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ABSTRACT

Large language models (LLMs) can be enhanced with external knowledge through
two dominant approaches: (1) retrieval-augmented generation (RAG), which
supplements LLMs with in-context retrieved passages, and (2) parametric
knowledge adaptation (PKA), which directly updates model parameters with
new domain knowledge. Recently, parametric RAG (PRAG) has emerged as
a promising framework, extending RAG by translating retrieved passages into
parameter updates, thereby mitigating inefficiency and noise sensitivity inher-
ent to RAG. However, existing PRAG methods remain limited to single-pass
retrieval, falling short of the multi-hop RAG setting that requires iterative re-
trieval and reasoning. We propose MergePRAG(Orthogonal Merging of Passage-
experts for Multi-hop PRAG), a novel framework that sequentially integrates re-
trieved passages into LLM parameters through a continual merging mechanism,
which is advanced by two key proposals: (1) orthogonal merging using the
Gram–Schmidt process to minimize conflicts between ”passage experts”, and (2)
critical-layer parameterization to efficiently encode in-context passages. Ex-
periments on multi-hop open-domain QA and reasoning-aware knowledge editing
show that MergePRAG consistently outperforms both standard and state-of-the-
art RAGs as well as existing parametric adaptation methods, achieving superior
effectiveness and efficiency. All datasets and code will be released at https:
//anonymous.4open.science/r/MhQA_hypernetwork-B31F.

1 INTRODUCTION

Large language models (LLMs)(Dubey et al., 2024; Mesnard et al., 2024; Team, 2024; DeepSeek-
AI, 2024) have achieved strong performance on a wide range of knowledge-intensive tasks, driven
by billions of parameters and large-scale pretraining corpora. However, their parametric knowl-
edge remains static, making them ill-suited for evolving world knowledge or emerging domains.
Retrieval-augmented generation (RAG) has become a popular remedy, injecting retrieved passages
into the input context at inference time. While effective, RAG faces challenging issues: (1) knowl-
edge conflict between parametric and retrieved information(Xie et al., 2023; Kortukov et al., 2024;
Zhang et al., 2025; Bi et al., 2025), (2) inference inefficiency from processing long retrieval-heavy
contexts (Leng et al., 2024; Jin et al., 2024; Chen et al.), and (3) noise sensitivity, where irrelevant or
erroneous passages degrade performance (Cuconasu et al., 2024; Wu et al., 2024; Fang et al., 2024).

Alternatively, Parametric RAG (PRAG), along with its dynamic variant (Su et al., 2025; Tan et al.,
2025a), has recently emerged as a promising direction. PRAG translates retrieved passages into
LoRA parameter updates via a “hypernetwork”, enabling LLMs to internalize external knowledge
beyond mere in-context conditioning.1 Notably, PRAG has been shown to consistently outperform
standard RAG, both when applied independently and when combined with retrieval-based methods.

Despite its promise, PRAG has thus far been investigated only in simplified RAG settings, typ-
ically limited to a single retrieval step rather than the more challenging multi-hop RAG scenario
(Yu et al., 2024b; Li et al., 2025b). In multi-hop RAG, a complex query is decomposed into sub-
questions, each requiring iterative retrieval and sub-answer generation, such that retrieved passages

1In this paper, we use PRAG as a broad term encompassing the original PRAG (Su et al., 2025) and its
variants, including DyPRAG (Tan et al., 2025a).
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are incrementally provided during the question answering (QA) process. A central research ques-
tion, therefore, is how to effectively extend PRAG to multi-hop settings—where the internalization
of retrieved passages must continuously progress across hops—without necessitating the retraining
or rebuilding of a hypernetwork originally designed for single-hop RAG. This extension of PRAG
to multi-hop RAG represents an important milestone, as it provides a natural bridge toward recent
reasoning-enhanced RAG frameworks (e.g., IRCoT, Self-RAG, DeepRAG, and RAG-R1 (Trivedi
et al., 2023; Asai et al., 2024; Guan et al., 2025; Tan et al., 2025b)).

We propose MergePRAG (Orthogonal Merging Passage-experts for Multi-hop PRAG), a general-
ized framework that scales PRAG to multi-hop RAG. At each stage, retrieved passages are trans-
lated into expert parameters by a hypernetwork and merged with the previously accumulated ex-
perts through a continual merging mechanism, thus enabling effective accumulation of knowledge
across iterative retrievals (Figure 1). For effective continual merging, we propose two advances:
(1) orthogonal merging using the Gram–Schmidt process to minimize conflicts between newly
introduced and existing experts, and (2) a critical-layer parameterization module that updates
only the preselected critical layer to efficiently encode in-context passages. These techniques al-
low MergePRAG to reuse a single passage-level hypernetwork across hops, without requiring the
redesign or retraining of additional hypernetworks to support multi-hop RAG.

Our contributions are threefold: (1) We introduce MergePRAG, the first generalized PRAG frame-
work for multi-hop RAG. (2) We propose a continual merging mechanism that sequentially inte-
grates retrieved passages into LLM parameters, enabled by two advances: orthogonal merging and
critical-layer parameterization. (3) We conduct extensive experiments across multiple LLM back-
bones and benchmark datasets, showing that MergePRAG consistently outperforms existing RAG
and PRAG baselines in both effectiveness and efficiency.

2 RELATED WORKS

2.1 PARAMETRIC KNOWLEDGE ENHANCEMENT

Parametric knowledge enhancement methods aim to increase the knowledge capacity of language
models by adjusting their parameters to better encode new information. The most direct approach
is full fine-tuning, but this quickly becomes impractical as model sizes grow. To address scalability,
parameter-efficient fine-tuning (PEFT) techniques, such as LoRA and its variants (Hu et al., 2021;
Valipour et al., 2022; Yu et al., 2024a), update only a small set of low-rank matrices, achieving
performance comparable to full fine-tuning at a fraction of the cost.

With the rise of model editing, more targeted approaches have been developed that directly locate
and modify knowledge representations within the model. Methods such as ROME (Meng et al.,
2022a), MEMIT (Tan et al., 2023), and PMET (Li et al., 2024) update critical layers to encode new
facts, while MEND (Mitchell et al., 2021) and MALMEN (Tan et al., 2023) employ hypernetworks
to inject knowledge into specific layers, effectively fusing edits with existing parameters. To mitigate
catastrophic forgetting and preserve general-purpose capabilities, approaches like T-Patcher (Huang
et al.) and MEMoE (Wang & Li, 2024) introduce external memory modules that store edits sepa-
rately from the core model.

Overall, parametric enhancement methods differ in where and how they modify parameters—
ranging from full updates to low-rank adapters, targeted edits, or external memory—yet they share
the goal of augmenting LLMs with new knowledge while retaining general abilities.

2.2 RETRIEVAL AUGMENTED GENERATION

Early RAG methods (Lewis et al., 2020; Guu et al., 2020; Izacard & Grave, 2021; Borgeaud et al.,
2022) train language models jointly with top-retrieved documents, enabling the model to incorporate
external knowledge sources when generating answers. To further improve performance, subsequent
approaches expanded the knowledge sources, incorporated query rewriting, or jointly trained the
retriever and the generator to achieve tighter integration. To mitigate the computational overhead of
fully parameterized RAG training, methods such as PRAG (Su et al., 2025) and DyRAG (Tan et al.,
2025a) have been proposed, which enhance the model’s internal knowledge by learning mappings
from retrieved documents to model parameters.

