres)
⊤x = (A′RB′ +Wres)

⊤x, (7)

where A′, B′, and Wres are frozen, and only R ∈ Rr×r is trainable, initialized as the identity matrix.

To satisfy Eq. 5 during training, it is ssential to maintain the orthogonality of R. Enforcing orthogo-
nality of R (e.g., via Gram-Schmidt orthogonalization) is computationally expensive. To reduce this
cost, following prior studies (Qiu et al., 2023; 2025), we adopt the Cayley parameterization (Cayley,
1894) to enforce the strict orthogonality of R, where R = (I −Q)(I +Q)−1 and Q = −Q⊤ is a
skew-symmetric matrix. Further details on the Cayley parameterization are provided in Appendix C.

4.3 EFFICIENT RELAXATIONS OF ORTHOGONALITY

Eqs. 6 and 7 guarantee geometry preservation in the principal subspace, but strict orthogonality con-
straints may hinder adaptation to task-specific drifts, leading to suboptimal performance. Empirical
evidence shows that moderate relaxation improves results (Ma et al., 2024). Yet existing methods
sacrifice efficiency: qGOFT relaxes constraints more flexibly but requires four times the parameters
of GOFT (Ma et al., 2024), while BOFT relaxes them through additional scaling vectors on the output
dimension, whose size grows linearly with model scale (Liu et al., 2024b). To overcome these issues,
we propose efficient relaxations of PSOFT that enhance adaptability with minimal overhead.

Specifically, we introduce two tunable vectors that modulate the input and output norms around the
orthogonal matrix, modifying Eq. 7 to yield the following forward computation:

h = (A′ diag(α)R diag(β)B′ +Wres)
⊤x (PSOFT), (8)

where A′, B′, and Wres remain fixed, while only R and the tunable vectors α and β are trained.
Both vectors are initialized as all-one vectors to ensure strict orthogonality at the start of training.
As illustrated in Figure 2, PSOFT relaxes this constraint during training, enabling adjustable angles
and scalable norms that adapt to task objectives. As these two additional vectors are inserted within
the subspace, the overhead is limited to 2r parameters (2r ≪ n, where n is the output dimension),
enhancing adaptability with minimal cost and without significantly affecting the geometric structure.

To avoid excessive deviation from orthogonality, an explicit constraint can be imposed:∥∥C⊤C − I
∥∥
F
≤ ϵ, where C = diag(α)R diag(β). Deviation arises when either diag(α) or

diag(β) deviates from a scalar multiple of the identity. In the special case where diag(α) = λ1I
and diag(β) = λ2I , angular relationships are preserved and magnitudes are uniformly scaled.

In summary, PSOFT performs orthogonal fine-tuning to the low-rank principal subspace, enabling
dimension-compatible transformations with theoretical guarantees on subspace geometry, while
relaxing strict orthogonality at negligible cost to enhance adaptability. It requires only r(r−1)/2+2r
trainable parameters by combining the Cayley parameterization with two efficient tunable vectors.
Moreover, it reduces both the number and size of additional matrices (from min(d, n) to r, with
r ≪ min(d, n)), thereby yielding substantially lower activation memory than other OFT variants
under the same batch size and sequence length. Detailed comparisons of parameter counts and
activation memory analysis across different PEFT methods are provided in Appendices D and E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

To evaluate PSOFT, we conduct experiments on 35 tasks spanning language and vision domains,
using encoder-only models (DeBERTaV3-base (He et al., 2021), ViT-B/16 (Dosovitskiy et al., 2021)),
and decoder-only models (LLaMA-3.2-3B (Meta AI, 2024), LLaMA-3.1-8B (Dubey et al., 2024)).
These models are fine-tuned on downstream tasks, covering natural language understanding (Wang,
2018), visual classification (Zhai et al., 2019), mathematical QA (Yu et al., 2024), and commonsense
reasoning (Hu et al., 2023). We evaluate key metrics such as parameter counts, peak memory usage,
and accuracy in the main experiments, and assess training speed separately in the efficiency analysis.
Following OFTv2 (Qiu et al., 2025), we implement the Cayley parameterization by approximating
(I + Q)−1 with a truncated Neumann series,

∑K
k=0(−Q)k, using K = 5 terms in practice. All

experiments are performed on a single GPU with FP32 precision, using an NVIDIA RTX 4090 (24
GB) for encoder-only models and an NVIDIA H100-SXM (80 GB) for decoder-only models.

Baselines. We employ state-of-the-art OFT variants with other advanced PEFT methods as baselines:

• FFT (Howard & Ruder, 2018) updates all model weights during fine-tuning.
• GOFTv2 & qGOFTv2 (Ma et al., 2024) replace full-space OFT with Givens rotations. The latest

implementation uses Hadamard products instead of sparse multiplication.
• BOFT (Liu et al., 2024b) substitutes full-space OFT with butterfly factorization.
• OFTv2 (Qiu et al., 2023; 2025) employs a block-diagonal structure for OFT, with the latest version

adopting an input-centric computation and Cayley-Neumann parameterization.
• LoRA (Hu et al., 2021) freezes pre-trained weights and adjusts only two low-rank matrices.
• PiSSA (Meng et al., 2024) improves LoRA initialization to fine-tune principal weights.
• DoRA (Liu et al., 2024a) decomposes low-rank adaptation into direction and magnitude.
• LoRA-XS (Bałazy et al., 2024) injects and tunes a single square matrix between LoRA’s matrices.

Table 2: Experimental results of fine-tuned DeBERTaV3-
base. Results are averaged over 5 random seeds. Memory
(GB) denotes peak memory with sequence length 64.

Methods #Params Memory
(GB) CoLA STS-B RTE MRPC SST2 QNLI Avg.

FFT 184M 5.9 67.56 91.46 82.88 90.69 94.13 93.37 86.68

GOFTv2 0.08M 18.5 65.45 N/A. (OOM)
qGOFTv2 0.33M 18.5 68.03 N/A. (OOM)
BOFTb=8

m=2 1.41M 6.3 68.85 91.09 83.60 88.40 95.28 93.78 86.83
OFTv2b=32 1.29M 4.5 66.79 91.22 84.03 89.61 93.72 92.64 86.34
LoRAr=8 1.33M 4.5 67.98 91.60 84.87 90.20 95.28 93.89 87.30
PiSSAr=8 1.33M 4.5 66.50 91.40 83.77 89.90 93.17 92.72 86.24
DoRAr=8 1.41M 5.8 67.06 91.60 87.19 90.49 95.23 94.09 87.61
LoRA-XSr=136 1.33M 4.2 64.67 91.48 84.17 91.27 93.85 93.14 86.43
PSOFTr=46 0.08M 4.1 70.42 91.56 86.74 90.49 95.55 93.47 88.04

Encoder-only Models. We evalu-
ate PSOFT by fine-tuning DeBER-
TaV3 (He et al., 2021) on sev-
eral datasets from the GLUE bench-
mark (Wang, 2018). Following prior
work (Wu et al., 2024a;b; Bini et al.,
2025), we split the original validation
set into new validation/test sets with
a fixed seed, and report test accuracy
from the best validation checkpoint
to ensure rigorous evaluation. Details
are in Appendix F.

As shown in Table 2, GOFTv2 and
qGOFTv2 have non-tunable parame-
ters and often encounter OOM failures
as the sequence length increases. PSOFT improves parameter and memory efficiency without com-
promising performance. Although GOFT and PSOFT have the same parameter counts, PSOFT
reduces memory usage by about 80% and avoids OOM issues. It further achieves up to an 18×
improvement in parameter efficiency over BOFT, OFTv2, and LoRA variants, attaining the best
average performance across all baselines with the lowest memory footprint. Compared with LoRA
variants that do not rely on weight decomposition, DoRA introduces additional memory overhead.
For LoRA-XS, the update is constrained by the initialization of its low-rank matrices, which limits its
expressiveness and consequently leads to degraded performance. These results highlight PSOFT’s
ability to achieve both efficiency and performance.

We also evaluate PSOFT by fine-tuning ViT-B/16 (Dosovitskiy et al., 2021) on the VTAB-1K
benchmark (Zhai et al., 2019). Further details are provided in Appendix G. As shown in Table 3.
PSOFT extends its efficiency-performance advantages on the small-scale model from language tasks
to vision tasks. Beyond avoiding the heavy memory demands of GOFTv2 and qGOFTv2, PSOFT
consistently reduces the memory overhead of BOFT and OFTv2. Compared to LoRA and its variants,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Experimental results of fine-tuned ViT-B/16 on the VTAB-1K benchmark. Reported values
(top-1 accuracy %) are the mean of 5 runs with different random seeds.

Methods

#P
ar

am
s

M
em

(G
B

)

Natural Specialized Structured

Av
g.

