

EFFICIENT ORTHOGONAL FINE-TUNING WITH PRINCIPAL SUBSPACE ADAPTATION

005 **Anonymous authors**

006 Paper under double-blind review

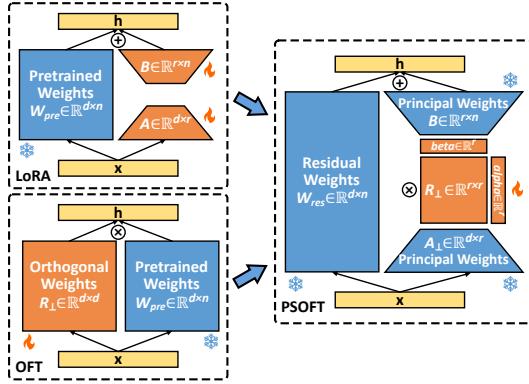
ABSTRACT

011 Driven by the rapid growth of model parameters, parameter-efficient fine-tuning
 012 (PEFT) has become essential for adapting large models to diverse downstream
 013 tasks under constrained computational resources. Within this paradigm, orthogonal
 014 fine-tuning and its variants preserve semantic representations of pre-trained models,
 015 but struggle to achieve both expressiveness and efficiency in terms of parame-
 016 ter counts, memory, and computation. To overcome this limitation, we propose
 017 efficient Orthogonal Fine-Tuning with Principal Subspace adaptation (PSOFT),
 018 which confines orthogonal transformations to the principal subspace of pre-trained
 019 weights. Specifically, PSOFT constructs this subspace via matrix decomposition to
 020 enable compatible transformations with higher rank, establishes a theoretical con-
 021 dition that strictly maintains the geometry of this subspace for essential semantic
 022 preservation, and introduces efficient tunable vectors that gradually relax orthogo-
 023 nality during training to enhance adaptability. Extensive experiments on 35 NLP
 024 and CV tasks across four representative models demonstrate that PSOFT offers a
 025 practical and scalable solution to simultaneously achieve semantic preservation,
 026 expressiveness, and multi-dimensional efficiency in PEFT.

1 INTRODUCTION

029 Pre-trained foundation models including large language models (LLMs) (Dubey et al., 2024) and
 030 vision transformers (ViT) (Dosovitskiy et al., 2021) have transformed natural language processing
 031 (NLP) (Qin et al., 2023) and computer vision (CV) (Liu et al., 2023). This success is attributed to
 032 emergent abilities (Wei et al., 2022) that arise as these models are scaled up. However, their ever-
 033 growing scale poses a practical barrier to efficiently tailoring (*i.e.*, fine-tuning) these sophisticated
 034 foundation models to specific downstream tasks. To address this challenge, parameter-efficient fine-
 035 tuning (PEFT) has emerged as a promising paradigm that adapts models by updating only a minimal
 036 subset of parameters (Houlsby et al., 2019; Lester et al., 2021; Li & Liang, 2021; Hu et al., 2021;
 037 Meng et al., 2024; Liu et al., 2024a). Among PEFT studies, reparameterization-based methods (Hu
 038 et al., 2021; Qiu et al., 2023) are widely adopted because they seamlessly integrate with pre-trained
 039 weights without adding inference latency.

040 As illustrated in the left panel of Figure 1, reparameterization-based methods include Low-
 041 Rank Adaptation (LoRA) (Hu et al., 2021) and Orthogonal Fine-Tuning (OFT) (Liu et al., 2021;
 042 Qiu et al., 2023). LoRA has been widely adopted for its efficient low-rank structure, but
 043 it may distort semantic representations embedded in the pre-trained weights. These semantic
 044 representations can be understood as the geometric structure of weight vectors, specifically
 045 the pairwise angles and norms among columns, which encode relational information learned dur-
 046 ing pre-training. Distorting this structure may
 047 weaken the model’s ability to transfer knowl-
 048 edge to downstream tasks (Wang et al., 2023).
 049 In contrast, OFT applies isometric orthogonal
 050 transformations to the pre-trained weights.
 051



052 Figure 1: Overview of the architectures of LoRA,
 053 OFT, and the proposed PSOFT.

054
 055
 056
 Table 1: Comparison of LoRA, OFT variants, and the proposed PSOFT. The table summarizes the
 trade-off among semantic preservation, multi-dimensional efficiency, and expressiveness (as reflected
 in performance) across PEFT methods.

057 058 Methods	Semantic Representations (explicitly preserved)	Parameter-efficiency Mechanism	Memory Usage	Computational Overhead	Performance
059 LoRA (Hu et al., 2021)	X	Low-rank	Low	Low	Medium
060 Full OFT (Liu et al., 2021)	Full space	X	Very High	Very High	High
061 Block-diagonal OFT (Qiu et al., 2023)	Full space	Block-diagonal	Medium	Medium	Medium-High
062 BOFT (Liu et al., 2024b) & qGOFT (Ma et al., 2024)	Full space	Butterfly factorization / Givens rotation	High	High	High
063 PSOFT (Ours)	Principal subspace	Low-rank*	Low ↓	Low ↓	High ↑

* PSOFT attains a higher rank than LoRA with the same number of parameters, since it freezes the projections and assigns all trainable parameters to the orthogonal matrix.

066 transformations, which strictly maintain this geometric structure and thereby preserve semantic
 067 representations. However, full-dimensional orthogonal transformations are inefficient in terms of
 068 parameter counts, memory, and computation, rendering them impractical for large-scale applications.

069 This contrast leaves a gap in PEFT between the efficiency of LoRA and the semantic preservation of
 070 OFT. Building on OFT’s advantages, several studies have explored ways to improve its efficiency
 071 while retaining its core strength. Early attempts such as block-diagonal OFT (Qiu et al., 2023)
 072 reduced parameter counts and partially alleviated computational and memory overhead through
 073 block-diagonal sparsity. However, the rigid block structure restricts the model’s expressiveness
 074 (its ability to capture diverse transformations) and consequently limits the performance that can
 075 be empirically attained. To address this limitation, later variants such as BOFT (Liu et al., 2024b)
 076 and qGOFT (Ma et al., 2024) have sought to restore expressiveness while maintaining parameter
 077 efficiency by composing multiple sparse orthogonal matrices in sequence. Yet this design incurs a new
 078 drawback: chaining multiple sparse matrices introduces substantial intermediate states that dominate
 079 runtime and memory consumption. Empirically, qGOFT has been reported to run nearly 6× slower
 080 than LoRA during training (Ma et al., 2024), while BOFT and qGOFT frequently consume more than
 081 80 GB of memory in large-scale model settings. Such overhead inflates training costs and undermines
 082 their practicality. Thus, sparsity-driven OFT variants struggle to achieve both expressiveness and
 083 efficiency across multiple dimensions. This tension underlies the central challenge of our work:

084 *How to design a PEFT method that simultaneously achieves semantic preservation, expressiveness,
 085 and multi-dimensional efficiency (parameter counts, memory, and computation)?*

086 To address this challenge, motivated by evidence that both pre-trained models and their task-specific
 087 adaptations reside in a low intrinsic rank (Li et al., 2018; Aghajanyan et al., 2021; Hu et al., 2021),
 088 we propose efficient Orthogonal Fine-Tuning with Principal Subspace adaptation (**PSOFT**), as
 089 illustrated in the right panel of Figure 1. The key idea is to confine orthogonal transformations
 090 to the low-rank principal subspace of pre-trained weights, thereby overcoming the limitations of
 091 conventional OFT operating in the full parameter space and simultaneously achieving semantic
 092 preservation, expressiveness, and multi-dimensional efficiency.

093 However, realizing this idea is non-trivial, as it entails overcoming several technical difficulties:
 094 1) **Compatibility.** A low-dimensional orthogonal transformation cannot be directly applied to the
 095 high-dimensional weight matrix, leading to dimensional incompatibility with the pre-trained model.
 096 2) **Geometry preservation.** Naively applying low-rank orthogonal transformations may distort
 097 the geometry of the subspace, thereby undermining the strict preservation of essential semantic
 098 representations. 3) **Adaptability.** Strict orthogonality constraints can hinder adaptation to slight
 099 task-specific drifts, resulting in suboptimal performance on downstream tasks.

100 PSOFT resolves these difficulties through principled designs. First, it constructs a principal subspace
 101 of pre-trained weights through matrix decomposition, enabling compatible orthogonal transformations
 102 and yielding a higher rank that enhances expressiveness. Next, it establishes a theoretical condition
 103 to strictly maintain the geometry of the subspace, thereby ensuring essential semantic preservation.
 104 Finally, it introduces efficient tunable vectors to gradually relax orthogonality during training at
 105 negligible cost, improving adaptability across diverse downstream tasks.

106 We validate PSOFT through extensive experiments on 35 NLP and CV tasks with four representative
 107 pre-trained models. Compared with OFT variants, PSOFT consistently avoids out-of-memory (OOM)
 108 failures and accelerates training. On small-scale models, it achieves up to 18× higher parameter

efficiency with the lowest memory footprint among baselines, without compromising average performance. On larger models, PSOFT lowers the memory footprint of OFT to a level comparable with LoRA-like methods while outperforming LoRA on GSM-8K (+2.3%) and Commonsense Reasoning (+1.4%) with comparable parameter counts. As summarized in Table 1, PSOFT preserves semantic representation in the principal subspace while minimizing parameter counts, memory, and computation overhead, and simultaneously maintains expressiveness as reflected in high performance.

The main contributions of this work are summarized as follows:

- We introduce a new low-rank perspective that unifies efficiency and expressiveness in OFT, bridging the gap between low-rank adaptation and orthogonal fine-tuning.
- We establish a theoretical condition under which low-dimensional orthogonal fine-tuning strictly preserves the geometric structure of the subspace.
- We propose PSOFT, a framework that confines OFT to the principal subspace with theoretical guarantees and practical adaptability.
- We validate PSOFT through extensive experiments, establishing a practical and scalable solution to simultaneously achieve semantic preservation, expressiveness, and multi-dimensional efficiency.

2 RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT). PEFT adapts pre-trained models to diverse downstream tasks by fine-tuning only a small subset of parameters. Specifically, existing PEFT methods fall into three categories: **1) Selection-based** methods select specific components of the pre-trained model without altering its architecture (Zaken et al., 2022; Song et al., 2024; Xu & Zhang, 2024). **2) Addition-based** methods insert *prompts* or *adapters* at the input or within Transformer blocks (Houlsby et al., 2019; Pfeiffer et al., 2020; Lester et al., 2021; Li & Liang, 2021; Liu et al., 2022). **3) Reparameterization-based** methods reparameterize weights in parallel with minimal parameters (Hu et al., 2021; Azizi et al., 2024; Bałazy et al., 2024; Gao et al., 2024; Kopiczko et al., 2024; Lingam et al., 2024; Liu et al., 2024a; Meng et al., 2024). Reparameterization-based methods are particularly appealing since they incur no additional inference latency, with representative examples including LoRA (Hu et al., 2021) and OFT (Qiu et al., 2023). LoRA’s variants, such as PiSSA (Meng et al., 2024) and DoRA (Liu et al., 2024a), improve convergence through re-initialization and enhance performance via weight decomposition, respectively. **DoRA decomposes the low-rank update into direction and magnitude components, but it may introduce additional memory and computational overhead for computing these components.** In addition, LaMDA (Azizi et al., 2024) and LoRA-XS (Bałazy et al., 2024) reduce the parameter count and resource usage of LoRA by employing more compact matrices. **In LoRA-XS, the learnable square matrix is constrained by the fixed LoRA matrices, which may limit its expressiveness.** However, these LoRA-based methods may induce semantic drift from the pre-trained representations (Wang et al., 2023), which can degrade output quality in generative tasks.

Orthogonal Fine-Tuning (OFT). Unlike additive methods such as LoRA, multiplicative OFT preserves semantic representations of pre-trained models through orthogonal transformations, which maintains the hyperspherical energy among neurons (Liu et al., 2021; Qiu et al., 2023). To mitigate the prohibitive cost of applying orthogonal transformations over the full parameter space, prior studies typically introduce sparsity constraints. For instance, block-diagonal OFT (Qiu et al., 2023) adopts a block-diagonal sparse structure to reduce parameter counts, though at the risk of undesired inductive biases (Liu et al., 2024b). BOFT (Liu et al., 2024b) and qGOFT (Ma et al., 2024) address this issue by replacing dense matrices with sequences of sparse multiplications, thereby improving parameter efficiency while restoring expressiveness. Nevertheless, these variants remain less efficient in memory and computation than LoRA and its variants. In parallel, Adapter^R (Zhang & Pilanci, 2024) rotates the top spectral space using orthogonal transformations to preserve spectral characteristics of pretrained weights, in contrast to the geometric structure emphasized in OFT. Overall, existing OFT variants struggle to achieve both expressiveness and efficiency across multiple dimensions.

These limitations motivate our PSOFT algorithm, which confines orthogonal transformations to the principal subspace with a theoretical guarantee of preserving essential semantic representations, followed by a relaxation of strict orthogonality at negligible cost to enhance adaptability.

162 **3 PRELIMINARIES**

164 In this section, we formalize LoRA and OFT variants in mathematical notation, providing a unified
 165 view of their parameterization strategies.

166 Conventional full fine-tuning (FFT) updates the entire pre-trained weight matrix $\mathbf{W}_{\text{pre}} \in \mathbb{R}^{d \times n}$ to
 167 obtain \mathbf{W} , whereas PEFT methods freeze \mathbf{W}_{pre} and introduce only a small set of trainable parameters.
 168 For LoRA (Hu et al., 2021), the update is parameterized by a low-rank decomposition:

$$170 \quad \mathbf{h} = \mathbf{W}^\top \mathbf{x} = (\mathbf{W}_{\text{pre}} + \mathbf{AB})^\top \mathbf{x}, \quad \text{s.t.} \quad \text{rank}(\mathbf{AB}) = r, \quad (1)$$

171 where $\mathbf{A} \in \mathbb{R}^{d \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times n}$ are trainable matrices. Following standard practice, \mathbf{A} is initialized
 172 with Kaiming initialization (He et al., 2015) and \mathbf{B} with zeros, so training begins from \mathbf{W}_{pre} .

173 For OFT (Liu et al., 2021; Qiu et al., 2023), the update is parameterized by an orthogonal matrix \mathbf{R} ,
 174 which fine-tunes \mathbf{W}_{pre} in the full parameter space, *i.e.*, $\mathbf{W}_{\text{fs-tuned}} = \mathbf{RW}_{\text{pre}}$. The forward pass is given
 175 by:

$$176 \quad \mathbf{h} = \mathbf{W}_{\text{fs-tuned}}^\top \mathbf{x} = (\mathbf{RW}_{\text{pre}})^\top \mathbf{x}, \quad \text{s.t.} \quad \mathbf{R}^\top \mathbf{R} = \mathbf{RR}^\top = \mathbf{I}_d, \quad (2)$$

177 where $\mathbf{R} \in \mathbb{R}^{d \times d}$ is initialized as the identity matrix so that training begins from \mathbf{W}_{pre} . By construc-
 178 tion, orthogonal transformations in the full parameter space preserve both angles and norms, thereby
 179 maintaining the geometric structure of \mathbf{W}_{pre} .