2
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Figure 1: Overview of MergePRAG for multi-hop QA. A complex query is decomposed into
sub-questions, and retrieved passages are sequentially incorporated through parameterization and
continual merging. At each timestep t: (1) a sub-question sqt is generated from the reasoning
chain Ct−1 (Eq. 1, Section 3.1); (2) the retriever returns top-ranked passages SPt ⊆ R; (3) given
SPt = [pi]

m
i=1, each passage is parameterized by the hypernetwork to produce {Hϕ(pi)}mi=1, which

are combined into Hϕ(SPt) via the inner-merging mechanism (Eq. 6, Section 3.2); (4) orthogo-
nal continual merging updates the accumulated parameters F(SP1:t−1) with Hϕ(SPt) to obtain
F(SP1:t) (Eq. 11, Section 3.2.2); and (5) the merged expert F(SP1:t) is injected into the base LLM
Mθ0 at the critical layer l∗ to generate the sub-answer (Eqs. 4–5). This process repeats until no
further sub-questions are produced, after which the final answer is generated.

Recent advances increasingly emphasize the importance of reasoning over retrieved facts. For in-
stance, FLARE (Jiang et al., 2023), MeLLo (Zhong et al., 2023), IRCoT (Trivedi et al., 2023)
and (Xia et al., 2025) employ iterative cycles of reasoning, retrieval, and error correction to re-
fine responses. DeepRAG (Guan et al., 2025) formulates reasoning as a Markov Decision Process
(MDP) to enable adaptive retrieval, while R3-RAG (Li et al., 2025b) leverages large models to con-
struct trajectories and applies reinforcement learning to teach LLMs stepwise reasoning and retrieval
strategies. Collectively, these works highlight the effectiveness of constructing chain-of-thought rea-
soning processes for complex tasks.

Building on these insights, we present MergePRAG, which extends PRAG to the multi-hop RAG
setting and serves as a critical stepping stone toward reasoning-enhanced RAG systems. In contrast
to prior PRAG methods (Su et al., 2025) that rely on simple arithmetic merging, MergePRAG in-
troduces a merging module with orthogonal merging, enabling more effective integration of passage
experts across hops.

3 METHODOLOGY

In this section, we present MergePRAG, illustrated in Figure 1. We first provide a brief background
on multi-hop RAG, and then describe MergePRAG and its two main components: orthogonal merg-
ing with the Gram–Schmidt process and critical-layer parameterization.

We define two language models and a retrieval module. Mθ0 denotes a general-purpose LLM for
sub-answer generation, also referred to as the base LM, Msq a sub-question generator, based a
smaller LLM, and R the retriever, which returns a set of top-ranked passages for each query q,
denoted asR(q).

3.1 MULTI-HOP RAG

Let q be the original complex query. In the multi-hop RAG setting, each step involves sub-question
generation, retrieval, and response generation. At step t, given Ct−1, the accumulated context so far,

3
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the next sub-question sqt and its sub-answer sat are obtained as

sqt =Msq(Ct−1), sat =Mθ0(sqt, SPt), SPt ⊆ R(sqt), (1)

where SPt denotes the retrieved passages at step t. Task-specific instruction prompts forMsq and
Mθ0 are described in Appendix H.

The newly obtained tuple (sqt, sat) is appended to the context: Ct = [Ct−1, sqt, sat ]. The final
answer to the original query q is then generated as a =M(CT−1, q), where sqT =Msq(CT−1) =
⟨EOS⟩.
In the single-hop setting, RAG produces the answer in one step: a =Mθ0(q, SP1), SP1 ⊆ R(q),
and the process terminates immediately.

3.2 MERGEPRAG

To present MergePRAG, we first review PRAG in the single-hop RAG setting.

PRAG. As in DyPRAG (Tan et al., 2025a), PRAG employs a hypernetwork-based passage param-
eterization module. Let Hϕ denote the hypernetwork, which maps a retrieved passage p to a set of
passage-specific LoRA parameters:θp = Hϕ(p). The hypernetwork is trained to efficiently translate
an in-context passage into its corresponding parameters.

PRAG augments the base modelMθ0 by injecting passage-specific parametersHϕ(p), making θ′ =
θ0 ⊕ Hϕ(p), referred to as p-injected model, where ⊕ denotes the parameter-injection operation.
PRAG then generates the answer under the p-injected model as a =Mθ0⊕Hϕ(p)(q).

With abuse of notations, let Mθ0 denote the base LLM with parameters θ0. PRAG augments the
model by injecting passage-specific parameters H(p) generated from the passage parameterization
module H, such that for a passage p, θ′ = θ0 ⊕ H(p) where ⊕ denotes the parameter-injection
operation. Unlike RAG that conditions on the passage p explicitly in the input prompt, given a
query q, RAG then generates an answer under the passage-injected model as follows:

a =Mθ0⊕H(p)(q). (2)

MergePRAG. MergePRAG extends PRAG to the multi-hop RAG setting, where passages arrive
sequentially through iterative retrieval. By timestep t, the accumulated passages are SP1:t =
[SP1, . . . , SPt]. To inject all context passages into the LLM parameters, let F denote a mapping
from the sequence SP1:t to the parameter space. Instead of directly “training” F over datasets with
varying numbers of passages t, MergePRAG introduces a continual merging mechanism that
induces F by reusing the passage-level hypernetwork Hϕ, which maps a single passage to its
parameter representation.

Sequence-merging. The sequence merging, denoted as Mergeseq , is a recursive operation that com-
bines the previously accumulated parameters F(SP1:t−1) with the new passage-specific parameters
Hϕ(SPt):

F(SP1:t) = Mergeseq
(
F(SP1:t−1), Hϕ(SPt)

)
. (3)

Using the “merged” parameter representation, MergePRAG generates a candidate answer at timestep
t without relying on in-context passages:

sat = Mθ0⊕F(SP1:t)

(
sqt
)
, (4)

At the final timestep T , MergePRAG generates the final answer as a =Mθ0⊕F(SP1:T )
(q).

MergePRAG+. Similar to PRAG-Combine (Su et al., 2025), MergePRAG+ integrates RAG and
PRAG in a complementary manner, yielding:

sat = Mθ0⊕F(SP1:t)
(SPt, sqt), t < T,

a = Mθ0⊕F(SP1:T )
(CT , q), t = T. (5)

Inner-merging. We introduce an inner-merging mechanism to induceH(SP ) from individual pas-
sage parameters, for |SP | > 1. Formally, given a list of passages SP = [p1, . . . , pm], H(SP ) is

4
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obtained by applying an inner merging operation Mergeinner:

H([pi]mi=1) = Mergeinner(Hϕ(p1), . . . ,Hϕ(pm))

= Mergeinner

(
H([pi]m−1

i=1 ),H(pm)
)

(6)

3.2.1 HYPERNETWORK-BASED KEY–VALUE MEMORY PARAMETERIZATION FOR Hϕ.

For passage parameterization, MergePRAG adopts a key–value memory parameterization scheme,
where the hypernetwork generates k key and value vectors for each passage, which serve as a “com-
pressed” passage-specific memory. The passage-specific memory is inserted into the feed-forward
network (FFN) at the critical layer l∗ via an additional attention mechanism, referred to as the mem-
ory attention mechanism.

Formally, the hypernetworkHϕ(p) first produces the passage-specific memory for passage p as:

Hϕ(p) = {Kp,Vp }, (7)

where Kp,Vp ∈ RK×dout are the key and value matrices, respectively.

Suppose that the original FFN module at layer l∗ is denoted as a function MLPθ0 : Rdin → Rdout

parameterized by θ0. The passage-specific FFN expertEHϕ(p) is then obtained for an input x ∈ Rdin

using a memory attention mechanism, i.e., standard attention applied to the passage-specific memory
(Kp,Vp) with the base FFN output MLPθ0(x) used as the query. Formally,

EHϕ(p)(x) = Attention(MLPθ0(x), Kp, Vp) ,

Attention(q,Kp,Vp) = softmax

(
qK⊤

p√
dout

)
Vp, (8)

The passage-specific FFN expert is injected into the original FFN layer at l∗, yielding:

MLPθ0⊕Hϕ(p)(x) = MLPθ0(x) + EHϕ(p)(x) . (9)

3.2.2 ORTHOGONAL CONTINUAL MERGING MECHANISM (Merge) FOR F
Once the parameterization module Hϕ(SPi) produces passage vectors (Kp,Vp) as in Eq. (7),
the continual merging mechanism operates on each parameter independently. To form a merged
expert without overwriting previously acquired knowledge, we propose an orthogonal merging
method based on Gram–Schmidt projection, inspired by recent studies (Xu et al., 2025). For-
mally, let {Wi}ti=1 denote the set of key or value memory matrices (i.e., Kp or Vp) obtained
from {Hϕ(SPi)}ti=1, where Wi ∈ Rk×dout .

