

000 MERGEPRAG: ORTHOGONAL MERGING OF PASSAGE- 001 EXPERTS FOR MULTI-HOP PARAMETRIC RAG 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Large language models (LLMs) can be enhanced with external knowledge through
010 two dominant approaches: (1) **retrieval-augmented generation (RAG)**, which
011 supplements LLMs with in-context retrieved passages, and (2) **parametric
012 knowledge adaptation (PKA)**, which directly updates model parameters with
013 new domain knowledge. Recently, parametric RAG (PRAG) has emerged as
014 a promising framework, extending RAG by translating retrieved passages into
015 parameter updates, thereby mitigating inefficiency and noise sensitivity inher-
016 ent to RAG. However, existing PRAG methods remain limited to single-pass
017 retrieval, falling short of the **multi-hop RAG** setting that requires iterative re-
018 trieval and reasoning. We propose **MergePRAG**(*Orthogonal Merging of Passage-
019 experts for Multi-hop PRAG*), a novel framework that sequentially integrates re-
020 trievalled passages into LLM parameters through a continual merging mechanism,
021 which is advanced by two key proposals: (1) **orthogonal merging** using the
022 Gram–Schmidt process to minimize conflicts between "passage experts", and (2)
023 **critical-layer parameterization** to efficiently encode in-context passages. Ex-
024 periments on multi-hop open-domain QA and reasoning-aware knowledge editing
025 show that MergePRAG consistently outperforms both standard and state-of-the-
026 art RAGs as well as existing parametric adaptation methods, achieving superior
027 effectiveness and efficiency. All datasets and code will be released at https://anonymous.4open.science/r/MhQA_hypernet-B31F.
028

029 1 INTRODUCTION 030

031 Large language models (LLMs)(Dubey et al., 2024; Mesnard et al., 2024; Team, 2024; DeepSeek-
032 AI, 2024) have achieved strong performance on a wide range of knowledge-intensive tasks, driven
033 by billions of parameters and large-scale pretraining corpora. However, their parametric knowl-
034 edge remains static, making them ill-suited for evolving world knowledge or emerging domains.
035 Retrieval-augmented generation (RAG) has become a popular remedy, injecting retrieved passages
036 into the input context at inference time. While effective, RAG faces challenging issues: (1) *knowl-
037 edge conflict* between parametric and retrieved information(Xie et al., 2023; Kortukov et al., 2024;
038 Zhang et al., 2025; Bi et al., 2025), (2) inference inefficiency from processing long retrieval-heavy
039 contexts (Leng et al., 2024; Jin et al., 2024; Chen et al.), and (3) noise sensitivity, where irrelevant or
040 erroneous passages degrade performance (Cuconasu et al., 2024; Wu et al., 2024; Fang et al., 2024).
041

042 Alternatively, **Parametric RAG (PRAG)**, along with its dynamic variant (Su et al., 2025; Tan et al.,
043 2025a), has recently emerged as a promising direction. PRAG translates retrieved passages into
044 LoRA parameter updates via a "hypernet", enabling LLMs to *internalize* external knowledge
045 beyond mere in-context conditioning.¹ Notably, PRAG has been shown to consistently outperform
046 standard RAG, both when applied independently and when combined with retrieval-based methods.
047

048 Despite its promise, **PRAG has thus far been investigated only in simplified RAG settings**, typ-
049 ically limited to a single retrieval step rather than the more challenging multi-hop RAG scenario
050 (Yu et al., 2024b; Li et al., 2025b). In multi-hop RAG, a complex query is decomposed into sub-
051 questions, each requiring iterative retrieval and sub-answer generation, such that retrieved passages
052

053 ¹In this paper, we use PRAG as a broad term encompassing the original PRAG (Su et al., 2025) and its
variants, including DyPRAG (Tan et al., 2025a).

054 are incrementally provided during the question answering (QA) process. A central research question,
 055 therefore, is how to effectively extend PRAG to multi-hop settings—where the internalization
 056 of retrieved passages must continuously progress across hops—without necessitating the retraining
 057 or rebuilding of a hypernetwork originally designed for single-hop RAG. This extension of PRAG
 058 to multi-hop RAG represents an important milestone, as it provides a natural bridge toward recent
 059 *reasoning-enhanced* RAG frameworks (e.g., IRCoT, Self-RAG, DeepRAG, and RAG-R1 (Trivedi
 060 et al., 2023; Asai et al., 2024; Guan et al., 2025; Tan et al., 2025b)).

061 We propose **MergePRAG** (Orthogonal Merging Passage-experts for Multi-hop PRAG), a general-
 062 ized framework that scales PRAG to multi-hop RAG. At each stage, retrieved passages are trans-
 063 lated into expert parameters by a hypernetwork and merged with the previously accumulated ex-
 064 perts through a continual merging mechanism, thus enabling effective accumulation of knowledge
 065 across iterative retrievals (Figure 1). For effective continual merging, we propose two advances:
 066 (1) **orthogonal merging** using the Gram–Schmidt process to minimize conflicts between newly
 067 introduced and existing experts, and (2) a **critical-layer parameterization** module that updates
 068 only the preselected *critical layer* to efficiently encode in-context passages. These techniques al-
 069 low MergePRAG to reuse a single passage-level hypernetwork across hops, without requiring the
 070 redesign or retraining of additional hypernetworks to support multi-hop RAG.

071 Our contributions are threefold: (1) We introduce MergePRAG, the first generalized PRAG frame-
 072 work for multi-hop RAG. (2) We propose a continual merging mechanism that sequentially inte-
 073 grates retrieved passages into LLM parameters, enabled by two advances: orthogonal merging and
 074 critical-layer parameterization. (3) We conduct extensive experiments across multiple LLM back-
 075 bones and benchmark datasets, showing that MergePRAG consistently outperforms existing RAG
 076 and PRAG baselines in both effectiveness and efficiency.

078 2 RELATED WORKS

080 2.1 PARAMETRIC KNOWLEDGE ENHANCEMENT

082 Parametric knowledge enhancement methods aim to increase the knowledge capacity of language
 083 models by adjusting their parameters to better encode new information. The most direct approach
 084 is *full fine-tuning*, but this quickly becomes impractical as model sizes grow. To address scalability,
 085 *parameter-efficient fine-tuning (PEFT)* techniques, such as LoRA and its variants (Hu et al., 2021;
 086 Valipour et al., 2022; Yu et al., 2024a), update only a small set of low-rank matrices, achieving
 087 performance comparable to full fine-tuning at a fraction of the cost.

088 With the rise of *model editing*, more targeted approaches have been developed that directly locate
 089 and modify knowledge representations within the model. Methods such as ROME (Meng et al.,
 090 2022a), MEMIT (Tan et al., 2023), and PMET (Li et al., 2024) update critical layers to encode new
 091 facts, while MEND (Mitchell et al., 2021) and MALMEN (Tan et al., 2023) employ hypernetworks
 092 to inject knowledge into specific layers, effectively fusing edits with existing parameters. To mitigate
 093 catastrophic forgetting and preserve general-purpose capabilities, approaches like T-Patcher (Huang
 094 et al.) and MEMoE (Wang & Li, 2024) introduce external memory modules that store edits sepa-
 095 rately from the core model.

096 Overall, parametric enhancement methods differ in *where* and *how* they modify parameters—
 097 ranging from full updates to low-rank adapters, targeted edits, or external memory—yet they share
 098 the goal of augmenting LLMs with new knowledge while retaining general abilities.

100 2.2 RETRIEVAL AUGMENTED GENERATION

101 Early RAG methods (Lewis et al., 2020; Guu et al., 2020; Izacard & Grave, 2021; Borgeaud et al.,
 102 2022) train language models jointly with top-retrieved documents, enabling the model to incorporate
 103 external knowledge sources when generating answers. To further improve performance, subsequent
 104 approaches expanded the knowledge sources, incorporated query rewriting, or jointly trained the
 105 retriever and the generator to achieve tighter integration. To mitigate the computational overhead of
 106 fully parameterized RAG training, methods such as PRAG (Su et al., 2025) and DyRAG (Tan et al.,
 107 2025a) have been proposed, which enhance the model’s internal knowledge by learning mappings
 108 from retrieved documents to model parameters.

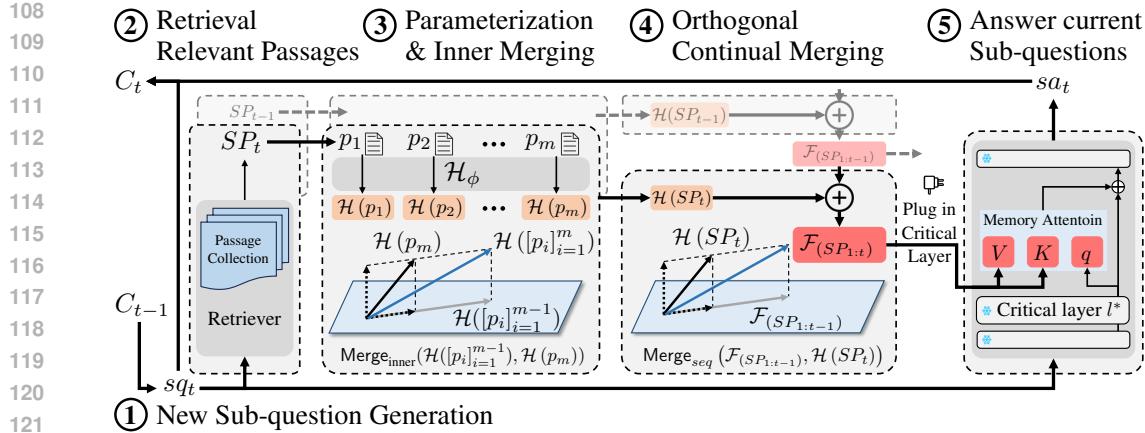


Figure 1: Overview of MergePRAG for multi-hop QA. A complex query is decomposed into sub-questions, and retrieved passages are sequentially incorporated through parameterization and continual merging. At each timestep t : (1) a sub-question sq_t is generated from the reasoning chain C_{t-1} (Eq. 1, Section 3.1); (2) the retriever returns top-ranked passages $SP_t \subseteq \mathcal{R}$; (3) given $SP_t = [p_i]_{i=1}^m$, each passage is parameterized by the hypernetwork to produce $\{\mathcal{H}_\phi(p_i)\}_{i=1}^m$, which are combined into $\mathcal{H}_\phi(SP_t)$ via the inner-merging mechanism (Eq. 6, Section 3.2); (4) orthogonal continual merging updates the accumulated parameters $\mathcal{F}(SP_{1:t-1})$ with $\mathcal{H}_\phi(SP_t)$ to obtain $\mathcal{F}(SP_{1:t})$ (Eq. 11, Section 3.2.2); and (5) the merged expert $\mathcal{F}(SP_{1:t})$ is injected into the base LLM \mathcal{M}_{θ_0} at the critical layer l^* to generate the sub-answer (Eqs. 4–5). This process repeats until no further sub-questions are produced, after which the final answer is generated.

Recent advances increasingly emphasize the importance of *reasoning* over retrieved facts. For instance, FLARE (Jiang et al., 2023), MeLLO (Zhong et al., 2023), IRCoT (Trivedi et al., 2023) and (Xia et al., 2025) employ iterative cycles of reasoning, retrieval, and error correction to refine responses. DeepRAG (Guan et al., 2025) formulates reasoning as a Markov Decision Process (MDP) to enable adaptive retrieval, while R3-RAG (Li et al., 2025b) leverages large models to construct trajectories and applies reinforcement learning to teach LLMs stepwise reasoning and retrieval strategies. Collectively, these works highlight the effectiveness of constructing chain-of-thought reasoning processes for complex tasks.

Building on these insights, we present MergePRAG, which extends PRAG to the multi-hop RAG setting and serves as a critical stepping stone toward reasoning-enhanced RAG systems. In contrast to prior PRAG methods (Su et al., 2025) that rely on simple arithmetic merging, MergePRAG introduces a merging module with orthogonal merging, enabling more effective integration of passage experts across hops.

3 METHODOLOGY

In this section, we present MergePRAG, illustrated in Figure 1. We first provide a brief background on multi-hop RAG, and then describe MergePRAG and its two main components: orthogonal merging with the Gram–Schmidt process and critical-layer parameterization.

We define two language models and a retrieval module. \mathcal{M}_{θ_0} denotes a *general-purpose LLM* for sub-answer generation, also referred to as the *base LM*, \mathcal{M}_{sq} a *sub-question generator*, based a smaller LLM, and \mathcal{R} the *retriever*, which returns a set of top-ranked passages for each query q , denoted as $\mathcal{R}(q)$.

3.1 MULTI-HOP RAG

Let q be the original complex query. In the multi-hop RAG setting, each step involves sub-question generation, retrieval, and response generation. At step t , given C_{t-1} , the accumulated context so far,

162 the next sub-question sq_t and its sub-answer sa_t are obtained as
 163

$$164 \quad sq_t = \mathcal{M}_{sq}(C_{t-1}), sa_t = \mathcal{M}_{\theta_0}(sq_t, SP_t), \quad SP_t \subseteq \mathcal{R}(sq_t), \quad (1)$$

165 where SP_t denotes the retrieved passages at step t . Task-specific instruction prompts for \mathcal{M}_{sq} and
 166 \mathcal{M}_{θ_0} are described in Appendix H.