180 To reduce parameter overhead, block-diagonal OFT (Qiu et al., 2023) constrains \mathbf{R} to a block-
 181 diagonal form $\mathbf{R} = \text{diag}(\mathbf{R}_1, \dots, \mathbf{R}_i, \dots, \mathbf{R}_{d/r})$, where each $\mathbf{R}_i \in \mathcal{O}(d/r)$. Although efficient,
 182 this structure may introduce undesirable inductive bias. BOFT (Liu et al., 2024b) and qGOFT (Ma
 183 et al., 2024) mitigate this by factorizing \mathbf{R} into sparse matrices, $\mathbf{R} = \prod_{m=1}^{\log d} \tilde{\mathbf{R}}_m$, with each
 184 $\tilde{\mathbf{R}}_m \in \mathbb{R}^{d \times d}$ sparse. Assuming d is a power of two, $\log d$ is integral, ensuring a valid factorization.
 185 This construction restores the expressiveness of dense rotations with reduced parameters.

187 **4 METHODOLOGY**

190 As discussed in Section 1, existing OFT variants such as BOFT and qGOFT still incur substantial
 191 computational and memory overhead. Prior studies (Li et al., 2018; Aghajanyan et al., 2021; Hu
 192 et al., 2021) further suggest that both pre-trained models and their task-specific adaptations lie in a
 193 low-rank intrinsic subspace. Motivated by this insight, we propose **Orthogonal Fine-Tuning with**
 194 **Principal Subspace adaptation (PSOFT)**, which confines orthogonal transformations to the low-rank
 195 principal subspace of \mathbf{W}_{pre} . The complete algorithm is given in Appendix A, and the remainder of
 196 this section details its design.

197 **4.1 DIMENSION-COMPATIBLE ORTHOGONAL TRANSFORMS**

199 Realizing orthogonal fine-tuning in the subspace requires a projection of high-dimensional weights
 200 onto a low-dimensional subspace, since directly applying the orthogonal matrix $\mathbf{R} \in \mathbb{R}^{r \times r}$ to
 201 $\mathbf{W}_{\text{pre}} \in \mathbb{R}^{d \times n}$ is infeasible due to dimensional incompatibility. To construct this projection, we
 202 perform Singular Value Decomposition (SVD), $\mathbf{W}_{\text{pre}} = \mathbf{U} \Sigma \mathbf{V}^\top$, and decompose it into \mathbf{W}_{pri} and
 203 \mathbf{W}_{res} , such that $\mathbf{W}_{\text{pre}} = \mathbf{W}_{\text{pri}} + \mathbf{W}_{\text{res}}$. Here, the subscript ‘‘pri’’ denotes the principal component
 204 reconstructed from the top- r singular values and vectors, while ‘‘res’’ denotes the residual component.
 205 The principal component \mathbf{W}_{pri} is then used to derive symmetric low-rank matrices \mathbf{A} and \mathbf{B} as:

$$207 \quad \mathbf{W}_{\text{pri}} = \underbrace{\mathbf{U}_{[:,r]} \sqrt{\Sigma_{[:,r]}}}_{\mathbf{A} \in \mathbb{R}^{d \times r}} \sqrt{\Sigma_{[:,r]}} \mathbf{V}_{[:,r]}^\top \in \mathbb{R}^{d \times n} \quad (\text{Symmetric}), \quad (3)$$

$$208 \quad \mathbf{B} \in \mathbb{R}^{r \times n}$$

209 where \mathbf{A} projects weights into the r -dimensional principal subspace, while \mathbf{B} reconstructs them back.
 210 The residual component \mathbf{W}_{res} is then obtained from the remaining singular values and vectors:

$$212 \quad \mathbf{W}_{\text{res}} = \mathbf{W}_{\text{pre}} - \mathbf{W}_{\text{pri}} = \mathbf{U}_{[:,r]} \Sigma_{[:,r]} \mathbf{V}_{[:,r]}^\top \in \mathbb{R}^{d \times n}. \quad (4)$$

214 Building on this, we regard $\mathbf{W}_{\text{pri}} = \mathbf{AB}$ as representing the initial principal subspace of \mathbf{W}_{pre} . This
 215 subspace enables dimension-compatible orthogonal transformations, yielding $\mathbf{W}_{\text{ps-tuned}} = \mathbf{ARB}$,
 where the subscript ‘‘ps-tuned’’ denotes the fine-tuned weights in the principal subspace for PSOFT.

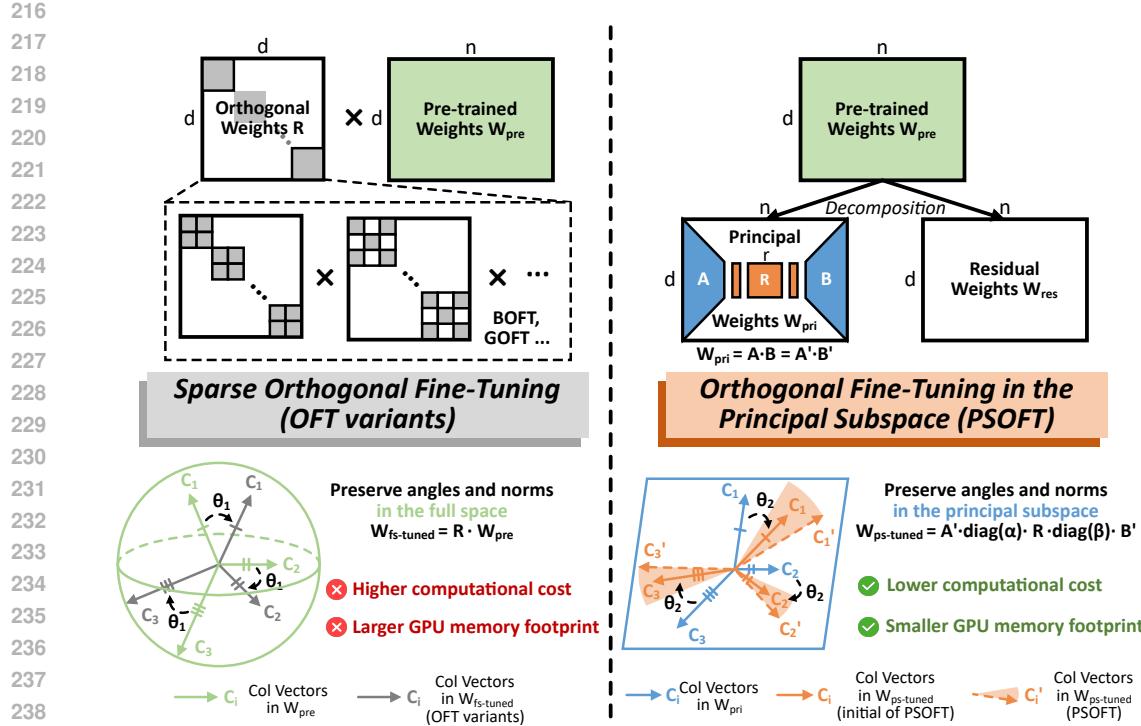


Figure 2: Our proposed method: PSOFT. The left panel illustrates the principles of OFT variants. On the right, PSOFT preserves the angles and norms of W_{pri} (blue) in the fine-tuned $W_{ps-tuned}$ (orange), while allowing adjustable angles and scalable norms in the sector.

Unlike LoRA (Hu et al., 2021) and PiSSA (Meng et al., 2024), which train both A and B , PSOFT freezes them and fine-tunes only the orthogonal matrix R . LoRA produces updates $\Delta W = AB$ that span the low-rank manifold $\{\Delta W : \text{rank}(\Delta W) \leq r\}$ of dimension $r(d+n-r)$. In contrast, PSOFT generates updates $\Delta W = A(R - I)B$ parameterized solely by an orthogonal matrix $R \in O(r)$, where $O(r)$ denotes the $r(r-1)/2$ -dimensional orthogonal group. Because the variability of ΔW arises only through R , all updates remain confined to the fixed row and column subspaces defined by A and B . Consequently, LoRA and PSOFT operate on fundamentally different geometric families of updates (low-rank vs. orthogonal), and their expressiveness is therefore not directly comparable. The same structural distinction also determines different feasible ranks under an equal trainable-parameter budget M . LoRA trains two matrices, giving $M = (d+n)r_{\text{LoRA}}$ and thus $r_{\text{LoRA}} = M/(d+n)$, whereas PSOFT trains only an orthogonal matrix, yielding $M = r_{\text{PSOFT}}^2$ and hence $r_{\text{PSOFT}} = \sqrt{M}$. Since typically $\sqrt{M} \ll (d+n)$, we obtain $r_{\text{PSOFT}} \gg r_{\text{LoRA}}$, which explains why PSOFT empirically operates with much larger ranks under the same parameter budget.

4.2 GUARANTEED GEOMETRY PRESERVATION IN THE PRINCIPAL SUBSPACE

Orthogonal transformations within the constructed principal subspace in Section 4.1 merely ensure dimensional compatibility but do not strictly preserve subspace geometry. In particular, applying a low-dimensional orthogonal matrix R to the subspace spanned by symmetric A and B in Eq. 3 may distort the pairwise angles and norms among the column vectors of W_{pri} . To address this issue, we analyze the conditions under which orthogonal fine-tuning preserves the geometry of the principal subspace, and present an informal Theorem 4.1, with the formal theorem and proof in Appendix B.

Theorem 4.1 (Informal: Angle and norm preservation in the principal subspace). *Let $W_{pri} = AB$ denote the principal weights and $W_{ps-tuned} = ARB$ denote the fine-tuned weights. For $W_{ps-tuned}$ to preserve (i) pairwise angles between columns, and (ii) column norms of W_{pri} , the following condition must hold:*

$$R^\top A^\top A R = A^\top A. \quad (5)$$

We provide an intuitive explanation of Theorem 4.1. The geometry of the principal subspace is determined by the relative angles and lengths of its column vectors, which are encoded in the Gram matrix $\mathbf{G} = \mathbf{A}^\top \mathbf{A}$. Any \mathbf{R} satisfying $\mathbf{R}^\top \mathbf{G} \mathbf{R} = \mathbf{G}$ can be viewed as a symmetry of this geometry, similar to a rotation or reflection. In other words, if we first apply \mathbf{R} to the columns of \mathbf{B} and then project them using \mathbf{A} , their angles and lengths in the high-dimensional space remain unchanged.

In practice, normalizing \mathbf{A} so that $\mathbf{A}^\top \mathbf{A} = \mathbf{I}_r$ simplifies the condition, in which case \mathbf{R} reduces to a standard orthogonal matrix. Accordingly, Eq. 3 is modified in PSOFT as:

$$\mathbf{W}_{\text{pri}} = \underbrace{\mathbf{U}_{[:,r]} \Sigma_{[:,r:r]} \mathbf{V}_{[:,r]}^\top}_{\mathbf{A}' \in \mathbb{R}^{d \times r} \quad \mathbf{B}' \in \mathbb{R}^{r \times n}} \in \mathbb{R}^{d \times n} \quad (\text{Asymmetric}), \quad (6)$$

where asymmetric \mathbf{A}' and \mathbf{B}' are derived from the top- r principal components of the SVD. The residual \mathbf{W}_{res} remains as in Eq. 4, and the forward computation becomes:

$$\mathbf{h} = (\mathbf{W}_{\text{ps-tuned}} + \mathbf{W}_{\text{res}})^\top \mathbf{x} = (\mathbf{A}' \mathbf{R} \mathbf{B}' + \mathbf{W}_{\text{res}})^\top \mathbf{x}, \quad (7)$$

where \mathbf{A}' , \mathbf{B}' , and \mathbf{W}_{res} are frozen, and only $\mathbf{R} \in \mathbb{R}^{r \times r}$ is trainable, initialized as the identity matrix.

To satisfy Eq. 5 during training, it is essential to maintain the orthogonality of \mathbf{R} . Enforcing orthogonality of \mathbf{R} (e.g., via Gram-Schmidt orthogonalization) is computationally expensive. To reduce this cost, following prior studies (Qiu et al., 2023; 2025), we adopt the Cayley parameterization (Cayley, 1894) to enforce the strict orthogonality of \mathbf{R} , where $\mathbf{R} = (\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1}$ and $\mathbf{Q} = -\mathbf{Q}^\top$ is a skew-symmetric matrix. Further details on the Cayley parameterization are provided in Appendix C.

4.3 EFFICIENT RELAXATIONS OF ORTHOGONALITY

Eqs. 6 and 7 guarantee geometry preservation in the principal subspace, but strict orthogonality constraints may hinder adaptation to task-specific drifts, leading to suboptimal performance. Empirical evidence shows that moderate relaxation improves results (Ma et al., 2024). Yet existing methods sacrifice efficiency: qGOFT relaxes constraints more flexibly but requires four times the parameters of GOFT (Ma et al., 2024), while BOFT relaxes them through additional scaling vectors on the output dimension, whose size grows linearly with model scale (Liu et al., 2024b). To overcome these issues, we propose efficient relaxations of PSOFT that enhance adaptability with minimal overhead.

Specifically, we introduce two tunable vectors that modulate the input and output norms around the orthogonal matrix, modifying Eq. 7 to yield the following forward computation:

$$\mathbf{h} = (\mathbf{A}' \text{ diag}(\boldsymbol{\alpha}) \mathbf{R} \text{ diag}(\boldsymbol{\beta}) \mathbf{B}' + \mathbf{W}_{\text{res}})^\top \mathbf{x} \quad (\text{PSOFT}), \quad (8)$$

where \mathbf{A}' , \mathbf{B}' , and \mathbf{W}_{res} remain fixed, while only \mathbf{R} and the tunable vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are trained. Both vectors are initialized as all-one vectors to ensure strict orthogonality at the start of training. As illustrated in Figure 2, PSOFT relaxes this constraint during training, enabling adjustable angles and scalable norms that adapt to task objectives. As these two additional vectors are inserted within the subspace, the overhead is limited to $2r$ parameters ($2r \ll n$, where n is the output dimension), enhancing adaptability with minimal cost and without significantly affecting the geometric structure.

To avoid excessive deviation from orthogonality, an explicit constraint can be imposed: $\|\mathbf{C}^\top \mathbf{C} - \mathbf{I}\|_F \leq \epsilon$, where $\mathbf{C} = \text{diag}(\boldsymbol{\alpha}) \mathbf{R} \text{ diag}(\boldsymbol{\beta})$. Deviation arises when either $\text{diag}(\boldsymbol{\alpha})$ or $\text{diag}(\boldsymbol{\beta})$ deviates from a scalar multiple of the identity. In the special case where $\text{diag}(\boldsymbol{\alpha}) = \lambda_1 \mathbf{I}$ and $\text{diag}(\boldsymbol{\beta}) = \lambda_2 \mathbf{I}$, angular relationships are preserved and magnitudes are uniformly scaled.

In summary, PSOFT performs orthogonal fine-tuning to the low-rank principal subspace, enabling dimension-compatible transformations with theoretical guarantees on subspace geometry, while relaxing strict orthogonality at negligible cost to enhance adaptability. It requires only $r(r-1)/2 + 2r$ trainable parameters by combining the Cayley parameterization with two efficient tunable vectors. Moreover, it reduces both the number and size of additional matrices (from $\min(d, n)$ to r , with $r \ll \min(d, n)$), thereby yielding substantially lower activation memory than other OFT variants under the same batch size and sequence length. Detailed comparisons of parameter counts and activation memory analysis across different PEFT methods are provided in Appendices D and E.