Let Wt−1
F be the merged parameter obtained from {Wi}t−1

i=1 up to step t−1. The Gram–Schmidt or-
thogonalization procedure first computes the projection matrix onto the subspace spanned by Wt−1

F :

Pt−1 = Wt−1
F
(
(Wt−1

F )⊤Wt−1
F
)−1

(Wt−1
F )⊤. (10)

The new parameter Wt is then merged by adding only its orthogonal component with respect to the
subspace spanned by Wt−1

F :

Wt
F = Wt−1

F +
(
I−Pt−1

)
Wt, (11)

where Pt−1 is the projection matrix defined in Eq. (10). A detailed discussion of orthogonal merging
using the Gram–Schmidt procedure is provided in Appendix B.

3.2.3 HYPERNETWORK ARCHITECTURE: SEQUENCE-TO-MEMORY

The hypernetwork is designed to take a token sequence of a passage and produce its key–value mem-
ory. Given a passage as an input sequence of tokens, the hypernetworkHϕ first computes a passage
embedding via attentive pooling over the token-level embeddings. The resulting passage embed-
ding is then passed through a two-layer MLP, whose output is transformed by linear projections to
generate the passage-specific memory, i.e., the key and value matrices.

5
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Formally, given a passage p, we denote its sentence embedding by Emd(p), obtained as the atten-
tively pooled representation from an auxiliary Transformer encoder (Appendix C). The hypernet-
work then transforms Emd(p) into a latent representation using MLPhyp, as follows:

hb = MLPhyp(Emd(p)) = ReLU(V′ LN (ReLU(W′ Emd(p)))) . (12)

where LN refers to the layer normalization layer.

Finally, we apply two distinct linear transformations to map the latent representation hb into flattened
key and value matrices, i.e., the “passage-specific memory” for p:

Kp = WK hb + bK , Vp = WV hb + bV , (13)

where WK ,WV ∈ RK×d×dhid are linear projection tensors and bK ,bV ∈ RK×d are bias terms.
With a slight abuse of notation, we treat a matrix in RK×d×1 as a matrix in RK×d by removing the
singleton dimension. More details of the hypernetwork architecture are provided in Appendix C.

3.2.4 CRITICAL-LAYER PARAMETERIZATION FOR Hϕ
The critical-layer parameterization appliesH only to a single critical layer l∗, rather than across
all layers, motivated by the locate-and-edit methods of (Meng et al., 2022a;b; Li et al., 2024; Fang
et al.).

To identify the critical layer l∗, we conduct layer-wise scanning experiments on both models across
all datasets. For each layer, we measure the change in perplexity after injecting the corresponding
passage vectors, thereby evaluating the effectiveness of the layer-specific hypernetwork (see Ap-
pendix: A). As shown in Fig.( 2– 7), the early-to-middle layers contribute most substantially when
used as parameterization modules. Based on this analysis, the insertion positions for the single-layer
passage-vector parameterization are summarized in Table 9.

3.2.5 TRAINING OBJECTIVE

HypernetworkHϕ. To trainHϕ,2 we construct a dataset DH = {(qi, pi, ai)}Ni=1, where each triple
consists of a question qi, its relevant passage pi, and the ground-truth answer ai. The hypernetwork
is trained by minimizing the cross-entropy loss:

LCE(ϕ) = −
∑

(q,p,a)∈DH

logPMθ0⊕Hϕ(p)
(a | q), (14)

where PMθ0⊕Hϕ(p)
(a | q) denotes the probability of generating answer a conditioned on question q

under the parameters of the passage-injected modelMθ0⊕Hϕ(p).

Subquestion generatorMsq . Following Li et al. (2025b), we adopt a cold-start stage to train the
sub-question generatorMsq by constructing a dataset Dsq = {(q(j), y(j))}Mj=1, where each target
sequence is

y(j) = [ sq
(j)
1 , sa

(j)
1 , sq

(j)
2 , sa

(j)
2 , . . . , sq(j)nj , sa

(j)
nj , ⟨EOS⟩ ].

The autoregressive objective on Dsq is used to trainMsq , as detailed in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Models and Datasets. We employ LLaMA3.1-8B (Dubey et al., 2024) and Qwen2.5-7B (Team,
2024) as research base models. For the multi-hop question answering task, we follow works (Guan
et al., 2025; Li et al., 2025b) and utilize the E5 (Wang et al., 2022) and BM25 (Lù, 2024) retriev-
ers. For the multi-hop editing task, we follow work (Zhong et al., 2023) and adopt the Contriever
model (Lei et al., 2023) as the retriever. 3

2Here, Hϕ denotes the layer-specific hypernetwork that injects passage knowledge into the FNN at the
critical layer l∗.

3We follow these works for a fair comparison. Pre-trained models can be obtained from Hugging Face.
LLaMA-3.1-8B: https://huggingface.co/meta-llama/Llama-3.1-8B

6
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We conduct experiments on multi-hop question answering datasets: HotpotQA (Yang et al., 2018),
2WikiMultihopQA (2WikiMhQA) (Ho et al., 2020) and MuSiQue (Trivedi et al., 2022), and multi-
hop editing datasets: MQuAKE-CF (Zhong et al., 2023) and MQuAKE-T (Zhong et al., 2023).
HotpotQA serves as a standard benchmark for multi-hop reasoning. MQuAKE-CF is a counter-
factual knowledge editing dataset, designed to evaluate how well models adapt to counterfactual
modifications. In contrast, MQuAKE-T focuses on temporal knowledge updates, assessing models’
ability to respond to changes in real-world facts.

Metrics. We evaluate model performance using Exact Match (EM) and F1 score (F1) (Kwiatkowski
et al., 2019). EM measures the strict string-level agreement between predictions and gold answers,
while F1 quantifies partial correctness by computing the token-level overlap between predictions
and references. For all experiments, we take the model’s final response as its predicted answer and
compare it against the gold standard.

Baselines. We evaluate our approach against a range of baselines: (i) RAG and RAG-CoT, which
retrieve relevant documents to answer queries, (ii) iterative retrieval methods such as IRCoT, FLARE
and MeLLo, (iii) parameterized RAG methods including PRAG and DyPRAG and (iv) reasoning-
enhanced RAG methods including Auto-RAG, Adaptive-RAG, Deep-RAG, R3-RAG, Search-R1
and Search-o1. The detailed descriptions of these baseline methods can be found in the Appendix F.

Implementation Details. All experiments were conducted on a workstation with 8 NVIDIA RTX
A6000 GPUs. The detailed training settings and inference are provided in Appendix D.

4.2 MAIN RESULTS AND ANALYSIS

We evaluated MergePRAG on multi-hop QA datasets using LLaMA3.1-8B and Qwen2.5-7B, with
results summarized in Table 1. MergePRAG consistently outperforms state-of-the-art baselines
across all three datasets, showing the best performances in most cases, except for the run using
LLaMA3.1-8B on MuSiQue. Compared with early passage-injection methods such as PRAG and
DyPRAG, MergePRAG+ achieves higher performance, demonstrating that the hypernetwork-based
parameterization framework extends effectively to multi-hop QA. Additional gains are obtained
when combined with explicit in-context passages, without sacrificing generalization. The results
further indicate that increasing the number of retrieved passages |SP | with Mergeinner provides ad-
ditional improvements over using a single passage (|SP | = 1).