167 The newly obtained tuple (sq_t, sa_t) is appended to the context: $C_t = [C_{t-1}, sq_t, sa_t]$. The final
 168 answer to the original query q is then generated as $a = \mathcal{M}(C_{T-1}, q)$, where $sq_T = \mathcal{M}_{sq}(C_{T-1}) =$
 169 $\langle \text{EOS} \rangle$.

170 In the single-hop setting, RAG produces the answer in one step: $a = \mathcal{M}_{\theta_0}(q, SP_1)$, $SP_1 \subseteq \mathcal{R}(q)$,
 171 and the process terminates immediately.

173 3.2 MERGEPRAG

175 To present MergePRAG, we first review PRAG in the single-hop RAG setting.

176 **PRAG.** As in DyPRAG (Tan et al., 2025a), PRAG employs a hypernetwork-based passage parameterization module. Let \mathcal{H}_ϕ denote the hypernetwork, which maps a retrieved passage p to a set of
 177 passage-specific LoRA parameters: $\theta_p = \mathcal{H}_\phi(p)$. The hypernetwork is trained to efficiently translate
 178 an in-context passage into its corresponding parameters.

179 PRAG augments the base model \mathcal{M}_{θ_0} by injecting passage-specific parameters $\mathcal{H}_\phi(p)$, making $\theta' =$
 180 $\theta_0 \oplus \mathcal{H}_\phi(p)$, referred to as *p-injected model*, where \oplus denotes the *parameter-injection* operation.
 181 PRAG then generates the answer under the *p-injected model* as $a = \mathcal{M}_{\theta_0 \oplus \mathcal{H}_\phi(p)}(q)$.

182 With abuse of notations, let \mathcal{M}_{θ_0} denote the base LLM with parameters θ_0 . PRAG augments the
 183 model by injecting *passage-specific parameters* $\mathcal{H}(p)$ generated from the passage parameterization
 184 module \mathcal{H} , such that for a passage p , $\theta' = \theta_0 \oplus \mathcal{H}(p)$ where \oplus denotes the parameter-injection
 185 operation. Unlike RAG that conditions on the passage p explicitly in the input prompt, given a
 186 query q , RAG then generates an answer under the *passage-injected model* as follows:

$$187 \quad a = \mathcal{M}_{\theta_0 \oplus \mathcal{H}(p)}(q). \quad (2)$$

188 **MergePRAG.** MergePRAG extends PRAG to the multi-hop RAG setting, where passages arrive
 189 sequentially through iterative retrieval. By timestep t , the accumulated passages are $SP_{1:t} =$
 190 $[SP_1, \dots, SP_t]$. To inject all context passages into the LLM parameters, let \mathcal{F} denote a mapping
 191 from the sequence $SP_{1:t}$ to the parameter space. Instead of directly “training” \mathcal{F} over datasets with
 192 varying numbers of passages t , **MergePRAG introduces a continual merging mechanism that**
 193 **induces \mathcal{F} by reusing the passage-level hypernetwork \mathcal{H}_ϕ** , which maps a single passage to its
 194 parameter representation.

195 **Sequence-merging.** The sequence merging, denoted as Merge_{seq} , is a recursive operation that
 196 combines the previously accumulated parameters $\mathcal{F}_{(SP_{1:t-1})}$ with the new passage-specific parameters
 197 $\mathcal{H}_\phi(SP_t)$:

$$198 \quad \mathcal{F}_{(SP_{1:t})} = \text{Merge}_{seq}(\mathcal{F}_{(SP_{1:t-1})}, \mathcal{H}_\phi(SP_t)). \quad (3)$$

199 Using the “merged” parameter representation, MergePRAG generates a candidate answer at timestep
 200 t without relying on in-context passages:

$$201 \quad sa_t = \mathcal{M}_{\theta_0 \oplus \mathcal{F}_{(SP_{1:t})}}(sq_t), \quad (4)$$

202 At the final timestep T , MergePRAG generates the final answer as $a = \mathcal{M}_{\theta_0 \oplus \mathcal{F}_{(SP_{1:T})}}(q)$.

203 **MergePRAG+.** Similar to PRAG-Combine (Su et al., 2025), **MergePRAG+** integrates RAG and
 204 PRAG in a complementary manner, yielding:

$$205 \quad \begin{aligned} sa_t &= \mathcal{M}_{\theta_0 \oplus \mathcal{F}_{(SP_{1:t})}}(SP_t, sq_t), \quad t < T, \\ 206 a &= \mathcal{M}_{\theta_0 \oplus \mathcal{F}_{(SP_{1:T})}}(C_T, q), \quad t = T. \end{aligned} \quad (5)$$

207 **Inner-merging.** We introduce an *inner-merging* mechanism to induce $\mathcal{H}(SP)$ from individual pas-
 208 sage parameters, for $|SP| > 1$. Formally, given a list of passages $SP = [p_1, \dots, p_m]$, $\mathcal{H}(SP)$ is

216 obtained by applying an inner merging operation $\text{Merge}_{\text{inner}}$:

$$\begin{aligned} 218 \quad \mathcal{H}([p_i]_{i=1}^m) &= \text{Merge}_{\text{inner}}(\mathcal{H}_\phi(p_1), \dots, \mathcal{H}_\phi(p_m)) \\ 219 &= \text{Merge}_{\text{inner}}(\mathcal{H}([p_i]_{i=1}^{m-1}), \mathcal{H}(p_m)) \end{aligned} \quad (6)$$

221 3.2.1 HYPERNETWORK-BASED KEY-VALUE MEMORY PARAMETERIZATION FOR \mathcal{H}_ϕ .

223 For passage parameterization, MergePRAG adopts a key-value memory parameterization scheme,
224 where the hypernetwork generates k key and value vectors for each passage, which serve as a “com-
225 pressed” *passage-specific memory*. The passage-specific memory is inserted into the feed-forward
226 network (FFN) at the critical layer l^* via an additional attention mechanism, referred to as the *mem-
227 ory attention* mechanism.

228 Formally, the hypernetwork $\mathcal{H}_\phi(p)$ first produces the passage-specific memory for passage p as:

$$229 \quad \mathcal{H}_\phi(p) = \{ \mathbf{K}_p, \mathbf{V}_p \}, \quad (7)$$

231 where $\mathbf{K}_p, \mathbf{V}_p \in \mathbb{R}^{K \times d_{\text{out}}}$ are the key and value matrices, respectively.

232 Suppose that the original FFN module at layer l^* is denoted as a function $\text{MLP}_{\theta_0} : \mathbb{R}^{d_{\text{in}}} \rightarrow \mathbb{R}^{d_{\text{out}}}$
233 parameterized by θ_0 . The passage-specific FFN expert $E_{\mathcal{H}_\phi(p)}$ is then obtained for an input $\mathbf{x} \in \mathbb{R}^{d_{\text{in}}}$
234 using a memory attention mechanism, i.e., standard attention applied to the passage-specific memory
235 ($\mathbf{K}_p, \mathbf{V}_p$) with the base FFN output $\text{MLP}_{\theta_0}(\mathbf{x})$ used as the query. Formally,

$$\begin{aligned} 237 \quad E_{\mathcal{H}_\phi(p)}(\mathbf{x}) &= \text{Attention}(\text{MLP}_{\theta_0}(\mathbf{x}), \mathbf{K}_p, \mathbf{V}_p), \\ 238 \quad \text{Attention}(\mathbf{q}, \mathbf{K}_p, \mathbf{V}_p) &= \text{softmax} \left(\frac{\mathbf{q} \mathbf{K}_p^\top}{\sqrt{d_{\text{out}}}} \right) \mathbf{V}_p, \end{aligned} \quad (8)$$

241 The passage-specific FFN expert is injected into the original FFN layer at l^* , yielding:

$$243 \quad \text{MLP}_{\theta_0 \oplus \mathcal{H}_\phi(p)}(\mathbf{x}) = \text{MLP}_{\theta_0}(\mathbf{x}) + E_{\mathcal{H}_\phi(p)}(\mathbf{x}). \quad (9)$$

245 3.2.2 ORTHOGONAL CONTINUAL MERGING MECHANISM (Merge) FOR \mathcal{F}

247 Once the parameterization module $\mathcal{H}_\phi(SP_i)$ produces passage vectors $(\mathbf{K}_p, \mathbf{V}_p)$ as in Eq. (7),
248 the continual merging mechanism operates on each parameter independently. To form a merged
249 expert without overwriting previously acquired knowledge, we propose an *orthogonal merging*
250 method based on Gram–Schmidt projection, inspired by recent studies (Xu et al., 2025). For-
251 mally, let $\{\mathbf{W}_i\}_{i=1}^t$ denote the set of key or value memory matrices (i.e., \mathbf{K}_p or \mathbf{V}_p) obtained
252 from $\{\mathcal{H}_\phi(SP_i)\}_{i=1}^t$, where $\mathbf{W}_i \in \mathbb{R}^{k \times d_{\text{out}}}$.

253 Let $\mathbf{W}_{\mathcal{F}}^{t-1}$ be the merged parameter obtained from $\{\mathbf{W}_i\}_{i=1}^{t-1}$ up to step $t-1$. The Gram–Schmidt or-
254 thogonalization procedure first computes the projection matrix onto the subspace spanned by $\mathbf{W}_{\mathcal{F}}^{t-1}$:

$$256 \quad \mathbf{P}^{t-1} = \mathbf{W}_{\mathcal{F}}^{t-1} ((\mathbf{W}_{\mathcal{F}}^{t-1})^\top \mathbf{W}_{\mathcal{F}}^{t-1})^{-1} (\mathbf{W}_{\mathcal{F}}^{t-1})^\top. \quad (10)$$

257 The new parameter \mathbf{W}_t is then merged by adding only its orthogonal component with respect to the
258 subspace spanned by $\mathbf{W}_{\mathcal{F}}^{t-1}$:

$$260 \quad \mathbf{W}_{\mathcal{F}}^t = \mathbf{W}_{\mathcal{F}}^{t-1} + (\mathbf{I} - \mathbf{P}^{t-1}) \mathbf{W}_t, \quad (11)$$

261 where \mathbf{P}^{t-1} is the projection matrix defined in Eq. (10). A detailed discussion of orthogonal merging
262 using the Gram–Schmidt procedure is provided in Appendix B.

264 3.2.3 HYPERNETWORK ARCHITECTURE: SEQUENCE-TO-MEMORY

266 The hypernetwork is designed to take a token sequence of a passage and produce its key-value mem-
267 ory. Given a passage as an input sequence of tokens, the hypernetwork \mathcal{H}_ϕ first computes a passage
268 embedding via *attentive pooling* over the token-level embeddings. The resulting passage embed-
269 ding is then passed through a two-layer MLP, whose output is transformed by linear projections to
generate the passage-specific memory, i.e., the key and value matrices.

270 Formally, given a passage p , we denote its sentence embedding by $\text{Emd}(p)$, obtained as the attentionally pooled representation from an auxiliary Transformer encoder (Appendix C). The hypernetwork then transforms $\text{Emd}(p)$ into a latent representation using MLP_{hyp} , as follows:
 271
 272

$$273 \quad \mathbf{h}_b = \text{MLP}_{\text{hyp}}(\text{Emd}(p)) = \text{ReLU}(\mathbf{V}' \text{LN}(\text{ReLU}(\mathbf{W}' \text{Emd}(p)))) . \quad (12)$$

274 where LN refers to the layer normalization layer.
 275

276 Finally, we apply two distinct linear transformations to map the latent representation \mathbf{h}_b into flattened
 277 key and value matrices, i.e., the “passage-specific memory” for p :
 278

$$279 \quad \mathbf{K}_p = \mathbf{W}_K \mathbf{h}_b + \mathbf{b}_K, \quad \mathbf{V}_p = \mathbf{W}_V \mathbf{h}_b + \mathbf{b}_V, \quad (13)$$

280 where $\mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{K \times d \times d_{\text{hid}}}$ are linear projection tensors and $\mathbf{b}_K, \mathbf{b}_V \in \mathbb{R}^{K \times d}$ are bias terms.
 281 With a slight abuse of notation, we treat a matrix in $\mathbb{R}^{K \times d \times 1}$ as a matrix in $\mathbb{R}^{K \times d}$ by removing the
 282 singleton dimension. More details of the hypernetwork architecture are provided in Appendix C.
 283

284 3.2.4 CRITICAL-LAYER PARAMETERIZATION FOR \mathcal{H}_ϕ

285 **The critical-layer parameterization applies \mathcal{H} only to a single critical layer l^*** , rather than across
 286 all layers, motivated by the locate-and-edit methods of (Meng et al., 2022a;b; Li et al., 2024; Fang
 287 et al.).
 288

289 To identify the critical layer l^* , we conduct layer-wise scanning experiments on both models across
 290 all datasets. For each layer, we measure the change in perplexity after injecting the corresponding
 291 passage vectors, thereby evaluating the effectiveness of the layer-specific hypernetwork (see Ap-
 292 pendix: A). As shown in Fig.(2– 7), the early-to-middle layers contribute most substantially when
 293 used as parameterization modules. Based on this analysis, the insertion positions for the single-layer
 294 passage-vector parameterization are summarized in Table 9.
 295

