
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MERGEPRAG: ORTHOGONAL MERGING OF PASSAGE-
EXPERTS FOR MULTI-HOP PARAMETRIC RAG

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) can be enhanced with external knowledge through
two dominant approaches: (1) retrieval-augmented generation (RAG), which
supplements LLMs with in-context retrieved passages, and (2) parametric
knowledge adaptation (PKA), which directly updates model parameters with
new domain knowledge. Recently, parametric RAG (PRAG) has emerged as
a promising framework, extending RAG by translating retrieved passages into
parameter updates, thereby mitigating inefficiency and noise sensitivity inher-
ent to RAG. However, existing PRAG methods remain limited to single-pass
retrieval, falling short of the multi-hop RAG setting that requires iterative re-
trieval and reasoning. We propose MergePRAG(Orthogonal Merging of Passage-
experts for Multi-hop PRAG), a novel framework that sequentially integrates re-
trieved passages into LLM parameters through a continual merging mechanism,
which is advanced by two key proposals: (1) orthogonal merging using the
Gram–Schmidt process to minimize conflicts between ”passage experts”, and (2)
critical-layer parameterization to efficiently encode in-context passages. Ex-
periments on multi-hop open-domain QA and reasoning-aware knowledge editing
show that MergePRAG consistently outperforms both standard and state-of-the-
art RAGs as well as existing parametric adaptation methods, achieving superior
effectiveness and efficiency. All datasets and code will be released at https:
//anonymous.4open.science/r/MhQA_hypernetwork-B31F.

1 INTRODUCTION

Large language models (LLMs)(Dubey et al., 2024; Mesnard et al., 2024; Team, 2024; DeepSeek-
AI, 2024) have achieved strong performance on a wide range of knowledge-intensive tasks, driven
by billions of parameters and large-scale pretraining corpora. However, their parametric knowl-
edge remains static, making them ill-suited for evolving world knowledge or emerging domains.
Retrieval-augmented generation (RAG) has become a popular remedy, injecting retrieved passages
into the input context at inference time. While effective, RAG faces challenging issues: (1) knowl-
edge conflict between parametric and retrieved information(Xie et al., 2023; Kortukov et al., 2024;
Zhang et al., 2025; Bi et al., 2025), (2) inference inefficiency from processing long retrieval-heavy
contexts (Leng et al., 2024; Jin et al., 2024; Chen et al.), and (3) noise sensitivity, where irrelevant or
erroneous passages degrade performance (Cuconasu et al., 2024; Wu et al., 2024; Fang et al., 2024).

Alternatively, Parametric RAG (PRAG), along with its dynamic variant (Su et al., 2025; Tan et al.,
2025a), has recently emerged as a promising direction. PRAG translates retrieved passages into
LoRA parameter updates via a “hypernetwork”, enabling LLMs to internalize external knowledge
beyond mere in-context conditioning.1 Notably, PRAG has been shown to consistently outperform
standard RAG, both when applied independently and when combined with retrieval-based methods.

Despite its promise, PRAG has thus far been investigated only in simplified RAG settings, typ-
ically limited to a single retrieval step rather than the more challenging multi-hop RAG scenario
(Yu et al., 2024b; Li et al., 2025b). In multi-hop RAG, a complex query is decomposed into sub-
questions, each requiring iterative retrieval and sub-answer generation, such that retrieved passages

1In this paper, we use PRAG as a broad term encompassing the original PRAG (Su et al., 2025) and its
variants, including DyPRAG (Tan et al., 2025a).

1

https://anonymous.4open.science/r/MhQA_hypernetwork-B31F
https://anonymous.4open.science/r/MhQA_hypernetwork-B31F

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

are incrementally provided during the question answering (QA) process. A central research ques-
tion, therefore, is how to effectively extend PRAG to multi-hop settings—where the internalization
of retrieved passages must continuously progress across hops—without necessitating the retraining
or rebuilding of a hypernetwork originally designed for single-hop RAG. This extension of PRAG
to multi-hop RAG represents an important milestone, as it provides a natural bridge toward recent
reasoning-enhanced RAG frameworks (e.g., IRCoT, Self-RAG, DeepRAG, and RAG-R1 (Trivedi
et al., 2023; Asai et al., 2024; Guan et al., 2025; Tan et al., 2025b)).

We propose MergePRAG (Orthogonal Merging Passage-experts for Multi-hop PRAG), a general-
ized framework that scales PRAG to multi-hop RAG. At each stage, retrieved passages are trans-
lated into expert parameters by a hypernetwork and merged with the previously accumulated ex-
perts through a continual merging mechanism, thus enabling effective accumulation of knowledge
across iterative retrievals (Figure 1). For effective continual merging, we propose two advances:
(1) orthogonal merging using the Gram–Schmidt process to minimize conflicts between newly
introduced and existing experts, and (2) a critical-layer parameterization module that updates
only the preselected critical layer to efficiently encode in-context passages. These techniques al-
low MergePRAG to reuse a single passage-level hypernetwork across hops, without requiring the
redesign or retraining of additional hypernetworks to support multi-hop RAG.

Our contributions are threefold: (1) We introduce MergePRAG, the first generalized PRAG frame-
work for multi-hop RAG. (2) We propose a continual merging mechanism that sequentially inte-
grates retrieved passages into LLM parameters, enabled by two advances: orthogonal merging and
critical-layer parameterization. (3) We conduct extensive experiments across multiple LLM back-
bones and benchmark datasets, showing that MergePRAG consistently outperforms existing RAG
and PRAG baselines in both effectiveness and efficiency.

2 RELATED WORKS

2.1 PARAMETRIC KNOWLEDGE ENHANCEMENT

Parametric knowledge enhancement methods aim to increase the knowledge capacity of language
models by adjusting their parameters to better encode new information. The most direct approach
is full fine-tuning, but this quickly becomes impractical as model sizes grow. To address scalability,
parameter-efficient fine-tuning (PEFT) techniques, such as LoRA and its variants (Hu et al., 2021;
Valipour et al., 2022; Yu et al., 2024a), update only a small set of low-rank matrices, achieving
performance comparable to full fine-tuning at a fraction of the cost.

With the rise of model editing, more targeted approaches have been developed that directly locate
and modify knowledge representations within the model. Methods such as ROME (Meng et al.,
2022a), MEMIT (Tan et al., 2023), and PMET (Li et al., 2024) update critical layers to encode new
facts, while MEND (Mitchell et al., 2021) and MALMEN (Tan et al., 2023) employ hypernetworks
to inject knowledge into specific layers, effectively fusing edits with existing parameters. To mitigate
catastrophic forgetting and preserve general-purpose capabilities, approaches like T-Patcher (Huang
et al.) and MEMoE (Wang & Li, 2024) introduce external memory modules that store edits sepa-
rately from the core model.

Overall, parametric enhancement methods differ in where and how they modify parameters—
ranging from full updates to low-rank adapters, targeted edits, or external memory—yet they share
the goal of augmenting LLMs with new knowledge while retaining general abilities.

2.2 RETRIEVAL AUGMENTED GENERATION

Early RAG methods (Lewis et al., 2020; Guu et al., 2020; Izacard & Grave, 2021; Borgeaud et al.,
2022) train language models jointly with top-retrieved documents, enabling the model to incorporate
external knowledge sources when generating answers. To further improve performance, subsequent
approaches expanded the knowledge sources, incorporated query rewriting, or jointly trained the
retriever and the generator to achieve tighter integration. To mitigate the computational overhead of
fully parameterized RAG training, methods such as PRAG (Su et al., 2025) and DyRAG (Tan et al.,
2025a) have been proposed, which enhance the model’s internal knowledge by learning mappings
from retrieved documents to model parameters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1

2 3 4 5

New Sub-question Generation

Retrieval
Relevant Passages

Orthogonal
Continual Merging

Parameterization
& Inner Merging

Answer current
Sub-questions

Passage
Collection

Retriever

Plug in
Critical
Layer

Memory Attentoin

V K q

Critical layer l∗

Ct

Ct−1

sat

sqt

SPt

SPt−1

p1 p2 pm
Hϕ

H (p1) H (p2) H (pm)

H (pm) H ([pi]
m
i=1)

H([pi]m−1
i=1)

Mergeinner(H([pi]m−1
i=1),H (pm))

H(SPt−1)

F(SP1:t−1)

H (SPt)

H (SPt) F(SP1:t)

F(SP1:t−1)

Mergeseq
(
F(SP1:t−1),H (SPt)

)

Figure 1: Overview of MergePRAG for multi-hop QA. A complex query is decomposed into
sub-questions, and retrieved passages are sequentially incorporated through parameterization and
continual merging. At each timestep t: (1) a sub-question sqt is generated from the reasoning
chain Ct−1 (Eq. 1, Section 3.1); (2) the retriever returns top-ranked passages SPt ⊆ R; (3) given
SPt = [pi]

m
i=1, each passage is parameterized by the hypernetwork to produce {Hϕ(pi)}mi=1, which

are combined into Hϕ(SPt) via the inner-merging mechanism (Eq. 6, Section 3.2); (4) orthogo-
nal continual merging updates the accumulated parameters F(SP1:t−1) with Hϕ(SPt) to obtain
F(SP1:t) (Eq. 11, Section 3.2.2); and (5) the merged expert F(SP1:t) is injected into the base LLM
Mθ0 at the critical layer l∗ to generate the sub-answer (Eqs. 4–5). This process repeats until no
further sub-questions are produced, after which the final answer is generated.