To examine the effect of hypernetwork-based parameterization, we include an additional baseline,
MultihopRAG (Section 3.1), which directly uses the original LLM θ0 without hypernetwork-
based parameterization or injection (Algorithm 2). Comparisons with MultihopRAG show that
hypernetwork-based passage knowledge injection contributes substantially to performance gains.

4.3 ABLATION STUDY

We conducted a series of ablation studies to examine the effectiveness of the proposed framework
and to identify the contribution of its key components. In addition, we performed efficiency analysis
experiments to evaluate the computational performance of our approach; the detailed results are
presented in Appendix E.1.

4.3.1 MERGEPRAG+ VS. MULTIHOPRAG W/ FINETUNING

To compare standard fine-tuning with the proposed hypernetwork-based parameterization in
MergePRAG, we apply fine-tuning to MultihopRAG, directly adjusting θ0 on the same training data
used in our framework. We consider two settings: (1) fine-tuning without passages, i.e., [sq → sa],
where the model is trained to predict sa from sq alone; and (2) fine-tuning with passages, i.e.,
[(Pgold, sq) → sa], where the model is trained to predict sa given sq and the gold passages, resem-
bling the standard RAG training paradigm.

Under the LLaMA3.1-8B model with |SPi| = 1, Table 3 compares these MultihopRAG variants
with MergePRAG. Interestingly, naive fine-tuning with passages ([(Pgold, sq)→ sa]) performs even

Qwen2.5-7B: https://huggingface.co/Qwen/Qwen2.5-7B
E5: https://huggingface.co/intfloat/e5-base-v2
Contriever: https://huggingface.co/facebook/contriever-msmarco
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HotpotQA 2WikiMhQA MuSiQue
Model Retriever Method EM F1 EM F1 EM F1

LLaMA3.1-8B

E5 RAG|SP |=1 21.60 36.67 4.90 17.36 2.00 11.49
E5 RAG|SP |=4 27.80 40.51 5.10 15.80 2.70 11.27
E5 RAG-CoT|SP |=1 37.60 45.15 30.90 35.00 5.60 13.38
E5 RAG-CoT|SP |=4 43.70 50.41 36.20 40.00 5.90 12.49
E5 IRCoT† 39.30 46.00 35.10 37.50 12.00 13.60
E5 FLARE† 17.80 20.90 10.90 11.40 2.30 2.80
E5 R3-RAG† 45.60 58.80 52.90 60.90 21.20 32.80

BM25 R3-RAG† 44.40 57.60 50.60 58.60 17.20 27.70
BM25 Search-o1† 14.80 24.08 22.20 27.10 5.40 11.98
BM25 Auto-RAG† 25.80 36.09 23.00 30.09 - -
BM25 DeepRAG† 40.70 51.54 48.10 53.25 - -
BM25 PRAG† - 44.84 - 40.55 - -
BM25 DyPRAG† - 38.35 - 50.24 - -

E5 MergePRAG +|SP |=1 48.80 55.53 66.30 71.05 14.40 25.04
E5 MergePRAG +|SP |=4 52.40 60.67 73.20 79.34 16.70 27.69

BM25 MergePRAG +|SP |=1 46.80 53.40 61.10 67.31 17.80 29.39
BM25 MergePRAG +|SP |=4 52.40 60.58 70.20 76.65 20.30 31.20

Qwen2.5-7B

E5 RAG|SP |=1 36.60 43.37 34.90 37.36 3.20 8.71
E5 RAG|SP |=4 45.30 52.08 42.00 44.49 5.80 12.73
E5 RAG-CoT|SP |=1 30.20 36.20 19.10 23.05 4.30 8.30
E5 RAG-CoT|SP |=4 44.60 51.28 35.40 37.79 5.20 9.55
E5 IRCoT† 35.70 41.10 31.10 33.50 9.40 11.20
E5 FLARE† 23.40 32.06 21.80 26.51 3.60 4.80
E5 R3-RAG† 46.40 59.70 54.20 62.70 21.40 34.00

BM25 R3-RAG† 44.90 58.20 52.80 61.10 17.60 30.00
BM25 Search-o1† 11.60 16.95 22.00 25.02 2.10 7.48
BM25 DeepRAG† 32.10 41.14 40.40 44.87 - -

E5 MergePRAG +|SP |=1 43.40 50.64 65.80 69.72 9.70 19.61
E5 MergePRAG +|SP |=4 50.80 58.37 77.40 81.49 12.30 21.57

BM25 MergePRAG +|SP |=1 42.00 49.09 59.70 63.05 13.00 23.35
BM25 MergePRAG +|SP |=4 51.40 59.33 71.80 76.06 16.70 27.33

Table 1: Overall results on three multi-hop QA tasks. Bold numbers indicate the best perfor-
mance. † denotes results reported from the original papers or R3-RAG paper. PRAG and DyPRAG
results correspond to the combined setting with in-context passages (i.e., PRAG-Combine and
DyPRAG-Combine). In MergePRAG runs, |SP | refers to the number of retrieved passages per
hop. MergePRAG applies orthogonal continual merging (Section 3.2.2) for both inner-merging and
sequence-merging, i.e., Mergeinner and Mergeseq. Additional results obtained using alternative mod-
els and methods are provided in Table 15.

MQuAKE-CF MQuAKE-T
Model Method EM F1 EM F1

LLaMA3.1-8B

RAG 4.48 9.27 27.69 31.92
RAG-CoT 11.7 13.18 45.93 47.28

MeLLo 32.90 34.10 85.40 86.21
MergePRAG+|SP |=1 50.30 51.36 96.10 96.10

Table 2: Results on the multi-hop editing task under the MQuAKE datasets.

worse than fine-tuning without passages ([sq → sa]). These results are consistent with prior find-
ings (Yang et al., 2024; Lampinen et al., 2025), which show that directly fine-tuning LLMs on
domain-adaptive data may degrade their generalization ability.

4.3.2 MERGEPRAG VS. MERGEPRAG+

Table 4 compares MergePRAG with MergePRAG+. MergePRAG+ exhibits strong generalization
and is not negatively affected even when in-context passages are provided. In contrast, applying
fine-tuning methods to MultihopRAG leads to performance degradation, implying that direct fine-
tuning is unstable for preserving generalization (Section 4.3.1). Overall, these results highlight that
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HotpotQA 2WikiMhQA
Traing type EM F1 EM F1

MultihopRAG|SP |=1 (w/o finetuning) 37.80 47.56 23.30 35.59
MultihopRAG|SP |=1 (finetuning: [sq → sa]) 43.70 50.15 58.10 62.57
MultihopRAG|SP |=1 (finetuning: [(Pgolden, sq)→ sa]) 40.10 46.79 60.30 62.04
MergePRAG + |SP |=1 47.40 55.29 65.60 70.54

Table 3: Comparison of MergePRAG+ and MultihopRAG with fine-tuning (without hypernetwork)
under LLaMA3.1-8B.

HotpotQA 2WikiMhQA
Inference type EM F1 EM F1

RAG|SP |=1 21.60 36.67 4.90 17.36
MergePRAG|SP |=0 28.40 35.52 45.60 50.06

MergePRAG +|SP |=1 48.80 55.53 66.30 71.05

Table 4: Comparison of MergePRAG and MergePRAG+ under LLaMA3.1-8B. |SP | = 0 denotes
MergePRAG, which does not use in-context passages as prompts during inference.

MergePRAG preserves the model’s ability to perform RAG while benefiting from parameterized
knowledge injection, compared with standard fine-tuning methods.

4.3.3 EFFECT OF THE MERGING METHODS

To evaluate the effectiveness of the proposed orthogonal merging method in Section 3.2.2, we con-
duct ablation experiments on HotpotQA using the LLaMA3.1–8B model. Table 6 reports the results
of different merging methods for sequence-level merging under the setting |SP | = 1, where each
sub-question sq retrieves only a single passage. Details of the merging methods are provided in
Appendix G.