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D
10

2

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
AT

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

FFT 85.9M 8.2 70.7 89.3 69.5 99.0 90.4 81.7 54.9 85.4 93.6 83.8 74.5 58.3 51.5 43.2 75.0 73.1 48.7 16.4 30.0 67.8
GOFTv2 0.08M OOM N/A.
qGOFTv2 0.33M OOM N/A.
BOFTb=8

m=2 1.41M 10.9 70.6 88.2 69.8 99.0 91.4 77.4 55.1 85.1 93.6 82.3 74.9 61.8 50.4 42.9 76.1 73.7 48.8 15.7 30.8 70.9
OFTv2b=32 1.29M 7.7 68.5 88.9 67.5 98.4 89.5 86.9 53.6 86.0 94.1 84.2 74.6 58.7 56.4 46.7 78.5 81.1 48.1 17.3 32.5 72.1
LoRAr=8 1.33M 9.9 71.4 88.4 70.1 99.0 91.4 76.6 55.7 85.9 94.2 83.3 74.1 72.0 54.3 43.0 76.6 74.8 48.6 16.4 31.8 71.8
PiSSAr=8 1.33M 9.9 70.7 88.7 68.9 99.2 91.0 81.9 53.3 82.6 93.4 83.0 74.0 71.0 60.2 44.0 77.1 81.9 51.8 18.1 33.1 72.3
DoRAr=8 1.41M 17.8 70.7 89.0 69.8 98.9 91.0 81.7 55.5 85.7 94.2 83.5 74.8 67.3 54.2 45.1 77.4 82.0 48.5 16.9 31.5 72.3
LoRA-XSr=136 1.33M 6.6 68.5 89.4 68.4 98.7 90.9 84.5 54.1 84.0 94.3 80.8 73.6 60.0 57.7 45.8 79.6 80.6 48.1 17.4 30.8 71.6
PSOFTr=46 0.08M 6.2 71.9 89.6 70.3 99.1 91.8 86.9 55.9 84.6 94.2 82.4 75.2 71.2 59.9 45.7 79.6 80.9 52.9 20.0 32.9 73.4

it achieves the best average accuracy with about 94% fewer parameters and the lowest peak memory
footprint. Interestingly, we also observe that parameter counts and memory overheads of different
PEFT methods do not necessarily correlate. For example, the weight decomposition in DoRA
introduces substantial memory overhead on the ViT-base model compared with other LoRA variants,
even when the number of trainable parameters is similar. This suggests that PEFT design should
consider multi-dimensional efficiency beyond parameter efficiency alone.

Table 4: Experimental results of fine-tuned
LLaMA-3.2-3B on GSM-8K and MATH.

Methods #Params Memory
(GB) GSM-8K MATH

FFT 3.21B 69.0 63.00 16.84

GOFTv2 0.75M OOM N/A.
qGOFTv2 2.98M OOM N/A.
BOFTb=2

m=2 3.76M OOM N/A.
OFTv2b=32 11.6M 35.2 61.03 15.70
LoRAr=8 12.2M 32.2 60.80 15.76
PiSSAr=8 12.2M 32.2 61.26 14.96
DoRAr=8 12.9M 43.4 62.62 15.48
LoRA-XSr=248 12.1M 34.4 61.56 15.02
PSOFTr=352 12.2M 36.2 63.08 15.98

Decoder-only Models. Following prior
work (Lingam et al., 2024; Liu et al., 2024b), we
fine-tune the LLaMA-3.2-3B (Meta AI, 2024)
model on MetaMathQA-40K (Yu et al., 2024)
and evaluate on GSM-8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). For large-
scale models and complex tasks, where perfor-
mance is more sensitive to parameter counts, we
align trainable parameters by setting the LoRA
rank to 8 to ensure a fair comparison. PEFT
modules are applied to all linear layers, with ad-
ditional hyperparameter details in Appendix H.

As shown in Table 4, as models scale up, BOFT
suffers from OOM failures like GOFTv2 and
qGOFTv2, whereas PSOFT avoids this issue. PSOFT reduces the peak memory footprint of OFT
variants to a level comparable with LoRA-like methods, while delivering superior performance
under similar parameter counts. Against advanced PEFT methods, it outperforms LoRA (+2.28%)
on GSM-8K and PiSSA (+1.02%) on MATH, while maintaining memory usage comparable to
LoRA-like baselines. Compared to the sparsity-based OFTv2, PSOFT achieves higher performance
at comparable cost. When scaling to large models and complex reasoning tasks, PSOFT adapts by
employing a higher rank r to ensure sufficient expressiveness, yet still maintains efficiency and clear
memory advantages over BOFT, GOFTv2, qGOFTv2, and DoRA. Although increasing the rank
may enhance the expressiveness of LoRA-XS, its performance remains fundamentally constrained
by the initialization: the inserted square matrix is trainable only as a linear combination within the
original low-rank subspace. Even under restricted module insertion and tighter parameter budgets,
PSOFT still reduces memory overhead relative to qGOFTv2 and BOFT (Table 13 in Appendix H),
demonstrating strong scalability to large models and complex mathematical tasks.

Following prior work (Hu et al., 2023; Lingam et al., 2024; Liu et al., 2024a), we further fine-tune
LLaMA-3.1-8B (Dubey et al., 2024) on the Commonsense-15K dataset (Hu et al., 2023) and evaluate
it on eight commonsense reasoning benchmarks. PEFT modules are applied to the Q,K, V, U,D
linear layers. Appendix I details the hyperparameter settings. As shown in Table 5, PSOFT mitigates
the frequent OOM issues of OFT on larger models while achieving the best average performance. In
practice, GOFTv2, qGOFTv2, and BOFT suffer from OOM failures even without inserting modules
into all linear layers, severely limiting their use in large-scale fine-tuning, whereas PSOFT provides a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Experimental results of fine-tuned LLaMA-3.1-8B on commonsense reasoning benchmarks.

Methods #Params Memory
(GB) BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.

FFT 8.03B OOM N/A.

GOFTv2 0.98M OOM N/A.
qGOFTv2 3.93M OOM N/A.
BOFTb=2

m=2 4.72M OOM N/A.
OFTv2b=32 14.3M 55.5 70.83 84.44 73.34 90.63 74.11 90.87 80.12 81.80 80.77
LoRAr=8 14.2M 54.1 73.18 85.31 74.36 86.57 74.19 90.95 80.29 84.00 81.11
PiSSAr=8 14.2M 54.1 71.22 86.02 75.38 90.27 74.19 89.90 79.44 84.00 81.30
DoRAr=8 14.9M 65.6 73.09 85.96 75.08 90.48 75.53 90.74 81.40 84.40 82.09
LoRA-XSr=298 14.2M 56.2 72.35 86.51 75.18 91.73 74.98 90.74 79.52 84.00 81.88
PSOFTr=424 14.5M 58.4 72.17 86.51 75.79 91.28 75.61 91.46 81.48 86.00 82.54

more memory-friendly alternative. Under comparable costs, it surpasses OFTv2 by 1.77% in average
accuracy, matches the memory efficiency of LoRA-like baselines while delivering higher accuracy,
and reduces memory usage by about 7 GB relative to DoRA. As the model size increases, DoRA
attains performance that is surpassed only by PSOFT, but its memory overhead becomes noticeably
higher than that of other LoRA variants. PSOFT further remains effective under reduced parameter
budgets and restricted module insertion (Table 15 in Appendix I), underscoring its practicality in
balancing efficiency and performance across diverse settings.

Table 6: Effect of orthogonality of R on LLaMA-3.2-3B.

Methods #Params GSM-8K MATH

PiSSA+LoRA-XSr=248 (η=0.0) 12.1M 61.26 14.72
PiSSA+LoRA-XSr=248 (η=0.01) 12.1M 61.26 14.80
PiSSA+LoRA-XSr=248 (η=0.1) 12.1M 59.89 14.90
PiSSA+LoRA-XSr=248 (η=1.0) 12.1M 59.36 14.44
PSOFTr=248 (strict orthogonality) 6.0M 61.18 14.80
PSOFTr=352 (strict orthogonality) 12.1M 62.77 15.74

none only only and
PSOFT with tunable vectors

50.0

50.5

51.0

51.5

52.0
GS

M
-8

K
Ac

cu
ra

cy
 (%

)

50.19

50.72 50.57

51.63

Figure 3: Effect of tunable vectors.

Ablation Studies. To study the effect of orthogonality of R, we follow AdaLoRA (Zhang et al., 2023)
and add an orthogonality regularizer Lorth = ∥R⊤R− I∥F , resulting in the objective L = L+ ηLorth
with weight η. Setting η = 0 recovers PiSSA+LoRA-XS with unconstrained R. As shown in Table 6,
this regularization avoids Cayley inversion but demands careful tuning. Under equal rank, PSOFT
with strict orthogonality matches the unconstrained variant with half the parameters, and achieves
clear gains once parameter counts are aligned. Therefore, Cayley parametrization in PSOFT not only
enforces orthogonality but also exploits its skew-symmetric structure to improve parameter efficiency.

To study the effect of tunable vectors α and β, we fine-tune LLaMA-3.2-3B with rank 64, inserting
PSOFT into all linear layers and evaluating on GSM-8K and MATH. As shown in Figure 3, enabling
both vectors achieves the best performance, while single-sided insertion provides smaller gains. This
suggests that tuning only one side lacks sufficient capacity to capture task-specific variations.

Table 7: Effect of initialization.

Methods RTE CoLA

AorthRorthB 85.92 70.63
ARorthBorth 52.71 67.97
ARorthB 71.11 69.23

To study the effect of initialization, we compare three
variants: AorthRorthB, ARorthBorth, and ARorthB, where A
and B follow PiSSA (Meng et al., 2024) and Aorth, Borth
use orthogonal initialization with rank 64. As shown in
Table 7, AorthRorthB yields the best results, outperforming
PiSSA without constraining A and B, whereas enforcing
orthogonality on B reduces model expressiveness.

Memory and Computational Efficiency. We evaluate memory usage among different batch sizes by
fine-tuning ViT-B/16 on VTAB-1K with PEFT modules in all linear layers. As shown in Figure 4a,
PSOFT consistently requires less memory than advanced OFT variants across batch sizes, maintaining
a peak footprint below 4 GB even at batch size 32, which highlights its suitability for resource-
constrained settings.

We also evaluate the computational cost under the same experimental settings on a single H100 GPU
as in Tables 4 and 5. As shown in Figure 4b, on LLaMA-3.2-3B, PSOFT (Q,K,V) trains in 57 minutes,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1 4 8 16 32 64 128
Batch Size

4

8

16

24

Pe
ak

 G
PU

 M
em

or
y

(G
B)

OOM OOM OOM OOM
BOFTb = 8

m = 2

BOFTb = 4
m = 4

GOFT-V2
qGOFT-V2
PSOFTr = 46 (ours)

(a)

qGOFTv
2

GOFTv
2

BOFT
PSOFT

0
1
2
3
4

Tr
ai

ni
ng

 S
pe

ed

1.0× 1.0×
1.7×

3.5×

LLaMA-3.2-3B (Q,K,V)

qGOFTv
2

GOFTv
2

BOFT
DoRA

PSOFT
LoR

A
0

1

2

1.0×
1.3×

2.0×
(OOM)
N/A.