296 3.2.5 TRAINING OBJECTIVE

297 **Hypernetwork \mathcal{H}_ϕ .** To train \mathcal{H}_ϕ ,² we construct a dataset $\mathcal{D}_{\mathcal{H}} = \{(q_i, p_i, a_i)\}_{i=1}^N$, where each triple
 298 consists of a question q_i , its relevant passage p_i , and the ground-truth answer a_i . The hypernetwork
 299 is trained by minimizing the cross-entropy loss:
 300

$$301 \quad \mathcal{L}_{\text{CE}}(\phi) = - \sum_{(q, p, a) \in \mathcal{D}_{\mathcal{H}}} \log P_{\mathcal{M}_{\theta_0 \oplus \mathcal{H}_\phi(p)}}(a \mid q), \quad (14)$$

303 where $P_{\mathcal{M}_{\theta_0 \oplus \mathcal{H}_\phi(p)}}(a \mid q)$ denotes the probability of generating answer a conditioned on question q
 304 under the parameters of the passage-injected model $\mathcal{M}_{\theta_0 \oplus \mathcal{H}_\phi(p)}$.
 305

306 **Subquestion generator \mathcal{M}_{sq} .** Following Li et al. (2025b), we adopt a cold-start stage to train the
 307 sub-question generator \mathcal{M}_{sq} by constructing a dataset $\mathcal{D}_{sq} = \{(q^{(j)}, y^{(j)})\}_{j=1}^M$, where each target
 308 sequence is
 309

$$y^{(j)} = [sq_1^{(j)}, sa_1^{(j)}, sq_2^{(j)}, sa_2^{(j)}, \dots, sq_{n_j}^{(j)}, sa_{n_j}^{(j)}, \langle \text{EOS} \rangle].$$

310 The autoregressive objective on \mathcal{D}_{sq} is used to train \mathcal{M}_{sq} , as detailed in Appendix D.
 311

312 4 EXPERIMENTS

313 4.1 EXPERIMENTS SETTING

314 **Models and Datasets.** We employ LLaMA3.1-8B (Dubey et al., 2024) and Qwen2.5-7B (Team,
 315 2024) as research base models. For the multi-hop question answering task, we follow works (Guan
 316 et al., 2025; Li et al., 2025b) and utilize the E5 (Wang et al., 2022) and BM25 (Lù, 2024) retriev-
 317 ers. For the multi-hop editing task, we follow work (Zhong et al., 2023) and adopt the Contriever
 318 model (Lei et al., 2023) as the retriever.³
 319

320 ²Here, \mathcal{H}_ϕ denotes the layer-specific hypernetwork that injects passage knowledge into the FNN at the
 321 critical layer l^* .
 322

323 ³We follow these works for a fair comparison. Pre-trained models can be obtained from Hugging Face.
 324 LLaMA-3.1-8B: <https://huggingface.co/meta-llama/Llama-3.1-8B>

We conduct experiments on multi-hop question answering datasets: HotpotQA (Yang et al., 2018), 2WikiMultihopQA (2WikiMhQA) (Ho et al., 2020) and MuSiQue (Trivedi et al., 2022), and multi-hop editing datasets: MQuAKE-CF (Zhong et al., 2023) and MQuAKE-T (Zhong et al., 2023). HotpotQA serves as a standard benchmark for multi-hop reasoning. MQuAKE-CF is a counterfactual knowledge editing dataset, designed to evaluate how well models adapt to counterfactual modifications. In contrast, MQuAKE-T focuses on temporal knowledge updates, assessing models' ability to respond to changes in real-world facts.

Metrics. We evaluate model performance using Exact Match (EM) and F1 score (F1) (Kwiatkowski et al., 2019). EM measures the strict string-level agreement between predictions and gold answers, while F1 quantifies partial correctness by computing the token-level overlap between predictions and references. For all experiments, we take the model's final response as its predicted answer and compare it against the gold standard.

Baselines. We evaluate our approach against a range of baselines: (i) RAG and RAG-CoT, which retrieve relevant documents to answer queries, (ii) iterative retrieval methods such as IRCoT, FLARE and MeLLO, (iii) parameterized RAG methods including PRAG and DyPRAG and (iv) reasoning-enhanced RAG methods including Auto-RAG, Adaptive-RAG, Deep-RAG, R3-RAG, Search-R1 and Search-o1. The detailed descriptions of these baseline methods can be found in the Appendix F.

Implementation Details. All experiments were conducted on a workstation with 8 NVIDIA RTX A6000 GPUs. The detailed training settings and inference are provided in Appendix D.

4.2 MAIN RESULTS AND ANALYSIS

We evaluated MergePRAG on multi-hop QA datasets using LLaMA3.1-8B and Qwen2.5-7B, with results summarized in Table 1. MergePRAG consistently outperforms state-of-the-art baselines across all three datasets, showing the best performances in most cases, except for the run using LLaMA3.1-8B on MuSiQue. Compared with early passage-injection methods such as PRAG and DyPRAG, MergePRAG+ achieves higher performance, demonstrating that the hypernetwork-based parameterization framework extends effectively to multi-hop QA. Additional gains are obtained when combined with explicit in-context passages, without sacrificing generalization. The results further indicate that increasing the number of retrieved passages $|SP|$ with Merge_{inner} provides additional improvements over using a single passage ($|SP| = 1$).

To examine the effect of hypernetwork-based parameterization, we include an additional baseline, **MultihopRAG** (Section 3.1), which directly uses the original LLM θ_0 without hypernetwork-based parameterization or injection (Algorithm 2). Comparisons with MultihopRAG show that hypernetwork-based passage knowledge injection contributes substantially to performance gains.

4.3 ABLATION STUDY

We conducted a series of ablation studies to examine the effectiveness of the proposed framework and to identify the contribution of its key components. In addition, we performed efficiency analysis experiments to evaluate the computational performance of our approach; the detailed results are presented in Appendix E.1.

4.3.1 MERGEPRAG+ VS. MULTIHOPRAG W/ FINETUNING

To compare standard *fine-tuning* with the proposed hypernetwork-based parameterization in MergePRAG, we apply fine-tuning to **MultihopRAG**, directly adjusting θ_0 on the same training data used in our framework. We consider two settings: (1) *fine-tuning without passages*, i.e., $[sq \rightarrow sa]$, where the model is trained to predict sa from sq alone; and (2) *fine-tuning with passages*, i.e., $[(P_{gold}, sq) \rightarrow sa]$, where the model is trained to predict sa given sq and the gold passages, resembling the standard RAG training paradigm.

Under the LLaMA3.1-8B model with $|SP_i| = 1$, Table 3 compares these MultihopRAG variants with MergePRAG. Interestingly, naive *fine-tuning with passages* ($[(P_{gold}, sq) \rightarrow sa]$) performs even

Qwen2.5-7B: <https://huggingface.co/Qwen/Qwen2.5-7B>

E5: <https://huggingface.co/intfloat/e5-base-v2>

Contriever: <https://huggingface.co/facebook/contriever-msmarco>

	Model	Retriever	Method	HotpotQA		2WikiMhQA		MuSiQue	
				EM	F1	EM	F1	EM	F1
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393	LLaMA3.1-8B	E5	RAG _{SP =1}	21.60	36.67	4.90	17.36	2.00	11.49
		E5	RAG _{SP =4}	27.80	40.51	5.10	15.80	2.70	11.27
		E5	RAG-CoT _{SP =1}	37.60	45.15	30.90	35.00	5.60	13.38
		E5	RAG-CoT _{SP =4}	43.70	50.41	36.20	40.00	5.90	12.49
		E5	IRCoT [†]	39.30	46.00	35.10	37.50	12.00	13.60
		E5	FLARE [†]	17.80	20.90	10.90	11.40	2.30	2.80
		E5	R3-RAG [†]	45.60	58.80	52.90	60.90	21.20	32.80
		BM25	R3-RAG [†]	44.40	57.60	50.60	58.60	17.20	27.70
		BM25	Search-o1 [†]	14.80	24.08	22.20	27.10	5.40	11.98
		BM25	Auto-RAG [†]	25.80	36.09	23.00	30.09	-	-
		BM25	DeepRAG [†]	40.70	51.54	48.10	53.25	-	-
		BM25	PRAG [†]	-	44.84	-	40.55	-	-
		BM25	DyPRAG [†]	-	38.35	-	50.24	-	-
		E5	MergePRAG + _{SP =1}	48.80	55.53	66.30	71.05	14.40	25.04
		E5	MergePRAG + _{SP =4}	52.40	60.67	73.20	79.34	16.70	27.69
		BM25	MergePRAG + _{SP =1}	46.80	53.40	61.10	67.31	17.80	29.39
		BM25	MergePRAG + _{SP =4}	52.40	60.58	70.20	76.65	20.30	31.20
394 395 396 397 398 399 400 401 402 403 404 405	Qwen2.5-7B	E5	RAG _{SP =1}	36.60	43.37	34.90	37.36	3.20	8.71
		E5	RAG _{SP =4}	45.30	52.08	42.00	44.49	5.80	12.73
		E5	RAG-CoT _{SP =1}	30.20	36.20	19.10	23.05	4.30	8.30
		E5	RAG-CoT _{SP =4}	44.60	51.28	35.40	37.79	5.20	9.55
		E5	IRCoT [†]	35.70	41.10	31.10	33.50	9.40	11.20
		E5	FLARE [†]	23.40	32.06	21.80	26.51	3.60	4.80
		E5	R3-RAG [†]	46.40	59.70	54.20	62.70	21.40	34.00
		BM25	R3-RAG [†]	44.90	58.20	52.80	61.10	17.60	30.00
		BM25	Search-o1 [†]	11.60	16.95	22.00	25.02	2.10	7.48
		BM25	DeepRAG [†]	32.10	41.14	40.40	44.87	-	-
		E5	MergePRAG + _{SP =1}	43.40	50.64	65.80	69.72	9.70	19.61
		E5	MergePRAG + _{SP =4}	50.80	58.37	77.40	81.49	12.30	21.57
		BM25	MergePRAG + _{SP =1}	42.00	49.09	59.70	63.05	13.00	23.35
		BM25	MergePRAG + _{SP =4}	51.40	59.33	71.80	76.06	16.70	27.33

Table 1: Overall results on three multi-hop QA tasks. Bold numbers indicate the best performance. [†] denotes results reported from the original papers or R3-RAG paper. PRAG and DyPRAG results correspond to the combined setting with in-context passages (i.e., PRAG-Combine and DyPRAG-Combine). In MergePRAG runs, $|SP|$ refers to the number of retrieved passages per hop. MergePRAG applies orthogonal continual merging (Section 3.2.2) for both inner-merging and sequence-merging, i.e., $\text{Merge}_{\text{inner}}$ and $\text{Merge}_{\text{seq}}$. Additional results obtained using alternative models and methods are provided in Table 15.

Model	Method	MQuAKE-CF		MQuAKE-T	
		EM	F1	EM	F1
416 417 418 419	RAG	4.48	9.27	27.69	31.92
	RAG-CoT	11.7	13.18	45.93	47.28
	MeLlo	32.90	34.10	85.40	86.21
	MergePRAG + _{SP =1}	50.30	51.36	96.10	96.10

Table 2: Results on the multi-hop editing task under the MQuAKE datasets.

worse than *fine-tuning without passages* ($[sq \rightarrow sa]$). These results are consistent with prior findings (Yang et al., 2024; Lampinen et al., 2025), which show that directly fine-tuning LLMs on domain-adaptive data may degrade their generalization ability.

4.3.2 MERGEPRAG vs. MERGEPRAG+

Table 4 compares MergePRAG with MergePRAG+. MergePRAG+ exhibits strong generalization and is not negatively affected even when in-context passages are provided. In contrast, applying fine-tuning methods to MultihopRAG leads to performance degradation, implying that direct fine-tuning is unstable for preserving generalization (Section 4.3.1). Overall, these results highlight that

Traing type	HotpotQA		2WikiMhQA	
	EM	F1	EM	F1
MultihopRAG _{SP =1} (w/o finetuning)	37.80	47.56	23.30	35.59
MultihopRAG _{SP =1} (finetuning: $[sq \rightarrow sa]$)	43.70	50.15	58.10	62.57
MultihopRAG _{SP =1} (finetuning: $[(P_{golden}, sq) \rightarrow sa]$)	40.10	46.79	60.30	62.04
MergePRAG + _{SP =1}	47.40	55.29	65.60	70.54

Table 3: Comparison of MergePRAG+ and MultihopRAG with fine-tuning (without hypernetwork) under LLaMA3.1-8B.

Inference type	HotpotQA		2WikiMhQA	
	EM	F1	EM	F1
RAG _{SP =1}	21.60	36.67	4.90	17.36
MergePRAG _{SP =0}	28.40	35.52	45.60	50.06
MergePRAG + _{SP =1}	48.80	55.53	66.30	71.05

Table 4: Comparison of MergePRAG and MergePRAG+ under LLaMA3.1-8B. $|SP| = 0$ denotes MergePRAG, which does not use in-context passages as prompts during inference.

MergePRAG preserves the model’s ability to perform RAG while benefiting from parameterized knowledge injection, compared with standard fine-tuning methods.

4.3.3 EFFECT OF THE MERGING METHODS

To evaluate the effectiveness of the proposed orthogonal merging method in Section 3.2.2, we conduct ablation experiments on HotpotQA using the LLaMA3.1-8B model. Table 6 reports the results of different merging methods for sequence-level merging under the setting $|SP| = 1$, where each sub-question sq retrieves only a single passage. Details of the merging methods are provided in Appendix G.