The results show that the proposed orthogonal merging achieves the best performance, improving by
2.4% over TIES-merging, while arithmetic mean merging also performs comparably. Furthermore,
Table 5 presents comparisons using different merging methods for both inner merging Mergeinner
and inter-merging Mergeseq across varying values of |SP |. Although arithmetic merging is compet-
itive in most settings, orthogonal merging consistently achieves the best results, often showing an
improvement of approximately 1% EM over arithmetic merging. We expect that orthogonal merging
will exhibit greater robustness in scenarios with more severe knowledge conflict.

4.3.4 EFFECT OF THE NUMBER OF PASSAGES PER RETRIEVAL (|SP | > 1)

Table 7 reports the results of MergePRAG+ under different numbers of retrieved passages |SP |. As
|SP | increases, MergePRAG+ consistently improves performance without degradation, even when
longer in-context passages are provided.

4.3.5 EFFECT OF THE NUMBER OF KEY–VALUE VECTORS k

To examine the impact of the number of key–value vectors used for passage-knowledge parame-
terization, we conduct an ablation study on HotpotQA and 2WikiMhQA using LLaMA3.1-8B. For

|SP | = 2 |SP | = 4 |SP | = 6 |SP | = 8 |SP | = 10 |SP | = 12
Mergeinner Mergeseq EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

• • 50.20 58.07 51.40 60.35 51.40 59.82 52.00 60.86 55.00 62.84 54.40 62.76
• ■ 50.60 58.06 52.00 60.64 52.00 60.21 53.00 61.32 55.40 63.40 54.60 62.64
■ • 50.40 58.14 51.60 60.13 51.40 59.63 52.60 61.46 54.80 62.80 54.60 62.76
■ ■ 50.80 58.23 52.40 60.67 52.40 60.67 53.40 61.77 55.60 63.45 55.00 62.93

Table 5: Performance comparison between different merging methods for Mergeinner and Mergeseq
varying |SP |: •: Arithmetic mean merging, ■: Gram–Schmidt orthogonalization merging.
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MergePRAG+ / HotpotQA
Mergeseq EM F1

▲ 36.20 43.47
• 48.20 55.04
♦ 46.40 54.07
▼ 48.20 54.95
■ 48.80 55.53

Table 6: Performance comparison between dif-
ferent merging methods for Mergeseq under the
setting of |SP | = 1: ▲: Adding merging, •:
Arithmetic mean merging, ♦: TIES merging,
▼: Concat merging, ■: Gram–Schmidt orthog-
onalization merging.

HotpotQA 2WikiMhQA
#|SP | EM F1 EM F1

1 48.80 55.53 66.30 71.05
2 50.80 58.23 71.40 76.94
3 52.00 59.50 73.10 79.06
4 52.40 60.67 73.20 79.34

Table 7: Performance of MergePRAG+ on Hot-
potQA and 2WikiMHQA with varying numbers
of retrieved passages (|SP |) per sub-question.
Increasing |SP | provides broader evidence for
answering each sub-question, which can im-
prove overall QA accuracy.

HotpotQA 2WikiMhQA
|SP | = 1 |SP | = 4 |SP | = 1 |SP | = 4

k (i.e., #numkv) EM F1 EM F1 EM F1 EM F1
1 45.60 52.67 49.00 58.24 62.40 67.89 69.00 75.21
2 45.60 52.67 51.20 59.20 63.80 69.01 69.00 76.32
4 45.60 52.86 50.80 58.88 64.00 69.37 71.20 77.09
8 46.40 54.25 49.40 58.39 65.90 70.93 72.00 78.09

16 48.80 55.53 52.40 60.67 66.30 71.05 73.20 79.34

Table 8: Ablation on the Number of Passage Vectors numkv for LLaMA3.1-8B on HotPotQA and
2WikiMhQA

each dataset, we train models with different values of k (i.e., numkv) under two retrieval settings:
|SP | = 1 and |SP | = 4. The results are summarized in Table 8.

Overall, increasing the number of KV vectors (k) leads to consistent performance improvements
across both datasets and retrieval settings. This is because larger k provides greater memory capac-
ity, allowing the model to preserve more passage-specific information. By capturing richer passage-
level representations and reducing the likelihood of information loss, larger k yields improvements
in both EM and F1.

5 CONCLUSION

In this work, we introduced MERGEPRAG, which generalizes the PRAG framework to the multi-
hop QA setting—an important milestone toward reasoning-enhanced RAG. We proposed two key
technical components: (1) orthogonal continual merging, which incrementally updates passage ex-
perts with newly retrieved knowledge during multi-hop inference while avoiding interference; and
(2) critical-layer parameterization, which applies passage knowledge injection only to a selected
critical layer, greatly reducing injection cost. Experimental results on multi-hop QA and reasoning-
aware knowledge editing showed that MERGEPRAG consistently outperforms standard and state-
of-the-art RAG systems, existing PRAG methods, and fine-tuning–based parametric adaptation.

For future work, we plan to extend the framework to a more general reasoning-enhanced RAG set-
ting to examine whether passage injection also contributes to further performance improvements.
We also aim to explore the “pretraining” of hypernetworks, enabling them to be applied and adapted
efficiently to new domains without requiring substantial additional training. Finally, we will inves-
tigate in depth why standard fine-tuning suffers from stronger performance degradation, whereas
hypernetwork-based parameterization is helpful in boosting the performance. It is also worth ex-
ploring alternative hypernetwork architectures, such as memory-augmented designs, which can pa-
rameterize longer contexts more effectively beyond the single-passage setting used in this work.
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A LAYER SCANNING EXPERIMENTS FOR CRITICAL LAYER
PARAMETERIZATION

The critical-layer parameterization module appliesH only to a single critical layer l∗. To identify l∗,
we perform a layer-wise scanning experiment that evaluates perplexity after adding a layer-specific
paragraph vector to the l-th layer. For this purpose, we construct a small sub-dataset from the dataset
used in the experiment.
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Figure 2: Perplexity variations across layers of LLaMA3.1-8B when training with
paragraph-vector insertion on the HotpotQA dataset under |SP | = 1.

Figure 3: Perplexity variations across layers of LLaMA3.1-8B when training with
paragraph-vector insertion on the WikiMhQA dataset under |SP | = 1.

Figure 4: Perplexity variations across layers of LLaMA3.1-8B when training with
paragraph-vector insertion on the MuSiQue dataset under |SP | = 1.

Formally, let Hlψ denote the layer-specific hypernetwork for the l-th layer, parameterized by ψ and
defined following Eqs. 12–13. Given a question q, we first retrieve relevant passages P ⊆ R.
Each passage p ∈ P is fed into Hlψ to obtain its passage expert EHψ(p), which are then merged
into a single expert EHψ

(P ) using the inner-merging operation in Eq. (6). The merged expert is
subsequently incorporated into the l-th layer of the base LLM Mθ0 via Eq. (9). We train Hlψ by
minimizing the cross-entropy loss defined in Eq. (14).
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Figure 5: Perplexity variations across layers of Qwen2.5-7B during training with
paragraph vector insertion on the HotPot-QA dataset under |SP | = 1.

Figure 6: Perplexity variations across layers of Qwen2.5-7B during training with
paragraph vector insertion on the WikiMhQA dataset under |SP | = 1.

Figure 7: Perplexity variations across layers of Qwen2.5-7B during training with
paragraph vector insertion on the MuSiQue dataset under |SP | = 1.

To measure the importance of each layer l, we evaluate perplexity after training Hlψ . Fig-
ures 2, 3, 4, 5, 6 and 7 compare perplexity across layers for LLaMA3.1-8B and Qwen2.5-7B on
different experimental dataset, respectively, under the setting of |SP | = 1.