LLaMA-3.2-3B (Q,K,V,U,D,O,G)

qGOFTv
2

GOFTv
2

BOFT
PSOFT

0
1
2
3
4

Tr
ai

ni
ng

 S
pe

ed

1.0×

3.2×

(OOM)
N/A.

LLaMA-3.1-8B (Q,V)

qGOFTv
2

GOFTv
2

BOFT
DoRA

PSOFT
LoR

A
0

1

2

1.0×

1.7×
2.1×

(OOM)
N/A.

LLaMA-3.1-8B (Q,K,V,U,D)

(b)
Figure 4: (a) Memory usage across batch sizes. (b) Training speed across different models.

yielding 3.5× and 2.1× speedups over GOFTv2/qGOFTv2 and BOFT, respectively, while its full
configuration (Q,K,V,U,D,O,G) requires 1 hour 31 minutes and achieves a 1.3× speedup over DoRA.
On LLaMA-3.1-8B, PSOFT (Q,V) completes training in 29 minutes with a 3.2× speedup over BOFT,
and PSOFT (Q,K,V,U,D) finishes in 53 minutes, running 1.7× faster than DoRA. Compared with
other PEFT methods, its computational efficiency falls between that of DoRA and LoRA.

6 DISCUSSION ON SCALING TO LARGER MODELS

Due to hardware resource constraints, our empirical evaluation is limited to models of up to 8B
parameters. Nevertheless, we further discuss the potential limitations and stability considerations
when extending PSOFT to larger-scale models. From a methodological perspective, PSOFT scales
favorably as model size increases. Because the orthogonal transformation operates in an r-dimensional
principal subspace rather than the full d-dimensional weight space, both computational and activation-
memory costs grow with the controllable rank r instead of the expanding dimension d required
by many PEFT methods (a detailed analysis is provided in Appendix E). As shown in Appendix J
(Tables 17 and 18), memory usage and training time remain stable as r increases. The subspace-
based update also avoids the long chains of full-dimensional multiplications used in GOFT and
BOFT, which become increasingly expensive at larger scales. Moreover, the number of trainable
parameters in PSOFT is decoupled from the hidden dimension, enabling fine-grained parameter
control and preventing the minimum parameter budget from being tied to layer width. Collectively,
these properties indicate that PSOFT can extend effectively to larger architectures while maintaining
stable optimization behavior.

However, when applying PSOFT to models larger than 8B, several practical factors may need to be
considered. Large models often exhibit higher sensitivity to hyperparameters, including learning-rate
settings for structured updates such as orthogonal transformations. While PSOFT does not rely on
full-dimensional orthogonal matrices, stable training at very large scales may still require careful
hyperparameter tuning. Moreover, although the activation-memory growth of PSOFT is slower
than that of some OFT approaches, the activations of the underlying backbone (e.g., attention and
feed-forward layers) can become the dominant source of memory usage at large scales, which may
constrain the choice of batch size or sequence length. Finally, as shown in the main experiments and
in the additional rank-sensitivity analyses in Appendix J, larger models tend to benefit from higher
ranks to capture task-specific variations. Very small ranks may lead to underfitting on complex tasks,
whereas larger ranks improve expressiveness but also increase the trainable parameter budget.

7 CONCLUSION

In this work, we have proposed PSOFT, a novel PEFT framework that confines OFT to the principal
subspace with theoretical guarantees, while enhancing practical adaptability through two tunable
scaling vectors. Extensive experiments demonstrate that PSOFT introduces a low-rank perspective
that resolves the tension between expressiveness and multi-dimensional efficiency in OFT, bridges
the gap between orthogonal fine-tuning and low-rank adaptation within the broader PEFT landscape,
and offers a solution with superior scalability and practicality for adapting future foundation models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work and have taken the following steps.
For the proposed method, we provide source code in the supplementary materials. For theoretical
results, we include formal statements and complete mathematical proofs in Appendix B. For datasets
and experimental settings, we offer detailed descriptions and full hyperparameter configurations in
Appendices F, G, H, and I.

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 7319–7328, 2021.

Seyedarmin Azizi, Souvik Kundu, and Massoud Pedram. LaMDA: Large model fine-tuning via spec-
trally decomposed low-dimensional adaptation. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 9635–9646, 2024.

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adaptation
with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Massimo Bini, Leander Girrbach, and Zeynep Akata. Decoupling angles and strength in low-rank
adaptation. In International Conference on Learning Representations, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Arthur Cayley. The collected mathematical papers of Arthur Cayley, volume 7. University of
Michigan Library, 1894.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In The Ninth International Conference on Learning Representations, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li. Parameter-
efficient fine-tuning with discrete fourier transform. In International Conference on Machine
Learning, 2024.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799, 2019.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 328–339, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of
large language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5254–5276, 2023.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
models. Proceedings of Machine Learning and Systems, 5:341–353, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In The Sixth International Conference on Learning Representations, 2018.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Vijay Lingam, Atula Tejaswi Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,
Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and sujay sanghavi. SVFT:
Parameter-efficient fine-tuning with singular vectors. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In International
Conference on Machine Learning, 2024a.

Weiyang Liu, Rongmei Lin, Zhen Liu, James M Rehg, Liam Paull, Li Xiong, Le Song, and Adrian
Weller. Orthogonal over-parameterized training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7251–7260, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In The Twelfth
International Conference on Learning Representations, 2024b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
61–68, 2022.

Xinyu Ma, Xu Chu, Zhibang Yang, Yang Lin, Xin Gao, and Junfeng Zhao. Parameter efficient
quasi-orthogonal fine-tuning via givens rotation. In International Conference on Machine Learning,
2024.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. PiSSA: Principal singular values and singular
vectors adaptation of large language models. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Meta AI. Llama 3.2: Revolutionizing edge ai and vision with
open, customizable models. https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/, September 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi Yang. Is
chatGPT a general-purpose natural language processing task solver? In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances
in Neural Information Processing Systems, 36:79320–79362, 2023.

Zeju Qiu, Weiyang Liu, Adrian Weller, and Bernhard Schölkopf. Orthogonal finetuning made
scalable. In EMNLP, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 4463–4473, 2019.

Weixi Song, Zuchao Li, Lefei Zhang, hai zhao, and Bo Du. Sparse is enough in fine-tuning pre-trained
large language models. In Forty-first International Conference on Machine Learning, 2024.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

13

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 10658–10671, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Zhu JianHao,
Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Advancing parameter efficiency in fine-
tuning via representation editing. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 13445–13464, 2024a.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Manning,
and Christopher Potts. ReFT: Representation finetuning for language models. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024b.

Jing Xu and Jingzhao Zhang. Random masking finds winning tickets for parameter efficient fine-
tuning. In International Conference on Machine Learning, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Fangzhao Zhang and Mert Pilanci. Spectral adapter: Fine-tuning in spectral space. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ORGANIZATION OF THE APPENDIX

The appendix is organized as follows:

• Appendix A introduces the algorithm of the proposed PSOFT.
• Appendix B provides the theoretical proof for the column-wise angle and norm preservation

theorem.
• Appendix C presents theoretical details of the Cayley parameterization.
• Appendix D compares the number of trainable parameters across popular PEFT methods.
• Appendix E analyzes activation memory statistics for different PEFT methods.
• Appendix F outlines experimental details for natural language understanding on GLUE.
• Appendix G covers experimental details for visual classification on VTAB-1K.
• Appendix H reports experimental details for mathematical question answering on MetaMathQA-

40K.
• Appendix I describes experimental details for commonsense reasoning on Commonsense-15K.
• Appendix J details extended experiments on the effects of SVD initialization, different rank settings,

inserted modules, and Neumann terms.
• Appendix K presents the angular structure of the weight changes before and after fine-tuning.
• Appendix L analyzes the difference between PSOFT and full-space OFT in terms of their optimiza-

tion dynamics and training loss trajectories.
• Appendix M provides the additional memory usage experiments covering a single linear layer, a

Transformer block, and end-to-end models.
• Appendix N explains the use of large language models in this paper.

A ALGORITHM OF THE PROPOSED PSOFT

For completeness, we provide a detailed description of the proposed PSOFT framework, which
corresponds to Algorithm 1. For initialization, the orthogonal matrix R is set to the identity matrix
Ir, while PSOFT further introduces two additional vectors, α and β, both initialized as all ones.
Before training begins, a singular value decomposition (SVD) is performed once to extract the top-r
singular values and vectors, which are then used to construct the matrices A′, B′, and the residual
weights Wres. During training, the forward computation follows Eq. 8, and the gradients of both R
and the vectors α and β are updated jointly to obtain the final weights Wfinal.