324 **5 EXPERIMENTS**

325

326 To evaluate PSOFT, we conduct experiments on 35 tasks spanning language and vision domains,
 327 using encoder-only models (DeBERTaV3-base (He et al., 2021), ViT-B/16 (Dosovitskiy et al., 2021)),
 328 and decoder-only models (LLaMA-3.2-3B (Meta AI, 2024), LLaMA-3.1-8B (Dubey et al., 2024)).
 329 These models are fine-tuned on downstream tasks, covering natural language understanding (Wang,
 330 2018), visual classification (Zhai et al., 2019), mathematical QA (Yu et al., 2024), and commonsense
 331 reasoning (Hu et al., 2023). We evaluate key metrics such as parameter counts, peak memory usage,
 332 and accuracy in the main experiments, and assess training speed separately in the efficiency analysis.
 333 Following OFTv2 (Qiu et al., 2025), we implement the Cayley parameterization by approximating
 334 $(\mathbf{I} + \mathbf{Q})^{-1}$ with a truncated Neumann series, $\sum_{k=0}^K (-\mathbf{Q})^k$, using $K = 5$ terms in practice. All
 335 experiments are performed on a single GPU with FP32 precision, using an NVIDIA RTX 4090 (24
 336 GB) for encoder-only models and an NVIDIA H100-SXM (80 GB) for decoder-only models.

337 **Baselines.** We employ state-of-the-art OFT variants with other advanced PEFT methods as baselines:

338

- 339 • **FFT** (Howard & Ruder, 2018) updates all model weights during fine-tuning.
- 340 • **GOFTv2 & qGOFTv2** (Ma et al., 2024) replace full-space OFT with Givens rotations. The latest
 341 implementation uses Hadamard products instead of sparse multiplication.
- 342 • **BOFT** (Liu et al., 2024b) substitutes full-space OFT with butterfly factorization.
- 343 • **OFTv2** (Qiu et al., 2023; 2025) employs a block-diagonal structure for OFT, with the latest version
 344 adopting an input-centric computation and Cayley-Neumann parameterization.
- 345 • **LoRA** (Hu et al., 2021) freezes pre-trained weights and adjusts only two low-rank matrices.
- 346 • **PiSSA** (Meng et al., 2024) improves LoRA initialization to fine-tune principal weights.
- 347 • **DoRA** (Liu et al., 2024a) decomposes low-rank adaptation into direction and magnitude.
- 348 • **LoRA-XS** (Bałazy et al., 2024) injects and tunes a single square matrix between LoRA’s matrices.

350

351 **Encoder-only Models.** We evaluate PSOFT by fine-tuning DeBERTaV3-
 352 base (He et al., 2021) on several datasets from the GLUE benchmark (Wang, 2018). Following prior
 353 work (Wu et al., 2024a;b; Bini et al., 2025), we split the original validation
 354 set into new validation/test sets with a fixed seed, and report test accuracy
 355 from the best validation checkpoint to ensure rigorous evaluation. Details
 356 are in Appendix F.

357 As shown in Table 2, GOFTv2 and qGOFTv2 have non-tunable parameters and often encounter OOM failures
 358 as the sequence length increases. *PSOFT improves parameter and memory efficiency without com-*
 359 *promising performance.* Although GOFT and PSOFT have the same parameter counts, PSOFT
 360 reduces memory usage by about 80% and avoids OOM issues. It further achieves up to an 18×
 361 improvement in parameter efficiency over BOFT, OFTv2, and LoRA variants, attaining the best
 362 average performance across all baselines with the lowest memory footprint. *Compared with LoRA*
 363 *variants that do not rely on weight decomposition, DoRA introduces additional memory overhead.*
 364 *For LoRA-XS, the update is constrained by the initialization of its low-rank matrices, which limits its*
 365 *expressiveness and consequently leads to degraded performance.* These results highlight PSOFT’s
 366 ability to achieve both efficiency and performance.

367 We also evaluate PSOFT by fine-tuning ViT-B/16 (Dosovitskiy et al., 2021) on the VTAB-1K
 368 benchmark (Zhai et al., 2019). Further details are provided in Appendix G. As shown in Table 3.
 369 *PSOFT extends its efficiency-performance advantages on the small-scale model from language tasks*
 370 *to vision tasks.* Beyond avoiding the heavy memory demands of GOFTv2 and qGOFTv2, PSOFT
 371 consistently reduces the memory overhead of BOFT and OFTv2. Compared to LoRA and its variants,

Table 2: Experimental results of fine-tuned DeBERTaV3-base. Results are averaged over 5 random seeds. Memory (GB) denotes peak memory with sequence length 64.

Methods	#Params	Memory (GB)	CoLA	STS-B	RTE	MRPC	SST2	QNLI	Avg.
FFT	184M	5.9	67.56	91.46	82.88	90.69	94.13	93.37	86.68
GOFTv2	0.08M	18.5	65.45						N/A. (OOM)
qGOFTv2	0.33M	18.5	68.03						N/A. (OOM)
BOFT _{m=2}	1.41M	6.3	68.85	91.09	83.60	88.40	95.28	93.78	86.83
OFTv2 _{b=32}	1.29M	4.5	66.79	91.22	84.03	89.61	93.72	92.64	86.34
LoRA _{r=8}	1.33M	4.5	67.98	91.60	84.87	90.20	95.28	93.89	87.30
PiSSA _{r=8}	1.33M	4.5	66.50	91.40	83.77	89.90	93.17	92.72	86.24
DoRA _{r=8}	1.41M	5.8	67.06	91.60	87.19	90.49	95.23	94.09	87.61
LoRA-XS _{r=136}	1.33M	4.2	64.67	91.48	84.17	91.27	93.85	93.14	86.43
PSOFT _{r=46}	0.08M	4.1	70.42	91.56	86.74	90.49	95.55	93.47	88.04

378
379
380
381 Table 3: Experimental results of fine-tuned ViT-B/16 on the VTAB-1K benchmark. Reported values
382 (top-1 accuracy %) are the mean of 5 runs with different random seeds.
383
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 Methods	#Params	Mem (GB)	Natural					Specialized				Structured					sNORB-Ele	Avg.				
			Cifar100	Caltech101	DTD102	Flower102	Pets	SVHN	Sun397	Camelyon	EuroSAT	Resisc45	Retinopathy	Clevr-Count	Clevr-Dist	DMLab	KITTL-Dist	dSpr-Loc	dSpr-Ori			
FFT	85.9M	8.2	70.7	89.3	69.5	99.0	90.4	81.7	54.9	85.4	93.6	83.8	74.5	58.3	51.5	43.2	75.0	73.1	48.7	16.4	30.0	67.8
GOFTv2	0.08M	OOM																				
qGOFTv2	0.33M	OOM																				
BOFT _{m=2}	1.41M	10.9	70.6	88.2	69.8	99.0	91.4	77.4	55.1	85.1	93.6	82.3	74.9	61.8	50.4	42.9	76.1	73.7	48.8	15.7	30.8	70.9
OFTv2 _{b=32}	1.29M	7.7	68.5	88.9	67.5	98.4	89.5	86.9	53.6	86.0	94.1	84.2	74.6	58.7	56.4	46.7	78.5	81.1	48.1	17.3	32.5	72.1
LoRA _{r=8}	1.33M	9.9	71.4	88.4	70.1	99.0	91.4	76.6	55.7	85.9	94.2	83.3	74.1	72.0	54.3	43.0	76.6	74.8	48.6	16.4	31.8	71.8
PiSSA _{r=8}	1.33M	9.9	70.7	88.7	68.9	99.2	91.0	81.9	53.3	82.6	93.4	83.0	74.0	71.0	60.2	44.0	77.1	81.9	51.8	18.1	33.1	72.3
DoRA _{r=8}	1.41M	17.8	70.7	89.0	69.8	98.9	91.0	81.7	55.5	85.7	94.2	83.5	74.8	67.3	54.2	45.1	77.4	82.0	48.5	16.9	31.5	72.3
LoRA-XS _{r=136}	1.33M	6.6	68.5	89.4	68.4	98.7	90.9	84.5	54.1	84.0	94.3	80.8	73.6	60.0	57.7	45.8	79.6	80.6	48.1	17.4	30.8	71.6
PSOFT_{r=46}	0.08M	6.2	71.9	89.6	70.3	99.1	91.8	86.9	55.9	84.6	94.2	82.4	75.2	71.2	59.9	45.7	79.6	80.9	52.9	20.0	32.9	73.4

it achieves the best average accuracy with about 94% fewer parameters and the lowest peak memory footprint. Interestingly, we also observe that parameter counts and memory overheads of different PEFT methods do not necessarily correlate. For example, the weight decomposition in DoRA introduces substantial memory overhead on the ViT-base model compared with other LoRA variants, even when the number of trainable parameters is similar. This suggests that PEFT design should consider multi-dimensional efficiency beyond parameter efficiency alone.

Decoder-only Models. Following prior work (Lingam et al., 2024; Liu et al., 2024b), we fine-tune the LLaMA-3.2-3B (Meta AI, 2024) model on MetaMathQA-40K (Yu et al., 2024) and evaluate on GSM-8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021). For large-scale models and complex tasks, where performance is more sensitive to parameter counts, we align trainable parameters by setting the LoRA rank to 8 to ensure a fair comparison. PEFT modules are applied to all linear layers, with additional hyperparameter details in Appendix H.

As shown in Table 4, as models scale up, BOFT suffers from OOM failures like GOFTv2 and qGOFTv2, whereas PSOFT avoids this issue. *PSOFT reduces the peak memory footprint of OFT variants to a level comparable with LoRA-like methods, while delivering superior performance under similar parameter counts.* Against advanced PEFT methods, it outperforms LoRA (+2.28%) on GSM-8K and PiSSA (+1.02%) on MATH, while maintaining memory usage comparable to LoRA-like baselines. Compared to the sparsity-based OFT_{v2}, PSOFT achieves higher performance at comparable cost. When scaling to large models and complex reasoning tasks, PSOFT adapts by employing a higher rank r to ensure sufficient expressiveness, yet still maintains efficiency and clear memory advantages over BOFT, GOFTv2, qGOFTv2, and DoRA. *Although increasing the rank may enhance the expressiveness of LoRA-XS, its performance remains fundamentally constrained by the initialization: the inserted square matrix is trainable only as a linear combination within the original low-rank subspace.* Even under restricted module insertion and tighter parameter budgets, PSOFT still reduces memory overhead relative to qGOFTv2 and BOFT (Table 13 in Appendix H), demonstrating strong scalability to large models and complex mathematical tasks.

Following prior work (Hu et al., 2023; Lingam et al., 2024; Liu et al., 2024a), we further fine-tune LLaMA-3.1-8B (Dubey et al., 2024) on the Commonsense-15K dataset (Hu et al., 2023) and evaluate it on eight commonsense reasoning benchmarks. PEFT modules are applied to the Q, K, V, U, D linear layers. Appendix I details the hyperparameter settings. As shown in Table 5, *PSOFT mitigates the frequent OOM issues of OFT on larger models while achieving the best average performance.* In practice, GOFTv2, qGOFTv2, and BOFT suffer from OOM failures even without inserting modules into all linear layers, severely limiting their use in large-scale fine-tuning, whereas PSOFT provides a

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 4: Experimental results of fine-tuned LLaMA-3.2-3B on GSM-8K and MATH.

Methods	#Params	Memory (GB)	GSM-8K	MATH
FFT	3.21B	69.0	63.00	16.84
GOFTv2	0.75M	OOM	N/A.	
qGOFTv2	2.98M	OOM	N/A.	
BOFT _{m=2}	3.76M	OOM	N/A.	
OFTv2 _{b=32}	11.6M	35.2	61.03	15.70
LoRA _{r=8}	12.2M	32.2	60.80	15.76
PiSSA _{r=8}	12.2M	32.2	61.26	14.96
DoRA _{r=8}	12.9M	43.4	62.62	15.48
LoRA-XS _{r=248}	12.1M	34.4	61.56	15.02
PSOFT_{r=352}	12.2M	36.2	63.08	15.98

Table 5: Experimental results of fine-tuned LLaMA-3.1-8B on commonsense reasoning benchmarks.

Methods	#Params	Memory (GB)	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA	Avg.
FFT	8.03B	OOM									N/A.
GOFTv2	0.98M	OOM									N/A.
qGOFTv2	3.93M	OOM									N/A.
BOFT $_{m=2}^{b=2}$	4.72M	OOM									N/A.
OFTv2 $_{b=32}$	14.3M	55.5	70.83	84.44	73.34	90.63	74.11	90.87	80.12	81.80	80.77
LoRA $_{r=8}$	14.2M	54.1	73.18	85.31	74.36	86.57	74.19	90.95	80.29	84.00	81.11
PiSSA $_{r=8}$	14.2M	54.1	71.22	86.02	75.38	90.27	74.19	89.90	79.44	84.00	81.30
DoRA $_{r=8}$	14.9M	65.6	73.09	85.96	75.08	90.48	75.53	90.74	81.40	84.40	82.09
LoRA-XS $_{r=298}$	14.2M	56.2	72.35	86.51	75.18	91.73	74.98	90.74	79.52	84.00	81.88
PSOFT $_{r=424}$	14.5M	58.4	72.17	86.51	75.79	91.28	75.61	91.46	81.48	86.00	82.54

more memory-friendly alternative. Under comparable costs, it surpasses OFTv2 by 1.77% in average accuracy, matches the memory efficiency of LoRA-like baselines while delivering higher accuracy, and reduces memory usage by about 7 GB relative to DoRA. **As the model size increases, DoRA attains performance that is surpassed only by PSOFT, but its memory overhead becomes noticeably higher than that of other LoRA variants.** PSOFT further remains effective under reduced parameter budgets and restricted module insertion (Table 15 in Appendix I), underscoring its practicality in balancing efficiency and performance across diverse settings.

Table 6: Effect of orthogonality of \mathbf{R} on LLaMA-3.2-3B.

Methods	#Params	GSM-8K	MATH
PiSSA+LoRA-XS $_{r=248}$ ($\eta=0.0$)	12.1M	61.26	14.72
PiSSA+LoRA-XS $_{r=248}$ ($\eta=0.01$)	12.1M	61.26	14.80
PiSSA+LoRA-XS $_{r=248}$ ($\eta=0.1$)	12.1M	59.89	14.90
PiSSA+LoRA-XS $_{r=248}$ ($\eta=1.0$)	12.1M	59.36	14.44
PSOFT $_{r=248}$ (strict orthogonality)	6.0M	61.18	14.80
PSOFT $_{r=352}$ (strict orthogonality)	12.1M	62.77	15.74

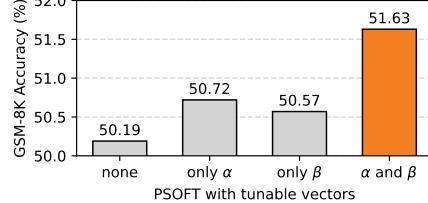


Figure 3: Effect of tunable vectors.

Ablation Studies. To study the effect of orthogonality of \mathbf{R} , we follow AdaLoRA (Zhang et al., 2023) and add an orthogonality regularizer $L_{\text{orth}} = \|\mathbf{R}^\top \mathbf{R} - \mathbf{I}\|_F$, resulting in the objective $L = L + \eta L_{\text{orth}}$ with weight η . Setting $\eta = 0$ recovers PiSSA+LoRA-XS with unconstrained \mathbf{R} . As shown in Table 6, this regularization avoids Cayley inversion but demands careful tuning. Under equal rank, PSOFT with strict orthogonality matches the unconstrained variant with half the parameters, and achieves clear gains once parameter counts are aligned. Therefore, Cayley parametrization in PSOFT not only enforces orthogonality but also exploits its skew-symmetric structure to improve parameter efficiency.