The results show a clear sensitivity pattern: in LLaMA3.1-8B and Qwen2.5-7B, injecting passage
vector into early-to-middle layers yields the largest perplexity reduction, indicating that these layers
play a central role in integrating external knowledge. Meanwhile, we observe that the two mod-
els exhibit opposite patterns in the layers where external knowledge is least efficiently integrated.
Specifically, LLaMA3.1-8B shows higher perplexity when the passage vector is injected into the
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Model HotpotQA 2WikiMultihopQA MuSiQue
LLaMA3.1-8B l∗ = 9 l∗ = 7 l∗ = 8
Qwen2.5-7B l∗ = 7 l∗ = 8 l∗ = 9

Table 9: Selected critical layers l∗ for passage-vector insertion based on layer-wise perplexity anal-
ysis across datasets.

shallowest layers, whereas Qwen2.5-7B displays higher perplexity when the injection is applied
to the deepest layers. This contrast suggests that conducting layer-wise scanning is essential for
identifying the optimal injection layer for different model architectures.

Overall, our findings show that both LLaMA3.1-8B and Qwen2.5-7B exhibit their highest sensitivity
to passage-vector injection in the early-to-middle layers, suggesting that these layers are primarily
responsible for incorporating external knowledge across model families. Based on the layer-wise
perplexity analysis conducted on three datasets—HotpotQA, WikiMhQA, and Musique—we select
the optimal insertion layer l∗ for each model–dataset pair. The selected layers are summarized in
Table 9.

B ORTHOGONAL MERGING USING THE GRAM-SCHMIDT PROCEDURE

P1:t−1M(t)

MF1:t−1

M(t) −P1:t−1M(t)

M(t)

MF1:t

Figure 8: Illustration of orthogonal continual
merging based on Gram–Schmidt procedure.

In multi-hop RAG, a set of passages SPi arrives for
each sub-question sqi. This setting naturally mo-
tivates the design of a continual merging mecha-
nism that combines previously accumulated knowl-
edge with newly retrieved passage knowledge, recur-
rently updating the current FFN expert by incorpo-
rating each new expert.

To minimize overwriting previously acquired knowl-
edge, MergePRAG adopts orthogonal continual
merging based on the Gram–Schmidt process, in-
spired by recent orthogonal approaches in model
merging and knowledge editing (Xu et al., 2025).
Specifically, the new parameter matrix is projected
onto the span of the previously merged parameters, and only its orthogonal residual is added to the
current merged expert.

We apply orthogonal continual merging separately to either key or value matrices, resulting from
Hϕ. Formally, let {M(i)}ti=1 denote the sequence of key or value passage memories, where each
M(i) ∈ Hϕ(SPi) corresponds to either Kp or Vp.

Suppose that MF1:t−1 denotes the merged memory parameter obtained from {M(i)}t−1
i=1 . Following

Eq. 10 in Section 3.2.2, the Gram–Schmidt orthogonalization procedure first computes the projection
matrix onto the subspace spanned by MF1:t−1 :

P1:t−1 = MF1:t−1
(
(MF1:t−1)⊤MF1:t−1

)−1
(MF1:t−1)⊤. (15)

The new parameter M(t) is then merged by adding only its orthogonal component with respect to
the subspace spanned by MF1:t−1 :

MF1:t = MF1:t−1 +
(
I−P1:t−1

)
M(t), (16)

where P1:t−1 is the projection matrix defined in Eq. (15).

With a slight abuse of notation, the recursion in Eq. (16) is denoted by Merge:

MF1:t = Merge
(
MF1:t−1 ,M(t)

)
. (17)
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When the merging procedure Merge is applied independently to the sequences of key and value
matrices Kp and Vp, we obtain the merged passage memories for both parts:

KF1:t = Merge
(
KF1:t−1 , K(t)

)
,

VF1:t = Merge
(
VF1:t−1 , V(t)

)
. (18)

where K(t) and V(t) denote the key and value memory matrices at timestep t, respectively.

C HYPERNETWORK ARCHITECTURE

Given a passage p, the hypernetwork Hϕ generates the corresponding key–value memory through
three stages: (1) Attentive pooling, which produces a sentence-level embedding Emd(p) for passage
p; (2) MLP, which maps the passage embedding to a latent representation using a two-layer ReLU-
based MLP; and (3) Linear projection, which converts the latent representation into K key and K
value vectors, yielding the passage-specific memory.

We define a lightweight Encoder consisting of a 2-layer Transformer encoder layer with 4 attention
head. The hidden dimension of the encoder layer is set to be consistent with the LM model’s internal
representation dimension d. Specifically, for LLaMA3.1-8B, d = 4096, while for Qwen2.5-7B,
d = 3584.

Attentive pooling. Given a passage p, we apply attention-based aggregation over token-level em-
beddings of p: (1) obtaining sequence of its word embeddings, and (2) applying attentive pooling.
Formally, let the retrieved passage be represented as a sequence of tokens, denoted by X ∈ RT×|V|,
where each row Xt is a one-hot vector over the vocabulary indicating the identity of the token at the
t-th position, and V denotes the vocabulary set. We apply word embedding layer Embedding to X
and obtain its embedded representations, as follows:

Xemd = Embedding(X). (19)

where a sequence of token embeddings Xemd ∈ RT×d, where T is the passage length and d is the
embedding dimension. Note that word embedding layer Embedding is obtained from the pretrained
LLMMθ0 (e.g., LLaMA3.1-8B or Qwen2.5-7B).

The passage embedding Emd(p) is then obtained via attentive pooling:

Emd(p) = h = softmax
(
w⊤
a X

⊤
emd

)
Xemd ∈ Rd, (20)

where wa ∈ Rd is a learnable attention vector4. The embedding Emd(p) = h serves as the atten-
tively pooled representation of the passage, capturing its global semantic content.

MLP. To increase representational capacity and allow the hypernetwork to perform nonlinear rea-
soning over the passage summary, the pooled vector Emd(p) = h is passed through a two-layer
feedforward network, denoted MLPhyp, as follows:

hb = MLPhyp(h) = ReLU(V′ LN (ReLU(W′h))) . (21)

where LN is the layer normalization layer.

Linear projection. Finally, two linear transformations map the latent code hb into flattened key
and value matrices, i.e., the passage-specific memory:

Kp = WK hb + bK ,

Vp = WV hb + bV , (22)

where k (i.e., num-kv) denotes the number of key–value slots generated per passage and d is the
model dimension. Each of the k rows corresponds to an independent memory vector that can be
directly attended to by the language model.

4We omit an additional bias term as it has negligible impact.
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This three-stage design enables the hypernetwork to compress an entire retrieved passage into a
compact set of attention-ready memory vectors, which are efficiently integrated into the model via
the memory attention mechanism at the designated target layer (Eq. 8 in Section 3.2.1).

HyperNetworkHϕ
Xemd ∈ RT×d

wa Softmax

α

h ∈ Rd

ReLU

V′

LayerNorm

ReLU

W′ hb ∈ Rkd

WK

WV

K ∈ Rk×d

V ∈ Rk×d

Attentive pooling MLPhyp Linear projection Memory

Figure 9: The hypernetwork Hϕ(p) generates passage-specific key–value vectors Kp,Vp ∈
Rk×dmodel , referred to as passage-specific memory, which serve as lightweight, plug-in passage-level
experts for downstream reasoning. The process consists of three stages: (1) attentive pooling, (2)
MLP, and (3) linear projection. 1) Attentive pooling. Given a one-hot token matrix X ∈ RT×|V|

for passage p, the model first converts it into a sequence of embeddings Xemb ∈ RT×d via the
word embedding layer: Xemb = Embedding(X) (Eq (19)). Attention is then applied over the to-
ken embeddings, where a learnable vector wa ∈ Rd serves as the query: Emd(p) = h ∈ Rd (Eq.
(20)). 2) MLP. The pooled representation h is passed through a two-layer feedforward network with
ReLU activations and LayerNorm, producing a latent representation hb (Eq. (21)). 3) Linear pro-
jection. Two independent linear projection heads map hb into the key and value parameter spaces:
Kp, Vp ∈ Rk×dmodel , yielding flattened key–value memory vectors of length k · dmodel for passage p
(Eq. (22)). The resulting passage-specific memory is subsequently injected into the target model as
additional knowledge signals.