Algorithm 1 PSOFT: orthogonal fine-tuning in the principal subspace

1: Input: Pre-trained weight matrix Wpre ∈ Rd×n, rank r, input x, and number of epochs E
2: Output: Fine-tuned orthogonal matrix R, two vectors α and β, and final weight matrix Wfinal
3: Initialize: Orthogonal matrix: R← Ir, two vectors: α← 1r, β ← 1r

4: Pre-compute:
5: Wpre = USV ⊤, A′ ← U[:,:r], B′ ← S[:r,:r]V

⊤
[:,:r], Wres ← U[:,r:]S[r:,r:]V

⊤
[:,r:]

6: for epoch = 1 to E do
7: for each mini-batch x do
8: h = (A′ diag(α)R diag(β)B′ +Wres)

⊤x,
9: compute ∂L

∂R , ∂L
∂α , ∂L

∂β , then update R← R− η · ∂L∂R , α← α− η · ∂L∂α , β ← β− η · ∂L∂β
10: end for
11: end for
12: Reconstruct: Wfinal ← A′ diag(α)R diag(β)B′ +Wres

B PROOF FOR THE ANGLE AND NORM PRESERVATION THEOREM

Theorem B.1 (Formal: Column-wise angle and norm preservation in the low-rank subspace). Let
Wpri = AB ∈ Rd×n and Wps-tuned = ARB ∈ Rd×n, with A ∈ Rd×r, B ∈ Rr×n. Assume

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

rank(A) = rank(B) = r and every column bi ̸= 0 (so all angles are well-defined). Let G := A⊤A,
G is symmetric positive definite, wpri

i := Abi, w
ps-tuned
i := ARbi, and denote by θpri

ij (resp. θps-tuned
ij)

the angle between wpri
i ,wpri

j (resp. wps-tuned
i ,wps-tuned

j). Then

R⊤GR = G ⇐⇒
(
∀i ̸= j, θps-tuned

ij = θpri
ij

)
and

(
∀i, ∥wps-tuned

i ∥ = ∥wpri
i ∥

)
. (9)

Proof. For any pair of column indices i ̸= j, the cosines of the angles between the vectors in principal
weights (wpri

i ,wpri
j) and the vectors in fine-tuned weights (wps-tuned

i ,wps-tuned
j) are

cos θpri
ij =

b⊤i Gbj√
b⊤i Gbi

√
b⊤j Gbj

, cos θps-tuned
ij =

b⊤i R
⊤GRbj√

b⊤i R
⊤GRbi

√
b⊤j R

⊤GRbj
.

Moreover, for any i,

∥wpri
i ∥

2 = b⊤i Gbi, ∥wps-tuned
i ∥2 = b⊤i R

⊤GRbi.

Sufficiency. If R⊤GR = G, then the two cosine expressions coincide for every i ̸= j, hence
cos θps-tuned

ij = cos θpri
ij . Since all angles lie in [0, π] where the cosine is strictly decreasing, we obtain

θps-tuned
ij = θpri

ij . Similarly, ∥wps-tuned
i ∥2 = b⊤i Gbi = ∥wpri

i ∥2, so ∥wps-tuned
i ∥ = ∥wpri

i ∥.

Necessity. Conversely, assume that θps-tuned
ij = θpri

ij for all i ̸= j and ∥wps-tuned
i ∥ = ∥wpri

i ∥ for all i.
Define M := R⊤GR−G. From norm preservation we obtain

b⊤i Mbi = 0, ∀i,
Since bi ̸= 0 and G ≻ 0, both denominators in the cosine formulas are equal and positive; hence
angle preservation implies

b⊤i Mbj = 0 ∀i ̸= j.

Thus B⊤MB = 0 with rank(B) = r. Because B has full row rank, it admits a right inverse
C ∈ Rn×r (e.g., C = B⊤(BB⊤)−1) such that BC = Ir. Multiplying gives

M = C⊤(B⊤MB)C = 0,

hence R⊤GR = G.

C CAYLEY PARAMETERIZATION

The Cayley parameterization (Cayley, 1894) is a mapping that converts real skew-symmetric matrices
into orthogonal matrices. For a real skew-symmetric matrix Q (i.e., Q⊤ = −Q), the Cayley
transform is defined as:

C = (I −Q)(I +Q)−1,

where I is the identity matrix of the same size as Q and matrix C does not have -1 as an eigenvalue.

The Cayley transform provides a way to parameterize orthogonal matrices near the identity matrix
using skew-symmetric matrices. The orthogonality of the Cayley transform is proved as follows.
Theorem C.1. If Q is a real skew-symmetric matrix and (I + Q) is invertible, then the Cayley
transform C = (I −Q)(I +Q)−1 is an orthogonal matrix.

Proof. We aim to proof that the matrix C after Cayley transform satisfies C⊤C = CC⊤ = I .

To compute C⊤C:

C⊤C =
(
(I −Q)(I +Q)−1

)⊤ (
(I −Q)(I +Q)−1

)
=

(
(I +Q)−1

)⊤
(I −Q)⊤(I −Q)(I +Q)−1

=
(
(I +Q)⊤

)−1
(I −Q)⊤(I −Q)(I +Q)−1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

By the definition of skew-symmetry, Q⊤ = −Q,

= (I −Q)−1(I +Q)(I −Q)(I +Q)−1

Since (I +Q) and (I −Q) are commute, we can switch the order of the factors:

= (I −Q)−1(I −Q)(I +Q)(I +Q)−1

= I

Similarly, it can be proven that CC⊤ = I . Therefore, the result of Cayley transform C =
(I −Q)(I +Q)−1 is an orthogonal matrix.

In this paper, PSOFT leverages the Cayley parameterization to construct orthogonal matrices with
approximately half the number of trainable parameters compared to a full orthogonal matrix, while
rigorously preserving orthogonality.

D COMPARISON OF TRAINABLE PARAMETERS FOR PEFT METHODS

Table 8 reports the number of trainable parameters across representative PEFT methods. Most
existing approaches scale their parameter counts with hidden layer dimensions, which constrains
their applicability to larger models. In contrast, PSOFT and LoRA-XS decouple the number of
trainable parameters from layer width. PSOFT further reduces parameter complexity through the
Cayley parameterization, which requires only r(r − 1)/2 parameters to represent an orthogonal
matrix. Consequently, the total number of trainable parameters in PSOFT remains fixed for a given
rank r, allowing fine-grained control over parameter budgets. Moreover, PSOFT introduces two
learnable scaling vectors within the subspace, contributing merely 2r additional parameters, which is
negligible compared with other methods.

Table 8: Comparison of trainable parameters for different PEFT methods within a single linear layer,
assuming input/output dimensions d and n, respectively. Here, r denotes the low-rank dimension,
m the number of butterfly factors in BOFT, b the block size in BOFT, dmin = min(d, n), and k the
number of additional off-diagonals in SVFT. All statistics are based on implementations from the
HuggingFace’s PEFT library (Mangrulkar et al., 2022).

Method Number of Trainable Parameters
LoRA d× r + r × n
DoRA d× r + r × n+ n
VeRA r + n
OFT r × (d/r)× (d/r) + n
BOFT m× (d/b)× b2 + n
SVFT dmin × k + (dmin − k)(k + 1)
LoRA-XS r × r
PSOFT (Ours) r(r − 1)/2 + 2r

E THE ACTIVATION MEMORY STATISTICS ACROSS DIFFERENT PEFT
METHODS

In this section, we analyze the activation memory requirements of various PEFT methods during
fine-tuning. In transformer-based networks, memory usage primarily arises from three sources:
pre-trained weight storage, activation storage, and gradient/optimizer state storage. Activation
storage refers to intermediate values created during the forward pass and retained for gradient
computation during backpropagation. Different PEFT methods consume comparable amounts of
memory for weights, gradients, and optimizer states, as they all involve a substantially reduced
number of trainable parameters (Hu et al., 2021; Bałazy et al., 2024; Kopiczko et al., 2024). In
contrast, their activation memory consumption exhibits clear differences. As the batch size increases,
activation storage gradually becomes the dominant memory bottleneck, as illustrated in Figure 4a.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Notably, activation memory in transformer layers accounts for over 99.9% of the total activation
memory across all layers (Korthikanti et al., 2023). We therefore focus our analysis on the activation
storage of transformer layers.

Input

So
�
m
ax

D
ro
p
o
u
t

FFN
1

FFN
2

G
ELU

M
atM

u
l

Query

Key

Value

M
atM

u
l

O
u
tp
u
t

D
ro
p
o
u
t

LayerN
o
rm

Output

A�en�on

Self A�en�on FFN

Transformer Layer

LayerN
o
rm

D
ro
p
o
u
t

Figure 5: The architecture of a single transformer layer, including the attention layer and the feed
forward network layer and self attention layer.

In this study, we consider the transformer layers within an encoder or decoder, where the input has
dimensions b× s× h, where b denotes the micro-batch size, s represents the maximum sequence
length, and h indicates the hidden dimension size. Each transformer layer consists of a self-attention
layer with a attention heads, and in the feed-forward network (FFN) layer, the hidden dimension is
expended to 4h before being projected back to h. We assume that activations are stored in 32-bit
floating-point format, requiring 4 bytes of memory. All results in this section are reported in bytes
unless otherwise specified.

Input
So
�
m
ax

D
ro
p
o
u
t

FFN
1

FFN
2

G
ELU

M
atM

u
l

Query

Key

Value

M
atM

u
l

O
u
tp
u
t

D
ro
p
o
u
t

LayerN
o
rm

Output

4bsh 8bsh 4abs2 abs2

4abs2

4bsh

4bsh 16bsh4bsh 4bsh 16bsh

bsh bsh

4bsh

LayerN
o
rm

D
ro
p
o
u
t

Figure 6: Activation memory statistics in a single transformer layer for full fine-tuning.

As illustrated in Figure 5, each transformer layer consists of a self-attention block (including Query,
Key, and Value matrices) combined with an output linear layer to form the attention block. Addi-
tionally, it includes two FFN layers, two normalization layers, and three dropout layers. Building on
prior work (Korthikanti et al., 2023), we derive an approximate formula for the activation memory
required during the forward pass of a single transformer layer. For backpropagation, we consider
the input of each module (which serves as the output for the subsequent module) as activations. As
illustrated in Figure 6, the activation memory includes the following components:

Self-Attention:

• Query (Q), Key (K), and Value (V) matrices: Require 4bsh for their shared inputs.
• First MatMul: Requires 8bsh as input to the module.
• Softmax: Requires 4abs2 for activation storage.
• Self-attention dropout: Only the mask is stored, with a size of abs2.
• Second MatMul: Requires activations from the output of dropout (4abs2) and linear layer

Value (4bsh), totaling 4abs2 + 4bsh.