The results show that the proposed orthogonal merging achieves the best performance, improving by 2.4% over TIES-merging, while arithmetic mean merging also performs comparably. Furthermore, Table 5 presents comparisons using different merging methods for both inner merging $Merge_{inner}$ and inter-merging $Merge_{seq}$ across varying values of $|SP|$. Although arithmetic merging is competitive in most settings, orthogonal merging consistently achieves the best results, often showing an improvement of approximately 1% EM over arithmetic merging. We expect that orthogonal merging will exhibit greater robustness in scenarios with more severe knowledge conflict.

4.3.4 EFFECT OF THE NUMBER OF PASSAGES PER RETRIEVAL ($|SP| > 1$)

Table 7 reports the results of MergePRAG+ under different numbers of retrieved passages $|SP|$. As $|SP|$ increases, MergePRAG+ consistently improves performance without degradation, even when longer in-context passages are provided.

4.3.5 EFFECT OF THE NUMBER OF KEY-VALUE VECTORS k

To examine the impact of the number of key-value vectors used for passage-knowledge parameterization, we conduct an ablation study on HotpotQA and 2WikiMhQA using LLaMA3.1-8B. For

$Merge_{inner}$	$Merge_{seq}$	$ SP = 2$		$ SP = 4$		$ SP = 6$		$ SP = 8$		$ SP = 10$		$ SP = 12$	
		EM	F1										
•	•	50.20	58.07	51.40	60.35	51.40	59.82	52.00	60.86	55.00	62.84	54.40	62.76
•	■	50.60	58.06	52.00	60.64	52.00	60.21	53.00	61.32	55.40	63.40	54.60	62.64
■	•	50.40	58.14	51.60	60.13	51.40	59.63	52.60	61.46	54.80	62.80	54.60	62.76
■	■	50.80	58.23	52.40	60.67	52.40	60.67	53.40	61.77	55.60	63.45	55.00	62.93

Table 5: Performance comparison between different merging methods for $Merge_{inner}$ and $Merge_{seq}$ varying $|SP|$: •: Arithmetic mean merging, ■: Gram–Schmidt orthogonalization merging.

MergePRAG+ / HotpotQA		
Merge _{seq}	EM	F1
▲	36.20	43.47
●	48.20	55.04
◆	46.40	54.07
▼	48.20	54.95
■	48.80	55.53

Table 6: Performance comparison between different merging methods for Merge_{seq} under the setting of $|SP| = 1$: ▲: Adding merging, ●: Arithmetic mean merging, ◆: TIES merging, ▼: Concat merging, ■: Gram–Schmidt orthogonalization merging.

# SP	HotpotQA		2WikiMhQA	
	EM	F1	EM	F1
1	48.80	55.53	66.30	71.05
2	50.80	58.23	71.40	76.94
3	52.00	59.50	73.10	79.06
4	52.40	60.67	73.20	79.34

Table 7: Performance of MergePRAG+ on HotpotQA and 2WikiMhQA with varying numbers of retrieved passages ($|SP|$) per sub-question. Increasing $|SP|$ provides broader evidence for answering each sub-question, which can improve overall QA accuracy.

k (i.e., $\#num_{kv}$)	HotpotQA				2WikiMhQA			
	$ SP = 1$		$ SP = 4$		$ SP = 1$		$ SP = 4$	
	EM	F1	EM	F1	EM	F1	EM	F1
1	45.60	52.67	49.00	58.24	62.40	67.89	69.00	75.21
2	45.60	52.67	51.20	59.20	63.80	69.01	69.00	76.32
4	45.60	52.86	50.80	58.88	64.00	69.37	71.20	77.09
8	46.40	54.25	49.40	58.39	65.90	70.93	72.00	78.09
16	48.80	55.53	52.40	60.67	66.30	71.05	73.20	79.34

Table 8: Ablation on the Number of Passage Vectors num_{kv} for LLaMA3.1-8B on HotPotQA and 2WikiMhQA

each dataset, we train models with different values of k (i.e., num_{kv}) under two retrieval settings: $|SP| = 1$ and $|SP| = 4$. The results are summarized in Table 8.

Overall, increasing the number of KV vectors (k) leads to consistent performance improvements across both datasets and retrieval settings. This is because larger k provides greater memory capacity, allowing the model to preserve more passage-specific information. By capturing richer passage-level representations and reducing the likelihood of information loss, larger k yields improvements in both EM and F1.

5 CONCLUSION

In this work, we introduced MERGEPRAG, which generalizes the PRAG framework to the multi-hop QA setting—an important milestone toward reasoning-enhanced RAG. We proposed two key technical components: (1) *orthogonal continual merging*, which incrementally updates passage experts with newly retrieved knowledge during multi-hop inference while avoiding interference; and (2) *critical-layer parameterization*, which applies passage knowledge injection only to a selected critical layer, greatly reducing injection cost. Experimental results on multi-hop QA and reasoning-aware knowledge editing showed that MERGEPRAG consistently outperforms standard and state-of-the-art RAG systems, existing PRAG methods, and fine-tuning-based parametric adaptation.

For future work, we plan to extend the framework to a more general reasoning-enhanced RAG setting to examine whether passage injection also contributes to further performance improvements. We also aim to explore the “pretraining” of hypernetworks, enabling them to be applied and adapted efficiently to new domains without requiring substantial additional training. Finally, we will investigate in depth why standard fine-tuning suffers from stronger performance degradation, whereas hypernetwork-based parameterization is helpful in boosting the performance. It is also worth exploring alternative hypernetwork architectures, such as memory-augmented designs, which can parameterize longer contexts more effectively beyond the single-passage setting used in this work.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
546 retrieve, generate, and critique through self-reflection. 2024.

547 Baolong Bi, Shenghua Liu, Yiwei Wang, Yilong Xu, Junfeng Fang, Lingrui Mei, and Xueqi Cheng.
548 Parameters vs. context: Fine-grained control of knowledge reliance in language models. *CoRR*,
549 2025.

550 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
551 can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
552 Improving language models by retrieving from trillions of tokens. In *International conference on*
553 *machine learning*, pp. 2206–2240. PMLR, 2022.

554 Guanzheng Chen, Qilong Feng, Jinjie Ni, Xin Li, and Michael Qizhe Shieh. Rapid: Long-context
555 inference with retrieval-augmented speculative decoding. In *Forty-second International Confer-
556 ence on Machine Learning*.

557 Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campagnano,
558 Yoelle Maarek, Nicola Tonellootto, and Fabrizio Silvestri. The power of noise: Redefining re-
559 trieval for rag systems. In *Proceedings of the 47th International ACM SIGIR Conference on*
560 *Research and Development in Information Retrieval*, pp. 719–729, 2024.

561 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

562 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
563 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
564 *arXiv e-prints*, pp. arXiv–2407, 2024.

565 Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiaojun Chen, and Ruifeng Xu. Enhancing noise
566 robustness of retrieval-augmented language models with adaptive adversarial training. In *Pro-
567 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
568 *1: Long Papers*), pp. 10028–10039, 2024.

569 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
570 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. In
571 *The Thirteenth International Conference on Learning Representations*.

572 Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin, Yaojie Lu, Hongyu Lin, Xianpei Han,
573 Le Sun, and Jie Zhou. Deeprag: Thinking to retrieve step by step for large language models.
574 *arXiv preprint arXiv:2502.01142*, 2025.

575 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
576 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.
577 PMLR, 2020.

578 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
579 hop QA dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th*
580 *International Conference on Computational Linguistics*, pp. 6609–6625, Barcelona, Spain (On-
581 line), December 2020. International Committee on Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.coling-main.580>.

582 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
583 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint*
584 *arXiv:2106.09685*, 2021.

585 Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
586 Transformer-patcher: One mistake worth one neuron. In *The Eleventh International Conference*
587 *on Learning Representations*.

594 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
 595 domain question answering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceed-
 596 ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
 597 guistics: Main Volume*, pp. 874–880, Online, April 2021. Association for Computational Linguis-
 598 tics. doi: 10.18653/v1/2021.eacl-main.74. URL <https://aclanthology.org/2021.eacl-main.74/>.

600 Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong C Park. Adaptive-rag:
 601 Learning to adapt retrieval-augmented large language models through question complexity. In
 602 *Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
 603 putational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 7029–7043,
 604 2024.

605 Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 606 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In *Proceedings of the
 607 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7969–7992, 2023.

609 Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O Arik. Long-context llms meet rag: Overcoming
 610 challenges for long inputs in rag. *arXiv preprint arXiv:2410.05983*, 2024.

612 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 613 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 614 learning. *arXiv preprint arXiv:2503.09516*, 2025.

615 Evgenii Kortukov, Alexander Rubinstein, Elisa Nguyen, and Seong Joon Oh. Studying large lan-
 616 guage model behaviors under context-memory conflicts with real documents. *arXiv preprint
 617 arXiv:2404.16032*, 2024.

618 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 619 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 620 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 621 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
 622 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 623 <https://aclanthology.org/Q19-1026/>.

625 Andrew K Lampinen, Arslan Chaudhry, Stephanie CY Chan, Cody Wild, Diane Wan, Alex Ku, Jörg
 626 Bornschein, Razvan Pascanu, Murray Shanahan, and James L McClelland. On the generalization
 627 of language models from in-context learning and finetuning: a controlled study. *arXiv e-prints*,
 628 pp. arXiv–2505, 2025.

629 Yibin Lei, Liang Ding, Yu Cao, Changtong Zan, Andrew Yates, and Dacheng Tao. Unsupervised
 630 dense retrieval with relevance-aware contrastive pre-training. In Anna Rogers, Jordan Boyd-
 631 Gruber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics:
 632 ACL 2023*, pp. 10932–10940, Toronto, Canada, July 2023. Association for Computational Lin-
 633 guistics. doi: 10.18653/v1/2023.findings-acl.695. URL <https://aclanthology.org/2023.findings-acl.695/>.

635 Quinn Leng, Jacob Portes, Sam Havens, Matei Zaharia, and Michael Carbin. Long context rag
 636 performance of large language models. *arXiv preprint arXiv:2411.03538*, 2024.

638 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 639 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 640 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 641 9459–9474, 2020.

642 Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model edit-
 643 ing in a transformer. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 644 pp. 18564–18572, 2024.

646 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 647 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint
 arXiv:2501.05366*, 2025a.

648 Yuan Li, Qi Luo, Xiaonan Li, Bufan Li, Qinyuan Cheng, Bo Wang, Yining Zheng, Yuxin Wang,
 649 Zhangyue Yin, and Xipeng Qiu. R3-rag: Learning step-by-step reasoning and retrieval for llms
 650 via reinforcement learning. *arXiv preprint arXiv:2505.23794*, 2025b.

651

652 Xing Han Lù. Bm25s: Orders of magnitude faster lexical search via eager sparse scoring. *arXiv*
 653 *preprint arXiv:2407.03618*, 2024.

654 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
 655 ciations in gpt. *Advances in Neural Information Processing Systems*, 35:17359–17372, 2022a.

656

657 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 658 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022b.

659 Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent
 660 Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, et al. Gemma: Open
 661 models based on gemini research and technology. *CoRR*, 2024.

662

663 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
 664 editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.

665 Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye, Yujia
 666 Zhou, and Yiqun Liu. Parametric retrieval augmented generation. In *Proceedings of the 48th*
 667 *International ACM SIGIR Conference on Research and Development in Information Retrieval*,
 668 pp. 1240–1250, 2025.

669

670 Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning.
 671 *arXiv preprint arXiv:2311.04661*, 2023.

672 Yuqiao Tan, Shizhu He, Huanxuan Liao, Jun Zhao, and Kang Liu. Dynamic parametric retrieval
 673 augmented generation for test-time knowledge enhancement. *arXiv preprint arXiv:2503.23895*,
 674 2025a.

675

676 Zhiwen Tan, Jiaming Huang, Qintong Wu, Hongxuan Zhang, Chenyi Zhuang, and Jinjie Gu. Rag-r1:
 677 Incentivize the search and reasoning capabilities of llms through multi-query parallelism. *arXiv*
 678 *preprint arXiv:2507.02962*, 2025b.

679 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.

680

681 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
 682 hop questions via single-hop question composition. *Transactions of the Association for Compu-
 683 tational Linguistics*, 2022.

684 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 685 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Anna
 686 Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meet-
 687 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10014–10037,
 688 Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 689 acl-long.557. URL <https://aclanthology.org/2023.acl-long.557/>.

690

691 Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter effi-
 692 cient tuning of pre-trained models using dynamic search-free low-rank adaptation. *arXiv preprint*
 693 *arXiv:2210.07558*, 2022.

694

695 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 696 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. *arXiv*
 697 *preprint arXiv:2212.03533*, 2022.

698

699 Renzhi Wang and Piji Li. Memoe: Enhancing model editing with mixture of experts adaptors. *arXiv*
 700 *preprint arXiv:2405.19086*, 2024.

701 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 702 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 703 *neural information processing systems*, 35:24824–24837, 2022.

702 Jinyang Wu, Shuai Zhang, Feihu Che, Mingkuan Feng, Chuyuan Zhang, Pengpeng Shao, and Jian-
 703 hua Tao. Pandora’s box or aladdin’s lamp: A comprehensive analysis revealing the role of rag
 704 noise in large language models. *arXiv preprint arXiv:2408.13533*, 2024.