Recent advances increasingly emphasize the importance of reasoning over retrieved facts. For in-
stance, FLARE (Jiang et al., 2023), MeLLo (Zhong et al., 2023), IRCoT (Trivedi et al., 2023)
and (Xia et al., 2025) employ iterative cycles of reasoning, retrieval, and error correction to re-
fine responses. DeepRAG (Guan et al., 2025) formulates reasoning as a Markov Decision Process
(MDP) to enable adaptive retrieval, while R3-RAG (Li et al., 2025b) leverages large models to con-
struct trajectories and applies reinforcement learning to teach LLMs stepwise reasoning and retrieval
strategies. Collectively, these works highlight the effectiveness of constructing chain-of-thought rea-
soning processes for complex tasks.

Building on these insights, we present MergePRAG, which extends PRAG to the multi-hop RAG
setting and serves as a critical stepping stone toward reasoning-enhanced RAG systems. In contrast
to prior PRAG methods (Su et al., 2025) that rely on simple arithmetic merging, MergePRAG in-
troduces a merging module with orthogonal merging, enabling more effective integration of passage
experts across hops.

3 METHODOLOGY

In this section, we present MergePRAG, illustrated in Figure 1. We first provide a brief background
on multi-hop RAG, and then describe MergePRAG and its two main components: orthogonal merg-
ing with the Gram–Schmidt process and critical-layer parameterization.

We define two language models and a retrieval module. Mθ0 denotes a general-purpose LLM for
sub-answer generation, also referred to as the base LM, Msq a sub-question generator, based a
smaller LLM, and R the retriever, which returns a set of top-ranked passages for each query q,
denoted asR(q).

3.1 MULTI-HOP RAG

Let q be the original complex query. In the multi-hop RAG setting, each step involves sub-question
generation, retrieval, and response generation. At step t, given Ct−1, the accumulated context so far,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the next sub-question sqt and its sub-answer sat are obtained as

sqt =Msq(Ct−1), sat =Mθ0(sqt, SPt), SPt ⊆ R(sqt), (1)

where SPt denotes the retrieved passages at step t. Task-specific instruction prompts forMsq and
Mθ0 are described in Appendix H.

The newly obtained tuple (sqt, sat) is appended to the context: Ct = [Ct−1, sqt, sat]. The final
answer to the original query q is then generated as a =M(CT−1, q), where sqT =Msq(CT−1) =
⟨EOS⟩.
In the single-hop setting, RAG produces the answer in one step: a =Mθ0(q, SP1), SP1 ⊆ R(q),
and the process terminates immediately.

3.2 MERGEPRAG

To present MergePRAG, we first review PRAG in the single-hop RAG setting.

PRAG. As in DyPRAG (Tan et al., 2025a), PRAG employs a hypernetwork-based passage param-
eterization module. Let Hϕ denote the hypernetwork, which maps a retrieved passage p to a set of
passage-specific LoRA parameters:θp = Hϕ(p). The hypernetwork is trained to efficiently translate
an in-context passage into its corresponding parameters.

PRAG augments the base modelMθ0 by injecting passage-specific parametersHϕ(p), making θ′ =
θ0 ⊕ Hϕ(p), referred to as p-injected model, where ⊕ denotes the parameter-injection operation.
PRAG then generates the answer under the p-injected model as a =Mθ0⊕Hϕ(p)(q).

With abuse of notations, let Mθ0 denote the base LLM with parameters θ0. PRAG augments the
model by injecting passage-specific parameters H(p) generated from the passage parameterization
module H, such that for a passage p, θ′ = θ0 ⊕ H(p) where ⊕ denotes the parameter-injection
operation. Unlike RAG that conditions on the passage p explicitly in the input prompt, given a
query q, RAG then generates an answer under the passage-injected model as follows:

a =Mθ0⊕H(p)(q). (2)

MergePRAG. MergePRAG extends PRAG to the multi-hop RAG setting, where passages arrive
sequentially through iterative retrieval. By timestep t, the accumulated passages are SP1:t =
[SP1, . . . , SPt]. To inject all context passages into the LLM parameters, let F denote a mapping
from the sequence SP1:t to the parameter space. Instead of directly “training” F over datasets with
varying numbers of passages t, MergePRAG introduces a continual merging mechanism that
induces F by reusing the passage-level hypernetwork Hϕ, which maps a single passage to its
parameter representation.

Sequence-merging. The sequence merging, denoted as Mergeseq , is a recursive operation that com-
bines the previously accumulated parameters F(SP1:t−1) with the new passage-specific parameters
Hϕ(SPt):

F(SP1:t) = Mergeseq
(
F(SP1:t−1), Hϕ(SPt)

)
. (3)

Using the “merged” parameter representation, MergePRAG generates a candidate answer at timestep
t without relying on in-context passages:

sat = Mθ0⊕F(SP1:t)

(
sqt
)
, (4)

At the final timestep T , MergePRAG generates the final answer as a =Mθ0⊕F(SP1:T)
(q).

MergePRAG+. Similar to PRAG-Combine (Su et al., 2025), MergePRAG+ integrates RAG and
PRAG in a complementary manner, yielding:

sat = Mθ0⊕F(SP1:t)
(SPt, sqt), t < T,

a = Mθ0⊕F(SP1:T)
(CT , q), t = T. (5)

Inner-merging. We introduce an inner-merging mechanism to induceH(SP) from individual pas-
sage parameters, for |SP | > 1. Formally, given a list of passages SP = [p1, . . . , pm], H(SP) is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

obtained by applying an inner merging operation Mergeinner:

H([pi]mi=1) = Mergeinner(Hϕ(p1), . . . ,Hϕ(pm))

= Mergeinner

(
H([pi]m−1

i=1),H(pm)
)

(6)

3.2.1 HYPERNETWORK-BASED KEY–VALUE MEMORY PARAMETERIZATION FOR Hϕ.

For passage parameterization, MergePRAG adopts a key–value memory parameterization scheme,
where the hypernetwork generates k key and value vectors for each passage, which serve as a “com-
pressed” passage-specific memory. The passage-specific memory is inserted into the feed-forward
network (FFN) at the critical layer l∗ via an additional attention mechanism, referred to as the mem-
ory attention mechanism.

Formally, the hypernetworkHϕ(p) first produces the passage-specific memory for passage p as:

Hϕ(p) = {Kp,Vp }, (7)

where Kp,Vp ∈ RK×dout are the key and value matrices, respectively.

Suppose that the original FFN module at layer l∗ is denoted as a function MLPθ0 : Rdin → Rdout

parameterized by θ0. The passage-specific FFN expertEHϕ(p) is then obtained for an input x ∈ Rdin

using a memory attention mechanism, i.e., standard attention applied to the passage-specific memory
(Kp,Vp) with the base FFN output MLPθ0(x) used as the query. Formally,

EHϕ(p)(x) = Attention(MLPθ0(x), Kp, Vp) ,

Attention(q,Kp,Vp) = softmax

(
qK⊤

p√
dout

)
Vp, (8)

The passage-specific FFN expert is injected into the original FFN layer at l∗, yielding:

MLPθ0⊕Hϕ(p)(x) = MLPθ0(x) + EHϕ(p)(x) . (9)

3.2.2 ORTHOGONAL CONTINUAL MERGING MECHANISM (Merge) FOR F
Once the parameterization module Hϕ(SPi) produces passage vectors (Kp,Vp) as in Eq. (7),
the continual merging mechanism operates on each parameter independently. To form a merged
expert without overwriting previously acquired knowledge, we propose an orthogonal merging
method based on Gram–Schmidt projection, inspired by recent studies (Xu et al., 2025). For-
mally, let {Wi}ti=1 denote the set of key or value memory matrices (i.e., Kp or Vp) obtained
from {Hϕ(SPi)}ti=1, where Wi ∈ Rk×dout .

Let Wt−1
F be the merged parameter obtained from {Wi}t−1

i=1 up to step t−1. The Gram–Schmidt or-
thogonalization procedure first computes the projection matrix onto the subspace spanned by Wt−1

F :

Pt−1 = Wt−1
F
(
(Wt−1

F)⊤Wt−1
F
)−1

(Wt−1
F)⊤. (10)

The new parameter Wt is then merged by adding only its orthogonal component with respect to the
subspace spanned by Wt−1

F :

Wt
F = Wt−1

F +
(
I−Pt−1

)
Wt, (11)

where Pt−1 is the projection matrix defined in Eq. (10). A detailed discussion of orthogonal merging
using the Gram–Schmidt procedure is provided in Appendix B.

3.2.3 HYPERNETWORK ARCHITECTURE: SEQUENCE-TO-MEMORY

The hypernetwork is designed to take a token sequence of a passage and produce its key–value mem-
ory. Given a passage as an input sequence of tokens, the hypernetworkHϕ first computes a passage
embedding via attentive pooling over the token-level embeddings. The resulting passage embed-
ding is then passed through a two-layer MLP, whose output is transformed by linear projections to
generate the passage-specific memory, i.e., the key and value matrices.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Formally, given a passage p, we denote its sentence embedding by Emd(p), obtained as the atten-
tively pooled representation from an auxiliary Transformer encoder (Appendix C). The hypernet-
work then transforms Emd(p) into a latent representation using MLPhyp, as follows:

hb = MLPhyp(Emd(p)) = ReLU(V′ LN (ReLU(W′ Emd(p)))) . (12)

where LN refers to the layer normalization layer.

Finally, we apply two distinct linear transformations to map the latent representation hb into flattened
key and value matrices, i.e., the “passage-specific memory” for p:

Kp = WK hb + bK , Vp = WV hb + bV , (13)

where WK ,WV ∈ RK×d×dhid are linear projection tensors and bK ,bV ∈ RK×d are bias terms.
With a slight abuse of notation, we treat a matrix in RK×d×1 as a matrix in RK×d by removing the
singleton dimension. More details of the hypernetwork architecture are provided in Appendix C.