Attention:

• Output linear layer: Requires 4bsh as input.
• Attention dropout: Only the mask is stored, with a size of bsh.
• First layer normalization: Requires 4bsh for activation storage.

FFN:

• FFN1: Requires 4bsh as input.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lo
R
A
_A

Lo
R
A
_B

4bsr

LoRA

Query

D
o
R
A
_A

D
o
R
A
_B

DoRA

D
o
R
A
_M

ag

4bsr 4bsh

Query

O
FT_R

O
FT_S

4bsh

Query

OFT

V
eR

A
_A

V
eR

A
_D

V
eR

A
_B

V
eR

A
_B

Query

VeRA

4bsr 4bsh

G
O
FT_S

4bsh

Query

GOFT

G
O
FT_R

1

G
O
FT_R

h

4bsh

···

B
O
FT_S

4bsh

Query

BOFT

B
O
FT_R

1

B
O
FT_R

m

4bsh

···

SV
FT_A

SV
FT_S

SV
FT_B

Query

SVFT

4bsh

Lo
R
A
-X
S_A

Lo
R
A
-X
S

Lo
R
A
-X
S_B

Query

LoRA-XS

4bsr

P
SO

FT_A

P
SO

FT_R

P
SO

FT_B

Query-Res

PSOFT

4bsr

P
SO

FT_A
lp
h
a

P
SO

FT_B
eta

4bsr 4bsr

Figure 7: Activation memory statistics in a single linear layer (Query) across different PEFT methods.

• GELU activation: Requires 16bsh for activation storage.

• FFN2: Requires 16bsh as input.

• FFN dropout: Only the mask is stored, with a size of bsh.

• Second layer normalization: Requires 4bsh for activation storage.

Summing these sub-layers, the total activation storage for a single transformer layer is:

ACTbase = 66bsh+ 9abs2 (10)

The six linear layers within a transformer layer undergo changes in activation memory storage when
different PEFT methods are applied, as reflected by modifications to the base formula (ACTbase).
For example, the LoRA method introduces a set of low-rank matrices B and A in parallel. The
activation memory requirements for various PEFT methods in a single linear layer are summarized in
Figure 7, with the Query matrix as a representative example. The specific details of these changes are
as follows:

• LoRA: Adds 4bsr to the original activation storage for gradient computation during back-
propagation.

• DoRA: Adds 4bsr + 4bsh to the original activation storage.

• VeRA: Replaces the original input 4bsh with 4bsr and adds 4bsh for activation storage.

• OFT: Adds 4bsh to the original activation storage.

• BOFT: Requires an additional 4mbsh, where m is the number of sparse matrices.

• GOFT: Adds 4bsh log h, where h is the hidden layer dimension.

• SVFT: Removes the original input activation storage and adds 4bsh.

• LoRA-XS: Removes the original input activation storage and adds 4bsr.

• PSOFT: Removes the original input activation storage and adds 12bsr.

The activation memory requirements of various PEFT methods for a single transformer layer are
summarized in Table 9. Notably, PSOFT incurs significantly lower activation memory than all other
methods except LoRA-XS. Its activation memory is comparable to that of LoRA-XS, as the rank r
is much smaller than the hidden dimension h (r ≪ h). A key observation is that PSOFT employs
scale vectors to enhance task-specific flexibility, similar to other orthogonal fine-tuning methods (Qiu
et al., 2023; Liu et al., 2024b; Ma et al., 2024). However, unlike these methods, PSOFT applies the
scale vectors within a principal subspace, effectively preventing a substantial increase in activation
memory usage.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Total activation memory statistics in a single transformer layer for different PEFT methods
and FFT. In BOFT, m denotes the number of sparse matrices.

Methods Activation memory (Relative) Activation memory (Absolute)

FFT ACTbase 66bsh+ 9abs2

LoRA ACTbase + 24bsr 66bsh+ 24bsr + 9abs2

DoRA ACTbase + 24bsr + 36bsh 102bsh+ 24bsr + 9abs2

VeRA ACTbase − 28bsh+ 16bsr + 36bsh 74bsh+ 16bsr + 9abs2

OFT ACTbase + 36bsh 102bsh+ 9abs2

BOFT ACTbase + 36mbsh 66bsh+ 36mbsh+ 9abs2

GOFT ACTbase + 36bsh log h 66bsh+ 36bsh log h+ 9abs2

SVFT ACTbase − 28bsh+ 24bsh 62bsh+ 9abs2

LoRA-XS ACTbase − 28bsh+ 24bsr 38bsh+ 24bsr + 9abs2

PSOFT ACTbase − 28bsh+ 72bsr 38bsh+ 72bsr + 9abs2

F NATURAL LANGUAGE UNDERSTANDING ON GLUE

F.1 DATASETS

The General Language Understanding Evaluation (GLUE) (Wang, 2018) is a comprehensive bench-
mark for evaluating the performance of natural language understanding (NLU) models across diverse
tasks. It includes one text similarity task (SST-B), five pairwise text classification tasks (MNLI, RTE,
QQP, MRPC, and QNLI), and two single-sentence classification tasks (CoLA and SST).

Table 10: Hyperparameter settings for fine-tuning DeBERTaV3-base on GLUE

Hyperparameter CoLA STS-B MRPC RTE SST-2 QNLI
Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Linear
Learning Rate (Head) 5E-04
Batch Size 32

Max Seq. Len. 64 128 256 256 128 256
#Epochs 20 20 30 30 10 5

LR PSOFTr=46 6E-04 4E-04 4E-04 4E-04 2E-04 4E-04

F.2 IMPLEMENTATION DETAILS

While it is common in prior PEFT studies (Hu et al., 2021; Lingam et al., 2024; Liu et al., 2024a;
Meng et al., 2024) to report results on the GLUE validation set, concerns have been raised regarding
the reliability of this protocol (Wu et al., 2024a;b; Bini et al., 2025). To ensure a more rigorous
evaluation, we evenly split the original validation set into new validation and test subsets using
a fixed random seed. All reported results are based on the test set, with checkpoints selected
according to the best accuracy on the new validation set. Given the prohibitive computational cost
of evaluating every baseline across all GLUE datasets, we omit the two largest subsets (MNLI
and QQP) from our experiments. The peak memory usage during training is measured using
torch.cuda.max memory allocated().

All experiments are implemented on top of the open-source LoRA framework (Hu et al., 2021),
using PyTorch (Paszke et al., 2019) and Huggingface’s PEFT library (Mangrulkar et al., 2022).
Following Liu et al. (2024b), we tune only model-agnostic hyperparameters such as learning rate and
training epochs. Due to resource constraints, we set the maximum sequence length to 256. PSOFT is
applied to all linear layers of the DeBERTaV3-base model. Evaluation metrics include Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for the other GLUE sub-tasks.
Detailed hyperparameter configurations are provided in Table 10.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G VISUAL CLASSIFICATION ON VTAB-1K

G.1 DATASETS

The Visual Task Adaptation Benchmark (VTAB-1K) (Zhai et al., 2019) comprises 19 image classifi-
cation tasks grouped into three categories: natural, specialized, and structured.

• Natural tasks involve images captured with standard cameras, depicting scenes from the
natural environment, generic objects, fine-grained categories, or abstract concepts.

• Specialized tasks use images obtained through specialized equipment, such as medical
imaging devices or remote sensing technologies.

• Structured tasks focus on artificially designed scenarios to analyze specific relationships or
changes between images, such as estimating object distances in 3D scenes (e.g., DMLab),
counting objects (e.g., CLEVR), or detecting orientations (e.g., dSprites for disentangled
representations).

In VTAB-1K, each dataset provides 800 labeled samples from its original training set, which are
used to fine-tune the base model. Additionally, 200 labeled samples in the validation set adjust
hyperparameters during fine-tuning. The performance is evaluated using Top-1 classification accuracy
on the respective original test set.

Table 11: Hyperparameter settings for fine-tuning ViT-B/16 on VTAB-1K

Hyperparameter ViT-B/16
Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Cosine
Learning Rate (Head) 5E-03
Batch Size 64
Weight Decay 1E-03
Dropout 1E-01
#Epochs 50

LR PSOFTr=46 {5E-04, 1E-03, 5E-03}

G.2 IMPLEMENTATION DETAILS

Our experiments are conducted in PyTorch (Paszke et al., 2019) using HuggingFace’s Datasets,
Transformers, and PEFT (Mangrulkar et al., 2022) libraries. Unlike prior works that rely on
the Timm framework with custom preprocessing and training loops (Liu et al., 2024b; Ma et al.,
2024), our framework leverages standardized APIs such as AutoImageProcessor and Trainer,
eliminating manual dataset/model handling and enabling fast integration of advanced methods (e.g.,
DoRA (Liu et al., 2024a), SVFT (Lingam et al., 2024), BOFT (Liu et al., 2024b)).

We adopt the experimental settings from (Liu et al., 2024b; Ma et al., 2024), adjusting learning rates,
weight decay, and training epochs accordingly. Following (Bałazy et al., 2024; Kopiczko et al., 2024;
Lingam et al., 2024), we separate learning rates for the classification head and PEFT modules, with a
fixed learning rate applied to the head across all methods. Complete hyperparameter configurations
are listed in Table 11.