705 Yuan Xia, Jingbo Zhou, Zhenhui Shi, Jun Chen, and Haifeng Huang. Improving retrieval aug-
 706 mented language model with self-reasoning. In *Proceedings of the AAAI conference on artificial*
 707 *intelligence*, volume 39, pp. 25534–25542, 2025.

708 Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn sloth:
 709 Revealing the behavior of large language models in knowledge conflicts. In *The Twelfth Interna-
 710 tional Conference on Learning Representations*, 2023.

711 Haoyu Xu, Pengxiang Lan, Enneng Yang, Guibing Guo, Jianzhe Zhao, Linying Jiang, and Xingwei
 712 Wang. Knowledge decoupling via orthogonal projection for lifelong editing of large language
 713 models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 714 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
 715 (Volume 1: Long Papers)*, pp. 13194–13213, Vienna, Austria, July 2025. Association for Com-
 716 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.646. URL
 717 <https://aclanthology.org/2025.acl-long.646/>.

718 Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: re-
 719 solving interference when merging models. In *Proceedings of the 37th International Conference
 720 on Neural Information Processing Systems*, pp. 7093–7115, 2023.

721 Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng-Ann Heng, and Wai Lam. Unveiling
 722 the generalization power of fine-tuned large language models. In *NAACL-HLT*, 2024.

723 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 724 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 725 answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceed-
 726 ings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–
 727 2380, Brussels, Belgium, October–November 2018. Association for Computational Linguistics.
 728 doi: 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259/>.

729 Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
 730 dynamic lora. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 731 19449–19457, 2024a.

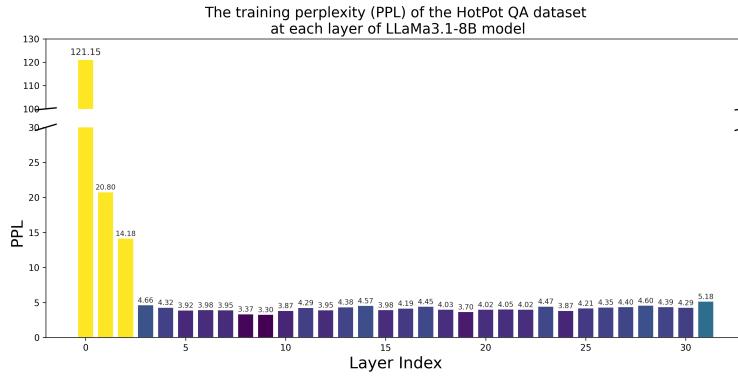
732 Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
 733 large language models. *arXiv preprint arXiv:2411.19443*, 2024b.

734 Qinggang Zhang, Zhishang Xiang, Yilin Xiao, Le Wang, Junhui Li, Xinrun Wang, and Jinsong
 735 Su. Faithfulrag: Fact-level conflict modeling for context-faithful retrieval-augmented generation.
 736 *arXiv preprint arXiv:2506.08938*, 2025.

737 Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen.
 738 MQuAKE: Assessing knowledge editing in language models via multi-hop questions. In Houda
 739 Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empiri-
 740 cal Methods in Natural Language Processing*, pp. 15686–15702, Singapore, December 2023.
 741 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.971. URL
 742 <https://aclanthology.org/2023.emnlp-main.971/>.

743
 744
 745
 746
 747
 748
 749 **A LAYER SCANNING EXPERIMENTS FOR CRITICAL LAYER
 750 PARAMETERIZATION**

751 The *critical-layer* parameterization module applies \mathcal{H} only to a single critical layer l^* . To identify l^* ,
 752 we perform a layer-wise scanning experiment that evaluates perplexity after adding a layer-specific
 753 paragraph vector to the l -th layer. For this purpose, we construct a small sub-dataset from the dataset
 754 used in the experiment.



769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 2: Perplexity variations across layers of LLaMA3.1-8B when training with paragraph-vector insertion on the HotpotQA dataset under $|SP| = 1$.

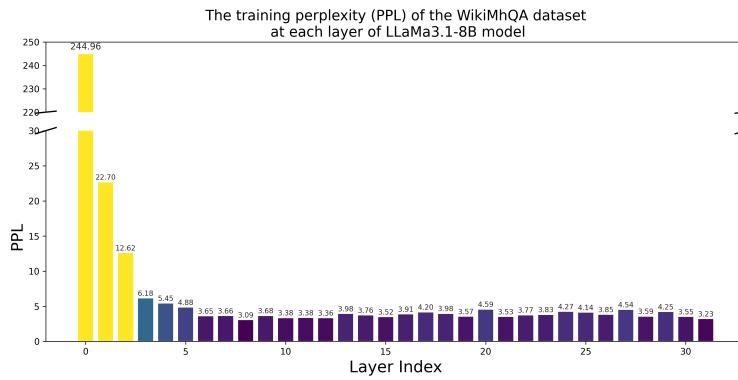


Figure 3: Perplexity variations across layers of LLaMA3.1-8B when training with paragraph-vector insertion on the WikiMhQA dataset under $|SP| = 1$.

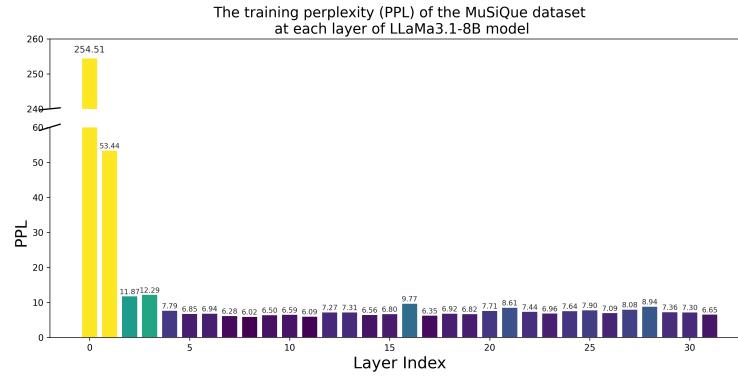
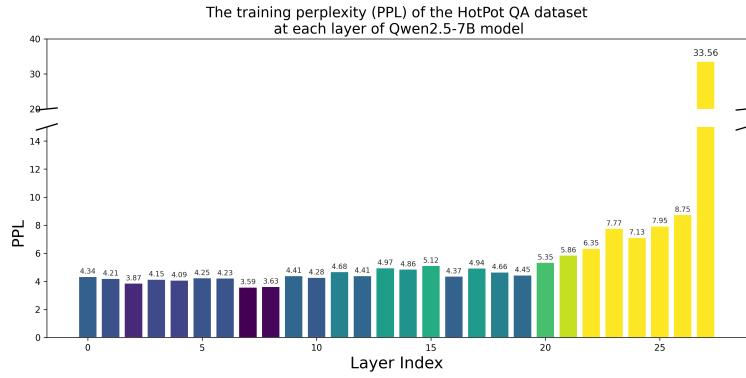
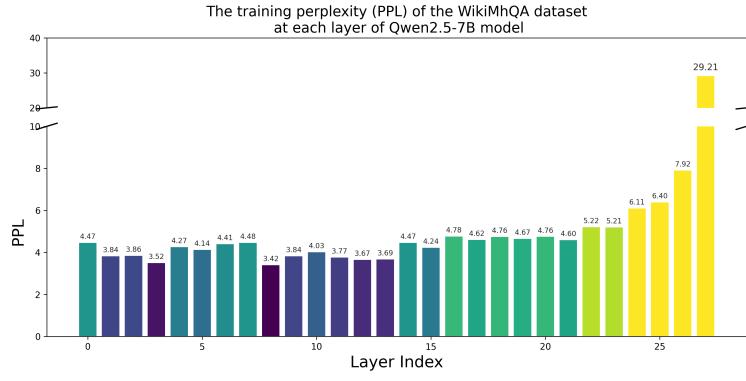


Figure 4: Perplexity variations across layers of LLaMA3.1-8B when training with paragraph-vector insertion on the MuSiQue dataset under $|SP| = 1$.

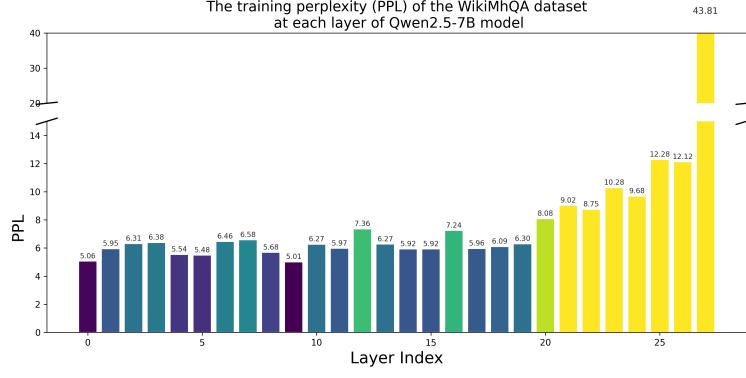
Formally, let \mathcal{H}_ψ^l denote the layer-specific hypernetwork for the l -th layer, parameterized by ψ and defined following Eqs. 12–13. Given a question q , we first retrieve relevant passages $P \subseteq \mathcal{R}$. Each passage $p \in P$ is fed into \mathcal{H}_ψ^l to obtain its passage expert $E_{\mathcal{H}_\psi^l(p)}$, which are then merged into a single expert $E_{\mathcal{H}_\psi^l}(P)$ using the inner-merging operation in Eq. (6). The merged expert is subsequently incorporated into the l -th layer of the base LLM \mathcal{M}_{θ_0} via Eq. (9). We train \mathcal{H}_ψ^l by minimizing the cross-entropy loss defined in Eq. (14).



823
824
Figure 5: Perplexity variations across layers of Qwen2.5-7B during training with
825
paragraph vector insertion on the HotPot-QA dataset under $|SP| = 1$.



838
839
Figure 6: Perplexity variations across layers of Qwen2.5-7B during training with
840
paragraph vector insertion on the WikiMhQA dataset under $|SP| = 1$.



853
854
Figure 7: Perplexity variations across layers of Qwen2.5-7B during training with
855
paragraph vector insertion on the MuSiQue dataset under $|SP| = 1$.

856
857
858
859
To measure the importance of each layer l , we evaluate perplexity after training \mathcal{H}_ψ^l . Figures 2, 3, 4, 5, 6 and 7 compare perplexity across layers for LLaMA3.1-8B and Qwen2.5-7B on different experimental dataset, respectively, under the setting of $|SP| = 1$.

860
861
862
863
The results show a clear sensitivity pattern: in LLaMA3.1-8B and Qwen2.5-7B, injecting passage vector into early-to-middle layers yields the largest perplexity reduction, indicating that these layers play a central role in integrating external knowledge. Meanwhile, we observe that the two models exhibit opposite patterns in the layers where external knowledge is least efficiently integrated. Specifically, LLaMA3.1-8B shows higher perplexity when the passage vector is injected into the

Model	HotpotQA	2WikiMultihopQA	MuSiQue
LLaMA3.1-8B	$l^* = 9$	$l^* = 7$	$l^* = 8$
Qwen2.5-7B	$l^* = 7$	$l^* = 8$	$l^* = 9$

Table 9: Selected critical layers l^* for passage-vector insertion based on layer-wise perplexity analysis across datasets.

shallowest layers, whereas Qwen2.5-7B displays higher perplexity when the injection is applied to the deepest layers. This contrast suggests that conducting layer-wise scanning is essential for identifying the optimal injection layer for different model architectures.

Overall, our findings show that both LLaMA3.1-8B and Qwen2.5-7B exhibit their highest sensitivity to passage-vector injection in the early-to-middle layers, suggesting that these layers are primarily responsible for incorporating external knowledge across model families. Based on the layer-wise perplexity analysis conducted on three datasets—HotpotQA, WikiMhQA, and Musique—we select the optimal insertion layer l^* for each model–dataset pair. The selected layers are summarized in Table 9.

B ORTHOGONAL MERGING USING THE GRAM-SCHMIDT PROCEDURE

In multi-hop RAG, a set of passages SP_i arrives for each sub-question sq_i . This setting naturally motivates the design of a *continual merging* mechanism that combines previously accumulated knowledge with newly retrieved passage knowledge, recurrently updating the current FFN expert by incorporating each new expert.

To minimize overwriting previously acquired knowledge, MergePRAG adopts *orthogonal continual merging* based on the Gram–Schmidt process, inspired by recent orthogonal approaches in model merging and knowledge editing (Xu et al., 2025). Specifically, the new parameter matrix is projected onto the span of the previously merged parameters, and only its orthogonal residual is added to the current merged expert.

We apply orthogonal continual merging separately to either key or value matrices, resulting from \mathcal{H}_ϕ . Formally, let $\{\mathbf{M}^{(i)}\}_{i=1}^t$ denote the sequence of key or value passage memories, where each $\mathbf{M}^{(i)} \in \mathcal{H}_\phi(SP_i)$ corresponds to either \mathbf{K}_p or \mathbf{V}_p .