3.2.4 CRITICAL-LAYER PARAMETERIZATION FOR Hϕ
The critical-layer parameterization appliesH only to a single critical layer l∗, rather than across
all layers, motivated by the locate-and-edit methods of (Meng et al., 2022a;b; Li et al., 2024; Fang
et al.).

To identify the critical layer l∗, we conduct layer-wise scanning experiments on both models across
all datasets. For each layer, we measure the change in perplexity after injecting the corresponding
passage vectors, thereby evaluating the effectiveness of the layer-specific hypernetwork (see Ap-
pendix: A). As shown in Fig.(2– 7), the early-to-middle layers contribute most substantially when
used as parameterization modules. Based on this analysis, the insertion positions for the single-layer
passage-vector parameterization are summarized in Table 9.

3.2.5 TRAINING OBJECTIVE

HypernetworkHϕ. To trainHϕ,2 we construct a dataset DH = {(qi, pi, ai)}Ni=1, where each triple
consists of a question qi, its relevant passage pi, and the ground-truth answer ai. The hypernetwork
is trained by minimizing the cross-entropy loss:

LCE(ϕ) = −
∑

(q,p,a)∈DH

logPMθ0⊕Hϕ(p)
(a | q), (14)

where PMθ0⊕Hϕ(p)
(a | q) denotes the probability of generating answer a conditioned on question q

under the parameters of the passage-injected modelMθ0⊕Hϕ(p).

Subquestion generatorMsq . Following Li et al. (2025b), we adopt a cold-start stage to train the
sub-question generatorMsq by constructing a dataset Dsq = {(q(j), y(j))}Mj=1, where each target
sequence is

y(j) = [sq
(j)
1 , sa

(j)
1 , sq

(j)
2 , sa

(j)
2 , . . . , sq(j)nj , sa

(j)
nj , ⟨EOS⟩].

The autoregressive objective on Dsq is used to trainMsq , as detailed in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Models and Datasets. We employ LLaMA3.1-8B (Dubey et al., 2024) and Qwen2.5-7B (Team,
2024) as research base models. For the multi-hop question answering task, we follow works (Guan
et al., 2025; Li et al., 2025b) and utilize the E5 (Wang et al., 2022) and BM25 (Lù, 2024) retriev-
ers. For the multi-hop editing task, we follow work (Zhong et al., 2023) and adopt the Contriever
model (Lei et al., 2023) as the retriever. 3

2Here, Hϕ denotes the layer-specific hypernetwork that injects passage knowledge into the FNN at the
critical layer l∗.

3We follow these works for a fair comparison. Pre-trained models can be obtained from Hugging Face.
LLaMA-3.1-8B: https://huggingface.co/meta-llama/Llama-3.1-8B

6

https://huggingface.co/meta-llama/Llama-3.1-8B

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We conduct experiments on multi-hop question answering datasets: HotpotQA (Yang et al., 2018),
2WikiMultihopQA (2WikiMhQA) (Ho et al., 2020) and MuSiQue (Trivedi et al., 2022), and multi-
hop editing datasets: MQuAKE-CF (Zhong et al., 2023) and MQuAKE-T (Zhong et al., 2023).
HotpotQA serves as a standard benchmark for multi-hop reasoning. MQuAKE-CF is a counter-
factual knowledge editing dataset, designed to evaluate how well models adapt to counterfactual
modifications. In contrast, MQuAKE-T focuses on temporal knowledge updates, assessing models’
ability to respond to changes in real-world facts.

Metrics. We evaluate model performance using Exact Match (EM) and F1 score (F1) (Kwiatkowski
et al., 2019). EM measures the strict string-level agreement between predictions and gold answers,
while F1 quantifies partial correctness by computing the token-level overlap between predictions
and references. For all experiments, we take the model’s final response as its predicted answer and
compare it against the gold standard.

Baselines. We evaluate our approach against a range of baselines: (i) RAG and RAG-CoT, which
retrieve relevant documents to answer queries, (ii) iterative retrieval methods such as IRCoT, FLARE
and MeLLo, (iii) parameterized RAG methods including PRAG and DyPRAG and (iv) reasoning-
enhanced RAG methods including Auto-RAG, Adaptive-RAG, Deep-RAG, R3-RAG, Search-R1
and Search-o1. The detailed descriptions of these baseline methods can be found in the Appendix F.

Implementation Details. All experiments were conducted on a workstation with 8 NVIDIA RTX
A6000 GPUs. The detailed training settings and inference are provided in Appendix D.

4.2 MAIN RESULTS AND ANALYSIS

We evaluated MergePRAG on multi-hop QA datasets using LLaMA3.1-8B and Qwen2.5-7B, with
results summarized in Table 1. MergePRAG consistently outperforms state-of-the-art baselines
across all three datasets, showing the best performances in most cases, except for the run using
LLaMA3.1-8B on MuSiQue. Compared with early passage-injection methods such as PRAG and
DyPRAG, MergePRAG+ achieves higher performance, demonstrating that the hypernetwork-based
parameterization framework extends effectively to multi-hop QA. Additional gains are obtained
when combined with explicit in-context passages, without sacrificing generalization. The results
further indicate that increasing the number of retrieved passages |SP | with Mergeinner provides ad-
ditional improvements over using a single passage (|SP | = 1).

To examine the effect of hypernetwork-based parameterization, we include an additional baseline,
MultihopRAG (Section 3.1), which directly uses the original LLM θ0 without hypernetwork-
based parameterization or injection (Algorithm 2). Comparisons with MultihopRAG show that
hypernetwork-based passage knowledge injection contributes substantially to performance gains.

4.3 ABLATION STUDY

We conducted a series of ablation studies to examine the effectiveness of the proposed framework
and to identify the contribution of its key components. In addition, we performed efficiency analysis
experiments to evaluate the computational performance of our approach; the detailed results are
presented in Appendix E.1.

4.3.1 MERGEPRAG+ VS. MULTIHOPRAG W/ FINETUNING

To compare standard fine-tuning with the proposed hypernetwork-based parameterization in
MergePRAG, we apply fine-tuning to MultihopRAG, directly adjusting θ0 on the same training data
used in our framework. We consider two settings: (1) fine-tuning without passages, i.e., [sq → sa],
where the model is trained to predict sa from sq alone; and (2) fine-tuning with passages, i.e.,
[(Pgold, sq) → sa], where the model is trained to predict sa given sq and the gold passages, resem-
bling the standard RAG training paradigm.

Under the LLaMA3.1-8B model with |SPi| = 1, Table 3 compares these MultihopRAG variants
with MergePRAG. Interestingly, naive fine-tuning with passages ([(Pgold, sq)→ sa]) performs even

Qwen2.5-7B: https://huggingface.co/Qwen/Qwen2.5-7B
E5: https://huggingface.co/intfloat/e5-base-v2
Contriever: https://huggingface.co/facebook/contriever-msmarco

7

https://huggingface.co/Qwen/Qwen2.5-7B
https://huggingface.co/intfloat/e5-base-v2
https://huggingface.co/facebook/contriever-msmarco

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

HotpotQA 2WikiMhQA MuSiQue
Model Retriever Method EM F1 EM F1 EM F1

LLaMA3.1-8B

E5 RAG|SP |=1 21.60 36.67 4.90 17.36 2.00 11.49
E5 RAG|SP |=4 27.80 40.51 5.10 15.80 2.70 11.27
E5 RAG-CoT|SP |=1 37.60 45.15 30.90 35.00 5.60 13.38
E5 RAG-CoT|SP |=4 43.70 50.41 36.20 40.00 5.90 12.49
E5 IRCoT† 39.30 46.00 35.10 37.50 12.00 13.60
E5 FLARE† 17.80 20.90 10.90 11.40 2.30 2.80
E5 R3-RAG† 45.60 58.80 52.90 60.90 21.20 32.80

BM25 R3-RAG† 44.40 57.60 50.60 58.60 17.20 27.70
BM25 Search-o1† 14.80 24.08 22.20 27.10 5.40 11.98
BM25 Auto-RAG† 25.80 36.09 23.00 30.09 - -
BM25 DeepRAG† 40.70 51.54 48.10 53.25 - -
BM25 PRAG† - 44.84 - 40.55 - -
BM25 DyPRAG† - 38.35 - 50.24 - -

E5 MergePRAG +|SP |=1 48.80 55.53 66.30 71.05 14.40 25.04
E5 MergePRAG +|SP |=4 52.40 60.67 73.20 79.34 16.70 27.69

BM25 MergePRAG +|SP |=1 46.80 53.40 61.10 67.31 17.80 29.39
BM25 MergePRAG +|SP |=4 52.40 60.58 70.20 76.65 20.30 31.20

Qwen2.5-7B

E5 RAG|SP |=1 36.60 43.37 34.90 37.36 3.20 8.71
E5 RAG|SP |=4 45.30 52.08 42.00 44.49 5.80 12.73
E5 RAG-CoT|SP |=1 30.20 36.20 19.10 23.05 4.30 8.30
E5 RAG-CoT|SP |=4 44.60 51.28 35.40 37.79 5.20 9.55
E5 IRCoT† 35.70 41.10 31.10 33.50 9.40 11.20
E5 FLARE† 23.40 32.06 21.80 26.51 3.60 4.80
E5 R3-RAG† 46.40 59.70 54.20 62.70 21.40 34.00

BM25 R3-RAG† 44.90 58.20 52.80 61.10 17.60 30.00
BM25 Search-o1† 11.60 16.95 22.00 25.02 2.10 7.48
BM25 DeepRAG† 32.10 41.14 40.40 44.87 - -

E5 MergePRAG +|SP |=1 43.40 50.64 65.80 69.72 9.70 19.61
E5 MergePRAG +|SP |=4 50.80 58.37 77.40 81.49 12.30 21.57

BM25 MergePRAG +|SP |=1 42.00 49.09 59.70 63.05 13.00 23.35
BM25 MergePRAG +|SP |=4 51.40 59.33 71.80 76.06 16.70 27.33

Table 1: Overall results on three multi-hop QA tasks. Bold numbers indicate the best perfor-
mance. † denotes results reported from the original papers or R3-RAG paper. PRAG and DyPRAG
results correspond to the combined setting with in-context passages (i.e., PRAG-Combine and
DyPRAG-Combine). In MergePRAG runs, |SP | refers to the number of retrieved passages per
hop. MergePRAG applies orthogonal continual merging (Section 3.2.2) for both inner-merging and
sequence-merging, i.e., Mergeinner and Mergeseq. Additional results obtained using alternative mod-
els and methods are provided in Table 15.