H MATHEMATICAL QUESTION ANSWERING ON METAMATHQA-40K

H.1 DATASETS

For mathematical question answering tasks, we fine-tune baselines using the MetaMathQA-40K
dataset (Yu et al., 2024) and evaluate their performance on the two challenge benchmarks: GSM-8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameter settings for fine-tuning on MetaMathQA-40K

Hyperparameter LLaMA-3.2-3B
Optimizer AdamW
Warmup Ratio 0.1
LR Schedule Cosine
Max Seq. Len. 512
Batch Size 64
Epochs 2

LR PSOFTr=168 4E-04
LR PSOFTr=362 2E-04

H.2 IMPLEMENTATION DETAILS

Our experiments follow prior work (Liu et al., 2024b; Lingam et al., 2024) and are implemented
in PyTorch (Paszke et al., 2019) using HuggingFace’s PEFT library (Mangrulkar et al., 2022).
Consistent with (Lingam et al., 2024), we tune only learning rates for different models, with full
hyperparameters listed in Table 12. We adopt gradient accumulation with small batch sizes (≤ 4) to
approximate large-batch training across all baselines.

Table 13: Experimental results of fine-tuned LLaMA-3.2-3B on GSM-8K and MATH with extremely
low parameter counts. The best result for each dataset is marked in bold. Accuracy (%) is reported
for both GSM-8K and MATH datasets.

Methods #Params Inserted Modules Mem (GB) GSM-8K MATH

GOFTv2 0.26M Q,K,V 75.3 41.02 9.22
qGOFTv2 1.03M Q,K,V 75.3 42.46 9.32
BOFTb=2

m=2 1.18M Q,K,V 48.2 52.46 10.78
PSOFTr=168 1.20M Q,K,V 29.8 52.84 12.24

LoRAr=1 0.40M Q,K,V 30.1 47.23 10.36
SVFTP 0.49M Q,K,V,U,D,O,G 41.1 52.01 12.18
LoRA-XSr=48 0.45M Q,K,V,U,D,O,G 32.3 51.86 9.80
PSOFTr=72 0.53M Q,K,V,U,D,O,G 32.7 52.01 12.44

LoRAr=1 1.52M Q,K,V,U,D,O,G 32.0 57.32 12.88
PiSSAr=1 1.52M Q,K,V,U,D,O,G 32.0 56.48 13.18
LoRA-XSr=88 1.52M Q,K,V,U,D,O,G 32.8 54.66 12.70
PSOFTr=124 1.54M Q,K,V,U,D,O,G 33.2 57.47 13.26
DoRAr=1 2.29M Q,K,V,U,D,O,G 43.2 57.54 13.60
PSOFTr=152 2.31M Q,K,V,U,D,O,G 33.5 58.23 13.66

Beyond the main experiments, we provide additional evaluations of PEFT methods under constrained
parameter budgets, as summarized in Table 13. When fine-tuned on the Q, K, and V modules,
PSOFT achieves 10% and 3% higher accuracy than GOFTv2 and qGOFTv2 on GSM-8K and MATH,
respectively, while using only 40% of their memory. On MATH, PSOFT also exceeds BOFT by
0.82%/1.46% with just 60% of its memory usage.

PSOFT allows flexible control of parameter counts by adjusting the rank r, whereas LoRA is restricted
to a minimum rank of 1, inherently tying its parameter count to hidden dimension size. Under stricter
parameter budgets, LoRA must reduce the scope of inserted modules, often leading to performance
degradation. In contrast, PSOFT consistently achieves superior performance even at extremely low
parameter configurations. In terms of memory efficiency, PSOFT matches LoRA while outperforming
DoRA and SVFT.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

I COMMONSENSE REASONING ON COMMONSENSE-15K

I.1 DATASETS

Commonsense reasoning benchmarks encompass eight distinct sub-tasks: BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande
(Sakaguchi et al., 2021), ARC-easy/ARC-challenge (Clark et al., 2018), and OpenBookQA (Mihaylov
et al., 2018). Following the approach described in (Hu et al., 2023; Lingam et al., 2024; Liu et al.,
2024a), we also combine the training datasets from all eight tasks to construct a unified fine-tuning
dataset, Commonsense-15K tailored for each task.

Table 14: Hyperparameter settings for fine-tuning on Commonsense-15K

Hyperparameter LLaMA-3.1-8B
Optimizer AdamW
Warmup Steps 100
LR Schedule Linear
Max Seq. Len. 512
Batch Size 64
Epochs 3

LR PSOFTr=194 4E-04
LR PSOFTr=424 1E-04

Table 15: Experimental results of fine-tuned LLaMA-3.1-8B on eight commonsense reasoning
benchmarks with extremely low parameter counts. The best average result is highlighted in bold.
Accuracy (%) is reported for all sub-datasets.

Methods #Params Inserted
Modules

Mem
(GB) BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.

GOFTv2 0.26M Q,V OOM N/A.
qGOFTv2 1.05M Q,V OOM N/A.
BOFTb=2

m=2 1.21M Q,V 79.4 69.66 83.95 71.65 80.87 70.01 90.40 77.82 79.00 77.92
PSOFTr=194 1.22M Q,V 52.6 68.87 84.17 71.44 86.46 67.56 90.45 77.73 81.20 78.49

LoRAr=1 0.59M Q,K,V 52.8 66.97 83.08 71.03 77.06 64.01 90.70 77.39 78.80 76.13
SVFTP 0.46M Q,K,V,U,D 65.8 65.08 81.07 69.40 85.69 68.82 88.47 77.05 76.00 76.45
LoRA-XSr=48 0.37M Q,K,V,U,D 53.4 69.30 84.82 71.29 87.44 67.01 89.39 77.22 82.60 78.63
PSOFTr=72 0.43M Q,K,V,U,D 53.7 69.72 84.39 72.01 87.99 68.67 90.19 78.16 81.00 79.02

LoRAr=1 1.77M Q,K,V,U,D 53.9 71.13 85.31 74.67 89.08 72.61 90.24 78.16 82.40 80.45
PiSSAr=1 1.77M Q,K,V,U,D 53.9 72.05 84.60 74.21 89.93 70.88 90.15 79.01 82.00 80.35
LoRA-XSr=104 1.73M Q,K,V,U,D 54.0 71.04 85.47 72.67 89.26 71.74 90.82 79.61 83.20 80.48
PSOFTr=146 1.74M Q,K,V,U,D 54.5 71.31 85.69 73.18 89.38 72.38 90.91 80.03 83.00 80.74
DoRAr=1 2.56M Q,K,V,U,D 65.4 71.05 85.29 73.25 90.09 73.32 90.74 79.75 81.87 80.67
PSOFTr=176 2.52M Q,K,V,U,D 55.0 71.47 86.02 75.33 90.81 72.69 90.45 78.75 84.00 81.19

I.2 IMPLEMENTATION DETAILS

The experiments are conducted following the frameworks of Hu et al. (2023); Liu et al. (2024a),
implemented in PyTorch (Paszke et al., 2019) with HuggingFace’s PEFT library (Mangrulkar et al.,
2022). Consistent with Lingam et al. (2024), we tune only the learning rates for different models.
Detailed hyperparameter configurations are provided in Table 14.

As shown in Table 15, when fine-tuning the Q and V modules, PSOFT avoids the OOM failures
observed in GOFT and qGOFT, and surpasses BOFT by 0.33%/0.57% in average accuracy while
using only 66% of its peak memory. We further evaluate under more constrained parameter budgets,
where PSOFT continues to deliver superior average accuracy across eight commonsense reasoning

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

benchmarks. In terms of memory efficiency, PSOFT requires only about 80% of the memory of
DoRA and SVFT, while remaining comparable to LoRA.

J EXTENSION EXPERIMENTS

J.1 EFFECT OF SVD INITIALIZATION

Table 16: The effect of SVD Initialization on the Commonsense-15K Dataset using the LLaMA-3.2-
3B model.

Methods SVD n iter SVD Init Time Validation Loss

PSOFTr=32

5 2.79 0.9343
10 3.74 0.9328
20 4.84 0.9283
∞ 89.68 0.9276

PSOFTr=64

5 4.11 0.9174
10 5.13 0.9134
20 7.51 0.9157
∞ 89.48 0.9147

PSOFTr=128

5 6.33 0.9092
10 8.38 0.9028
20 13.01 0.9029
∞ 90.50 0.8992

PSOFT constructs the principal subspace via SVD, where the initialization time and accuracy of fast
SVD depend on the n iter parameter (Halko et al., 2011; Meng et al., 2024). We evaluate this on
the Commonsense-15K dataset (Hu et al., 2023) using the LLaMA-3.2-3B model (Meta AI, 2024),
reporting both initialization time and validation loss. As shown in Table 16, smaller n iter values
yield faster initialization, while larger values improve accuracy. With n iter = 20, the loss is nearly
identical to that of full SVD (n iter →∞). These results show that fast SVD initializes PSOFT
within seconds, and even full SVD introduces negligible overhead relative to the total fine-tuning
time.

Table 17: Effects of different ranks fine-tuned on the CoLA Dataset using the DeBERTA-V3-base
model (on a single RTX5090).

Methods Ranks #Params Matthew’s
Correlation(%)

Peak GPU
Memory (GB) Runtime

PSOFT

1 144 59.20 4.0 17m34s
2 360 68.80 4.0 18m32s
4 1,008 70.08 4.0 19m17s
8 3,168 70.93 4.0 19m08s

16 10,944 68.36 4.0 19m32s
32 40,320 72.09 4.0 19m41s
64 154,368 69.16 4.1 21m29s

128 603,648 72.46 4.2 20m42s
256 2,386,944 74.09 4.6 24m35s
512 9,492,480 71.04 5.8 27m20s

J.2 EFFECT OF RANKS

To provide guidance on rank selection, we evaluate PSOFT with ranks ranging from 1 to 512 on
the CoLA and the Commonsense-15K dataset (Hu et al., 2023) using DeBERTA-V3-base (He et al.,
2021) and LLaMA-3.2-3B (Meta AI, 2024). As shown in Table 17 and Table 18, PSOFT exhibits a
wide range of usable ranks: as r increases, the number of trainable parameters grows according to the
formula in 8, r(r − 1)/2 + 2r, and performance improves correspondingly, though with diminishing
returns. Memory usage increases with r, but remains nearly flat when r is small. Since we adopt the
truncated Neumann-series approximation, training time does not increase noticeably with larger r.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 18: Effects of different ranks fine-tuned on the Commonsense-15K Dataset using the LLaMA-
3.2-3B model (on a single H100).