To study the effect of tunable vectors α and β , we fine-tune LLaMA-3.2-3B with rank 64, inserting PSOFT into all linear layers and evaluating on GSM-8K and MATH. As shown in Figure 3, enabling both vectors achieves the best performance, while single-sided insertion provides smaller gains. This suggests that tuning only one side lacks sufficient capacity to capture task-specific variations.

To study the effect of initialization, we compare three variants: $A_{\text{orth}} R_{\text{orth}} B$, $AR_{\text{orth}} B_{\text{orth}}$, and $AR_{\text{orth}} B$, where A and B follow PiSSA (Meng et al., 2024) and A_{orth} , B_{orth} use orthogonal initialization with rank 64. As shown in Table 7, $A_{\text{orth}} R_{\text{orth}} B$ yields the best results, outperforming PiSSA without constraining A and B , whereas enforcing orthogonality on B reduces model expressiveness.

Table 7: Effect of initialization.

Methods	RTE	CoLA
$A_{\text{orth}} R_{\text{orth}} B$	85.92	70.63
$AR_{\text{orth}} B_{\text{orth}}$	52.71	67.97
$AR_{\text{orth}} B$	71.11	69.23

Memory and Computational Efficiency. We evaluate memory usage among different batch sizes by fine-tuning ViT-B/16 on VTAB-1K with PEFT modules in all linear layers. As shown in Figure 4a, PSOFT consistently requires less memory than advanced OFT variants across batch sizes, maintaining a peak footprint below 4 GB even at batch size 32, which highlights its suitability for resource-constrained settings.

We also evaluate the computational cost under the same experimental settings on a single H100 GPU as in Tables 4 and 5. **As shown in Figure 4b, on LLaMA-3.2-3B, PSOFT (Q,K,V) trains in 57 minutes,**

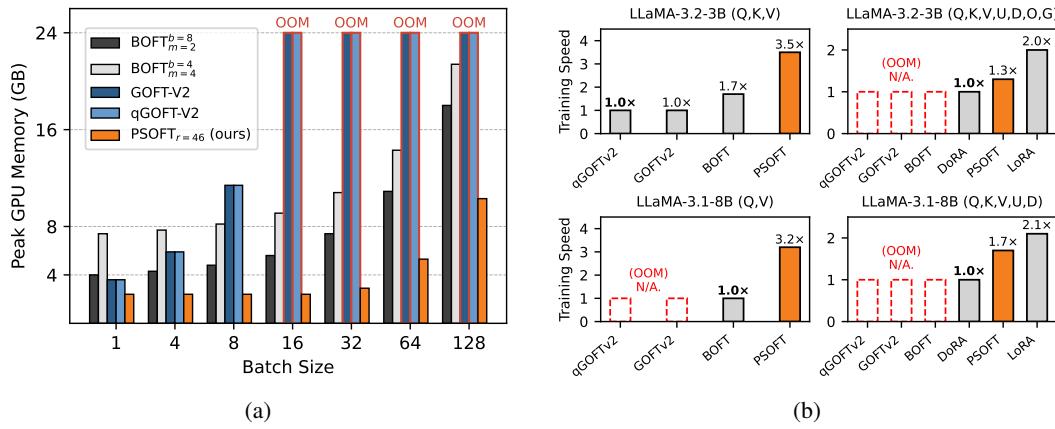


Figure 4: (a) Memory usage across batch sizes. (b) Training speed across different models.

yielding $3.5\times$ and $2.1\times$ speedups over GOFTv2/qGOFTv2 and BOFT, respectively, while its full configuration (Q,K,V,U,D,O,G) requires 1 hour 31 minutes and achieves a $1.3\times$ speedup over DoRA. On LLaMA-3.1-8B, PSOFT (Q,V) completes training in 29 minutes with a $3.2\times$ speedup over BOFT, and PSOFT (Q,K,V,U,D) finishes in 53 minutes, running $1.7\times$ faster than DoRA. Compared with other PEFT methods, its computational efficiency falls between that of DoRA and LoRA.

6 DISCUSSION ON SCALING TO LARGER MODELS

Due to hardware resource constraints, our empirical evaluation is limited to models of up to 8B parameters. Nevertheless, we further discuss the potential limitations and stability considerations when extending PSOFT to larger-scale models. From a methodological perspective, PSOFT scales favorably as model size increases. Because the orthogonal transformation operates in an r -dimensional principal subspace rather than the full d -dimensional weight space, both computational and activation-memory costs grow with the controllable rank r instead of the expanding dimension d required by many PEFT methods (a detailed analysis is provided in Appendix E). As shown in Appendix J (Tables 17 and 18), memory usage and training time remain stable as r increases. The subspace-based update also avoids the long chains of full-dimensional multiplications used in GOFT and BOFT, which become increasingly expensive at larger scales. Moreover, the number of trainable parameters in PSOFT is decoupled from the hidden dimension, enabling fine-grained parameter control and preventing the minimum parameter budget from being tied to layer width. Collectively, these properties indicate that PSOFT can extend effectively to larger architectures while maintaining stable optimization behavior.

However, when applying PSOFT to models larger than 8B, several practical factors may need to be considered. Large models often exhibit higher sensitivity to hyperparameters, including learning-rate settings for structured updates such as orthogonal transformations. While PSOFT does not rely on full-dimensional orthogonal matrices, stable training at very large scales may still require careful hyperparameter tuning. Moreover, although the activation-memory growth of PSOFT is slower than that of some OFT approaches, the activations of the underlying backbone (e.g., attention and feed-forward layers) can become the dominant source of memory usage at large scales, which may constrain the choice of batch size or sequence length. Finally, as shown in the main experiments and in the additional rank-sensitivity analyses in Appendix J, larger models tend to benefit from higher ranks to capture task-specific variations. Very small ranks may lead to underfitting on complex tasks, whereas larger ranks improve expressiveness but also increase the trainable parameter budget.

7 CONCLUSION

In this work, we have proposed PSOFT, a novel PEFT framework that confines OFT to the principal subspace with theoretical guarantees, while enhancing practical adaptability through two tunable scaling vectors. Extensive experiments demonstrate that PSOFT introduces a low-rank perspective that resolves the tension between expressiveness and multi-dimensional efficiency in OFT, bridges the gap between orthogonal fine-tuning and low-rank adaptation within the broader PEFT landscape, and offers a solution with superior scalability and practicality for adapting future foundation models.

540 REPRODUCIBILITY STATEMENT
541

542 We are committed to ensuring the reproducibility of our work and have taken the following steps.
543 For the proposed method, we provide source code in the supplementary materials. For theoretical
544 results, we include formal statements and complete mathematical proofs in Appendix B. For datasets
545 and experimental settings, we offer detailed descriptions and full hyperparameter configurations in
546 Appendices F, G, H, and I.

548 REFERENCES
549

550 Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
551 effectiveness of language model fine-tuning. In *Proceedings of the 59th Annual Meeting of the
552 Association for Computational Linguistics and the 11th International Joint Conference on Natural
553 Language Processing (Volume 1: Long Papers)*, pp. 7319–7328, 2021.

554 Seyedarmin Azizi, Souvik Kundu, and Massoud Pedram. LaMDA: Large model fine-tuning via spec-
555 trally decomposed low-dimensional adaptation. In *Findings of the Association for Computational
556 Linguistics: EMNLP 2024*, pp. 9635–9646, 2024.

557 Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adaptation
558 with extremely small number of parameters. *arXiv preprint arXiv:2405.17604*, 2024.

559

560 Massimo Bini, Leander Girrbach, and Zeynep Akata. Decoupling angles and strength in low-rank
561 adaptation. In *International Conference on Learning Representations*, 2025.

562

563 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
564 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
565 volume 34, pp. 7432–7439, 2020.

566 Arthur Cayley. *The collected mathematical papers of Arthur Cayley*, volume 7. University of
567 Michigan Library, 1894.

568

569 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
570 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings
571 of the 2019 Conference of the North American Chapter of the Association for Computational
572 Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936,
573 2019.

574

575 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
576 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
577 *arXiv preprint arXiv:1803.05457*, 2018.

578

579 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
580 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
581 math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

582

583 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
584 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
585 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
586 In *The Ninth International Conference on Learning Representations*, 2021.

587

588 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
589 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
590 *arXiv preprint arXiv:2407.21783*, 2024.

591

592 Ziqi Gao, Qichao Wang, Aochuan Chen, Zijing Liu, Bingzhe Wu, Liang Chen, and Jia Li. Parameter-
593 efficient fine-tuning with discrete fourier transform. In *International Conference on Machine
594 Learning*, 2024.

595

596 Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
597 Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM review*, 53(2):
598 217–288, 2011.

594 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 595 human-level performance on imagenet classification. In *Proceedings of the IEEE international*
 596 *conference on computer vision*, pp. 1026–1034, 2015.

597

598 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
 599 pre-training with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*,
 600 2021.

601 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 602 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 603 *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*
 604 (*Round 2*), 2021.

605 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 606 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 607 nlp. In *International Conference on Machine Learning*, pp. 2790–2799, 2019.

608

609 Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In
 610 *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume*
 611 *1: Long Papers*), pp. 328–339, 2018.

612 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 613 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*
 614 *arXiv:2106.09685*, 2021.

615

616 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 617 Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of
 618 large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural*
 619 *Language Processing*, pp. 5254–5276, 2023.

620 Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. VeRA: Vector-based random matrix
 621 adaptation. In *The Twelfth International Conference on Learning Representations*, 2024.

622 Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch,
 623 Mohammad Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer
 624 models. *Proceedings of Machine Learning and Systems*, 5:341–353, 2023.

625

626 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 627 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language*
 628 *Processing*, pp. 3045–3059, 2021.

629 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
 630 of objective landscapes. In *The Sixth International Conference on Learning Representations*, 2018.

631

632 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 633 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*
 634 *11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 635 pp. 4582–4597, 2021.

636

637 Vijay Lingam, Atula Tejaswi Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,
 638 Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and sujay sanghavi. SVFT:
 639 Parameter-efficient fine-tuning with singular vectors. In *The Thirty-eighth Annual Conference on*
640 Neural Information Processing Systems, 2024.

641

642 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Thirty-*
643 seventh Conference on Neural Information Processing Systems, 2023.

644

645 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
 646 Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *International*
647 Conference on Machine Learning, 2024a.

648

649 Weiyang Liu, Rongmei Lin, Zhen Liu, James M Rehg, Liam Paull, Li Xiong, Le Song, and Adrian
 650 Weller. Orthogonal over-parameterized training. In *Proceedings of the IEEE/CVF Conference on*
651 Computer Vision and Pattern Recognition, pp. 7251–7260, 2021.

648 Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
 649 Liu, Jyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
 650 Schölkopf. Parameter-efficient orthogonal finetuning via butterfly factorization. In *The Twelfth
 651 International Conference on Learning Representations*, 2024b.

652 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
 653 Prompt tuning can be comparable to fine-tuning across scales and tasks. In *Proceedings of the 60th
 654 Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
 655 61–68, 2022.

656 Xinyu Ma, Xu Chu, Zhibang Yang, Yang Lin, Xin Gao, and Junfeng Zhao. Parameter efficient
 657 quasi-orthogonal fine-tuning via givens rotation. In *International Conference on Machine Learning*,
 658 2024.

659 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
 660 Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. [https://github.
 661 com/huggingface/peft](https://github.com/huggingface/peft), 2022.

662 Fanxu Meng, Zhaojun Wang, and Muhan Zhang. PiSSA: Principal singular values and singular
 663 vectors adaptation of large language models. In *The Thirty-eighth Annual Conference on Neural
 664 Information Processing Systems*, 2024.

665 Meta AI. Llama 3.2: Revolutionizing edge ai and vision with
 666 open, customizable models. [https://ai.meta.com/blog/
 667 llama-3-2-connect-2024-vision-edge-mobile-devices/](https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/), September 2024.

668 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 669 electricity? a new dataset for open book question answering. In *Proceedings of the 2018 Conference
 670 on Empirical Methods in Natural Language Processing*, pp. 2381–2391, 2018.

671 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 672 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 673 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 674 2019.

675 Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
 676 fusion: Non-destructive task composition for transfer learning. *arXiv preprint arXiv:2005.00247*,
 677 2020.

678 Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi Yang. Is
 679 chatGPT a general-purpose natural language processing task solver? In *The 2023 Conference on
 680 Empirical Methods in Natural Language Processing*, 2023.

681 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller,
 682 and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. *Advances
 683 in Neural Information Processing Systems*, 36:79320–79362, 2023.

684 Zeju Qiu, Weiyang Liu, Adrian Weller, and Bernhard Schölkopf. Orthogonal finetuning made
 685 scalable. In *EMNLP*, 2025.

686 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 687 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 688 2021.

689 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
 690 sense reasoning about social interactions. In *Proceedings of the 2019 Conference on Empirical
 691 Methods in Natural Language Processing and the 9th International Joint Conference on Natural
 692 Language Processing (EMNLP-IJCNLP)*, pp. 4463–4473, 2019.

693 Weixi Song, Zuchao Li, Lefei Zhang, hai zhao, and Bo Du. Sparse is enough in fine-tuning pre-trained
 694 large language models. In *Forty-first International Conference on Machine Learning*, 2024.

695 Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
 696 *arXiv preprint arXiv:1804.07461*, 2018.

702 Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
 703 Xuanjing Huang. Orthogonal subspace learning for language model continual learning. In *Findings
 704 of the Association for Computational Linguistics: EMNLP 2023*, pp. 10658–10671, 2023.
 705

706 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
 707 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
 708 Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
 709 *Transactions on Machine Learning Research*, 2022.

710 Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Zhu JianHao,
 711 Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Advancing parameter efficiency in fine-
 712 tuning via representation editing. In *Proceedings of the 62nd Annual Meeting of the Association
 713 for Computational Linguistics (Volume 1: Long Papers)*, pp. 13445–13464, 2024a.

714 Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Manning,
 715 and Christopher Potts. ReFT: Representation finetuning for language models. In *The Thirty-eighth
 716 Annual Conference on Neural Information Processing Systems*, 2024b.
 717

718 Jing Xu and Jingzhao Zhang. Random masking finds winning tickets for parameter efficient fine-
 719 tuning. In *International Conference on Machine Learning*, 2024.

720 Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
 721 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
 722 large language models. In *The Twelfth International Conference on Learning Representations*,
 723 2024.

724 Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient fine-tuning
 725 for transformer-based masked language-models. In *Proceedings of the 60th Annual Meeting of the
 726 Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 1–9, 2022.
 727

728 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 729 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

730 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
 731 Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
 732 large-scale study of representation learning with the visual task adaptation benchmark. *arXiv
 733 preprint arXiv:1910.04867*, 2019.

734 Fangzhao Zhang and Mert Pilanci. Spectral adapter: Fine-tuning in spectral space. In *The Thirty-
 735 eighth Annual Conference on Neural Information Processing Systems*, 2024.

737 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
 738 Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *The Eleventh International
 739 Conference on Learning Representations*, 2023.