Suppose that $\mathbf{M}^{\mathcal{F}_{1:t-1}}$ denotes the merged memory parameter obtained from $\{\mathbf{M}^{(i)}\}_{i=1}^{t-1}$. Following Eq. 10 in Section 3.2.2, the Gram–Schmidt orthogonalization procedure first computes the projection matrix onto the subspace spanned by $\mathbf{M}^{\mathcal{F}_{1:t-1}}$:

$$\mathbf{P}^{1:t-1} = \mathbf{M}^{\mathcal{F}_{1:t-1}} \left((\mathbf{M}^{\mathcal{F}_{1:t-1}})^\top \mathbf{M}^{\mathcal{F}_{1:t-1}} \right)^{-1} (\mathbf{M}^{\mathcal{F}_{1:t-1}})^\top. \quad (15)$$

The new parameter $\mathbf{M}^{(t)}$ is then merged by adding only its orthogonal component with respect to the subspace spanned by $\mathbf{M}^{\mathcal{F}_{1:t-1}}$:

$$\mathbf{M}^{\mathcal{F}_{1:t}} = \mathbf{M}^{\mathcal{F}_{1:t-1}} + (\mathbf{I} - \mathbf{P}^{1:t-1}) \mathbf{M}^{(t)}, \quad (16)$$

where $\mathbf{P}^{1:t-1}$ is the projection matrix defined in Eq. (15).

With a slight abuse of notation, the recursion in Eq. (16) is denoted by Merge:

$$\mathbf{M}^{\mathcal{F}_{1:t}} = \text{Merge}(\mathbf{M}^{\mathcal{F}_{1:t-1}}, \mathbf{M}^{(t)}). \quad (17)$$

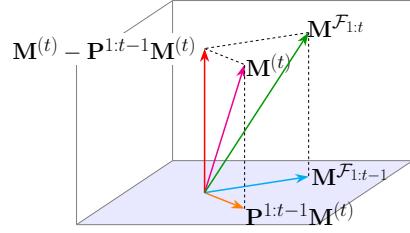


Figure 8: Illustration of orthogonal continual merging based on Gram–Schmidt procedure.

918 When the merging procedure `Merge` is applied independently to the sequences of key and value
 919 matrices \mathbf{K}_p and \mathbf{V}_p , we obtain the merged passage memories for both parts:
 920

$$\begin{aligned} 921 \quad \mathbf{K}^{\mathcal{F}_{1:t}} &= \text{Merge}\left(\mathbf{K}^{\mathcal{F}_{1:t-1}}, \mathbf{K}^{(t)}\right), \\ 922 \quad \mathbf{V}^{\mathcal{F}_{1:t}} &= \text{Merge}\left(\mathbf{V}^{\mathcal{F}_{1:t-1}}, \mathbf{V}^{(t)}\right). \end{aligned} \quad (18)$$

925 where $\mathbf{K}^{(t)}$ and $\mathbf{V}^{(t)}$ denote the key and value memory matrices at timestep t , respectively.
 926

927 C HYPERNETWORK ARCHITECTURE

929 Given a passage p , the hypernetwork \mathcal{H}_ϕ generates the corresponding key–value memory through
 930 three stages: (1) *Attentive pooling*, which produces a sentence-level embedding $\text{Emd}(p)$ for passage
 931 p ; (2) *MLP*, which maps the passage embedding to a latent representation using a two-layer ReLU-
 932 based MLP; and (3) *Linear projection*, which converts the latent representation into K key and K
 933 value vectors, yielding the passage-specific memory.

934 We define a lightweight Encoder consisting of a 2-layer Transformer encoder layer with 4 attention
 935 head. The hidden dimension of the encoder layer is set to be consistent with the LM model’s internal
 936 representation dimension d . Specifically, for LLaMA3.1-8B, $d = 4096$, while for Qwen2.5-7B,
 937 $d = 3584$.
 938

939 **Attentive pooling.** Given a passage p , we apply attention-based aggregation over token-level em-
 940 beddings of p : (1) obtaining sequence of its word embeddings, and (2) applying attentive pooling.
 941 Formally, let the retrieved passage be represented as a sequence of tokens, denoted by $\mathbf{X} \in \mathbb{R}^{T \times |\mathcal{V}|}$,
 942 where each row \mathbf{X}_t is a one-hot vector over the vocabulary indicating the identity of the token at the
 943 t -th position, and \mathcal{V} denotes the vocabulary set. We apply word embedding layer `Embedding` to \mathbf{X}
 944 and obtain its embedded representations, as follows:

$$945 \quad \mathbf{X}_{\text{emd}} = \text{Embedding}(\mathbf{X}). \quad (19)$$

946 where a sequence of token embeddings $\mathbf{X}_{\text{emd}} \in \mathbb{R}^{T \times d}$, where T is the passage length and d is the
 947 embedding dimension. Note that word embedding layer `Embedding` is obtained from the pretrained
 948 LLM \mathcal{M}_{θ_0} (e.g., LLaMA3.1-8B or Qwen2.5-7B).

949 The passage embedding $\text{Emd}(p)$ is then obtained via attentive pooling:
 950

$$951 \quad \text{Emd}(p) = \mathbf{h} = \text{softmax}(\mathbf{w}_a^\top \mathbf{X}_{\text{emd}}^\top) \mathbf{X}_{\text{emd}} \in \mathbb{R}^d, \quad (20)$$

952 where $\mathbf{w}_a \in \mathbb{R}^d$ is a learnable attention vector⁴. The embedding $\text{Emd}(p) = \mathbf{h}$ serves as the atten-
 953 tively pooled representation of the passage, capturing its global semantic content.
 954

955 **MLP.** To increase representational capacity and allow the hypernetwork to perform nonlinear rea-
 956 soning over the passage summary, the pooled vector $\text{Emd}(p) = \mathbf{h}$ is passed through a two-layer
 957 feedforward network, denoted MLP_{hyp} , as follows:
 958

$$959 \quad \mathbf{h}_b = \text{MLP}_{\text{hyp}}(\mathbf{h}) = \text{ReLU}(\mathbf{V}' \text{LN}(\text{ReLU}(\mathbf{W}' \mathbf{h}))). \quad (21)$$

960 where `LN` is the layer normalization layer.
 961

962 **Linear projection.** Finally, two linear transformations map the latent code \mathbf{h}_b into flattened key
 963 and value matrices, i.e., the passage-specific memory:
 964

$$\begin{aligned} 965 \quad \mathbf{K}_p &= \mathbf{W}_K \mathbf{h}_b + \mathbf{b}_K, \\ 966 \quad \mathbf{V}_p &= \mathbf{W}_V \mathbf{h}_b + \mathbf{b}_V, \end{aligned} \quad (22)$$

967 where k (i.e., *num-kv*) denotes the number of key–value slots generated per passage and d is the
 968 model dimension. Each of the k rows corresponds to an independent memory vector that can be
 969 directly attended to by the language model.
 970

971 ⁴We omit an additional bias term as it has negligible impact.

This three-stage design enables the hypernetwork to compress an entire retrieved passage into a compact set of attention-ready memory vectors, which are efficiently integrated into the model via the memory attention mechanism at the designated target layer (Eq. 8 in Section 3.2.1).

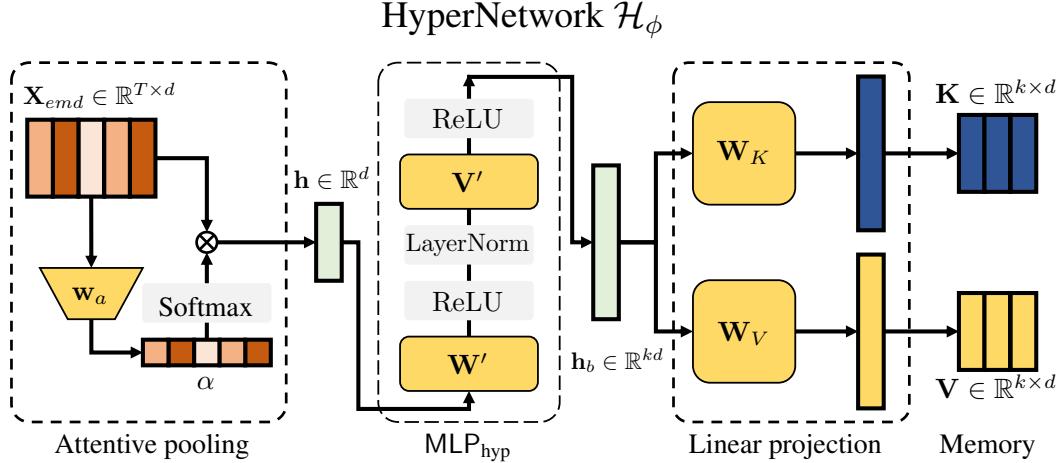


Figure 9: The hypernetwork $\mathcal{H}_\phi(p)$ generates passage-specific key–value vectors $\mathbf{K}_p, \mathbf{V}_p \in \mathbb{R}^{k \times d_{\text{model}}}$, referred to as passage-specific memory, which serve as lightweight, plug-in passage-level experts for downstream reasoning. The process consists of three stages: (1) **attentive pooling**, (2) **MLP**, and (3) **linear projection**. 1) **Attentive pooling**. Given a one-hot token matrix $\mathbf{X} \in \mathbb{R}^{T \times |\mathcal{V}|}$ for passage p , the model first converts it into a sequence of embeddings $\mathbf{X}_{\text{emb}} \in \mathbb{R}^{T \times d}$ via the word embedding layer: $\mathbf{X}_{\text{emb}} = \text{Embedding}(\mathbf{X})$ (Eq (19)). Attention is then applied over the token embeddings, where a learnable vector $\mathbf{w}_a \in \mathbb{R}^d$ serves as the query: $\text{Emd}(p) = \mathbf{h} \in \mathbb{R}^d$ (Eq. (20)). 2) **MLP**. The pooled representation \mathbf{h} is passed through a two-layer feedforward network with ReLU activations and LayerNorm, producing a latent representation \mathbf{h}_b (Eq. (21)). 3) **Linear projection**. Two independent linear projection heads map \mathbf{h}_b into the key and value parameter spaces: $\mathbf{K}_p, \mathbf{V}_p \in \mathbb{R}^{k \times d_{\text{model}}}$, yielding flattened key–value memory vectors of length $k \cdot d_{\text{model}}$ for passage p (Eq. (22)). The resulting passage-specific memory is subsequently injected into the target model as additional knowledge signals.

D TRAINING AND INFERENCE PROCEDURE

D.1 TRAINING

Hypernetwork. We prepare a training dataset $\mathcal{D}_\mathcal{H}$ at the sub-question level from training set in each task to train the hypernetwork \mathcal{H}_ϕ . Each instance $(q, p, a) \in \mathcal{D}_\mathcal{H}$ consists of a sub-question q , its gold passage p , and the corresponding answer a . The hypernetwork parameters ϕ are trained by minimizing the negative log-likelihood of generating the correct answer a under $\mathcal{M}_{\theta_0 \oplus \mathcal{H}(p)}$ (Eq. 14), while the base parameters θ_0 remain frozen.

Subquestion generator. To train the sub-question generator \mathcal{M}_{sq} , we construct a dataset $\mathcal{D}_{sq} = \{(q^{(j)}, y^{(j)})\}_{j=1}^M$ using GPT-4.1 (Achiam et al., 2023) to generate sub-questions from 4,000 randomly sampled examples in the training split of each dataset. The prompt template used for this dataset construction is shown in Table 10. The template specifies the desired output format and includes several illustrative examples. Given an input question q and its associated gold passages, GPT-4.1 refers to the examples and decomposes q into sub-questions using the provided passages.

Each target sequence is

$$y^{(j)} = [sq_1^{(j)}, sa_1^{(j)}, sq_2^{(j)}, sa_2^{(j)}, \dots, sq_{n_j}^{(j)}, sa_{n_j}^{(j)}, \langle \text{EOS} \rangle],$$

as described in Section 4.1.