Methods Ranks #Params Avg. (%) Peak GPU
Memory (GB) Runtime

PSOFT

1 392 27.07 31.5 50m13s
2 980 32.45 31.5 46m37s
4 2,744 36.16 31.5 48m30s
8 8,624 38.21 31.5 46m18s

16 29,792 57.12 31.6 48m52s
32 109,760 62.94 31.8 51m12s
64 420,244 70.95 32.1 48m47s
128 1,643,264 73.90 32.8 46m11s
256 6,497,792 74.95 34.5 47m29s
512 25,840,640 75.05 38.4 49m49s

The results further reveal a consistent pattern across models and tasks. For smaller models and simpler
tasks, PSOFT is highly parameter-efficient: even very small ranks achieve strong performance,
indicating that the low-dimensional subspace is already sufficient to capture the necessary task-
specific transformations. In contrast, for larger models and more complex tasks, performance
tends to increase with larger ranks, reflecting the greater capacity required to capture task-specific
transformations. In such cases, the main trade-off is between the performance gains from increasing
r and the corresponding growth in trainable parameters.

Based on these observations, we provide the following practical guidance for choosing the rank. For
simpler tasks, we recommend using small to moderate ranks (e.g., 32-128), as they provide good
parameter efficiency with little performance loss. For more complex tasks, larger ranks generally lead
to higher performance, while extremely small ranks (e.g., below 16) may hurt results. In such cases,
moderate to large ranks (e.g., 64-256) offer a better balance between performance and efficiency.

J.3 EFFECT OF INSERTED MODULES

We fine-tune LLaMA-3.2-3B with PSOFT and evaluate it on GSM-8K under different insertion
schemes, with results shown in Figure 8a. Overall, performance improves as more modules are
inserted and as the rank r increases, showing that complex mathematical tasks benefit directly from
higher model capacity under PSOFT. For a fixed rank r, applying PSOFT to the Q,K, V, U, and D
modules generally provides the best trade-off between performance and parameter efficiency. When
the parameter budget permits, inserting PSOFT into all linear layers yields the strongest results.

30K 50K 100K 200K 500K 1M 2M
Number of Parameters

35

40

45

50

55

60

GS
M

-8
K

Ac
cu

ra
cy

 (%
)

Colors: Rank
r=32
r=64
r=128

Shapes: Inserted Modules
Q, V
U, D
Q, K, V
Q, K, V, U, D
Q, K, V, O, G
Q, K, V, U, D, O, G

(a)

0.9
1.0
1.1
1.2
1.3
1.4

Tr
ai

ni
ng

 S
pe

ed

w/o Neumann

1 3 5 10
PSOFT with different Neumann Terms

91.3

91.4

91.5

91.6

Pe
ar

so
n

co
rre

la
tio

n
(%

)

w/o Neumann

(b)
Figure 8: (a) Effect of inserted modules on GSM-8K using LLaMA-3.2-3B. (b) Effect of Neumann
terms on STS-B using DeBERTaV3-base.

J.4 EFFECT OF NEUMANN TERMS

To assess the effect of different Neumann terms on training speed and performance, we fine-tune
DeBERTaV3-base on STS-B with rank 46. As shown in Figure 8b, the Neumann series approxima-
tion substantially accelerates training while maintaining performance close to the original Cayley
parameterization. Training speed decreases as the number of terms increases, gradually approaching

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

that of Cayley, whereas performance improves with more terms and eventually converges to the
Cayley result.

K PAIRWISE ANGLES OF WEIGHTS

We fine-tune DeBERTa-V3-base on the CoLA dataset using the same setup as in the main paper.
We then extract the query matrix from layer 6 and compute the pairwise angles among the first
eight column vectors of Wpri and Wpre, as well as those of Wps-tuned and Wfinal = Wps-tuned +Wres.
Figures 9a and 10a show that, before fine-tuning, the angles in Wpri and Wpre follow a clear and
stable pattern. Figures 9b and 10b show that PSOFT with strict orthogonality keeps this pattern:
Wps-tuned preserves the angles in Wpri, and Wfinal preserves those in Wpre. As shown in Figures 10b
and 10c, PSOFT with relaxed orthogonality also keeps the main angular structure, but introduces
small and controlled changes. These changes help improve task adaptation while keeping the key
structure intact.

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0.0 78.7 101.1 90.0 90.4 82.1 88.9 62.8

78.7 0.0 99.0 98.2 94.9 67.6 94.1 80.6

101.1 99.0 0.0 93.1 87.3 107.4 95.3 105.7

90.0 98.2 93.1 0.0 109.8 82.8 112.1 84.8

90.4 94.9 87.3 109.8 0.0 92.6 65.0 82.8

82.1 67.6 107.4 82.8 92.6 0.0 87.8 65.8

88.9 94.1 95.3 112.1 65.0 87.8 0.0 85.3

62.8 80.6 105.7 84.8 82.8 65.8 85.3 0.0
0

20

40

60

80

100

120

(a) Wpri

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0.0 78.7 101.1 90.0 90.4 82.1 88.9 62.8

78.7 0.0 99.0 98.2 94.9 67.6 94.1 80.6

101.1 99.0 0.0 93.1 87.3 107.4 95.3 105.7

90.0 98.2 93.1 0.0 109.8 82.8 112.1 84.8

90.4 94.9 87.3 109.8 0.0 92.6 65.0 82.8

82.1 67.6 107.4 82.8 92.6 0.0 87.8 65.8

88.9 94.1 95.3 112.1 65.0 87.8 0.0 85.3

62.8 80.6 105.7 84.8 82.8 65.8 85.3 0.0
0

20

40

60

80

100

120

(b) Wps-tuned (strict orth.)

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0.0 77.8 101.7 90.0 90.1 80.2 87.4 61.7

77.8 0.0 100.1 98.3 95.1 66.6 94.3 79.6

101.7100.1 0.0 93.0 86.7 108.8 95.7 107.3

90.0 98.3 93.0 0.0 109.8 83.8 111.7 85.0

90.1 95.1 86.7 109.8 0.0 91.3 64.2 82.8

80.2 66.6 108.8 83.8 91.3 0.0 87.2 63.5

87.4 94.3 95.7 111.7 64.2 87.2 0.0 84.3

61.7 79.6 107.3 85.0 82.8 63.5 84.3 0.0
0

20

40

60

80

100

120

(c) Wps-tuned (relaxed orth.)
Figure 9: Angle structures of Wpri (the query matrix in layer 6) before fine-tuning (a), and of Wps-tuned
after PSOFT fine-tuning under strict (b) and relaxed (c) orthogonality.

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0.0 87.5 96.3 85.6 89.7 86.9 87.9 78.2

87.5 0.0 93.5 90.7 90.8 84.8 89.8 84.3

96.3 93.5 0.0 91.8 89.8 96.6 88.6 98.3

85.6 90.7 91.8 0.0 95.8 89.8 96.7 89.0

89.7 90.8 89.8 95.8 0.0 89.5 82.9 87.8

86.9 84.8 96.6 89.8 89.5 0.0 89.3 79.3

87.9 89.8 88.6 96.7 82.9 89.3 0.0 89.9

78.2 84.3 98.3 89.0 87.8 79.3 89.9 0.0
0

20

40

60

80

100

120

(a) Wpre

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0.0 87.5 96.3 85.6 89.7 86.9 87.9 78.2

87.5 0.0 93.5 90.7 90.8 84.8 89.8 84.3

96.3 93.5 0.0 91.8 89.8 96.6 88.6 98.3

85.6 90.7 91.8 0.0 95.8 89.8 96.7 89.0

89.7 90.8 89.8 95.8 0.0 89.5 82.9 87.8

86.9 84.8 96.6 89.8 89.5 0.0 89.3 79.3

87.9 89.8 88.6 96.7 82.9 89.3 0.0 89.9

78.2 84.3 98.3 89.0 87.8 79.3 89.9 0.0
0

20

40

60

80

100

120

(b) Wfinal (strict orth.)

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0.0 87.2 96.6 85.6 89.6 86.2 87.3 77.6

87.2 0.0 93.9 90.7 90.8 84.4 89.9 83.9

96.6 93.9 0.0 91.8 89.5 97.2 88.8 99.1

85.6 90.7 91.8 0.0 95.8 90.0 96.5 89.1

89.6 90.8 89.5 95.8 0.0 89.1 82.6 87.8

86.2 84.4 97.2 90.0 89.1 0.0 89.1 78.2

87.3 89.9 88.8 96.5 82.6 89.1 0.0 89.4

77.6 83.9 99.1 89.1 87.8 78.2 89.4 0.0
0

20

40

60

80

100

120

(c) Wfinal (relaxed orth.)
Figure 10: Angle structures of Wpre (the query matrix in layer 6) before fine-tuning (a), and of Wfinal
after PSOFT fine-tuning under strict (b) and relaxed (c) orthogonality.

L LOSS AND CONVERGENCE COMPARISON

PSOFT can be viewed as a specialized form of orthogonal fine-tuning, where Wfinal = Rfull Wpre,
with Rfull = diag(R, Id−r), meaning that the orthogonal transformation is applied only to the
principal (low-rank) subspace of the pre-trained weight matrix, while an identity mapping is imposed
on its orthogonal complement. This formulation implies that the optimization behavior of PSOFT
gradually approaches that of full-space OFT methods as the rank r increases.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Therefore, PSOFT induces a principled modification of the optimization geometry: Full-space OFT
optimizes over the Stiefel manifold St(d, d), whose tangent space consists of all skew-symmetric
directions in the full d-dimensional parameter space. In contrast, PSOFT restricts optimization to
the tangent space of a block-diagonal submanifold St(r, r)⊕ R(d−r). As a result, only the principal
subspace receives curvature-aware updates, while the orthogonal complement experiences zero
curvature (identity block).