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 ORGANIZATION OF THE APPENDIX
757758 The appendix is organized as follows:
759

- 760 • Appendix A introduces the algorithm of the proposed PSOFT.
- 761 • Appendix B provides the theoretical proof for the column-wise angle and norm preservation
762 theorem.
- 763 • Appendix C presents theoretical details of the Cayley parameterization.
- 764 • Appendix D compares the number of trainable parameters across popular PEFT methods.
- 765 • Appendix E analyzes activation memory statistics for different PEFT methods.
- 766 • Appendix F outlines experimental details for natural language understanding on GLUE.
- 767 • Appendix G covers experimental details for visual classification on VTAB-1K.
- 768 • Appendix H reports experimental details for mathematical question answering on MetaMathQA-
769 40K.
- 770 • Appendix I describes experimental details for commonsense reasoning on Commonsense-15K.
- 771 • Appendix J details extended experiments on the effects of SVD initialization, different rank settings,
772 inserted modules, and Neumann terms.
- 773 • Appendix K presents the angular structure of the weight changes before and after fine-tuning.
- 774 • Appendix L analyzes the difference between PSOFT and full-space OFT in terms of their optimiza-
775 tion dynamics and training loss trajectories.
- 776 • Appendix M provides the additional memory usage experiments covering a single linear layer, a
777 Transformer block, and end-to-end models.
- 778 • Appendix N explains the use of large language models in this paper.

782 A ALGORITHM OF THE PROPOSED PSOFT
783

784 For completeness, we provide a detailed description of the proposed PSOFT framework, which
785 corresponds to Algorithm 1. For initialization, the orthogonal matrix \mathbf{R} is set to the identity matrix
786 \mathbf{I}_r , while PSOFT further introduces two additional vectors, α and β , both initialized as all ones.
787 Before training begins, a singular value decomposition (SVD) is performed once to extract the top- r
788 singular values and vectors, which are then used to construct the matrices \mathbf{A}' , \mathbf{B}' , and the residual
789 weights \mathbf{W}_{res} . During training, the forward computation follows Eq. 8, and the gradients of both \mathbf{R}
790 and the vectors α and β are updated jointly to obtain the final weights $\mathbf{W}_{\text{final}}$.
791

792 **Algorithm 1** PSOFT: orthogonal fine-tuning in the principal subspace

- 793 1: **Input:** Pre-trained weight matrix $\mathbf{W}_{\text{pre}} \in \mathbb{R}^{d \times n}$, rank r , input x , and number of epochs E
- 794 2: **Output:** Fine-tuned orthogonal matrix \mathbf{R} , two vectors α and β , and final weight matrix $\mathbf{W}_{\text{final}}$
- 795 3: **Initialize:** Orthogonal matrix: $\mathbf{R} \leftarrow \mathbf{I}_r$, two vectors: $\alpha \leftarrow \mathbf{1}_r$, $\beta \leftarrow \mathbf{1}_r$
- 796 4: **Pre-compute:**
- 797 5: $\mathbf{W}_{\text{pre}} = \mathbf{U} \mathbf{S} \mathbf{V}^\top$, $\mathbf{A}' \leftarrow \mathbf{U}_{[:,r]} \mathbf{S}_{[r,:]} \mathbf{V}_{[:,r]}^\top$, $\mathbf{W}_{\text{res}} \leftarrow \mathbf{U}_{[:,r]} \mathbf{S}_{[r,:]} \mathbf{V}_{[:,r]}^\top$
- 798 6: **for** epoch = 1 to E **do**
- 799 7: **for** each mini-batch x **do**
- 800 8: $\mathbf{h} = (\mathbf{A}' \text{diag}(\alpha) \mathbf{R} \text{diag}(\beta) \mathbf{B}' + \mathbf{W}_{\text{res}})^\top x$,
- 801 9: compute $\frac{\partial \mathcal{L}}{\partial \mathbf{R}}$, $\frac{\partial \mathcal{L}}{\partial \alpha}$, $\frac{\partial \mathcal{L}}{\partial \beta}$, then update $\mathbf{R} \leftarrow \mathbf{R} - \eta \cdot \frac{\partial \mathcal{L}}{\partial \mathbf{R}}$, $\alpha \leftarrow \alpha - \eta \cdot \frac{\partial \mathcal{L}}{\partial \alpha}$, $\beta \leftarrow \beta - \eta \cdot \frac{\partial \mathcal{L}}{\partial \beta}$
- 802 10: **end for**
- 803 11: **end for**
- 804 12: **Reconstruct:** $\mathbf{W}_{\text{final}} \leftarrow \mathbf{A}' \text{diag}(\alpha) \mathbf{R} \text{diag}(\beta) \mathbf{B}' + \mathbf{W}_{\text{res}}$

806 B PROOF FOR THE ANGLE AND NORM PRESERVATION THEOREM
807

808 **Theorem B.1** (Formal: Column-wise angle and norm preservation in the low-rank subspace). *Let*
809 $\mathbf{W}_{\text{pri}} = \mathbf{A} \mathbf{B} \in \mathbb{R}^{d \times n}$ *and* $\mathbf{W}_{\text{ps-tuned}} = \mathbf{A} \mathbf{R} \mathbf{B} \in \mathbb{R}^{d \times n}$, *with* $\mathbf{A} \in \mathbb{R}^{d \times r}$, $\mathbf{B} \in \mathbb{R}^{r \times n}$. *Assume*

rank(\mathbf{A}) = rank(\mathbf{B}) = r and every column $\mathbf{b}_i \neq \mathbf{0}$ (so all angles are well-defined). Let $\mathbf{G} := \mathbf{A}^\top \mathbf{A}$, \mathbf{G} is symmetric positive definite, $\mathbf{w}_i^{\text{pri}} := \mathbf{Ab}_i$, $\mathbf{w}_i^{\text{ps-tuned}} := \mathbf{Arb}_i$, and denote by θ_{ij}^{pri} (resp. $\theta_{ij}^{\text{ps-tuned}}$) the angle between $\mathbf{w}_i^{\text{pri}}$, $\mathbf{w}_j^{\text{pri}}$ (resp. $\mathbf{w}_i^{\text{ps-tuned}}$, $\mathbf{w}_j^{\text{ps-tuned}}$). Then

$$\mathbf{R}^\top \mathbf{GR} = \mathbf{G} \iff (\forall i \neq j, \theta_{ij}^{\text{ps-tuned}} = \theta_{ij}^{\text{pri}}) \text{ and } (\forall i, \|\mathbf{w}_i^{\text{ps-tuned}}\| = \|\mathbf{w}_i^{\text{pri}}\|). \quad (9)$$

Proof. For any pair of column indices $i \neq j$, the cosines of the angles between the vectors in principal weights ($\mathbf{w}_i^{\text{pri}}$, $\mathbf{w}_j^{\text{pri}}$) and the vectors in fine-tuned weights ($\mathbf{w}_i^{\text{ps-tuned}}$, $\mathbf{w}_j^{\text{ps-tuned}}$) are

$$\cos \theta_{ij}^{\text{pri}} = \frac{\mathbf{b}_i^\top \mathbf{G} \mathbf{b}_j}{\sqrt{\mathbf{b}_i^\top \mathbf{G} \mathbf{b}_i} \sqrt{\mathbf{b}_j^\top \mathbf{G} \mathbf{b}_j}}, \quad \cos \theta_{ij}^{\text{ps-tuned}} = \frac{\mathbf{b}_i^\top \mathbf{R}^\top \mathbf{GR} \mathbf{b}_j}{\sqrt{\mathbf{b}_i^\top \mathbf{R}^\top \mathbf{GR} \mathbf{b}_i} \sqrt{\mathbf{b}_j^\top \mathbf{R}^\top \mathbf{GR} \mathbf{b}_j}}.$$

Moreover, for any i ,

$$\|\mathbf{w}_i^{\text{pri}}\|^2 = \mathbf{b}_i^\top \mathbf{G} \mathbf{b}_i, \quad \|\mathbf{w}_i^{\text{ps-tuned}}\|^2 = \mathbf{b}_i^\top \mathbf{R}^\top \mathbf{GR} \mathbf{b}_i.$$

Sufficiency. If $\mathbf{R}^\top \mathbf{GR} = \mathbf{G}$, then the two cosine expressions coincide for every $i \neq j$, hence $\cos \theta_{ij}^{\text{ps-tuned}} = \cos \theta_{ij}^{\text{pri}}$. Since all angles lie in $[0, \pi]$ where the cosine is strictly decreasing, we obtain $\theta_{ij}^{\text{ps-tuned}} = \theta_{ij}^{\text{pri}}$. Similarly, $\|\mathbf{w}_i^{\text{ps-tuned}}\|^2 = \mathbf{b}_i^\top \mathbf{G} \mathbf{b}_i = \|\mathbf{w}_i^{\text{pri}}\|^2$, so $\|\mathbf{w}_i^{\text{ps-tuned}}\| = \|\mathbf{w}_i^{\text{pri}}\|$.

Necessity. Conversely, assume that $\theta_{ij}^{\text{ps-tuned}} = \theta_{ij}^{\text{pri}}$ for all $i \neq j$ and $\|\mathbf{w}_i^{\text{ps-tuned}}\| = \|\mathbf{w}_i^{\text{pri}}\|$ for all i . Define $\mathbf{M} := \mathbf{R}^\top \mathbf{GR} - \mathbf{G}$. From norm preservation we obtain

$$\mathbf{b}_i^\top \mathbf{M} \mathbf{b}_i = 0, \quad \forall i,$$

Since $\mathbf{b}_i \neq \mathbf{0}$ and $\mathbf{G} \succ 0$, both denominators in the cosine formulas are equal and positive; hence angle preservation implies

$$\mathbf{b}_i^\top \mathbf{M} \mathbf{b}_j = 0 \quad \forall i \neq j.$$

Thus $\mathbf{B}^\top \mathbf{MB} = \mathbf{0}$ with $\text{rank}(\mathbf{B}) = r$. Because \mathbf{B} has full row rank, it admits a right inverse $\mathbf{C} \in \mathbb{R}^{n \times r}$ (e.g., $\mathbf{C} = \mathbf{B}^\top (\mathbf{BB}^\top)^{-1}$) such that $\mathbf{BC} = \mathbf{I}_r$. Multiplying gives

$$\mathbf{M} = \mathbf{C}^\top (\mathbf{B}^\top \mathbf{MB}) \mathbf{C} = \mathbf{0},$$

hence $\mathbf{R}^\top \mathbf{GR} = \mathbf{G}$.

□

C CAYLEY PARAMETERIZATION

The Cayley parameterization (Cayley, 1894) is a mapping that converts real skew-symmetric matrices into orthogonal matrices. For a real skew-symmetric matrix \mathbf{Q} (i.e., $\mathbf{Q}^\top = -\mathbf{Q}$), the Cayley transform is defined as:

$$\mathbf{C} = (\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1},$$

where \mathbf{I} is the identity matrix of the same size as \mathbf{Q} and matrix \mathbf{C} does not have -1 as an eigenvalue.

The Cayley transform provides a way to parameterize orthogonal matrices near the identity matrix using skew-symmetric matrices. The orthogonality of the Cayley transform is proved as follows.

Theorem C.1. *If \mathbf{Q} is a real skew-symmetric matrix and $(\mathbf{I} + \mathbf{Q})$ is invertible, then the Cayley transform $\mathbf{C} = (\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1}$ is an orthogonal matrix.*

Proof. We aim to proof that the matrix \mathbf{C} after Cayley transform satisfies $\mathbf{C}^\top \mathbf{C} = \mathbf{CC}^\top = \mathbf{I}$.

To compute $\mathbf{C}^\top \mathbf{C}$:

$$\begin{aligned} \mathbf{C}^\top \mathbf{C} &= ((\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1})^\top ((\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1}) \\ &= ((\mathbf{I} + \mathbf{Q})^{-1})^\top (\mathbf{I} - \mathbf{Q})^\top (\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1} \\ &= ((\mathbf{I} + \mathbf{Q})^\top)^{-1} (\mathbf{I} - \mathbf{Q})^\top (\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1} \end{aligned}$$

864 By the definition of skew-symmetry, $\mathbf{Q}^\top = -\mathbf{Q}$,

$$866 = (\mathbf{I} - \mathbf{Q})^{-1}(\mathbf{I} + \mathbf{Q})(\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1}$$

867 Since $(\mathbf{I} + \mathbf{Q})$ and $(\mathbf{I} - \mathbf{Q})$ are commute, we can switch the order of the factors:

$$869 = (\mathbf{I} - \mathbf{Q})^{-1}(\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1}$$

$$870 = \mathbf{I}$$

872 Similarly, it can be proven that $\mathbf{C}\mathbf{C}^\top = \mathbf{I}$. Therefore, the result of Cayley transform $\mathbf{C} =$
 873 $(\mathbf{I} - \mathbf{Q})(\mathbf{I} + \mathbf{Q})^{-1}$ is an orthogonal matrix. \square

875 In this paper, PSOFT leverages the Cayley parameterization to construct orthogonal matrices with
 876 approximately half the number of trainable parameters compared to a full orthogonal matrix, while
 877 rigorously preserving orthogonality.

879 D COMPARISON OF TRAINABLE PARAMETERS FOR PEFT METHODS

882 Table 8 reports the number of trainable parameters across representative PEFT methods. Most
 883 existing approaches scale their parameter counts with hidden layer dimensions, which constrains
 884 their applicability to larger models. In contrast, PSOFT and LoRA-XS decouple the number of
 885 trainable parameters from layer width. PSOFT further reduces parameter complexity through the
 886 Cayley parameterization, which requires only $r(r - 1)/2$ parameters to represent an orthogonal
 887 matrix. Consequently, the total number of trainable parameters in PSOFT remains fixed for a given
 888 rank r , allowing fine-grained control over parameter budgets. Moreover, PSOFT introduces two
 889 learnable scaling vectors within the subspace, contributing merely $2r$ additional parameters, which is
 890 negligible compared with other methods.

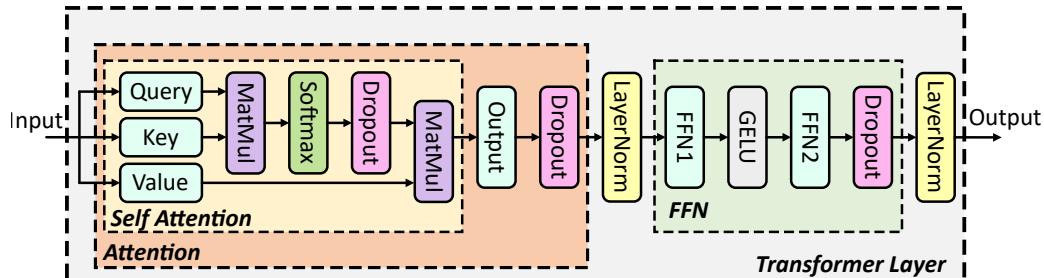
891 Table 8: Comparison of trainable parameters for different PEFT methods within a single linear layer,
 892 assuming input/output dimensions d and n , respectively. Here, r denotes the low-rank dimension,
 893 m the number of butterfly factors in BOFT, b the block size in BOFT, $d_{\min} = \min(d, n)$, and k the
 894 number of additional off-diagonals in SVFT. All statistics are based on implementations from the
 895 HuggingFace’s PEFT library (Mangrulkar et al., 2022).