MQuAKE-CF MQuAKE-T
Model Method EM F1 EM F1

LLaMA3.1-8B

RAG 4.48 9.27 27.69 31.92
RAG-CoT 11.7 13.18 45.93 47.28

MeLLo 32.90 34.10 85.40 86.21
MergePRAG+|SP |=1 50.30 51.36 96.10 96.10

Table 2: Results on the multi-hop editing task under the MQuAKE datasets.

worse than fine-tuning without passages ([sq → sa]). These results are consistent with prior find-
ings (Yang et al., 2024; Lampinen et al., 2025), which show that directly fine-tuning LLMs on
domain-adaptive data may degrade their generalization ability.

4.3.2 MERGEPRAG VS. MERGEPRAG+

Table 4 compares MergePRAG with MergePRAG+. MergePRAG+ exhibits strong generalization
and is not negatively affected even when in-context passages are provided. In contrast, applying
fine-tuning methods to MultihopRAG leads to performance degradation, implying that direct fine-
tuning is unstable for preserving generalization (Section 4.3.1). Overall, these results highlight that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

HotpotQA 2WikiMhQA
Traing type EM F1 EM F1

MultihopRAG|SP |=1 (w/o finetuning) 37.80 47.56 23.30 35.59
MultihopRAG|SP |=1 (finetuning: [sq → sa]) 43.70 50.15 58.10 62.57
MultihopRAG|SP |=1 (finetuning: [(Pgolden, sq)→ sa]) 40.10 46.79 60.30 62.04
MergePRAG + |SP |=1 47.40 55.29 65.60 70.54

Table 3: Comparison of MergePRAG+ and MultihopRAG with fine-tuning (without hypernetwork)
under LLaMA3.1-8B.

HotpotQA 2WikiMhQA
Inference type EM F1 EM F1

RAG|SP |=1 21.60 36.67 4.90 17.36
MergePRAG|SP |=0 28.40 35.52 45.60 50.06

MergePRAG +|SP |=1 48.80 55.53 66.30 71.05

Table 4: Comparison of MergePRAG and MergePRAG+ under LLaMA3.1-8B. |SP | = 0 denotes
MergePRAG, which does not use in-context passages as prompts during inference.

MergePRAG preserves the model’s ability to perform RAG while benefiting from parameterized
knowledge injection, compared with standard fine-tuning methods.

4.3.3 EFFECT OF THE MERGING METHODS

To evaluate the effectiveness of the proposed orthogonal merging method in Section 3.2.2, we con-
duct ablation experiments on HotpotQA using the LLaMA3.1–8B model. Table 6 reports the results
of different merging methods for sequence-level merging under the setting |SP | = 1, where each
sub-question sq retrieves only a single passage. Details of the merging methods are provided in
Appendix G.

The results show that the proposed orthogonal merging achieves the best performance, improving by
2.4% over TIES-merging, while arithmetic mean merging also performs comparably. Furthermore,
Table 5 presents comparisons using different merging methods for both inner merging Mergeinner
and inter-merging Mergeseq across varying values of |SP |. Although arithmetic merging is compet-
itive in most settings, orthogonal merging consistently achieves the best results, often showing an
improvement of approximately 1% EM over arithmetic merging. We expect that orthogonal merging
will exhibit greater robustness in scenarios with more severe knowledge conflict.

4.3.4 EFFECT OF THE NUMBER OF PASSAGES PER RETRIEVAL (|SP | > 1)

Table 7 reports the results of MergePRAG+ under different numbers of retrieved passages |SP |. As
|SP | increases, MergePRAG+ consistently improves performance without degradation, even when
longer in-context passages are provided.

4.3.5 EFFECT OF THE NUMBER OF KEY–VALUE VECTORS k

To examine the impact of the number of key–value vectors used for passage-knowledge parame-
terization, we conduct an ablation study on HotpotQA and 2WikiMhQA using LLaMA3.1-8B. For

|SP | = 2 |SP | = 4 |SP | = 6 |SP | = 8 |SP | = 10 |SP | = 12
Mergeinner Mergeseq EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

• • 50.20 58.07 51.40 60.35 51.40 59.82 52.00 60.86 55.00 62.84 54.40 62.76
• ■ 50.60 58.06 52.00 60.64 52.00 60.21 53.00 61.32 55.40 63.40 54.60 62.64
■ • 50.40 58.14 51.60 60.13 51.40 59.63 52.60 61.46 54.80 62.80 54.60 62.76
■ ■ 50.80 58.23 52.40 60.67 52.40 60.67 53.40 61.77 55.60 63.45 55.00 62.93

Table 5: Performance comparison between different merging methods for Mergeinner and Mergeseq
varying |SP |: •: Arithmetic mean merging, ■: Gram–Schmidt orthogonalization merging.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

MergePRAG+ / HotpotQA
Mergeseq EM F1

▲ 36.20 43.47
• 48.20 55.04
♦ 46.40 54.07
▼ 48.20 54.95
■ 48.80 55.53

Table 6: Performance comparison between dif-
ferent merging methods for Mergeseq under the
setting of |SP | = 1: ▲: Adding merging, •:
Arithmetic mean merging, ♦: TIES merging,
▼: Concat merging, ■: Gram–Schmidt orthog-
onalization merging.

HotpotQA 2WikiMhQA
#|SP | EM F1 EM F1

1 48.80 55.53 66.30 71.05
2 50.80 58.23 71.40 76.94
3 52.00 59.50 73.10 79.06
4 52.40 60.67 73.20 79.34

Table 7: Performance of MergePRAG+ on Hot-
potQA and 2WikiMHQA with varying numbers
of retrieved passages (|SP |) per sub-question.
Increasing |SP | provides broader evidence for
answering each sub-question, which can im-
prove overall QA accuracy.

HotpotQA 2WikiMhQA
|SP | = 1 |SP | = 4 |SP | = 1 |SP | = 4

k (i.e., #numkv) EM F1 EM F1 EM F1 EM F1
1 45.60 52.67 49.00 58.24 62.40 67.89 69.00 75.21
2 45.60 52.67 51.20 59.20 63.80 69.01 69.00 76.32
4 45.60 52.86 50.80 58.88 64.00 69.37 71.20 77.09
8 46.40 54.25 49.40 58.39 65.90 70.93 72.00 78.09

16 48.80 55.53 52.40 60.67 66.30 71.05 73.20 79.34

Table 8: Ablation on the Number of Passage Vectors numkv for LLaMA3.1-8B on HotPotQA and
2WikiMhQA

each dataset, we train models with different values of k (i.e., numkv) under two retrieval settings:
|SP | = 1 and |SP | = 4. The results are summarized in Table 8.

Overall, increasing the number of KV vectors (k) leads to consistent performance improvements
across both datasets and retrieval settings. This is because larger k provides greater memory capac-
ity, allowing the model to preserve more passage-specific information. By capturing richer passage-
level representations and reducing the likelihood of information loss, larger k yields improvements
in both EM and F1.

5 CONCLUSION

In this work, we introduced MERGEPRAG, which generalizes the PRAG framework to the multi-
hop QA setting—an important milestone toward reasoning-enhanced RAG. We proposed two key
technical components: (1) orthogonal continual merging, which incrementally updates passage ex-
perts with newly retrieved knowledge during multi-hop inference while avoiding interference; and
(2) critical-layer parameterization, which applies passage knowledge injection only to a selected
critical layer, greatly reducing injection cost. Experimental results on multi-hop QA and reasoning-
aware knowledge editing showed that MERGEPRAG consistently outperforms standard and state-
of-the-art RAG systems, existing PRAG methods, and fine-tuning–based parametric adaptation.

For future work, we plan to extend the framework to a more general reasoning-enhanced RAG set-
ting to examine whether passage injection also contributes to further performance improvements.
We also aim to explore the “pretraining” of hypernetworks, enabling them to be applied and adapted
efficiently to new domains without requiring substantial additional training. Finally, we will inves-
tigate in depth why standard fine-tuning suffers from stronger performance degradation, whereas
hypernetwork-based parameterization is helpful in boosting the performance. It is also worth ex-
ploring alternative hypernetwork architectures, such as memory-augmented designs, which can pa-
rameterize longer contexts more effectively beyond the single-passage setting used in this work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. 2024.

Baolong Bi, Shenghua Liu, Yiwei Wang, Yilong Xu, Junfeng Fang, Lingrui Mei, and Xueqi Cheng.
Parameters vs. context: Fine-grained control of knowledge reliance in language models. CoRR,
2025.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Guanzheng Chen, Qilong Feng, Jinjie Ni, Xin Li, and Michael Qizhe Shieh. Rapid: Long-context
inference with retrieval-augmented speculative decoding. In Forty-second International Confer-
ence on Machine Learning.

Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campagnano,
Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. The power of noise: Redefining re-
trieval for rag systems. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 719–729, 2024.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiaojun Chen, and Ruifeng Xu. Enhancing noise
robustness of retrieval-augmented language models with adaptive adversarial training. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 10028–10039, 2024.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. In
The Thirteenth International Conference on Learning Representations.

Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin, Yaojie Lu, Hongyu Lin, Xianpei Han,
Le Sun, and Jie Zhou. Deeprag: Thinking to retrieve step by step for large language models.
arXiv preprint arXiv:2502.01142, 2025.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th
International Conference on Computational Linguistics, pp. 6609–6625, Barcelona, Spain (On-
line), December 2020. International Committee on Computational Linguistics. URL https:
//www.aclweb.org/anthology/2020.coling-main.580.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. In The Eleventh International Conference
on Learning Representations.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceed-
ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
guistics: Main Volume, pp. 874–880, Online, April 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.eacl-main.74. URL https://aclanthology.org/2021.
eacl-main.74/.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong C Park. Adaptive-rag:
Learning to adapt retrieval-augmented large language models through question complexity. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 7029–7043,
2024.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, 2023.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O Arik. Long-context llms meet rag: Overcoming
challenges for long inputs in rag. arXiv preprint arXiv:2410.05983, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Evgenii Kortukov, Alexander Rubinstein, Elisa Nguyen, and Seong Joon Oh. Studying large lan-
guage model behaviors under context-memory conflicts with real documents. arXiv preprint
arXiv:2404.16032, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl a 00276. URL
https://aclanthology.org/Q19-1026/.

Andrew K Lampinen, Arslan Chaudhry, Stephanie CY Chan, Cody Wild, Diane Wan, Alex Ku, Jörg
Bornschein, Razvan Pascanu, Murray Shanahan, and James L McClelland. On the generalization
of language models from in-context learning and finetuning: a controlled study. arXiv e-prints,
pp. arXiv–2505, 2025.

Yibin Lei, Liang Ding, Yu Cao, Changtong Zan, Andrew Yates, and Dacheng Tao. Unsupervised
dense retrieval with relevance-aware contrastive pre-training. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 10932–10940, Toronto, Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-acl.695. URL https://aclanthology.org/
2023.findings-acl.695/.

Quinn Leng, Jacob Portes, Sam Havens, Matei Zaharia, and Michael Carbin. Long context rag
performance of large language models. arXiv preprint arXiv:2411.03538, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model edit-
ing in a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 18564–18572, 2024.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025a.

12

https://aclanthology.org/2021.eacl-main.74/
https://aclanthology.org/2021.eacl-main.74/
https://aclanthology.org/Q19-1026/
https://aclanthology.org/2023.findings-acl.695/
https://aclanthology.org/2023.findings-acl.695/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuan Li, Qi Luo, Xiaonan Li, Bufan Li, Qinyuan Cheng, Bo Wang, Yining Zheng, Yuxin Wang,
Zhangyue Yin, and Xipeng Qiu. R3-rag: Learning step-by-step reasoning and retrieval for llms
via reinforcement learning. arXiv preprint arXiv:2505.23794, 2025b.

Xing Han Lù. Bm25s: Orders of magnitude faster lexical search via eager sparse scoring. arXiv
preprint arXiv:2407.03618, 2024.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, et al. Gemma: Open
models based on gemini research and technology. CoRR, 2024.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia
Zhou, and Yiqun Liu. Parametric retrieval augmented generation. In Proceedings of the 48th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 1240–1250, 2025.

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning.
arXiv preprint arXiv:2311.04661, 2023.

Yuqiao Tan, Shizhu He, Huanxuan Liao, Jun Zhao, and Kang Liu. Dynamic parametric retrieval
augmented generation for test-time knowledge enhancement. arXiv preprint arXiv:2503.23895,
2025a.

Zhiwen Tan, Jiaming Huang, Qintong Wu, Hongxuan Zhang, Chenyi Zhuang, and Jinjie Gu. Rag-r1:
Incentivize the search and reasoning capabilities of llms through multi-query parallelism. arXiv
preprint arXiv:2507.02962, 2025b.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Compu-
tational Linguistics, 2022.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10014–10037,
Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.557. URL https://aclanthology.org/2023.acl-long.557/.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
cient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv preprint
arXiv:2210.07558, 2022.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Renzhi Wang and Piji Li. Memoe: Enhancing model editing with mixture of experts adaptors. arXiv
preprint arXiv:2405.19086, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

13

https://aclanthology.org/2023.acl-long.557/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jinyang Wu, Shuai Zhang, Feihu Che, Mingkuan Feng, Chuyuan Zhang, Pengpeng Shao, and Jian-
hua Tao. Pandora’s box or aladdin’s lamp: A comprehensive analysis revealing the role of rag
noise in large language models. arXiv preprint arXiv:2408.13533, 2024.

Yuan Xia, Jingbo Zhou, Zhenhui Shi, Jun Chen, and Haifeng Huang. Improving retrieval aug-
mented language model with self-reasoning. In Proceedings of the AAAI conference on artificial
intelligence, volume 39, pp. 25534–25542, 2025.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn sloth:
Revealing the behavior of large language models in knowledge conflicts. In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

Haoyu Xu, Pengxiang Lan, Enneng Yang, Guibing Guo, Jianzhe Zhao, Linying Jiang, and Xingwei
Wang. Knowledge decoupling via orthogonal projection for lifelong editing of large language
models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 13194–13213, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.646. URL
https://aclanthology.org/2025.acl-long.646/.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: re-
solving interference when merging models. In Proceedings of the 37th International Conference
on Neural Information Processing Systems, pp. 7093–7115, 2023.

Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng-Ann Heng, and Wai Lam. Unveiling
the generalization power of fine-tuned large language models. In NAACL-HLT, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
19449–19457, 2024a.

Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
large language models. arXiv preprint arXiv:2411.19443, 2024b.

Qinggang Zhang, Zhishang Xiang, Yilin Xiao, Le Wang, Junhui Li, Xinrun Wang, and Jinsong
Su. Faithfulrag: Fact-level conflict modeling for context-faithful retrieval-augmented generation.
arXiv preprint arXiv:2506.08938, 2025.

Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen.
MQuAKE: Assessing knowledge editing in language models via multi-hop questions. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 15686–15702, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.971. URL
https://aclanthology.org/2023.emnlp-main.971/.

A LAYER SCANNING EXPERIMENTS FOR CRITICAL LAYER
PARAMETERIZATION

The critical-layer parameterization module appliesH only to a single critical layer l∗. To identify l∗,
we perform a layer-wise scanning experiment that evaluates perplexity after adding a layer-specific
paragraph vector to the l-th layer. For this purpose, we construct a small sub-dataset from the dataset
used in the experiment.

14

https://aclanthology.org/2025.acl-long.646/
https://aclanthology.org/D18-1259/
https://aclanthology.org/2023.emnlp-main.971/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 2: Perplexity variations across layers of LLaMA3.1-8B when training with
paragraph-vector insertion on the HotpotQA dataset under |SP | = 1.

Figure 3: Perplexity variations across layers of LLaMA3.1-8B when training with
paragraph-vector insertion on the WikiMhQA dataset under |SP | = 1.

Figure 4: Perplexity variations across layers of LLaMA3.1-8B when training with
paragraph-vector insertion on the MuSiQue dataset under |SP | = 1.

Formally, let Hlψ denote the layer-specific hypernetwork for the l-th layer, parameterized by ψ and
defined following Eqs. 12–13. Given a question q, we first retrieve relevant passages P ⊆ R.
Each passage p ∈ P is fed into Hlψ to obtain its passage expert EHψ(p), which are then merged
into a single expert EHψ

(P) using the inner-merging operation in Eq. (6). The merged expert is
subsequently incorporated into the l-th layer of the base LLM Mθ0 via Eq. (9). We train Hlψ by
minimizing the cross-entropy loss defined in Eq. (14).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Perplexity variations across layers of Qwen2.5-7B during training with
paragraph vector insertion on the HotPot-QA dataset under |SP | = 1.

Figure 6: Perplexity variations across layers of Qwen2.5-7B during training with
paragraph vector insertion on the WikiMhQA dataset under |SP | = 1.

Figure 7: Perplexity variations across layers of Qwen2.5-7B during training with
paragraph vector insertion on the MuSiQue dataset under |SP | = 1.

To measure the importance of each layer l, we evaluate perplexity after training Hlψ . Fig-
ures 2, 3, 4, 5, 6 and 7 compare perplexity across layers for LLaMA3.1-8B and Qwen2.5-7B on
different experimental dataset, respectively, under the setting of |SP | = 1.

The results show a clear sensitivity pattern: in LLaMA3.1-8B and Qwen2.5-7B, injecting passage
vector into early-to-middle layers yields the largest perplexity reduction, indicating that these layers
play a central role in integrating external knowledge. Meanwhile, we observe that the two mod-
els exhibit opposite patterns in the layers where external knowledge is least efficiently integrated.
Specifically, LLaMA3.1-8B shows higher perplexity when the passage vector is injected into the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model HotpotQA 2WikiMultihopQA MuSiQue
LLaMA3.1-8B l∗ = 9 l∗ = 7 l∗ = 8
Qwen2.5-7B l∗ = 7 l∗ = 8 l∗ = 9

Table 9: Selected critical layers l∗ for passage-vector insertion based on layer-wise perplexity anal-
ysis across datasets.

shallowest layers, whereas Qwen2.5-7B displays higher perplexity when the injection is applied
to the deepest layers. This contrast suggests that conducting layer-wise scanning is essential for
identifying the optimal injection layer for different model architectures.