D TRAINING AND INFERENCE PROCEDURE

D.1 TRAINING

Hypernetwork. We prepare a training dataset DH at the sub-question level from training set in
each task to train the hypernetwork Hϕ. Each instance (q, p, a) ∈ DH consists of a sub-question q,
its gold passage p, and the corresponding answer a. The hypernetwork parameters ϕ are trained by
minimizing the negative log-likelihood of generating the correct answer a underMθ0⊕H(p) (Eq. 14),
while the base parameters θ0 remain frozen.

Subquestion generator. To train the sub-question generatorMsq , we construct a dataset Dsq =

{(q(j), y(j))}Mj=1 using GPT-4.1 (Achiam et al., 2023) to generate sub-questions from 4,000 ran-
domly sampled examples in the training split of each dataset. The prompt template used for this
dataset construction is shown in Table 10. The template specifies the desired output format and
includes several illustrative examples. Given an input question q and its associated gold passages,
GPT-4.1 refers to the examples and decomposes q into sub-questions using the provided passages.

Each target sequence is

y(j) = [ sq
(j)
1 , sa

(j)
1 , sq

(j)
2 , sa

(j)
2 , . . . , sq(j)nj , sa

(j)
nj , ⟨EOS⟩ ],

as described in Section 4.1.
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Your task is to convert a given question and its related facts into a multi-step reasoning chain.

Requirements: Each step in the reasoning chain must:
- Use one fact from the input facts, do not combine, summarize, or fabricate facts; each fact must
be used as-is from the input.
- Generate a ”Sub-question” and a short answer ”Sub-answer”.
- The answer ”Sub-answer” must be directly derivable from the corresponding Fact.

Examples:
Question: ”When did the civilisation start that Desalpar Gunthli was a part of?”,
Facts: [”Desalpar Gunthli: Desalpar Gunthli is a village and site belonging to Indus Valley Civili-
sation located at Nakhtrana Taluka, Kutch District, Gujarat, India.”, ”Indus Valley Civilisation: The
Indus Valley Civilisation (IVC) or Harappan Civilisation was a Bronze Age civilisation (3300–1300
BCE; mature period 2600–1900 BCE) mainly in the northwestern regions of South Asia, extending
from what today is northeast Afghanistan to Pakistan and northwest India.”]
Output: [
{
”Sub-question”: ”Which civilisation was Desalpar Gunthli a part of?”,
”Fact”: ”Desalpar Gunthli: Desalpar Gunthli is a village and site belonging to Indus Valley
Civilisation located at Nakhtrana Taluka, Kutch District, Gujarat, India.”,
”Sub-answer”: ”Indus Valley Civilisation”
},
{
”Sub-question”: ”When did the Indus Valley Civilisation exist?”,
”Fact”: ”Indus Valley Civilisation: The Indus Valley Civilisation (IVC) or Harappan Civilisation
was a Bronze Age civilisation (3300–1300 BCE; mature period 2600–1900 BCE) mainly in the
northwestern regions of South Asia, extending from what today is northeast Afghanistan to Pakistan
and northwest India.”,
”Sub-answer”: ”3300–1300 BCE”
} ]

[other examples demonstrations abbreviated]

Question: {}
Facts: {}
Output:

Table 10: Prompt templates used by GPT-4.1 to generate sub-questions and sub-answers from the
training set. The generated results are used to construct Dsq for training the sub-question generator.

Given a pair (q(j), y(j)), Msq is trained with supervised fine-tuning by minimizing the negative
log-likelihood (NLL):

L(Msq) = −
M∑
j=1

|y(j)|∑
t=1

logPMsq

(
y
(j)
t | q(j), y(j)<t

)
, (23)

where y(j)t denotes the t-th token in the target sequence y(j).

D.2 INFERENCE

At inference time, MergePRAG tackles a multi-hop QA task by decomposing the original complex
question into sub-questions. For each sub-question sqi, the top-retrieved passages SPi are fed into
the hypernetwork Hϕ to produce a sub-expert EHϕ

(SPi). This sub-expert is then merged with the
previously accumulated FFN expert EF (SP1:i−1) using orthogonal continual merging, yielding the
updated fused expert EF (SP1:i), ensuring that knowledge from earlier reasoning steps is preserved
without redundancy.
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The fused FFN expert is injected into the base LLMMθ0 at the critical layer l∗. Response gener-
ation is then performed under the updated modelMθ0⊕F(SP1:i), either with the current in-context
passages SPi (MergePRAG+) or without them (MergePRAG). After all sub-questions are processed
at timestep T , the final answer to the original complex question is generated by the fully passage-
injected modelMθ0⊕F(SP1:T ). The complete inference procedure is summarized in Algorithm 1.
For comparison, the inference procedure of MultihopRAG without passage knowledge parameteri-
zation is shown in Algorithm 2.

Algorithm 1 Multi-hop Inference with MergePRAG
Require: Original question q, sub-question generator Msq , base LLM Mθ0 , hypernetwork Hϕ,

retrieverR
Ensure: Final answer a

1: Initialize merged expert F ← ∅
2: Initialize reasoning chain C ← ∅
3: while next sub-question exists do
4: Generate sub-question: sqi ←Msq(q, C)
5: Retrieve passages: SPi ← R(sqi)
6: Parameterize passages: Hϕ(SPi)← Mergeinner

(
{Hϕ(p) | p ∈ SPi}

)
(Eq. 6)

7: if i > 1 then
8: Orthogonal continual merge: F ← Mergeseq(F ,Hϕ(SPi)) (Sec. 3.2.2)
9: else

10: Initialize expert: F ← Hϕ(SPi)
11: end if
12: Inject F into the base LLM:Mθ0⊕F
13: Generate sub-answer:

sai ←
{Mθ0⊕F (sqi), (MergePRAG)

Mθ0⊕F (SPi, sqi), (MergePRAG+)

14: Append (sqi, sai) to reasoning chain C
15: end while
16: Generate final answer:

a←Mθ0⊕F (C, q) (MergePRAG / MergePRAG+)

17: return a

Algorithm 2 Multi-hop Inference with MultihopRAG
Require: Original question q, sub-question generatorMsq , base LLMMθ0 , retrieverR
Ensure: Final answer a← ∅

1: Initialize reasoning chain C ← ∅
2: while next sub-question exists do
3: Generate sub-question: sqi ←Msq(q, C)
4: Retrieve passages: SPi ← R(sqi)
5: Generate sub-answer: sai ←Mθ0(SPi, sqi)
6: Append (sqi, sai) to reasoning chain C
7: end while
8: Generate final answer: a←Mθ0(C, q)
9: return a

E FURTHER EXPERIMENT RESULTS

E.1 EFFICIENCY ANALYSIS

To evaluate the inference cost of MergePRAG, we conduct an efficiency analysis (Table 11) focusing
on three components of the system: (1) passage-specific memory generation byHψ , (2) sub-question
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Generate Passage Memory Response sa Average Time
RAG|SP |=1 - - 0.712s

RAG-CoT|SP |=1 - - 6.389s
MergePRAG+|SP |=1 0.001s 0.259s 2.517s

Table 11: Efficiency analysis of MergePRAG using the LLaMA3.1-8B model on the HotpotQA
dataset.