1026 Your task is to convert a given question and its related facts into a multi-step reasoning chain.
 1027
 1028 Requirements: Each step in the reasoning chain must:
 1029 - Use one fact from the input facts, do not combine, summarize, or fabricate facts; each fact must
 1030 be used as-is from the input.
 1031 - Generate a "Sub-question" and a short answer "Sub-answer".
 1032 - The answer "Sub-answer" must be directly derivable from the corresponding Fact.
 1033
 1034 Examples:
 1035 Question: "When did the civilisation start that Desalpar Gunthli was a part of?",
 1036 Facts: ["Desalpar Gunthli: Desalpar Gunthli is a village and site belonging to Indus Valley Civilisation located at Nakhrana Taluka, Kutch District, Gujarat, India.", "Indus Valley Civilisation: The Indus Valley Civilisation (IVC) or Harappan Civilisation was a Bronze Age civilisation (3300–1300 BCE; mature period 2600–1900 BCE) mainly in the northwestern regions of South Asia, extending from what today is northeast Afghanistan to Pakistan and northwest India."]
 1039 Output: [
 1040 {
 1041 "Sub-question": "Which civilisation was Desalpar Gunthli a part of?",
 1042 "Fact": "Desalpar Gunthli: Desalpar Gunthli is a village and site belonging to Indus Valley Civilisation located at Nakhrana Taluka, Kutch District, Gujarat, India.",
 1043 "Sub-answer": "Indus Valley Civilisation"
 1044 },
 1045 {
 1046 "Sub-question": "When did the Indus Valley Civilisation exist?",
 1047 "Fact": "Indus Valley Civilisation: The Indus Valley Civilisation (IVC) or Harappan Civilisation was a Bronze Age civilisation (3300–1300 BCE; mature period 2600–1900 BCE) mainly in the northwestern regions of South Asia, extending from what today is northeast Afghanistan to Pakistan and northwest India.",
 1048 "Sub-answer": "3300–1300 BCE"
 1049 }]
 1050
 1051 [other examples demonstrations abbreviated]
 1052
 1053 Question: {}
 1054 Facts: {}
 1055 Output:
 1056

1060
 1061 Table 10: Prompt templates used by GPT-4.1 to generate sub-questions and sub-answers from the
 1062 training set. The generated results are used to construct \mathcal{D}_{sq} for training the sub-question generator.
 1063

1064 Given a pair $(q^{(j)}, y^{(j)})$, \mathcal{M}_{sq} is trained with supervised fine-tuning by minimizing the negative
 1065 log-likelihood (NLL):
 1066

$$\mathcal{L}(\mathcal{M}_{sq}) = - \sum_{j=1}^M \sum_{t=1}^{|y^{(j)}|} \log P_{\mathcal{M}_{sq}}(y_t^{(j)} | q^{(j)}, y_{<t}^{(j)}), \quad (23)$$

1067 where $y_t^{(j)}$ denotes the t -th token in the target sequence $y^{(j)}$.
 1068
 1069

1070 D.2 INFERENCE

1071 At inference time, MergePRAG tackles a multi-hop QA task by decomposing the original complex
 1072 question into sub-questions. For each sub-question sq_i , the top-retrieved passages SP_i are fed into
 1073 the hypernetwork \mathcal{H}_ϕ to produce a sub-expert $E_{\mathcal{H}_\phi}(SP_i)$. This sub-expert is then merged with the
 1074 previously accumulated FFN expert $E_{\mathcal{F}}(SP_{1:i-1})$ using orthogonal continual merging, yielding the
 1075 updated fused expert $E_{\mathcal{F}}(SP_{1:i})$, ensuring that knowledge from earlier reasoning steps is preserved
 1076 without redundancy.
 1077
 1078

1080 The fused FFN expert is injected into the base LLM \mathcal{M}_{θ_0} at the critical layer l^* . Response gener-
 1081 ation is then performed under the updated model $\mathcal{M}_{\theta_0 \oplus \mathcal{F}(SP_{1:i})}$, either with the current in-context
 1082 passages SP_i (MergePRAG+) or without them (MergePRAG). After all sub-questions are processed
 1083 at timestep T , the final answer to the original complex question is generated by the fully passage-
 1084 injected model $\mathcal{M}_{\theta_0 \oplus \mathcal{F}(SP_{1:T})}$. The complete inference procedure is summarized in Algorithm 1.
 1085 For comparison, the inference procedure of MultihopRAG without passage knowledge parameteri-
 1086 zation is shown in Algorithm 2.

Algorithm 1 Multi-hop Inference with MergePRAG

Require: Original question q , sub-question generator \mathcal{M}_{sq} , base LLM \mathcal{M}_{θ_0} , hypernetwork \mathcal{H}_ϕ ,
 retriever \mathcal{R}

Ensure: Final answer a

- 1: Initialize merged expert $\mathcal{F} \leftarrow \emptyset$
- 2: Initialize reasoning chain $\mathcal{C} \leftarrow \emptyset$
- 3: **while** next sub-question exists **do**
- 4: Generate sub-question: $sq_i \leftarrow \mathcal{M}_{sq}(q, \mathcal{C})$
- 5: Retrieve passages: $SP_i \leftarrow \mathcal{R}(sq_i)$
- 6: Parameterize passages: $\mathcal{H}_\phi(SP_i) \leftarrow \text{Merge}_{\text{inner}}(\{\mathcal{H}_\phi(p) \mid p \in SP_i\})$ (Eq. 6)
- 7: **if** $i > 1$ **then**
- 8: Orthogonal continual merge: $\mathcal{F} \leftarrow \text{Merge}_{\text{seq}}(\mathcal{F}, \mathcal{H}_\phi(SP_i))$ (Sec. 3.2.2)
- 9: **else**
- 10: Initialize expert: $\mathcal{F} \leftarrow \mathcal{H}_\phi(SP_i)$
- 11: **end if**
- 12: Inject \mathcal{F} into the base LLM: $\mathcal{M}_{\theta_0 \oplus \mathcal{F}}$
- 13: Generate sub-answer:

$$sa_i \leftarrow \begin{cases} \mathcal{M}_{\theta_0 \oplus \mathcal{F}}(sq_i), & (\text{MergePRAG}) \\ \mathcal{M}_{\theta_0 \oplus \mathcal{F}}(SP_i, sq_i), & (\text{MergePRAG+}) \end{cases}$$
- 14: Append (sq_i, sa_i) to reasoning chain \mathcal{C}
- 15: **end while**
- 16: Generate final answer:

$$a \leftarrow \mathcal{M}_{\theta_0 \oplus \mathcal{F}}(\mathcal{C}, q)$$
 (MergePRAG / MergePRAG+)
- 17: **return** a

Algorithm 2 Multi-hop Inference with MultihopRAG

Require: Original question q , sub-question generator \mathcal{M}_{sq} , base LLM \mathcal{M}_{θ_0} , retriever \mathcal{R}

Ensure: Final answer $a \leftarrow \emptyset$

- 1: Initialize reasoning chain $\mathcal{C} \leftarrow \emptyset$
- 2: **while** next sub-question exists **do**
- 3: Generate sub-question: $sq_i \leftarrow \mathcal{M}_{sq}(q, \mathcal{C})$
- 4: Retrieve passages: $SP_i \leftarrow \mathcal{R}(sq_i)$
- 5: Generate sub-answer: $sa_i \leftarrow \mathcal{M}_{\theta_0}(SP_i, sq_i)$
- 6: Append (sq_i, sa_i) to reasoning chain \mathcal{C}
- 7: **end while**
- 8: Generate final answer: $a \leftarrow \mathcal{M}_{\theta_0}(\mathcal{C}, q)$
- 9: **return** a

E FURTHER EXPERIMENT RESULTS
E.1 EFFICIENCY ANALYSIS

1128
 1129 To evaluate the inference cost of MergePRAG, we conduct an efficiency analysis (Table 11) focusing
 1130 on three components of the system: (1) passage-specific memory generation by \mathcal{H}_ψ , (2) sub-question

	Generate Passage Memory	Response sa	Average Time
$RAG_{ SP =1}$	-	-	0.712s
$RAG\text{-CoT}_{ SP =1}$	-	-	6.389s
MergePRAG $_{+ SP =1}$	0.001s	0.259s	2.517s

Table 11: Efficiency analysis of MergePRAG using the LLaMA3.1-8B model on the HotpotQA dataset.

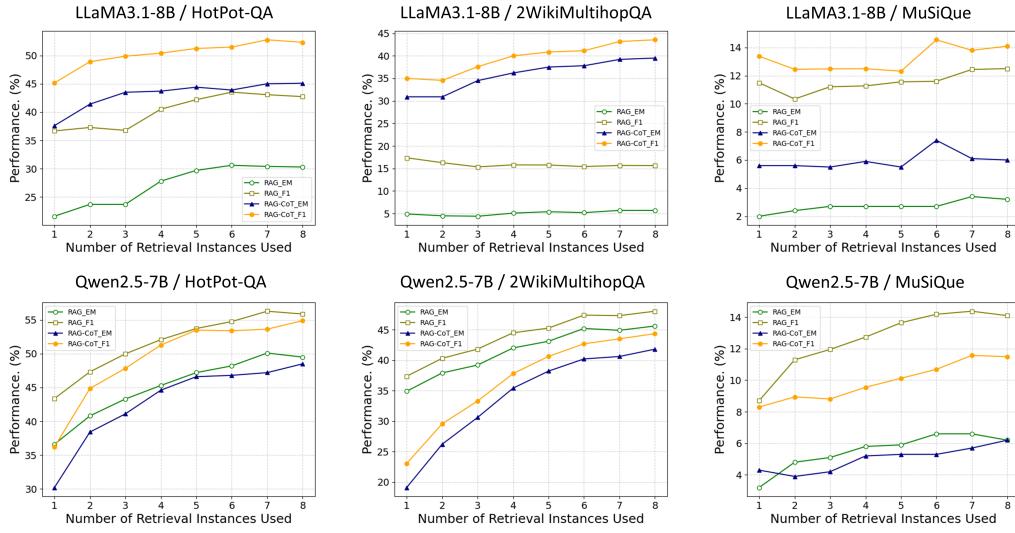


Figure 10: Results of RAG and RAG-CoT varying the number of retrieved passages on three multi-hop QA datasets using LLaMA3.1-8B and Qwen2.5-7B.

response generation, and (3) overall response generation. Thanks to the lightweight design of the hypernetwork, the time required to produce passage-specific key–value memory is minimal. The subsequent step of generating sub-questions also incurs only modest overhead.

Although decomposing a complex query into multiple sub-questions increases the number of inference steps compared with standard RAG, the overall latency remains within a practical range. Notably, the proposed pipeline still requires less time than RAG-CoT methods, which rely on long chain-of-thought prompting, while achieving higher accuracy. These results demonstrate that MergePRAG offers a favorable trade-off between computational efficiency and reasoning effectiveness.

F BASELINES INTRODUCTION

RAG: (Lewis et al., 2020) For a given query q , the retriever selects the top- k relevant passages. The generator then directly infers the answer based on these retrieved passages. To ensure stylistic consistency of the generated answers, we apply a task-specific prompt. The RAG prompt template is provided in Table 12.

RAG-CoT: (Wei et al., 2022) Building upon RAG, RAG-CoT incorporates chain-of-thought reasoning. To guide the model’s reasoning process, we employ a one-shot demonstration sampled from the training data, which encourages the model to generate step-by-step explanations before arriving at the final answer. The prompt template is included in Table 13. We evaluate RAG and RAG-CoT by retrieving 1–8 relevant passages, with the accuracy results shown in Figure 10.

MultihopRAG: MultihopRAG can be viewed as a variant of MergePRAG without \mathcal{H} , which iteratively responds to sub-questions using a pure RAG-style approach (Algorithm 2).

1188 Follow the format below to answer the following question with a very short phrase, such as “1998”,
 1189 “May 16th, 1931”, or “James Bond”, to meet the criteria of exact match datasets.
 1190

1191 Passage: {}
 1192 Question: {}
 1193 Answer:

1194
 1195 Table 12: Input template used for evaluating multi-hop questions with RAG.
 1196

1197 You are a reasoning assistant tasked with answering user questions step by step. Follow the format
 1198 below to answer the following question with a very short phrase, such as “1998”, “May 16th, 1931”,
 1199 or “James Bond”, to meet the criteria of exact match datasets.
 1200

1201 **Passage:** Tom Warburton: Since moving to Los Angeles in 2009 he has worked at Disney Television
 1202 Animation serving as creative director on “Fish Hooks” and co-executive producer on “The 7D”.
 1203 Fish Hooks: Fish Hooks is an American animated television series created by Noah Z. Jones that
 1204 originally aired on Disney Channel from September 3, 2010 to April 4, 2014.
 1205

1206 **Question:** What show that Tom Warburton worked on aired from September 3, 2010 to April 4,
 1207 2014?
 1208

1209 **Thoughts:** The passage says Tom Warburton worked as creative director on Fish Hooks. The pas-
 1210 sage also says Fish Hooks aired on Disney Channel from September 3, 2010 to April 4, 2014. The
 1211 question asks which show that Tom Warburton worked on aired during those dates. So, the answer
 1212 must be Fish Hooks.
 1213

1214 **Answer:** Fish Hook

1215 Passage: {}
 1216 Question: {}
 1217 Thoughts:

1218 Table 13: Input template used for evaluating multi-hop questions with RAG-CoT.
 1219

1220 **IRCoT:** (Trivedi et al., 2023) Interleaves retrieval with chain-of-thought reasoning, enabling itera-
 1221 tive evidence retrieval conditioned on intermediate reasoning steps, which enhances multi-hop QA
 1222 performance and reduces hallucination.

1223 **MeLLO:** (Zhong et al., 2023) MeLLO is a system that iteratively decomposes multi-hop questions
 1224 into subquestions, generates tentative answers, retrieves relevant facts, and updates predictions based
 1225 on potential contradictions.

1226 **FLARE:** (Jiang et al., 2023) Incorporates adaptive retrieval triggered when the model generates
 1227 low-confidence tokens, leveraging retrieved evidence to improve response quality.

1228 **Adaptive-RAG:** (Jeong et al., 2024) Adaptive-RAG automatically selects the optimal retrieval and
 1229 reasoning strategy based on query complexity, ensuring efficient handling of simple queries while
 1230 improving accuracy on complex ones.

1231 **Auto-RAG:** (Yu et al., 2024b) It performs iterative reasoning to decide when and what to retrieve,
 1232 and terminates the process once sufficient external knowledge has been gathered, before generating
 1233 the final answer.

1234 **DeepRAG:** (Guan et al., 2025) It models retrieval-augmented generation as a Markov decision pro-
 1235 cess, where the query is iteratively decomposed and the model dynamically decides at each step
 1236 whether to retrieve external knowledge or rely on parametric reasoning.

1237 **R3-RAG:** (Li et al., 2025b) It is a reinforcement learning-based method that trains LLMs to iter-
 1238 atively reason and retrieve, enabling them to acquire more comprehensive external knowledge and
 1239 generate more accurate answers.

1240 **Search-o1:** (Li et al., 2025a) Search-o1 lets a reasoning model dynamically retrieve and analyze
 1241 external knowledge to fill knowledge gaps during long reasoning.