Overall, our findings show that both LLaMA3.1-8B and Qwen2.5-7B exhibit their highest sensitivity
to passage-vector injection in the early-to-middle layers, suggesting that these layers are primarily
responsible for incorporating external knowledge across model families. Based on the layer-wise
perplexity analysis conducted on three datasets—HotpotQA, WikiMhQA, and Musique—we select
the optimal insertion layer l∗ for each model–dataset pair. The selected layers are summarized in
Table 9.

B ORTHOGONAL MERGING USING THE GRAM-SCHMIDT PROCEDURE

P1:t−1M(t)

MF1:t−1

M(t) −P1:t−1M(t)

M(t)

MF1:t

Figure 8: Illustration of orthogonal continual
merging based on Gram–Schmidt procedure.

In multi-hop RAG, a set of passages SPi arrives for
each sub-question sqi. This setting naturally mo-
tivates the design of a continual merging mecha-
nism that combines previously accumulated knowl-
edge with newly retrieved passage knowledge, recur-
rently updating the current FFN expert by incorpo-
rating each new expert.

To minimize overwriting previously acquired knowl-
edge, MergePRAG adopts orthogonal continual
merging based on the Gram–Schmidt process, in-
spired by recent orthogonal approaches in model
merging and knowledge editing (Xu et al., 2025).
Specifically, the new parameter matrix is projected
onto the span of the previously merged parameters, and only its orthogonal residual is added to the
current merged expert.

We apply orthogonal continual merging separately to either key or value matrices, resulting from
Hϕ. Formally, let {M(i)}ti=1 denote the sequence of key or value passage memories, where each
M(i) ∈ Hϕ(SPi) corresponds to either Kp or Vp.

Suppose that MF1:t−1 denotes the merged memory parameter obtained from {M(i)}t−1
i=1 . Following

Eq. 10 in Section 3.2.2, the Gram–Schmidt orthogonalization procedure first computes the projection
matrix onto the subspace spanned by MF1:t−1 :

P1:t−1 = MF1:t−1
(
(MF1:t−1)⊤MF1:t−1

)−1
(MF1:t−1)⊤. (15)

The new parameter M(t) is then merged by adding only its orthogonal component with respect to
the subspace spanned by MF1:t−1 :

MF1:t = MF1:t−1 +
(
I−P1:t−1

)
M(t), (16)

where P1:t−1 is the projection matrix defined in Eq. (15).

With a slight abuse of notation, the recursion in Eq. (16) is denoted by Merge:

MF1:t = Merge
(
MF1:t−1 ,M(t)

)
. (17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

When the merging procedure Merge is applied independently to the sequences of key and value
matrices Kp and Vp, we obtain the merged passage memories for both parts:

KF1:t = Merge
(
KF1:t−1 , K(t)

)
,

VF1:t = Merge
(
VF1:t−1 , V(t)

)
. (18)

where K(t) and V(t) denote the key and value memory matrices at timestep t, respectively.

C HYPERNETWORK ARCHITECTURE

Given a passage p, the hypernetwork Hϕ generates the corresponding key–value memory through
three stages: (1) Attentive pooling, which produces a sentence-level embedding Emd(p) for passage
p; (2) MLP, which maps the passage embedding to a latent representation using a two-layer ReLU-
based MLP; and (3) Linear projection, which converts the latent representation into K key and K
value vectors, yielding the passage-specific memory.

We define a lightweight Encoder consisting of a 2-layer Transformer encoder layer with 4 attention
head. The hidden dimension of the encoder layer is set to be consistent with the LM model’s internal
representation dimension d. Specifically, for LLaMA3.1-8B, d = 4096, while for Qwen2.5-7B,
d = 3584.

Attentive pooling. Given a passage p, we apply attention-based aggregation over token-level em-
beddings of p: (1) obtaining sequence of its word embeddings, and (2) applying attentive pooling.
Formally, let the retrieved passage be represented as a sequence of tokens, denoted by X ∈ RT×|V|,
where each row Xt is a one-hot vector over the vocabulary indicating the identity of the token at the
t-th position, and V denotes the vocabulary set. We apply word embedding layer Embedding to X
and obtain its embedded representations, as follows:

Xemd = Embedding(X). (19)

where a sequence of token embeddings Xemd ∈ RT×d, where T is the passage length and d is the
embedding dimension. Note that word embedding layer Embedding is obtained from the pretrained
LLMMθ0 (e.g., LLaMA3.1-8B or Qwen2.5-7B).

The passage embedding Emd(p) is then obtained via attentive pooling:

Emd(p) = h = softmax
(
w⊤
a X

⊤
emd

)
Xemd ∈ Rd, (20)

where wa ∈ Rd is a learnable attention vector4. The embedding Emd(p) = h serves as the atten-
tively pooled representation of the passage, capturing its global semantic content.

MLP. To increase representational capacity and allow the hypernetwork to perform nonlinear rea-
soning over the passage summary, the pooled vector Emd(p) = h is passed through a two-layer
feedforward network, denoted MLPhyp, as follows:

hb = MLPhyp(h) = ReLU(V′ LN (ReLU(W′h))) . (21)

where LN is the layer normalization layer.

Linear projection. Finally, two linear transformations map the latent code hb into flattened key
and value matrices, i.e., the passage-specific memory:

Kp = WK hb + bK ,

Vp = WV hb + bV , (22)

where k (i.e., num-kv) denotes the number of key–value slots generated per passage and d is the
model dimension. Each of the k rows corresponds to an independent memory vector that can be
directly attended to by the language model.

4We omit an additional bias term as it has negligible impact.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This three-stage design enables the hypernetwork to compress an entire retrieved passage into a
compact set of attention-ready memory vectors, which are efficiently integrated into the model via
the memory attention mechanism at the designated target layer (Eq. 8 in Section 3.2.1).

HyperNetworkHϕ
Xemd ∈ RT×d

wa Softmax

α

h ∈ Rd

ReLU

V′

LayerNorm

ReLU

W′ hb ∈ Rkd

WK

WV

K ∈ Rk×d

V ∈ Rk×d

Attentive pooling MLPhyp Linear projection Memory

Figure 9: The hypernetwork Hϕ(p) generates passage-specific key–value vectors Kp,Vp ∈
Rk×dmodel , referred to as passage-specific memory, which serve as lightweight, plug-in passage-level
experts for downstream reasoning. The process consists of three stages: (1) attentive pooling, (2)
MLP, and (3) linear projection. 1) Attentive pooling. Given a one-hot token matrix X ∈ RT×|V|

for passage p, the model first converts it into a sequence of embeddings Xemb ∈ RT×d via the
word embedding layer: Xemb = Embedding(X) (Eq (19)). Attention is then applied over the to-
ken embeddings, where a learnable vector wa ∈ Rd serves as the query: Emd(p) = h ∈ Rd (Eq.
(20)). 2) MLP. The pooled representation h is passed through a two-layer feedforward network with
ReLU activations and LayerNorm, producing a latent representation hb (Eq. (21)). 3) Linear pro-
jection. Two independent linear projection heads map hb into the key and value parameter spaces:
Kp, Vp ∈ Rk×dmodel , yielding flattened key–value memory vectors of length k · dmodel for passage p
(Eq. (22)). The resulting passage-specific memory is subsequently injected into the target model as
additional knowledge signals.

D TRAINING AND INFERENCE PROCEDURE

D.1 TRAINING

Hypernetwork. We prepare a training dataset DH at the sub-question level from training set in
each task to train the hypernetwork Hϕ. Each instance (q, p, a) ∈ DH consists of a sub-question q,
its gold passage p, and the corresponding answer a. The hypernetwork parameters ϕ are trained by
minimizing the negative log-likelihood of generating the correct answer a underMθ0⊕H(p) (Eq. 14),
while the base parameters θ0 remain frozen.

Subquestion generator. To train the sub-question generatorMsq , we construct a dataset Dsq =

{(q(j), y(j))}Mj=1 using GPT-4.1 (Achiam et al., 2023) to generate sub-questions from 4,000 ran-
domly sampled examples in the training split of each dataset. The prompt template used for this
dataset construction is shown in Table 10. The template specifies the desired output format and
includes several illustrative examples. Given an input question q and its associated gold passages,
GPT-4.1 refers to the examples and decomposes q into sub-questions using the provided passages.

Each target sequence is

y(j) = [sq
(j)
1 , sa

(j)
1 , sq

(j)
2 , sa

(j)
2 , . . . , sq(j)nj , sa

(j)
nj , ⟨EOS⟩],

as described in Section 4.1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Your task is to convert a given question and its related facts into a multi-step reasoning chain.

Requirements: Each step in the reasoning chain must:
- Use one fact from the input facts, do not combine, summarize, or fabricate facts; each fact must
be used as-is from the input.
- Generate a ”Sub-question” and a short answer ”Sub-answer”.
- The answer ”Sub-answer” must be directly derivable from the corresponding Fact.