896 Method	897 Number of Trainable Parameters
898 LoRA	$899 d \times r + r \times n$
900 DoRA	$901 d \times r + r \times n + n$
902 VERA	$903 r + n$
904 OFT	$905 r \times (d/r) \times (d/r) + n$
906 BOFT	$907 m \times (d/b) \times b^2 + n$
908 SVFT	$909 d_{\min} \times k + (d_{\min} - k)(k + 1)$
910 LoRA-XS	$911 r \times r$
912 PSOFT (Ours)	$913 r(r - 1)/2 + 2r$

906 E THE ACTIVATION MEMORY STATISTICS ACROSS DIFFERENT PEFT 907 METHODS

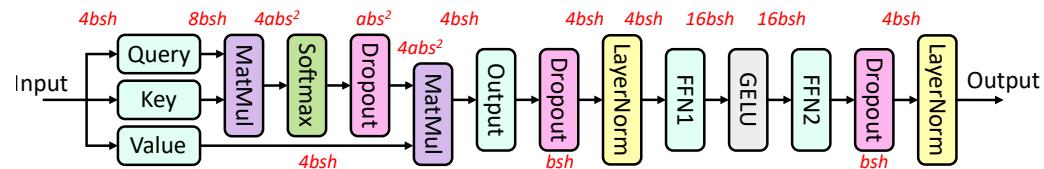
910 In this section, we analyze the activation memory requirements of various PEFT methods during
 911 fine-tuning. In transformer-based networks, memory usage primarily arises from three sources:
 912 *pre-trained weight storage*, *activation storage*, and *gradient/optimizer state storage*. Activation
 913 storage refers to intermediate values created during the forward pass and retained for gradient
 914 computation during backpropagation. Different PEFT methods consume comparable amounts of
 915 memory for weights, gradients, and optimizer states, as they all involve a substantially reduced
 916 number of trainable parameters (Hu et al., 2021; Bałazy et al., 2024; Kopiczko et al., 2024). In
 917 contrast, their activation memory consumption exhibits clear differences. As the batch size increases,
 918 activation storage gradually becomes the dominant memory bottleneck, as illustrated in Figure 4a.

918
 919 Notably, activation memory in transformer layers accounts for over 99.9% of the total activation
 920 memory across all layers (Korthikanti et al., 2023). We therefore focus our analysis on the activation
 921 storage of transformer layers.
 922



923
 924 Figure 5: The architecture of a single transformer layer, including the attention layer and the feed
 925 forward network layer and self attention layer.
 926
 927

928
 929 In this study, we consider the transformer layers within an encoder or decoder, where the input has
 930 dimensions $b \times s \times h$, where b denotes the micro-batch size, s represents the maximum sequence
 931 length, and h indicates the hidden dimension size. Each transformer layer consists of a self-attention
 932 layer with a attention heads, and in the feed-forward network (FFN) layer, the hidden dimension is
 933 expended to $4h$ before being projected back to h . We assume that activations are stored in 32-bit
 934 floating-point format, requiring 4 bytes of memory. All results in this section are reported in bytes
 935 unless otherwise specified.
 936
 937



938 Figure 6: Activation memory statistics in a single transformer layer for full fine-tuning.
 939
 940

941 As illustrated in Figure 5, each transformer layer consists of a self-attention block (including Query,
 942 Key, and Value matrices) combined with an output linear layer to form the attention block. Additionally,
 943 it includes two FFN layers, two normalization layers, and three dropout layers. Building on
 944 prior work (Korthikanti et al., 2023), we derive an approximate formula for the activation memory
 945 required during the forward pass of a single transformer layer. For backpropagation, we consider
 946 the input of each module (which serves as the output for the subsequent module) as activations. As
 947 illustrated in Figure 6, the activation memory includes the following components:
 948

949 **Self-Attention:**

950 • Query (Q), Key (K), and Value (V) matrices: Require $4bsh$ for their shared inputs.
 951 • First MatMul: Requires $8bsh$ as input to the module.
 952 • Softmax: Requires $4abs^2$ for activation storage.
 953 • Self-attention dropout: Only the mask is stored, with a size of abs^2 .
 954 • Second MatMul: Requires activations from the output of dropout ($4abs^2$) and linear layer
 955 Value ($4bsh$), totaling $4abs^2 + 4bsh$.
 956

957 **Attention:**

958 • Output linear layer: Requires $4bsh$ as input.
 959 • Attention dropout: Only the mask is stored, with a size of bsh .
 960 • First layer normalization: Requires $4bsh$ for activation storage.
 961

962 **FFN:**

963 • FFN1: Requires $4bsh$ as input.
 964

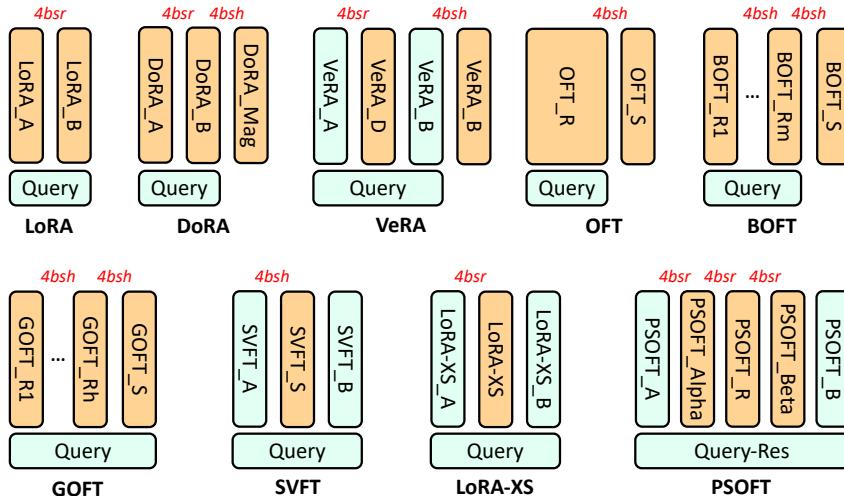


Figure 7: Activation memory statistics in a single linear layer (Query) across different PEFT methods.

- GELU activation: Requires $16bsh$ for activation storage.
- FFN2: Requires $16bsh$ as input.
- FFN dropout: Only the mask is stored, with a size of bsh .
- Second layer normalization: Requires $4bsh$ for activation storage.

Summing these sub-layers, the total activation storage for a single transformer layer is:

$$ACT_{base} = 66bsh + 9abs^2 \quad (10)$$

The six linear layers within a transformer layer undergo changes in activation memory storage when different PEFT methods are applied, as reflected by modifications to the base formula (ACT_{base}). For example, the LoRA method introduces a set of low-rank matrices B and A in parallel. The activation memory requirements for various PEFT methods in a single linear layer are summarized in Figure 7, with the Query matrix as a representative example. The specific details of these changes are as follows:

- **LoRA:** Adds $4bsr$ to the original activation storage for gradient computation during back-propagation.
- **DoRA:** Adds $4bsr + 4bsh$ to the original activation storage.
- **VeRA:** Replaces the original input $4bsh$ with $4bsr$ and adds $4bsh$ for activation storage.
- **OFT:** Adds $4bsh$ to the original activation storage.
- **BOFT:** Requires an additional $4mbsh$, where m is the number of sparse matrices.
- **GOFT:** [Adds \$4bsh \log h\$, where \$h\$ is the hidden layer dimension.](#)
- **SVFT:** Removes the original input activation storage and adds $4bsh$.
- **LoRA-XS:** Removes the original input activation storage and adds $4bsr$.
- **PSOFT:** Removes the original input activation storage and adds $12bsr$.

The activation memory requirements of various PEFT methods for a single transformer layer are summarized in Table 9. Notably, PSOFT incurs significantly lower activation memory than all other methods except LoRA-XS. Its activation memory is comparable to that of LoRA-XS, as the rank r is much smaller than the hidden dimension h ($r \ll h$). A key observation is that PSOFT employs scale vectors to enhance task-specific flexibility, similar to other orthogonal fine-tuning methods (Qiu et al., 2023; Liu et al., 2024b; Ma et al., 2024). However, unlike these methods, PSOFT applies the scale vectors within a principal subspace, effectively preventing a substantial increase in activation memory usage.

1026
1027 Table 9: Total activation memory statistics in a single transformer layer for different PEFT methods
and FFT. In BOFT, m denotes the number of sparse matrices.

1029 Methods	1030 Activation memory (Relative)	1031 Activation memory (Absolute)
1030 FFT	1031 ACT_{base}	1032 $66bsh + 9abs^2$
1031 LoRA	1032 $ACT_{base} + 24bsr$	1033 $66bsh + 24bsr + 9abs^2$
1032 DoRA	1033 $ACT_{base} + 24bsr + 36bsh$	1034 $102bsh + 24bsr + 9abs^2$
1033 VeRA	1034 $ACT_{base} - 28bsh + 16bsr + 36bsh$	1035 $74bsh + 16bsr + 9abs^2$
1034 OFT	1035 $ACT_{base} + 36bsh$	1036 $102bsh + 9abs^2$
1035 BOFT	1036 $ACT_{base} + 36mbsh$	1037 $66bsh + 36mbsh + 9abs^2$
1036 GOFT	1038 $ACT_{base} + 36bsh \log h$	1039 $66bsh + 36bsh \log h + 9abs^2$
1037 SVFT	1039 $ACT_{base} - 28bsh + 24bsr$	1040 $62bsh + 9abs^2$
1038 LoRA-XS	1040 $ACT_{base} - 28bsh + 24bsr$	1041 $38bsh + 24bsr + 9abs^2$
1039 PSOFT	1041 $ACT_{base} - 28bsh + 72bsr$	1042 $38bsh + 72bsr + 9abs^2$

1041

F NATURAL LANGUAGE UNDERSTANDING ON GLUE

1042

F.1 DATASETS

1043 The General Language Understanding Evaluation (GLUE) (Wang, 2018) is a comprehensive benchmark
1044 for evaluating the performance of natural language understanding (NLU) models across diverse
1045 tasks. It includes one text similarity task (SST-B), five pairwise text classification tasks (MNLI, RTE,
1046 QQP, MRPC, and QNLI), and two single-sentence classification tasks (CoLA and SST).

1047 Table 10: Hyperparameter settings for fine-tuning DeBERTaV3-base on GLUE

1048 Hyperparameter	1049 CoLA	1050 STS-B	1051 MRPC	1052 RTE	1053 SST-2	1054 QNLI
1053 Optimizer				AdamW		
1054 Warmup Ratio				0.1		
1055 LR Schedule				Linear		
1056 Learning Rate (Head)				5E-04		
1057 Batch Size				32		
1058 Max Seq. Len.	64	128	256	256	128	256
1059 #Epochs	20	20	30	30	10	5
1060 LR PSOFT _{r=46}	6E-04	4E-04	4E-04	4E-04	2E-04	4E-04

1061

F.2 IMPLEMENTATION DETAILS

1062 While it is common in prior PEFT studies (Hu et al., 2021; Lingam et al., 2024; Liu et al., 2024a;
1063 Meng et al., 2024) to report results on the GLUE validation set, concerns have been raised regarding
1064 the reliability of this protocol (Wu et al., 2024a;b; Bini et al., 2025). To ensure a more rigorous
1065 evaluation, we evenly split the original validation set into new validation and test subsets using
1066 a fixed random seed. All reported results are based on the test set, with checkpoints selected
1067 according to the best accuracy on the new validation set. Given the prohibitive computational cost
1068 of evaluating every baseline across all GLUE datasets, we omit the two largest subsets (MNLI
1069 and QQP) from our experiments. The peak memory usage during training is measured using
1070 `torch.cuda.max_memory_allocated()`.

1071 All experiments are implemented on top of the open-source LoRA framework (Hu et al., 2021),
1072 using PyTorch (Paszke et al., 2019) and Huggingface’s PEFT library (Mangrulkar et al., 2022).
1073 Following Liu et al. (2024b), we tune only model-agnostic hyperparameters such as learning rate and
1074 training epochs. Due to resource constraints, we set the maximum sequence length to 256. PSOFT is
1075 applied to all linear layers of the DeBERTaV3-base model. Evaluation metrics include Matthew’s
1076 correlation for CoLA, Pearson correlation for STS-B, and accuracy for the other GLUE sub-tasks.
1077 Detailed hyperparameter configurations are provided in Table 10.

1080 **G VISUAL CLASSIFICATION ON VTAB-1K**
10811082 **G.1 DATASETS**
10831084 The Visual Task Adaptation Benchmark (VTAB-1K) (Zhai et al., 2019) comprises 19 image classifi-
1085 cation tasks grouped into three categories: natural, specialized, and structured.
10861087

- 1088 • **Natural tasks** involve images captured with standard cameras, depicting scenes from the
1089 natural environment, generic objects, fine-grained categories, or abstract concepts.
1090
- 1091 • **Specialized tasks** use images obtained through specialized equipment, such as medical
1092 imaging devices or remote sensing technologies.
1093
- 1094 • **Structured tasks** focus on artificially designed scenarios to analyze specific relationships or
1095 changes between images, such as estimating object distances in 3D scenes (e.g., DMLab),
1096 counting objects (e.g., CLEVR), or detecting orientations (e.g., dSprites for disentangled
1097 representations).
1098

10991100 In VTAB-1K, each dataset provides 800 labeled samples from its original training set, which are
1101 used to fine-tune the base model. Additionally, 200 labeled samples in the validation set adjust
1102 hyperparameters during fine-tuning. The performance is evaluated using Top-1 classification accuracy
1103 on the respective original test set.
11041105 Table 11: Hyperparameter settings for fine-tuning ViT-B/16 on VTAB-1K
1106

1107 Hyperparameter	1108 ViT-B/16
1109 Optimizer	1110 AdamW
1111 Warmup Ratio	1112 0.1
1113 LR Schedule	1114 Cosine
1115 Learning Rate (Head)	1116 5E-03
1117 Batch Size	1118 64
1119 Weight Decay	1120 1E-03
1121 Dropout	1122 1E-01
1123 #Epochs	1124 50
1125 LR PSOFT _{r=46}	1126 {5E-04, 1E-03, 5E-03}

1127 **G.2 IMPLEMENTATION DETAILS**
11281129 Our experiments are conducted in PyTorch (Paszke et al., 2019) using HuggingFace’s Datasets,
1130 Transformers, and PEFT (Mangrulkar et al., 2022) libraries. Unlike prior works that rely on
1131 the Timm framework with custom preprocessing and training loops (Liu et al., 2024b; Ma et al.,
1132 2024), our framework leverages standardized APIs such as AutoImageProcessor and Trainer,
1133 eliminating manual dataset/model handling and enabling fast integration of advanced methods (e.g.,
1134 DoRA (Liu et al., 2024a), SVFT (Lingam et al., 2024), BOFT (Liu et al., 2024b)).
11351136 We adopt the experimental settings from (Liu et al., 2024b; Ma et al., 2024), adjusting learning rates,
1137 weight decay, and training epochs accordingly. Following (Bałazy et al., 2024; Kopiczko et al., 2024;
1138 Lingam et al., 2024), we separate learning rates for the classification head and PEFT modules, with a
1139 fixed learning rate applied to the head across all methods. Complete hyperparameter configurations
1140 are listed in Table 11.
11411142 **H MATHEMATICAL QUESTION ANSWERING ON METAMATHQA-40K**
11431144 **H.1 DATASETS**
11451146 For mathematical question answering tasks, we fine-tune baselines using the MetaMathQA-40K
1147 dataset (Yu et al., 2024) and evaluate their performance on the two challenge benchmarks: GSM-8K
1148 (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021).
1149

Table 12: Hyperparameter settings for fine-tuning on MetaMathQA-40K

Hyperparameter	LLaMA-3.2-3B
Optimizer	AdamW
Warmup Ratio	0.1
LR Schedule	Cosine
Max Seq. Len.	512
Batch Size	64
# Epochs	2
LR PSOFT _{r=168}	4E-04
LR PSOFT _{r=362}	2E-04

H.2 IMPLEMENTATION DETAILS

Our experiments follow prior work (Liu et al., 2024b; Lingam et al., 2024) and are implemented in PyTorch (Paszke et al., 2019) using HuggingFace’s PEFT library (Mangrulkar et al., 2022). Consistent with (Lingam et al., 2024), we tune only learning rates for different models, with full hyperparameters listed in Table 12. We adopt gradient accumulation with small batch sizes (≤ 4) to approximate large-batch training across all baselines.