1242	Sub-question: Who starred in <i>Duel at Diablo</i> ?
1243	Sub-answer: James Garner
1244	Sub-question: Did James Garner also star in <i>Space Cowboys</i> ?
1245	Sub-answer: Yes
1246	Sub-question: What year was James Garner born?
1247	sub-answer: 1928
1248	Question: What year was the actor born that starred in both <i>Duel at Diablo</i> and <i>Space Cowboys</i> ?
1249	Answer: 1928

Table 14: LM responds directly to the original question. When $\langle \text{EOS} \rangle$ is generated in Table 16, the inference chain terminates and the resulting context is used as input to the LM.

Model	Method	Retriever	HotpotQA		2WikiMhQA		MuSiQue	
			EM	F1	EM	F1	EM	F1
FLAN-T5-XL	Adaptive-RAG	BM25	42.00	53.82	40.60	49.75	23.60	31.80
LLaMA3.1-8B	Search-o1	BM25	14.80	24.08	22.20	27.10	5.40	11.98
Qwen2.5-7B	Search-o1	BM25	11.60	16.95	22.00	25.02	2.10	7.48
Qwen2.5-3B	Search-R1	E5	32.40	-	31.90	-	10.30	-
Qwen2.5-7B	Search-R1	E5	37.00	-	41.40	-	14.60	-
Qwen2.5-7B	MergePRAG $_{ SP =1}$	E5	43.40	50.64	65.80	69.72	9.70	19.61
Qwen2.5-7B	MergePRAG $_{ SP =1}$	BM25	42.00	49.09	59.70	63.05	13.00	23.35
LLaMA3.1-8B	MergePRAG $_{ SP =1}$	E5	48.80	55.53	66.30	71.05	14.40	25.04
LLaMA3.1-8B	MergePRAG $_{ SP =1}$	BM25	46.80	53.40	61.60	67.31	17.80	29.39

Table 15: Performance comparison of MergePRAG+ with other advanced RAG methods on three QA benchmarks – Adaptive-RAG, Search-R1 and Search-o1.

Search-R1: (Jin et al., 2025) Search-R1 enables an LLM to learn, via reinforcement learning, how to autonomously issue effective multi-turn search queries during step-by-step reasoning, thereby substantially improving retrieval-augmented QA performance.

PRAG+: (Su et al., 2025) By transforming the documents retrieved for query q into parametric representations that are directly integrated into the feed-forward networks of the LLM, parametric retrieval-augmented generation is introduced.

DyPRAG+: (Tan et al., 2025a) Extends PRAG by employing a lightweight parameter transformation module to efficiently convert documents retrieved for query q into parametric knowledge, which can be directly leveraged to generate the response.

G MERGING METHODS: INTRODUCTION

Arithmetic mean merging. Arithmetic mean merging computes the element-wise mean of the task vectors $\{\tau_j\}_{j=1}^n$, where n is the number of tasks. This approach assumes that all vectors lie in a shared embedding space and produces a balanced fusion without introducing additional learnable parameters:

$$\text{Merge}(\{\tau_j\}_{j=1}^n) = \frac{1}{n} \sum_{j=1}^n \tau_j. \quad (24)$$

Additive merging. Additive merging performs element-wise summation of task vectors. This operation preserves activation magnitudes and emphasizes consistently high-valued features across task vectors, without trainable parameters, as follows:

$$\text{Merge}(\{\tau_j\}_{j=1}^n) = \sum_{j=1}^n \tau_j. \quad (25)$$

Concat merging. Concat merging first concatenates the task vectors and then applies a learnable linear projection to map the concatenated vector into the merged space:

$$\text{Merge}(\{\tau_j\}_{j=1}^n) = \text{concat}(\tau_1, \dots, \tau_n). \quad (26)$$

1296 In our setting, concatenation is equivalent to increasing the number of key-value vectors from k to
 1297 $k \times n$. For example, suppose $\mathbf{K}^{(1)}, \mathbf{K}^{(2)} \in \mathbb{R}^{k \times d_{\text{model}}}$ are the key memories from two tasks. Concat
 1298 merging produces:
 1299

$$1300 \text{Merge}\left(\mathbf{K}^{(1)}, \mathbf{K}^{(2)}\right) = \text{concat}\left(\mathbf{K}^{(1)}, \mathbf{K}^{(2)}\right) \in \mathbb{R}^{2k \times d_{\text{model}}}. \quad (27)$$

1301

1302 **TIES merging.** TIES merging (Yadav et al., 2023) (Trim–Elect–Sign Merging) fuses task vectors
 1303 by retaining only the largest-magnitude and sign-consistent components across tasks. This approach
 1304 preserves salient and mutually aligned activations while suppressing contradictory or noisy features.
 1305 Given n task vectors, TIES merging proceeds in three stages:
 1306

1307 **1. Trim.** Given a task vector τ_j , the trimming step applies magnitude-based pruning:

$$1308 \hat{\tau}_j = \text{top}_k(\tau_j), \quad (28)$$

1309

1310 where top_k retains the top $k\%$ of parameters by magnitude and sets the remaining entries to zero.
 1311 The trimmed vector is decomposed into its sign and magnitude components:
 1312

$$\hat{\tau}_j = \hat{\gamma}_j \odot \hat{\mathbf{m}}_j, \quad (29)$$

1313

1314 where

$$1315 \hat{\gamma}_j = \text{sign}(\hat{\tau}_j), \quad \hat{\mathbf{m}}_j = |\hat{\tau}_j|,$$

1316 and \odot denotes element-wise multiplication.
 1317

1318 **2. Elect.** The election step performs magnitude-weighted sign aggregation. The merged sign
 1319 vector is computed by selecting, for each coordinate, the sign with the largest summed magnitude
 1320 across all trimmed task vectors:
 1321

$$1322 \gamma_m = \text{sign}\left(\sum_{j=1}^n \hat{\tau}_j\right). \quad (30)$$

1323

1324 **3. Merge.** Given the trimmed task vectors $\hat{\tau}_j$, the merging step selectively aggregates only those
 1325 coordinates whose signs match the elected sign γ_m . Formally,
 1326

$$1327 \mathbf{a}_j = \mathcal{I}(\hat{\gamma}_j = \gamma_m),$$

$$1328 \tau_m = \left(\sum_{j=1}^n \hat{\tau}_j \odot \mathbf{a}_j \right) \oslash \left(\sum_{j=1}^n \mathbf{a}_j \right), \quad (31)$$

1329

1330 where $\mathcal{I}(e)$ is the indicator function that returns 1 if the condition e is true and 0 otherwise, and \oslash
 1331 denotes element-wise division.
 1332

1335 H CASE STUDY

1336

1337 We present a case study to illustrate the decomposition process. As shown in Table 16, the sub-
 1338 question generator iteratively breaks down the question into sub-questions. For each step in Table 16,
 1339 the upper part above the dashed line corresponds to the input template used by the sub-question
 1340 generator, while the lower part shows the retrieval and sub-answer generation process. **Green** text
 1341 denotes retrieved content, and **red** text indicates generated sub-answers. When the sub-question
 1342 generator produces no further sub-questions, the resulting chain C is passed into the merged-expert
 1343 LM model. The inference process is illustrated in Table 14, where **blue** text highlights the final
 1344 answer.

1345 We further provide an error-case analysis, as shown in Table 17. This failure is triggered by an
 1346 incorrect retrieval result for one of the sub-questions, which leads to an erroneous sub-answer. The
 1347 mistake then propagates to subsequent steps, causing the next sub-question to deviate from the
 1348 original problem and ultimately resulting in a chain reaction of compounding errors. As indicated
 1349 by our ablation study on the number of retrieved documents (i.e., cases where $|SP| > 1$), increasing
 retrieval depth helps stabilize sub-question answering accuracy and consequently improves overall

1350 performance. This reveals a key limitation of our method: incorrect sub-answers may induce a
 1351 ripple effect throughout the iterative decomposition process—a challenge shared by all multi-hop
 1352 decomposition-based approaches.
 1353

1354 **Initial prompt:**

1355 Decompose the following question into sub-questions:

1356 What year was the actor born that starred in both *Duel at Diablo* and *Space Cowboys*?

1358
 1359 **Duel at Diablo:** *Duel at Diablo* is a 1966 western film starring James Garner in his first Western
 1360 since leaving "Maverick" and Sidney Poitier in his first Western.

1361 Sub-question: Who starred in *Duel at Diablo*?

1362 Sub-answer: **James Garner**

1363 **2-step prompt:**

1364 Decompose the following question into sub-questions:

1365 What year was the actor born that starred in both *Duel at Diablo* and *Space Cowboys*?

1366 Sub-question: Who starred in *Duel at Diablo*?

1367 Sub-answer: James Garner

1368
 1369 **James Garner:** He starred in several television series over more than five decades, including such
 1370 popular roles as Bret Maverick in the 1950s western comedy series *Maverick* and Jim Rockford in *The Rockford Files*; and played leading roles in more than 50 theatrical films, including *The Great Escape*(1963) with Steve McQueen, Paddy Chayefsky's *The Americanization of Emily*(1964), *Grand Prix*(1966), Blake Edwards' *Victor/Victoria*(1982), *Murphy's Romance*(1985), for which he received an Academy Award nomination, *Space Cowboys*(2000) with Clint Eastwood, and *The Notebook*(2004).

1370 Sub-question: Did James Garner also star in *Space Cowboys*?

1371 Sub-answer: **Yes**

1372 **3-step prompt:**

1373 Decompose the following question into sub-questions:

1374 What year was the actor born that starred in both *Duel at Diablo* and *Space Cowboys*?

1375 Sub-question: Who starred in *Duel at Diablo*?

1376 Sub-answer: James Garner

1377 Sub-question: Did James Garner also star in *Space Cowboys*?

1378 Sub-answer: Yes

1379
 1380 **James Garner:** James Garner (born James Scott Bumgarner; April 7, 1928 – July 19, 2014) was an
 1381 American actor, producer, and voice artist.

1382 Sub-question: What year was James Garner born?

1383 Sub-answer: **1928**

1384 **4-step prompt:**

1385 Decompose the following question into sub-questions:

1386 What year was the actor born that starred in both *Duel at Diablo* and *Space Cowboys*?

1387 Sub-question: Who starred in *Duel at Diablo*?

1388 Sub-answer: James Garner

1389 Sub-question: Did James Garner also star in *Space Cowboys*?

1390 Sub-answer: Yes

1391 Sub-question: What year was James Garner born?

1392 Sub-answer: 1928

1393 **⟨EOS⟩**

1394
 1395 Table 16: Case example generated by the sub-question generator. At each step, the input appears
 1396 above the dotted line, while the black text below shows the output. Red text indicates the answer to
 1397 the generated sub-question.

1404

Initial prompt:

1405 Decompose the following question into sub-questions:

1406 The actress that plays Sarah Hurst in *Easy Virtue* stars with Dervla Kirwan in a 2012 supernatural
1407 thriller film written by who?

1408

1409

1410 Charlotte Riley: She is known for her roles as Sarah Hurst in "Easy Virtue" and as Catherine Earn-
1411 shaw in ITV's adaptation of "Wuthering Heights".

1412 Sub-question: Who plays Sarah Hurst in the 2010 film 'Easy Virtue'?

1413 Sub-answer: **Charlotte Riley****2-step prompt:**

1414 Decompose the following question into sub-questions:

1415 The actress that plays Sarah Hurst in *Easy Virtue* stars with Dervla Kirwan in a 2012 supernatural
1416 thriller film written by who?

1417 Sub-question: Who plays Sarah Hurst in the 2010 film 'Easy Virtue'?

1418 Sub-answer: Charlotte Riley

1419

1420

1421 **Into the Dark (film):** *Into the Dark*, also known as "I Will Follow You into the Dark", is a 2012
1422 supernatural romance thriller written and directed by Mark Edwin Robinson.

1423 Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?

1424 Sub-answer: **Into the Dark****3-step prompt:**

1425 Decompose the following question into sub-questions:

1426 The actress that plays Sarah Hurst in *Easy Virtue* stars with Dervla Kirwan in a 2012 supernatural
1427 thriller film written by who?

1428 Sub-question: Who plays Sarah Hurst in the 2010 film 'Easy Virtue'?

1429 Sub-answer: Charlotte Riley

1430 Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?

1431 Sub-answer: Into the Dark

1432

1433

1434 **Into the Dark (film):** *Into the Dark*, also known as "I Will Follow You into the Dark", is a 2012
1435 supernatural romance thriller written and directed by Mark Edwin Robinson.

1436 Sub-question: Who wrote the 2012 supernatural thriller film 'Into the Dark'?

1437 Sub-answer: **Mark Edwin Robinson****4-step prompt:**

1438 Decompose the following question into sub-questions:

1439 The actress that plays Sarah Hurst in *Easy Virtue* stars with Dervla Kirwan in a 2012 supernatural
1440 thriller film written by who?

1441 Sub-question: Who plays Sarah Hurst in the 2010 film 'Easy Virtue'?

1442 Sub-answer: Charlotte Riley

1443 Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?

1444 Sub-answer: Into the Dark

1445 Sub-question: Who wrote the 2012 supernatural thriller film 'Into the Dark'?

1446 Sub-answer: Mark Edwin Robinson

1447

1448

1449 **<EOS>**

1450

1451

1452 Table 17: A failure case induced by sub-question retrieval. An incorrect retrieval result generated
from a sub-question triggers a chain reaction, ultimately resulting in an overall failure.

1453

1454

1455

1456

1457