Examples:
Question: ”When did the civilisation start that Desalpar Gunthli was a part of?”,
Facts: [”Desalpar Gunthli: Desalpar Gunthli is a village and site belonging to Indus Valley Civili-
sation located at Nakhtrana Taluka, Kutch District, Gujarat, India.”, ”Indus Valley Civilisation: The
Indus Valley Civilisation (IVC) or Harappan Civilisation was a Bronze Age civilisation (3300–1300
BCE; mature period 2600–1900 BCE) mainly in the northwestern regions of South Asia, extending
from what today is northeast Afghanistan to Pakistan and northwest India.”]
Output: [
{
”Sub-question”: ”Which civilisation was Desalpar Gunthli a part of?”,
”Fact”: ”Desalpar Gunthli: Desalpar Gunthli is a village and site belonging to Indus Valley
Civilisation located at Nakhtrana Taluka, Kutch District, Gujarat, India.”,
”Sub-answer”: ”Indus Valley Civilisation”
},
{
”Sub-question”: ”When did the Indus Valley Civilisation exist?”,
”Fact”: ”Indus Valley Civilisation: The Indus Valley Civilisation (IVC) or Harappan Civilisation
was a Bronze Age civilisation (3300–1300 BCE; mature period 2600–1900 BCE) mainly in the
northwestern regions of South Asia, extending from what today is northeast Afghanistan to Pakistan
and northwest India.”,
”Sub-answer”: ”3300–1300 BCE”
}]

[other examples demonstrations abbreviated]

Question: {}
Facts: {}
Output:

Table 10: Prompt templates used by GPT-4.1 to generate sub-questions and sub-answers from the
training set. The generated results are used to construct Dsq for training the sub-question generator.

Given a pair (q(j), y(j)), Msq is trained with supervised fine-tuning by minimizing the negative
log-likelihood (NLL):

L(Msq) = −
M∑
j=1

|y(j)|∑
t=1

logPMsq

(
y
(j)
t | q(j), y(j)<t

)
, (23)

where y(j)t denotes the t-th token in the target sequence y(j).

D.2 INFERENCE

At inference time, MergePRAG tackles a multi-hop QA task by decomposing the original complex
question into sub-questions. For each sub-question sqi, the top-retrieved passages SPi are fed into
the hypernetwork Hϕ to produce a sub-expert EHϕ

(SPi). This sub-expert is then merged with the
previously accumulated FFN expert EF (SP1:i−1) using orthogonal continual merging, yielding the
updated fused expert EF (SP1:i), ensuring that knowledge from earlier reasoning steps is preserved
without redundancy.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The fused FFN expert is injected into the base LLMMθ0 at the critical layer l∗. Response gener-
ation is then performed under the updated modelMθ0⊕F(SP1:i), either with the current in-context
passages SPi (MergePRAG+) or without them (MergePRAG). After all sub-questions are processed
at timestep T , the final answer to the original complex question is generated by the fully passage-
injected modelMθ0⊕F(SP1:T). The complete inference procedure is summarized in Algorithm 1.
For comparison, the inference procedure of MultihopRAG without passage knowledge parameteri-
zation is shown in Algorithm 2.

Algorithm 1 Multi-hop Inference with MergePRAG
Require: Original question q, sub-question generator Msq , base LLM Mθ0 , hypernetwork Hϕ,

retrieverR
Ensure: Final answer a

1: Initialize merged expert F ← ∅
2: Initialize reasoning chain C ← ∅
3: while next sub-question exists do
4: Generate sub-question: sqi ←Msq(q, C)
5: Retrieve passages: SPi ← R(sqi)
6: Parameterize passages: Hϕ(SPi)← Mergeinner

(
{Hϕ(p) | p ∈ SPi}

)
(Eq. 6)

7: if i > 1 then
8: Orthogonal continual merge: F ← Mergeseq(F ,Hϕ(SPi)) (Sec. 3.2.2)
9: else

10: Initialize expert: F ← Hϕ(SPi)
11: end if
12: Inject F into the base LLM:Mθ0⊕F
13: Generate sub-answer:

sai ←
{Mθ0⊕F (sqi), (MergePRAG)

Mθ0⊕F (SPi, sqi), (MergePRAG+)

14: Append (sqi, sai) to reasoning chain C
15: end while
16: Generate final answer:

a←Mθ0⊕F (C, q) (MergePRAG / MergePRAG+)

17: return a

Algorithm 2 Multi-hop Inference with MultihopRAG
Require: Original question q, sub-question generatorMsq , base LLMMθ0 , retrieverR
Ensure: Final answer a← ∅

1: Initialize reasoning chain C ← ∅
2: while next sub-question exists do
3: Generate sub-question: sqi ←Msq(q, C)
4: Retrieve passages: SPi ← R(sqi)
5: Generate sub-answer: sai ←Mθ0(SPi, sqi)
6: Append (sqi, sai) to reasoning chain C
7: end while
8: Generate final answer: a←Mθ0(C, q)
9: return a

E FURTHER EXPERIMENT RESULTS

E.1 EFFICIENCY ANALYSIS

To evaluate the inference cost of MergePRAG, we conduct an efficiency analysis (Table 11) focusing
on three components of the system: (1) passage-specific memory generation byHψ , (2) sub-question

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Generate Passage Memory Response sa Average Time
RAG|SP |=1 - - 0.712s

RAG-CoT|SP |=1 - - 6.389s
MergePRAG+|SP |=1 0.001s 0.259s 2.517s

Table 11: Efficiency analysis of MergePRAG using the LLaMA3.1-8B model on the HotpotQA
dataset.

Figure 10: Results of RAG and RAG-CoT varying the number of retrieved passages on three multi-
hop QA datasets using LLaMA3.1-8B and Qwen2.5-7B.

response generation, and (3) overall response generation. Thanks to the lightweight design of the
hypernetwork, the time required to produce passage-specific key–value memory is minimal. The
subsequent step of generating sub-questions also incurs only modest overhead.

Although decomposing a complex query into multiple sub-questions increases the number of in-
ference steps compared with standard RAG, the overall latency remains within a practical range.
Notably, the proposed pipeline still requires less time than RAG-CoT methods, which rely on
long chain-of-thought prompting, while achieving higher accuracy. These results demonstrate that
MergePRAG offers a favorable trade-off between computational efficiency and reasoning effective-
ness.

F BASELLINES INTRODUCTION

RAG: (Lewis et al., 2020) For a given query q, the retriever selects the top-k relevant passages.
The generator then directly infers the answer based on these retrieved passages. To ensure stylistic
consistency of the generated answers, we apply a task-specific prompt. The RAG prompt template
is provided in Table 12.

RAG-CoT: (Wei et al., 2022) Building upon RAG, RAG-CoT incorporates chain-of-thought rea-
soning. To guide the model’s reasoning process, we employ a one-shot demonstration sampled from
the training data, which encourages the model to generate step-by-step explanations before arriving
at the final answer. The prompt template is included in Table 13. We evaluate RAG and RAG-CoT
by retrieving 1–8 relevant passages, with the accuracy results shown in Figure 10.

MulitihopRAG: MultihopRAG can be viewed as a variant of MergePRAG withoutH, which itera-
tively responds to sub-questions using a pure RAG-style approach (Algorithm 2).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Follow the format below to answer the following question with a very short phrase, such as “1998”,
“May 16th, 1931”, or “James Bond”, to meet the criteria of exact match datasets.

Passage: {}
Question: {}
Answer:

Table 12: Input template used for evaluating multi-hop questions with RAG.

You are a reasoning assistant tasked with answering user questions step by step. Follow the format
below to answer the following question with a very short phrase, such as “1998”, “May 16th, 1931”,
or “James Bond”, to meet the criteria of exact match datasets.

Passage: Tom Warburton: Since moving to Los Angeles in 2009 he has worked at Disney Television
Animation serving as creative director on ”Fish Hooks” and co-executive producer on ”The 7D”.
Fish Hooks: Fish Hooks is an American animated television series created by Noah Z. Jones that
originally aired on Disney Channel from September 3, 2010 to April 4, 2014.
Question: What show that Tom Warburton worked on aired from September 3, 2010 to April 4,
2014?
Thoughts: The passage says Tom Warburton worked as creative director on Fish Hooks. The pas-
sage also says Fish Hooks aired on Disney Channel from September 3, 2010 to April 4, 2014. The
question asks which show that Tom Warburton worked on aired during those dates. So, the answer
must be Fish Hooks.
Answer: Fish Hook

Passage: {}
Question: {}
Thoughts:

Table 13: Input template used for evaluating multi-hop questions with RAG-CoT.

IRCoT: (Trivedi et al., 2023) Interleaves retrieval with chain-of-thought reasoning, enabling itera-
tive evidence retrieval conditioned on intermediate reasoning steps, which enhances multi-hop QA
performance and reduces hallucination.

MeLLo: (Zhong et al., 2023) MeLLo is a system that iteratively decomposes multi-hop questions
into subquestions, generates tentative answers, retrieves relevant facts, and updates predictions based
on potential contradictions.

FLARE: (Jiang et al., 2023) Incorporates adaptive retrieval triggered when the model generates
low-confidence tokens, leveraging retrieved evidence to improve response quality.

Adaptive-RAG: (Jeong et al., 2024) Adaptive-RAG automatically selects the optimal retrieval and
reasoning strategy based on query complexity, ensuring efficient handling of simple queries while
improving accuracy on complex ones.

Auto-RAG: (Yu et al., 2024b) It performs iterative reasoning to decide when and what to retrieve,
and terminates the process once sufficient external knowledge has been gathered, before generating
the final answer.

DeepRAG: (Guan et al., 2025) It odels retrieval-augmented generation as a Markov decision pro-
cess, where the query is iteratively decomposed and the model dynamically decides at each step
whether to retrieve external knowledge or rely on parametric reasoning.

R3-RAG: (Li et al., 2025b) It is a reinforcement learning–based method that trains LLMs to iter-
atively reason and retrieve, enabling them to acquire more comprehensive external knowledge and
generate more accurate answers.

Search-o1: (Li et al., 2025a) Search-o1 lets a reasoning model dynamically retrieve and analyze
external knowledge to fill knowledge gaps during long reasoning.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes
Sub-question: What year was James Garner born?
sub-answer: 1928
Question: What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Answer: 1928

Table 14: LM responds directly to the original question. When ⟨EOS⟩ is generated in Table 16, the
inference chain terminates and the resulting context is used as input to the LM.