1 5 10 15 20
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

PSOFTr = 1
PSOFTr = 8
PSOFTr = 32
PSOFTr = 128
PSOFTr = 512
GOFT-v2
qGOFT-v2
OFTv1r = 120
OFTv2b = 32

BOFTb = 8
m = 2

Figure 11: Comparison of loss curves for different PSOFT ranks and various orthogonal fine-tuning
methods.

Building upon this geometric distinction, PSOFT exhibits three complementary behaviors that
characterize its optimization dynamics. First, the low-rank orthogonal constraint simplifies the
optimization landscape by preventing large full-space orthogonal transformations. This restriction
reduces the effective curvature of the optimization path, yielding more stable and predictable gradient
updates, while at the same time limiting expressiveness when r is very small. Second, because
PSOFT applies orthogonal transformations only within the principal subspace, stochastic noise is
confined to this lower-dimensional region rather than being amplified across all d dimensions as in
full-space OFT, leading to more robust and less destructive updates. Third, as r increases, the PSOFT
tangent space increasingly approximates that of full-space OFT, supporting richer expressiveness and
convergence trajectories that gradually approach full-space OFT, yet without the severe overfitting
that may arise in full-space OFT. Collectively, these properties illustrate how PSOFT navigates the
trade-off between stability, expressiveness, and generalization.

We conduct additional experiments on the CoLA dataset using DeBERTa-V3 and report the training
loss curves of different OFT variants. As shown in Figure 11, the green curves correspond to PSOFT,
with darker colors indicating larger ranks. We observe that as r increases, the PSOFT loss curves
progressively approach those of full-space OFT methods such as BOFT and OFTv2, reflecting the
improved convergence speed and expressiveness of higher-rank subspaces. PSOFT with very small
ranks constrains the update space too aggressively, which may lead to underfitting and slower loss
reduction. In contrast, full-space OFT methods such as BOFT display the fastest initial convergence,
but their full-rank orthogonal updates raise the risk of overfitting. This phenomenon is evident in our
main GLUE experiments, where BOFT achieves the lowest training loss yet fails to obtain the best
generalization performance.

These trends are consistent with the geometric properties of PSOFT discussed above: by con-
straining orthogonal updates to a lower-dimensional principal subspace, PSOFT naturally balances
expressiveness and generalization. Unlike full-space OFT, PSOFT enables explicit capacity control
through r, allowing moderate ranks to achieve a more favorable bias-variance trade-off and stronger
generalization.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

M ADDITIONAL EXPERIMENTS ON MEMORY USAGE

we additionally conducted memory experiments on a single NVIDIA H100 80GB, covering:

• the forward/backward (FP/BP) peak memory usage on a single custom linear layer, and
• the forward/backward (FP/BP) peak memory usage on a Transformer block, and
• the peak memory usage on the DeBERTaV3-base and ViT-base models during training.

For the single-layer analysis, we implemented a Python-based evaluation framework that separately
measures peak memory usage and runtime for the forward and backward passes. The implementation
of GOFTv2 uses the latest available code, while BOFT is taken from the PEFT library (version
0.17.0). We track peak memory consumption (in GB) and runtime (in milliseconds, ms), as peak
memory is the primary factor limiting on memory-constrained hardware. The linear layer input is
configured with a batch size b = 64, sequence length s = 512, and hidden dimension h = 4096.
Runtime results are averaged over 100 forward/backward runs. The results are summarized as follows:

Table 19: Peak memory usage (GB) and runtime (ms) statistics for different methods on a single
custom linear layer.

Methods Peak Memory (FP) Peak Memory (BP) Runtime (FP) Runtime (BP)

GOFTv2 13.6 14.3 5.2 129.3
qGOFTv2 13.6 14.3 5.4 129.6
BOFTb=8

m=2 1.8 2.6 102.9 2.1
BOFTb=4

m=4 2.3 3.0 139.6 2.5
PSOFTr=32 2.1 2.6 43.4 4.3
PSOFTr=64 2.1 2.6 43.8 4.8
PSOFTr=128 2.1 2.6 22.9 25.9
PSOFTr=256 2.2 2.6 4.0 48.8
PSOFTr=512 2.2 2.7 5.6 53.1

As shown in 19, although GOFTv2 benefits from the Hadamard-product optimization and achieves
reduced forward-pass computation time, it still consumes substantially more activation memory
than both BOFT and PSOFT. Importantly, the single-layer activation-memory measurement slightly
underrepresents PSOFT’s true advantage: as discussed in the theoretical analysis, PSOFT reduces
activation memory across multiple layers, but when evaluating a single layer in isolation, it should
still store the full input and output activations, which partially diminishes its advantage. Nevertheless,
even under this conservative setting, PSOFT achieves lower activation-memory usage and faster
computation compared with BOFT and GOFTv2, and its advantages become increasingly pronounced
when moving from a single linear layer to a Transformer block or end-to-end models.

Table 20: Peak memory usage (GB) and runtime (ms) statistics for different methods on a Transformer
block.

Methods Peak Memory (FP) Peak Memory (BP) Runtime (FP) Runtime (BP)

GOFTv2 65.4 65.4 49.5 667.1
qGOFTv2 65.4 65.4 49.5 671.2
BOFTb=8

m=2 19.0 19.0 2813.9 7.5
BOFTb=4

m=4 28.9 28.9 5427.9 8.7
PSOFTr=32 7.2 7.2 162.7 134.4
PSOFTr=64 7.2 7.2 166.0 134.2
PSOFTr=128 7.2 7.3 137.4 170.3
PSOFTr=256 7.3 7.4 122.2 197.7
PSOFTr=512 7.6 7.6 130.3 215.3

To validate this, we extend the single-layer setup to a complete Transformer block, configured with 8
attention heads and with all PEFT modules inserted into all linear layers. The input is configured
with a batch size b = 32, sequence length s = 512, and hidden dimension h = 4096, and runtime

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

results are averaged over 100 forward and backward runs. We report peak memory consumption
(in GB) and runtime (in milliseconds, ms). As shown in 20, these block-level experiments confirm
that PSOFT further reduces both memory usage and runtime by avoiding full-dimensional chained
multiplications and performing orthogonal transformations only within a much smaller subspace.

We then conduct full-layer experiments following the same configuration as in the main paper.
For DeBERTaV3-base, we use a fixed batch size b = 64 and and task-dependent sequence length
s ∈ 64, 128, 256. For ViT-base, we follow the original setup with a fixed sequence length s = 197
and a batch size of b = 64. Additionally, we include results with smaller batch sizes b ∈ 16, 32 for
a more comprehensive comparison. PSOFT uses the same rank r = 46 as reported in the original
paper, and all PEFT modules are inserted into all linear layers. The results are presented as follows:

Table 21: Peak memory usage (GB) of different methods on DeBERTaV3-base.

Methods Peak Memory (s=64) Peak Memory (s=128) Peak Memory (s=256)

GOFTv2 18.5 34.4 67.5
qGOFTv2 18.5 34.4 67.5
BOFTb=8

m=2 6.3 9.4 17.5
PSOFTr=46 4.1 6.8 14.0

Table 22: Peak memory usage (GB) of different methods on ViT-base.

Methods Peak Memory (b=16) Peak Memory (b=32) Peak Memory (b=64)

GOFTv2 22.5 44.7 OOM
qGOFTv2 22.5 44.7 OOM
BOFTb=8

m=2 5.4 7.3 10.9
PSOFTr=46 2.4 2.9 6.2

As shown in 21 and 22, PSOFT achieves the lowest peak memory usage across different settings.
Remarkably, even on an H100 GPU, GOFT still encounters OOM failures for ViT-base with a batch
size b = 64. This behavior stems from its activation-memory scaling of O(bsh log h), which grows
rapidly at larger batch sizes and ultimately limits its applicability on memory-constrained hardware. In
contrast, PSOFT consistently avoids such OOM issues: by restricting OFT to the principal subspace,
it preserves the essential semantic representations while simultaneously improving multi-dimensional
efficiency (parameter counts, memory, and computation) for OFT.

N THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) are used solely as general-purpose tools to assist with
writing polish. Specifically, LLMs are employed to refine grammar, improve readability, and ensure
that the overall writing style conforms to academic conventions. LLMs are not involved in research
ideation, experimental design, data analysis, or conclusion formulation. All technical contributions,
theoretical analyses, and experimental results are entirely original work by the authors.

29

	Introduction
	Related Work
	Preliminaries
	Methodology
	Dimension-Compatible Orthogonal Transforms
	Guaranteed Geometry Preservation in the Principal Subspace
	Efficient Relaxations of Orthogonality

	Experiments
	Discussion on Scaling to Larger Models
	Conclusion
	Algorithm of the proposed PSOFT
	Proof for the Angle and Norm Preservation Theorem
	Cayley Parameterization
	Comparison of Trainable Parameters for PEFT Methods
	The Activation Memory Statistics across Different PEFT Methods
	Natural Language Understanding on GLUE
	Datasets
	Implementation Details

	Visual Classification on VTAB-1K
	Datasets
	Implementation Details

	Mathematical Question Answering on MetaMathQA-40K
	Datasets
	Implementation Details

	Commonsense Reasoning on Commonsense-15K
	Datasets
	Implementation Details

	Extension Experiments
	Effect of SVD initialization
	Effect of ranks
	Effect of Inserted Modules
	Effect of Neumann terms

	Pairwise Angles of Weights
	Loss and Convergence Comparison
	Additional Experiments on Memory Usage
	The Use of Large Language Models (LLMs)