Table 13: Experimental results of fine-tuned LLaMA-3.2-3B on GSM-8K and MATH with extremely low parameter counts. The best result for each dataset is marked in **bold**. Accuracy (%) is reported for both GSM-8K and MATH datasets.

Methods	#Params	Inserted Modules	Mem (GB)	GSM-8K	MATH
GOFTv2	0.26M	Q,K,V	75.3	41.02	9.22
qGOFTv2	1.03M	Q,K,V	75.3	42.46	9.32
BOFT _{m=2} ^{b=2}	1.18M	Q,K,V	48.2	52.46	10.78
PSOFT_{r=168}	1.20M	Q,K,V	29.8	52.84	12.24
LoRA _{r=1}	0.40M	Q,K,V	30.1	47.23	10.36
SVFT _P	0.49M	Q,K,V,U,D,O,G	41.1	52.01	12.18
LoRA-XS _{r=48}	0.45M	Q,K,V,U,D,O,G	32.3	51.86	9.80
PSOFT_{r=72}	0.53M	Q,K,V,U,D,O,G	32.7	52.01	12.44
LoRA _{r=1}	1.52M	Q,K,V,U,D,O,G	32.0	57.32	12.88
PiSSA _{r=1}	1.52M	Q,K,V,U,D,O,G	32.0	56.48	13.18
LoRA-XS _{r=88}	1.52M	Q,K,V,U,D,O,G	32.8	54.66	12.70
PSOFT_{r=124}	1.54M	Q,K,V,U,D,O,G	33.2	57.47	13.26
DoRA _{r=1}	2.29M	Q,K,V,U,D,O,G	43.2	57.54	13.60
PSOFT_{r=152}	2.31M	Q,K,V,U,D,O,G	33.5	58.23	13.66

Beyond the main experiments, we provide additional evaluations of PEFT methods under constrained parameter budgets, as summarized in Table 13. When fine-tuned on the Q, K, and V modules, PSOFT achieves 10% and 3% higher accuracy than GOFTv2 and qGOFTv2 on GSM-8K and MATH, respectively, while using only 40% of their memory. On MATH, PSOFT also exceeds BOFT by 0.82%/1.46% with just 60% of its memory usage.

PSOFT allows flexible control of parameter counts by adjusting the rank r , whereas LoRA is restricted to a minimum rank of 1, inherently tying its parameter count to hidden dimension size. Under stricter parameter budgets, LoRA must reduce the scope of inserted modules, often leading to performance degradation. In contrast, PSOFT consistently achieves superior performance even at extremely low parameter configurations. In terms of memory efficiency, PSOFT matches LoRA while outperforming DoRA and SVFT.

1188 **I COMMONSENSE REASONING ON COMMONSENSE-15K**
11891190 **I.1 DATASETS**
1191

1192 Commonsense reasoning benchmarks encompass eight distinct sub-tasks: BoolQ (Clark et al., 2019),
1193 PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande
1194 (Sakaguchi et al., 2021), ARC-easy/ARC-challenge (Clark et al., 2018), and OpenBookQA (Mihaylov
1195 et al., 2018). Following the approach described in (Hu et al., 2023; Lingam et al., 2024; Liu et al.,
1196 2024a), we also combine the training datasets from all eight tasks to construct a unified fine-tuning
1197 dataset, Commonsense-15K tailored for each task.
1198

1199 Table 14: Hyperparameter settings for fine-tuning on Commonsense-15K
1200

Hyperparameter	LLaMA-3.1-8B
Optimizer	AdamW
Warmup Steps	100
LR Schedule	Linear
Max Seq. Len.	512
Batch Size	64
# Epochs	3
LR PSOFT _{r=194}	4E-04
LR PSOFT _{r=424}	1E-04

1210 Table 15: Experimental results of fine-tuned LLaMA-3.1-8B on eight commonsense reasoning
1211 benchmarks with extremely low parameter counts. The best average result is highlighted in **bold**.
1212 Accuracy (%) is reported for all sub-datasets.
1213

Methods	#Params	Inserted Modules	Mem (GB)	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA	Avg.
GOFTv2	0.26M	Q,V	OOM									N/A.
qGOFTv2	1.05M	Q,V	OOM									N/A.
BOFT _{m=2} ^{b=2}	1.21M	Q,V	79.4	69.66	83.95	71.65	80.87	70.01	90.40	77.82	79.00	77.92
PSOFT_{r=194}	1.22M	Q,V	52.6	68.87	84.17	71.44	86.46	67.56	90.45	77.73	81.20	78.49
LoRA _{r=1}	0.59M	Q,K,V	52.8	66.97	83.08	71.03	77.06	64.01	90.70	77.39	78.80	76.13
SVFT _P	0.46M	Q,K,V,U,D	65.8	65.08	81.07	69.40	85.69	68.82	88.47	77.05	76.00	76.45
LoRA-XS _{r=48}	0.37M	Q,K,V,U,D	53.4	69.30	84.82	71.29	87.44	67.01	89.39	77.22	82.60	78.63
PSOFT_{r=72}	0.43M	Q,K,V,U,D	53.7	69.72	84.39	72.01	87.99	68.67	90.19	78.16	81.00	79.02
LoRA _{r=1}	1.77M	Q,K,V,U,D	53.9	71.13	85.31	74.67	89.08	72.61	90.24	78.16	82.40	80.45
PiSSA _{r=1}	1.77M	Q,K,V,U,D	53.9	72.05	84.60	74.21	89.93	70.88	90.15	79.01	82.00	80.35
LoRA-XS _{r=104}	1.73M	Q,K,V,U,D	54.0	71.04	85.47	72.67	89.26	71.74	90.82	79.61	83.20	80.48
PSOFT_{r=146}	1.74M	Q,K,V,U,D	54.5	71.31	85.69	73.18	89.38	72.38	90.91	80.03	83.00	80.74
DoRA _{r=1}	2.56M	Q,K,V,U,D	65.4	71.05	85.29	73.25	90.09	73.32	90.74	79.75	81.87	80.67
PSOFT_{r=176}	2.52M	Q,K,V,U,D	55.0	71.47	86.02	75.33	90.81	72.69	90.45	78.75	84.00	81.19

1232 **I.2 IMPLEMENTATION DETAILS**
1233

1234 The experiments are conducted following the frameworks of Hu et al. (2023); Liu et al. (2024a),
1235 implemented in PyTorch (Paszke et al., 2019) with HuggingFace’s PEFT library (Mangrulkar et al.,
1236 2022). Consistent with Lingam et al. (2024), we tune only the learning rates for different models.
1237 Detailed hyperparameter configurations are provided in Table 14.

1238 As shown in Table 15, when fine-tuning the Q and V modules, PSOFT avoids the OOM failures
1239 observed in GOFT and qGOFT, and surpasses BOFT by 0.33%/0.57% in average accuracy while
1240 using only 66% of its peak memory. We further evaluate under more constrained parameter budgets,
1241 where PSOFT continues to deliver superior average accuracy across eight commonsense reasoning

benchmarks. In terms of memory efficiency, PSOFT requires only about 80% of the memory of DoRA and SVFT, while remaining comparable to LoRA.

J EXTENSION EXPERIMENTS

J.1 EFFECT OF SVD INITIALIZATION

Table 16: The effect of SVD Initialization on the Commonsense-15K Dataset using the LLaMA-3.2-3B model.

Methods	SVD n_iter	SVD Init Time	Validation Loss
PSOFT _{r=32}	5	2.79	0.9343
	10	3.74	0.9328
	20	4.84	0.9283
	∞	89.68	0.9276
PSOFT _{r=64}	5	4.11	0.9174
	10	5.13	0.9134
	20	7.51	0.9157
	∞	89.48	0.9147
PSOFT _{r=128}	5	6.33	0.9092
	10	8.38	0.9028
	20	13.01	0.9029
	∞	90.50	0.8992

PSOFT constructs the principal subspace via SVD, where the initialization time and accuracy of fast SVD depend on the `n_iter` parameter (Halko et al., 2011; Meng et al., 2024). We evaluate this on the Commonsense-15K dataset (Hu et al., 2023) using the LLaMA-3.2-3B model (Meta AI, 2024), reporting both initialization time and validation loss. As shown in Table 16, smaller `n_iter` values yield faster initialization, while larger values improve accuracy. With `n_iter` = 20, the loss is nearly identical to that of full SVD (`n_iter` $\rightarrow \infty$). These results show that fast SVD initializes PSOFT within seconds, and even full SVD introduces negligible overhead relative to the total fine-tuning time.

Table 17: Effects of different ranks fine-tuned on the CoLA Dataset using the DeBERTA-V3-base model (on a single RTX5090).

Methods	Ranks	#Params	Matthew's Correlation(%)	Peak GPU Memory (GB)	Runtime
PSOFT	1	144	59.20	4.0	17m34s
	2	360	68.80	4.0	18m32s
	4	1,008	70.08	4.0	19m17s
	8	3,168	70.93	4.0	19m08s
	16	10,944	68.36	4.0	19m32s
	32	40,320	72.09	4.0	19m41s
	64	154,368	69.16	4.1	21m29s
	128	603,648	72.46	4.2	20m42s
	256	2,386,944	74.09	4.6	24m35s
	512	9,492,480	71.04	5.8	27m20s

J.2 EFFECT OF RANKS

To provide guidance on rank selection, we evaluate PSOFT with ranks ranging from 1 to 512 on the CoLA and the Commonsense-15K dataset (Hu et al., 2023) using DeBERTA-V3-base (He et al., 2021) and LLaMA-3.2-3B (Meta AI, 2024). As shown in Table 17 and Table 18, PSOFT exhibits a wide range of usable ranks: as r increases, the number of trainable parameters grows according to the formula in 8, $r(r - 1)/2 + 2r$, and performance improves correspondingly, though with diminishing returns. Memory usage increases with r , but remains nearly flat when r is small. Since we adopt the truncated Neumann-series approximation, training time does not increase noticeably with larger r .

1296 Table 18: Effects of different ranks fine-tuned on the Commonsense-15K Dataset using the LLaMA-
 1297 3.2-3B model (on a single H100).

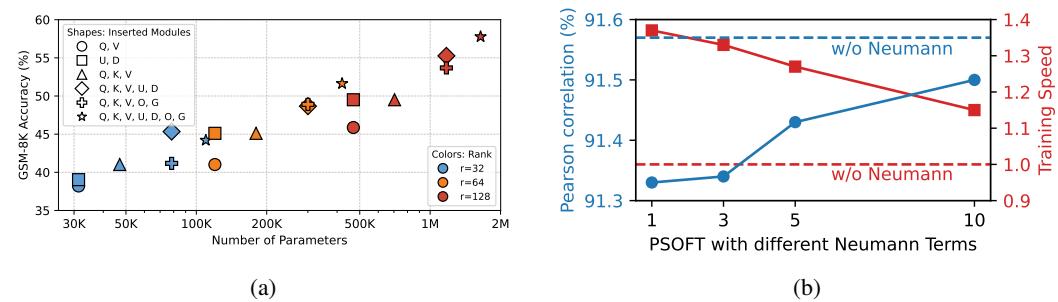
1299	Methods	Ranks	#Params	Avg. (%)	Peak GPU Memory (GB)	Runtime
1301	PSOFT	1	392	27.07	31.5	50m13s
1302		2	980	32.45	31.5	46m37s
1303		4	2,744	36.16	31.5	48m30s
1304		8	8,624	38.21	31.5	46m18s
1305		16	29,792	57.12	31.6	48m52s
1306		32	109,760	62.94	31.8	51m12s
1307		64	420,244	70.95	32.1	48m47s
1308		128	1,643,264	73.90	32.8	46m11s
1309		256	6,497,792	74.95	34.5	47m29s
1310		512	25,840,640	75.05	38.4	49m49s

1311 The results further reveal a consistent pattern across models and simpler
 1312 tasks, PSOFT is highly parameter-efficient: even very small ranks achieve strong performance,
 1313 indicating that the low-dimensional subspace is already sufficient to capture the necessary task-
 1314 specific transformations. In contrast, for larger models and more complex tasks, performance
 1315 tends to increase with larger ranks, reflecting the greater capacity required to capture task-specific
 1316 transformations. In such cases, the main trade-off is between the performance gains from increasing
 1317 r and the corresponding growth in trainable parameters.

1318 Based on these observations, we provide the following practical guidance for choosing the rank. For
 1319 simpler tasks, we recommend using small to moderate ranks (e.g., 32-128), as they provide good
 1320 parameter efficiency with little performance loss. For more complex tasks, larger ranks generally lead
 1321 to higher performance, while extremely small ranks (e.g., below 16) may hurt results. In such cases,
 1322 moderate to large ranks (e.g., 64-256) offer a better balance between performance and efficiency.

1324 J.3 EFFECT OF INSERTED MODULES

1325 We fine-tune LLaMA-3.2-3B with PSOFT and evaluate it on GSM-8K under different insertion
 1326 schemes, with results shown in Figure 8a. Overall, performance improves as more modules are
 1327 inserted and as the rank r increases, showing that complex mathematical tasks benefit directly from
 1328 higher model capacity under PSOFT. For a fixed rank r , applying PSOFT to the Q , K , V , U , and D
 1329 modules generally provides the best trade-off between performance and parameter efficiency. When
 1330 the parameter budget permits, inserting PSOFT into all linear layers yields the strongest results.



1341 Figure 8: (a) Effect of inserted modules on GSM-8K using LLaMA-3.2-3B. (b) Effect of Neumann
 1342 terms on STS-B using DeBERTaV3-base.