HotpotQA 2WikiMhQA MuSiQue
Model Method Retriever EM F1 EM F1 EM F1

FLAN-T5-XL Adaptive-RAG BM25 42.00 53.82 40.60 49.75 23.60 31.80
LLaMA3.1-8B Search-o1 BM25 14.80 24.08 22.20 27.10 5.40 11.98
Qwen2.5-7B Search-o1 BM25 11.60 16.95 22.00 25.02 2.10 7.48
Qwen2.5-3B Search-R1 E5 32.40 - 31.90 - 10.30 -
Qwen2.5-7B Search-R1 E5 37.00 - 41.40 - 14.60 -
Qwen2.5-7B MergePRAG|SP |=1 E5 43.40 50.64 65.80 69.72 9.70 19.61
Qwen2.5-7B MergePRAG|SP |=1 BM25 42.00 49.09 59.70 63.05 13.00 23.35

LLaMA3.1-8B MergePRAG|SP |=1 E5 48.80 55.53 66.30 71.05 14.40 25.04
LLaMA3.1-8B MergePRAG|SP |=1 BM25 46.80 53.40 61.60 67.31 17.80 29.39

Table 15: Performance comparison of MergePRAG+ with other advanced RAG methods on three
QA benchmarks – Adaptive-RAG, Search-R1 and Search-o1.

Search-R1: (Jin et al., 2025) Search-R1 enables an LLM to learn, via reinforcement learning, how
to autonomously issue effective multi-turn search queries during step-by-step reasoning, thereby
substantially improving retrieval-augmented QA performance.

PRAG+: (Su et al., 2025) By transforming the documents retrieved for query q into parametric
representations that are directly integrated into the feed-forward networks of the LLM, parametric
retrieval-augmented generation is introduced.

DyPRAG+: (Tan et al., 2025a) Extends PRAG by employing a lightweight parameter transformation
module to efficiently convert documents retrieved for query q into parametric knowledge, which can
be directly leveraged to generate the response.

G MERGING METHODS: INTRODUCTION

Arithmetic mean merging. Arithmetic mean merging computes the element-wise mean of the task
vectors {τj}nj=1, where n is the number of tasks. This approach assumes that all vectors lie in a
shared embedding space and produces a balanced fusion without introducing additional learnable
parameters:

Merge
(
{τj}nj=1

)
=

1

n

n∑
j=1

τj . (24)

Additive merging. Additive merging performs element-wise summation of task vectors. This oper-
ation preserves activation magnitudes and emphasizes consistently high-valued features across task
vectors, without trainable parameters, as follows:

Merge
(
{τj}nj=1

)
=

n∑
j=1

τj . (25)

Concat merging. Concat merging first concatenates the task vectors and then applies a learnable
linear projection to map the concatenated vector into the merged space:

Merge
(
{τj}nj=1

)
= concat(τ1, . . . , τn) . (26)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

In our setting, concatenation is equivalent to increasing the number of key–value vectors from k to
k × n. For example, suppose K(1),K(2) ∈ Rk×dmodel are the key memories from two tasks. Concat
merging produces:

Merge
(
K(1),K(2)

)
= concat

(
K(1),K(2)

)
∈ R2k×dmodel . (27)

TIES merging. TIES merging (Yadav et al., 2023) (Trim–Elect–Sign Merging) fuses task vectors
by retaining only the largest-magnitude and sign-consistent components across tasks. This approach
preserves salient and mutually aligned activations while suppressing contradictory or noisy features.
Given n task vectors, TIES merging proceeds in three stages:

1. Trim. Given a task vector τj , the trimming step applies magnitude-based pruning:

τ̂j = topk(τj), (28)

where topk retains the top k% of parameters by magnitude and sets the remaining entries to zero.
The trimmed vector is decomposed into its sign and magnitude components:

τ̂j = γ̂j ⊙ m̂j , (29)

where
γ̂j = sign(τ̂j), m̂j = |τ̂j |,

and ⊙ denotes element-wise multiplication.

2. Elect. The election step performs magnitude-weighted sign aggregation. The merged sign
vector is computed by selecting, for each coordinate, the sign with the largest summed magnitude
across all trimmed task vectors:

γm = sign

 n∑
j=1

τ̂j

 . (30)

3. Merge. Given the trimmed task vectors τ̂j , the merging step selectively aggregates only those
coordinates whose signs match the elected sign γm. Formally,

aj = I(γ̂j = γm) ,

τm =

 n∑
j=1

τ̂j ⊙ aj

⊘
 n∑
j=1

aj

 , (31)

where I(e) is the indicator function that returns 1 if the condition e is true and 0 otherwise, and ⊘
denotes element-wise division.

H CASE STUDY

We present a case study to illustrate the decomposition process. As shown in Table 16, the sub-
question generator iteratively breaks down the question into sub-questions. For each step in Table 16,
the upper part above the dashed line corresponds to the input template used by the sub-question
generator, while the lower part shows the retrieval and sub-answer generation process. Green text
denotes retrieved content, and red text indicates generated sub-answers. When the sub-question
generator produces no further sub-questions, the resulting chain C is passed into the merged-expert
LM model. The inference process is illustrated in Table 14, where blue text highlights the final
answer.

We further provide an error-case analysis, as shown in Table 17. This failure is triggered by an
incorrect retrieval result for one of the sub-questions, which leads to an erroneous sub-answer. The
mistake then propagates to subsequent steps, causing the next sub-question to deviate from the
original problem and ultimately resulting in a chain reaction of compounding errors. As indicated
by our ablation study on the number of retrieved documents (i.e., cases where |SP | > 1), increasing
retrieval depth helps stabilize sub-question answering accuracy and consequently improves overall

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

performance. This reveals a key limitation of our method: incorrect sub-answers may induce a
ripple effect throughout the iterative decomposition process—a challenge shared by all multi-hop
decomposition-based approaches.

Initial prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?

Duel at Diablo: Duel at Diablo is a 1966 western film starring James Garner in his first Western
since leaving ”Maverick” and Sidney Poitier in his first Western.
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
2-step prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner

James Garner: He starred in several television series over more than five decades, including such
popular roles as Bret Maverick in the 1950s western comedy series M̈averickänd Jim Rockford
in T̈he Rockford Files,̈ and played leading roles in more than 50 theatrical films, including T̈he
Great Escape(̈1963) with Steve McQueen, Paddy Chayefsky’s T̈he Americanization of Emily(̈1964),
G̈rand Prix(̈1966), Blake Edwards’ V̈ictor/Victoria(̈1982), M̈urphy’s Romance(̈1985), for which he
received an Academy Award nomination, S̈pace Cowboys(̈2000) with Clint Eastwood, and T̈he
Notebook(̈2004).
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes
3-step prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes

James Garner: James Garner (born James Scott Bumgarner; April 7, 1928 – July 19, 2014) was an
American actor, producer, and voice artist.
Sub-question: What year was James Garner born?
sub-answer: 1928
4-step prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes
Sub-question: What year was James Garner born?
sub-answer: 1928

⟨EOS⟩

Table 16: Case example generated by the sub-question generator. At each step, the input appears
above the dotted line, while the black text below shows the output. Red text indicates the answer to
the generated sub-question.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Initial prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?

Charlotte Riley: She is known for her roles as Sarah Hurst in ”Easy Virtue” and as Catherine Earn-
shaw in ITV’s adaptation of ”Wuthering Heights”.
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley
2-step prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley

Into the Dark (film): Into the Dark, also known as ”I Will Follow You into the Dark”, is a 2012
supernatural romance thriller written and directed by Mark Edwin Robinson.
Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?
Sub-answer: Into the Dark
3-step prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley
Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?
Sub-answer: Into the Dark

Into the Dark (film): Into the Dark, also known as ”I Will Follow You into the Dark”, is a 2012
supernatural romance thriller written and directed by Mark Edwin Robinson.
Sub-question: Who wrote the 2012 supernatural thriller film ’Into the Dark’?
sub-answer: Mark Edwin Robinson
4-step prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley
Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?
Sub-answer: Into the Dark
Sub-question: Who wrote the 2012 supernatural thriller film ’Into the Dark’?
Sub-answer: Mark Edwin Robinson

⟨EOS⟩

Table 17: A failure case induced by sub-question retrieval. An incorrect retrieval result generated
from a sub-question triggers a chain reaction, ultimately resulting in an overall failure.

27

	Introduction
	Related Works
	Parametric Knowledge Enhancement
	Retrieval Augmented Generation

	Methodology
	Multi-hop RAG
	MergePRAG
	Hypernetwork-based Key–Value Memory Parameterization for H_phi.
	Orthogonal Continual Merging Mechanism (Merge) for F
	Hypernetwork Architecture: Sequence-to-Memory
	Critical-Layer Parameterization for H_phi
	Training objective

	Experiments
	Experiments Setting
	Main Results and Analysis
	Ablation Study
	MergePRAG+ vs. MultihopRAG W/ Finetuning
	MergePRAG vs. MergePRAG+
	Effect of the Merging Methods
	Effect of the Number of Passages per Retrieval (|SP| > 1)
	Effect of the Number of Key–Value Vectors k

	Conclusion
	Layer Scanning Experiments for Critical Layer Parameterization
	Orthogonal Merging using the Gram-Schmidt Procedure
	Hypernetwork Architecture
	Training and Inference Procedure
	Training
	Inference

	Further Experiment Results
	Efficiency Analysis

	Basellines Introduction
	Merging Methods: Introduction
	Case Study