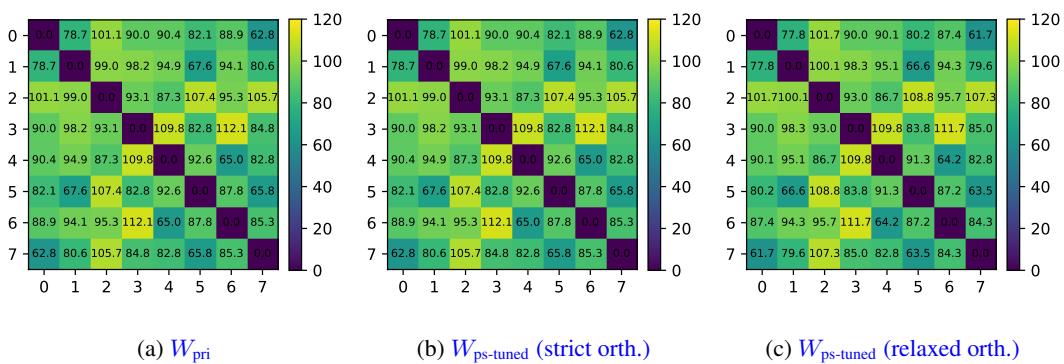
1344 J.4 EFFECT OF NEUMANN TERMS

1347 To assess the effect of different Neumann terms on training speed and performance, we fine-tune
 1348 DeBERTaV3-base on STS-B with rank 46. As shown in Figure 8b, the Neumann series approxima-
 1349 tion substantially accelerates training while maintaining performance close to the original Cayley
 parameterization. Training speed decreases as the number of terms increases, gradually approaching

1350 that of Cayley, whereas performance improves with more terms and eventually converges to the
 1351 Cayley result.
 1352

1355 K PAIRWISE ANGLES OF WEIGHTS

1357 We fine-tune DeBERTa-V3-base on the CoLA dataset using the same setup as in the main paper.
 1358 We then extract the *query* matrix from *layer 6* and compute the pairwise angles among the first
 1359 eight column vectors of \mathbf{W}_{pri} and \mathbf{W}_{pre} , as well as those of $\mathbf{W}_{\text{ps-tuned}}$ and $\mathbf{W}_{\text{final}} = \mathbf{W}_{\text{ps-tuned}} + \mathbf{W}_{\text{res}}$.
 1360 Figures 9a and 10a show that, before fine-tuning, the angles in \mathbf{W}_{pri} and \mathbf{W}_{pre} follow a clear and
 1361 stable pattern. Figures 9b and 10b show that PSOFT with strict orthogonality keeps this pattern:
 1362 $\mathbf{W}_{\text{ps-tuned}}$ preserves the angles in \mathbf{W}_{pri} , and $\mathbf{W}_{\text{final}}$ preserves those in \mathbf{W}_{pre} . As shown in Figures 10b
 1363 and 10c, PSOFT with relaxed orthogonality also keeps the main angular structure, but introduces
 1364 small and controlled changes. These changes help improve task adaptation while keeping the key
 1365 structure intact.



1366
 1367 Figure 9: Angle structures of \mathbf{W}_{pri} (the query matrix in layer 6) before fine-tuning (a), and of $\mathbf{W}_{\text{ps-tuned}}$
 1368 after PSOFT fine-tuning under strict (b) and relaxed (c) orthogonality.
 1369

(a) \mathbf{W}_{pri} (b) $\mathbf{W}_{\text{ps-tuned}}$ (strict orth.)(c) $\mathbf{W}_{\text{ps-tuned}}$ (relaxed orth.)

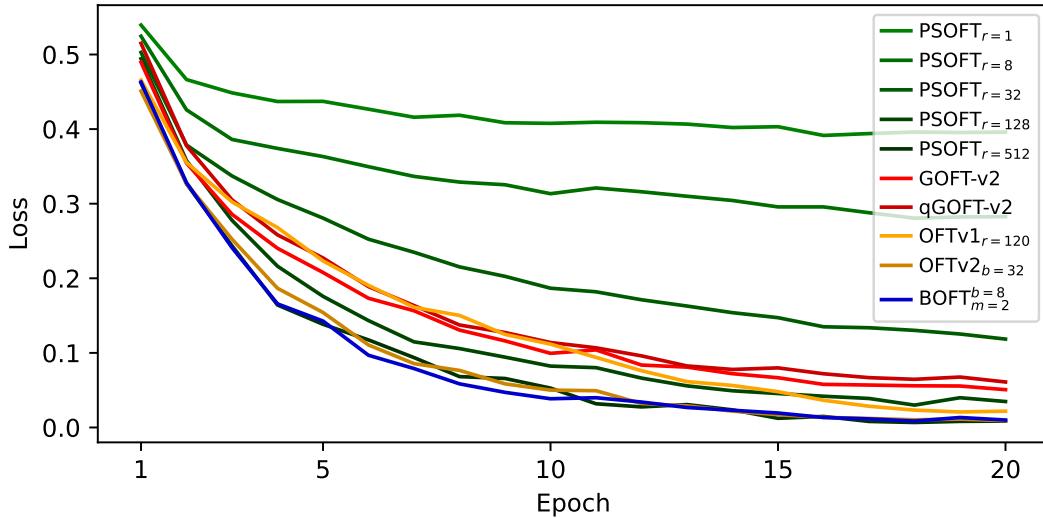
1370
 1371 Figure 10: Angle structures of \mathbf{W}_{pre} (the query matrix in layer 6) before fine-tuning (a), and of $\mathbf{W}_{\text{final}}$
 1372 after PSOFT fine-tuning under strict (b) and relaxed (c) orthogonality.
 1373

(a) \mathbf{W}_{pre} (b) $\mathbf{W}_{\text{final}}$ (strict orth.)(c) $\mathbf{W}_{\text{final}}$ (relaxed orth.)

1374 L LOSS AND CONVERGENCE COMPARISON

1375 PSOFT can be viewed as a specialized form of orthogonal fine-tuning, where $\mathbf{W}_{\text{final}} = \mathbf{R}_{\text{full}} \mathbf{W}_{\text{pre}}$,
 1376 with $\mathbf{R}_{\text{full}} = \text{diag}(\mathbf{R}, \mathbf{I}_{d-r})$, meaning that the orthogonal transformation is applied only to the
 1377 principal (low-rank) subspace of the pre-trained weight matrix, while an identity mapping is imposed
 1378 on its orthogonal complement. This formulation implies that the optimization behavior of PSOFT
 1379 gradually approaches that of full-space OFT methods as the rank r increases.

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 Therefore, PSOFT induces a principled modification of the optimization geometry: Full-space OFT
 1405 optimizes over the Stiefel manifold $\text{St}(d, d)$, whose tangent space consists of all skew-symmetric
 1406 directions in the full d -dimensional parameter space. In contrast, PSOFT restricts optimization to
 1407 the tangent space of a block-diagonal submanifold $\text{St}(r, r) \oplus \mathbb{R}^{(d-r)}$. As a result, only the principal
 1408 subspace receives curvature-aware updates, while the orthogonal complement experiences zero
 1409 curvature (identity block).



1428
 1429 Figure 11: Comparison of loss curves for different PSOFT ranks and various orthogonal fine-tuning
 1430 methods.

1431
 1432 Building upon this geometric distinction, PSOFT exhibits three complementary behaviors that
 1433 characterize its optimization dynamics. First, the low-rank orthogonal constraint simplifies the
 1434 optimization landscape by preventing large full-space orthogonal transformations. This restriction
 1435 reduces the effective curvature of the optimization path, yielding more stable and predictable gradient
 1436 updates, while at the same time limiting expressiveness when r is very small. Second, because
 1437 PSOFT applies orthogonal transformations only within the principal subspace, stochastic noise is
 1438 confined to this lower-dimensional region rather than being amplified across all d dimensions as in
 1439 full-space OFT, leading to more robust and less destructive updates. Third, as r increases, the PSOFT
 1440 tangent space increasingly approximates that of full-space OFT, supporting richer expressiveness and
 1441 convergence trajectories that gradually approach full-space OFT, yet without the severe overfitting
 1442 that may arise in full-space OFT. Collectively, these properties illustrate how PSOFT navigates the
 1443 trade-off between stability, expressiveness, and generalization.

1443
 1444 We conduct additional experiments on the CoLA dataset using DeBERTa-V3 and report the training
 1445 loss curves of different OFT variants. As shown in Figure 11, the green curves correspond to PSOFT,
 1446 with darker colors indicating larger ranks. We observe that as r increases, the PSOFT loss curves
 1447 progressively approach those of full-space OFT methods such as BOFT and OFTV2, reflecting the
 1448 improved convergence speed and expressiveness of higher-rank subspaces. PSOFT with very small
 1449 ranks constrains the update space too aggressively, which may lead to underfitting and slower loss
 1450 reduction. In contrast, full-space OFT methods such as BOFT display the fastest initial convergence,
 1451 but their full-rank orthogonal updates raise the risk of overfitting. This phenomenon is evident in our
 1452 main GLUE experiments, where BOFT achieves the lowest training loss yet fails to obtain the best
 1453 generalization performance.

1454
 1455 These trends are consistent with the geometric properties of PSOFT discussed above: by con-
 1456 straining orthogonal updates to a lower-dimensional principal subspace, PSOFT naturally balances
 1457 expressiveness and generalization. Unlike full-space OFT, PSOFT enables explicit capacity control
 1458 through r , allowing moderate ranks to achieve a more favorable bias-variance trade-off and stronger
 1459 generalization.

1458 **M ADDITIONAL EXPERIMENTS ON MEMORY USAGE**
14591460 we additionally conducted memory experiments on a single NVIDIA H100 80GB, covering:
14611462
1463 • the forward/backward (FP/BP) peak memory usage on a single custom linear layer, and
1464 • the forward/backward (FP/BP) peak memory usage on a Transformer block, and
1465 • the peak memory usage on the DeBERTaV3-base and ViT-base models during training.
14661467 For the single-layer analysis, we implemented a Python-based evaluation framework that separately
1468 measures peak memory usage and runtime for the forward and backward passes. The implementation
1469 of GOFTv2 uses the latest available code, while BOFT is taken from the PEFT library (version
1470 0.17.0). We track peak memory consumption (in GB) and runtime (in milliseconds, ms), as peak
1471 memory is the primary factor limiting on memory-constrained hardware. The linear layer input is
1472 configured with a batch size $b = 64$, sequence length $s = 512$, and hidden dimension $h = 4096$.
1473 Runtime results are averaged over 100 forward/backward runs. The results are summarized as follows:
14741475 Table 19: Peak memory usage (GB) and runtime (ms) statistics for different methods on a single
1476 custom linear layer.
1477

Methods	Peak Memory (FP)	Peak Memory (BP)	Runtime (FP)	Runtime (BP)
GOFTv2	13.6	14.3	5.2	129.3
qGOFTv2	13.6	14.3	5.4	129.6
BOFT $_{m=2}^{b=8}$	1.8	2.6	102.9	2.1
BOFT $_{m=4}^{b=4}$	2.3	3.0	139.6	2.5
PSOFT $_{r=32}$	2.1	2.6	43.4	4.3
PSOFT $_{r=64}$	2.1	2.6	43.8	4.8
PSOFT $_{r=128}$	2.1	2.6	22.9	25.9
PSOFT $_{r=256}$	2.2	2.6	4.0	48.8
PSOFT $_{r=512}$	2.2	2.7	5.6	53.1

1488 As shown in 19, although GOFTv2 benefits from the Hadamard-product optimization and achieves
1489 reduced forward-pass computation time, it still consumes substantially more activation memory
1490 than both BOFT and PSOFT. Importantly, the single-layer activation-memory measurement slightly
1491 underrepresents PSOFT’s true advantage: as discussed in the theoretical analysis, PSOFT reduces
1492 activation memory across multiple layers, but when evaluating a single layer in isolation, it should
1493 still store the full input and output activations, which partially diminishes its advantage. Nevertheless,
1494 even under this conservative setting, PSOFT achieves lower activation-memory usage and faster
1495 computation compared with BOFT and GOFTv2, and its advantages become increasingly pronounced
1496 when moving from a single linear layer to a Transformer block or end-to-end models.
14971498 Table 20: Peak memory usage (GB) and runtime (ms) statistics for different methods on a Transformer
block.
1499

Methods	Peak Memory (FP)	Peak Memory (BP)	Runtime (FP)	Runtime (BP)
GOFTv2	65.4	65.4	49.5	667.1
qGOFTv2	65.4	65.4	49.5	671.2
BOFT $_{m=2}^{b=8}$	19.0	19.0	2813.9	7.5
BOFT $_{m=4}^{b=4}$	28.9	28.9	5427.9	8.7
PSOFT $_{r=32}$	7.2	7.2	162.7	134.4
PSOFT $_{r=64}$	7.2	7.2	166.0	134.2
PSOFT $_{r=128}$	7.2	7.3	137.4	170.3
PSOFT $_{r=256}$	7.3	7.4	122.2	197.7
PSOFT $_{r=512}$	7.6	7.6	130.3	215.3

1509 To validate this, we extend the single-layer setup to a complete Transformer block, configured with 8
1510 attention heads and with all PEFT modules inserted into all linear layers. The input is configured
1511 with a batch size $b = 32$, sequence length $s = 512$, and hidden dimension $h = 4096$, and runtime

1512 results are averaged over 100 forward and backward runs. We report peak memory consumption
 1513 (in GB) and runtime (in milliseconds, ms). As shown in 20, these block-level experiments confirm
 1514 that PSOFT further reduces both memory usage and runtime by avoiding full-dimensional chained
 1515 multiplications and performing orthogonal transformations only within a much smaller subspace.

1516 We then conduct full-layer experiments following the same configuration as in the main paper.
 1517 For DeBERTaV3-base, we use a fixed batch size $b = 64$ and task-dependent sequence length
 1518 $s \in 64, 128, 256$. For ViT-base, we follow the original setup with a fixed sequence length $s = 197$
 1519 and a batch size of $b = 64$. Additionally, we include results with smaller batch sizes $b \in 16, 32$ for
 1520 a more comprehensive comparison. PSOFT uses the same rank $r = 46$ as reported in the original
 1521 paper, and all PEFT modules are inserted into all linear layers. The results are presented as follows:
 1522

1523 Table 21: Peak memory usage (GB) of different methods on DeBERTaV3-base.

Methods	Peak Memory (s=64)	Peak Memory (s=128)	Peak Memory (s=256)
GOFTv2	18.5	34.4	67.5
qGOFTv2	18.5	34.4	67.5
BOFT $_{m=2}^{b=8}$	6.3	9.4	17.5
PSOFT $_{r=46}$	4.1	6.8	14.0

1530 Table 22: Peak memory usage (GB) of different methods on ViT-base.

Methods	Peak Memory (b=16)	Peak Memory (b=32)	Peak Memory (b=64)
GOFTv2	22.5	44.7	OOM
qGOFTv2	22.5	44.7	OOM
BOFT $_{m=2}^{b=8}$	5.4	7.3	10.9
PSOFT $_{r=46}$	2.4	2.9	6.2

1538 As shown in 21 and 22, PSOFT achieves the lowest peak memory usage across different settings.
 1539 Remarkably, even on an H100 GPU, GOFT still encounters OOM failures for ViT-base with a batch
 1540 size $b = 64$. This behavior stems from its activation-memory scaling of $\mathcal{O}(bsh \log h)$, which grows
 1541 rapidly at larger batch sizes and ultimately limits its applicability on memory-constrained hardware. In
 1542 contrast, PSOFT consistently avoids such OOM issues: by restricting OFT to the principal subspace,
 1543 it preserves the essential semantic representations while simultaneously improving multi-dimensional
 1544 efficiency (parameter counts, memory, and computation) for OFT.

1546 N THE USE OF LARGE LANGUAGE MODELS (LLMs)

1548 In this work, large language models (LLMs) are used solely as general-purpose tools to assist with
 1549 writing polish. Specifically, LLMs are employed to refine grammar, improve readability, and ensure
 1550 that the overall writing style conforms to academic conventions. LLMs are not involved in research
 1551 ideation, experimental design, data analysis, or conclusion formulation. All technical contributions,
 1552 theoretical analyses, and experimental results are entirely original work by the authors.