Figure 10: Results of RAG and RAG-CoT varying the number of retrieved passages on three multi-
hop QA datasets using LLaMA3.1-8B and Qwen2.5-7B.

response generation, and (3) overall response generation. Thanks to the lightweight design of the
hypernetwork, the time required to produce passage-specific key–value memory is minimal. The
subsequent step of generating sub-questions also incurs only modest overhead.

Although decomposing a complex query into multiple sub-questions increases the number of in-
ference steps compared with standard RAG, the overall latency remains within a practical range.
Notably, the proposed pipeline still requires less time than RAG-CoT methods, which rely on
long chain-of-thought prompting, while achieving higher accuracy. These results demonstrate that
MergePRAG offers a favorable trade-off between computational efficiency and reasoning effective-
ness.

F BASELLINES INTRODUCTION

RAG: (Lewis et al., 2020) For a given query q, the retriever selects the top-k relevant passages.
The generator then directly infers the answer based on these retrieved passages. To ensure stylistic
consistency of the generated answers, we apply a task-specific prompt. The RAG prompt template
is provided in Table 12.

RAG-CoT: (Wei et al., 2022) Building upon RAG, RAG-CoT incorporates chain-of-thought rea-
soning. To guide the model’s reasoning process, we employ a one-shot demonstration sampled from
the training data, which encourages the model to generate step-by-step explanations before arriving
at the final answer. The prompt template is included in Table 13. We evaluate RAG and RAG-CoT
by retrieving 1–8 relevant passages, with the accuracy results shown in Figure 10.

MulitihopRAG: MultihopRAG can be viewed as a variant of MergePRAG withoutH, which itera-
tively responds to sub-questions using a pure RAG-style approach (Algorithm 2).
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Follow the format below to answer the following question with a very short phrase, such as “1998”,
“May 16th, 1931”, or “James Bond”, to meet the criteria of exact match datasets.

Passage: {}
Question: {}
Answer:

Table 12: Input template used for evaluating multi-hop questions with RAG.

You are a reasoning assistant tasked with answering user questions step by step. Follow the format
below to answer the following question with a very short phrase, such as “1998”, “May 16th, 1931”,
or “James Bond”, to meet the criteria of exact match datasets.

Passage: Tom Warburton: Since moving to Los Angeles in 2009 he has worked at Disney Television
Animation serving as creative director on ”Fish Hooks” and co-executive producer on ”The 7D”.
Fish Hooks: Fish Hooks is an American animated television series created by Noah Z. Jones that
originally aired on Disney Channel from September 3, 2010 to April 4, 2014.
Question: What show that Tom Warburton worked on aired from September 3, 2010 to April 4,
2014?
Thoughts: The passage says Tom Warburton worked as creative director on Fish Hooks. The pas-
sage also says Fish Hooks aired on Disney Channel from September 3, 2010 to April 4, 2014. The
question asks which show that Tom Warburton worked on aired during those dates. So, the answer
must be Fish Hooks.
Answer: Fish Hook

Passage: {}
Question: {}
Thoughts:

Table 13: Input template used for evaluating multi-hop questions with RAG-CoT.

IRCoT: (Trivedi et al., 2023) Interleaves retrieval with chain-of-thought reasoning, enabling itera-
tive evidence retrieval conditioned on intermediate reasoning steps, which enhances multi-hop QA
performance and reduces hallucination.

MeLLo: (Zhong et al., 2023) MeLLo is a system that iteratively decomposes multi-hop questions
into subquestions, generates tentative answers, retrieves relevant facts, and updates predictions based
on potential contradictions.

FLARE: (Jiang et al., 2023) Incorporates adaptive retrieval triggered when the model generates
low-confidence tokens, leveraging retrieved evidence to improve response quality.

Adaptive-RAG: (Jeong et al., 2024) Adaptive-RAG automatically selects the optimal retrieval and
reasoning strategy based on query complexity, ensuring efficient handling of simple queries while
improving accuracy on complex ones.

Auto-RAG: (Yu et al., 2024b) It performs iterative reasoning to decide when and what to retrieve,
and terminates the process once sufficient external knowledge has been gathered, before generating
the final answer.

DeepRAG: (Guan et al., 2025) It odels retrieval-augmented generation as a Markov decision pro-
cess, where the query is iteratively decomposed and the model dynamically decides at each step
whether to retrieve external knowledge or rely on parametric reasoning.

R3-RAG: (Li et al., 2025b) It is a reinforcement learning–based method that trains LLMs to iter-
atively reason and retrieve, enabling them to acquire more comprehensive external knowledge and
generate more accurate answers.

Search-o1: (Li et al., 2025a) Search-o1 lets a reasoning model dynamically retrieve and analyze
external knowledge to fill knowledge gaps during long reasoning.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes
Sub-question: What year was James Garner born?
sub-answer: 1928
Question: What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Answer: 1928

Table 14: LM responds directly to the original question. When ⟨EOS⟩ is generated in Table 16, the
inference chain terminates and the resulting context is used as input to the LM.

HotpotQA 2WikiMhQA MuSiQue
Model Method Retriever EM F1 EM F1 EM F1

FLAN-T5-XL Adaptive-RAG BM25 42.00 53.82 40.60 49.75 23.60 31.80
LLaMA3.1-8B Search-o1 BM25 14.80 24.08 22.20 27.10 5.40 11.98
Qwen2.5-7B Search-o1 BM25 11.60 16.95 22.00 25.02 2.10 7.48
Qwen2.5-3B Search-R1 E5 32.40 - 31.90 - 10.30 -
Qwen2.5-7B Search-R1 E5 37.00 - 41.40 - 14.60 -
Qwen2.5-7B MergePRAG|SP |=1 E5 43.40 50.64 65.80 69.72 9.70 19.61
Qwen2.5-7B MergePRAG|SP |=1 BM25 42.00 49.09 59.70 63.05 13.00 23.35

LLaMA3.1-8B MergePRAG|SP |=1 E5 48.80 55.53 66.30 71.05 14.40 25.04
LLaMA3.1-8B MergePRAG|SP |=1 BM25 46.80 53.40 61.60 67.31 17.80 29.39

Table 15: Performance comparison of MergePRAG+ with other advanced RAG methods on three
QA benchmarks – Adaptive-RAG, Search-R1 and Search-o1.

Search-R1: (Jin et al., 2025) Search-R1 enables an LLM to learn, via reinforcement learning, how
to autonomously issue effective multi-turn search queries during step-by-step reasoning, thereby
substantially improving retrieval-augmented QA performance.

PRAG+: (Su et al., 2025) By transforming the documents retrieved for query q into parametric
representations that are directly integrated into the feed-forward networks of the LLM, parametric
retrieval-augmented generation is introduced.

DyPRAG+: (Tan et al., 2025a) Extends PRAG by employing a lightweight parameter transformation
module to efficiently convert documents retrieved for query q into parametric knowledge, which can
be directly leveraged to generate the response.

G MERGING METHODS: INTRODUCTION

Arithmetic mean merging. Arithmetic mean merging computes the element-wise mean of the task
vectors {τj}nj=1, where n is the number of tasks. This approach assumes that all vectors lie in a
shared embedding space and produces a balanced fusion without introducing additional learnable
parameters:

Merge
(
{τj}nj=1

)
=

1

n

n∑
j=1

τj . (24)

Additive merging. Additive merging performs element-wise summation of task vectors. This oper-
ation preserves activation magnitudes and emphasizes consistently high-valued features across task
vectors, without trainable parameters, as follows:

Merge
(
{τj}nj=1

)
=

n∑
j=1

τj . (25)

Concat merging. Concat merging first concatenates the task vectors and then applies a learnable
linear projection to map the concatenated vector into the merged space:

Merge
(
{τj}nj=1

)
= concat(τ1, . . . , τn) . (26)
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In our setting, concatenation is equivalent to increasing the number of key–value vectors from k to
k × n. For example, suppose K(1),K(2) ∈ Rk×dmodel are the key memories from two tasks. Concat
merging produces:

Merge
(
K(1),K(2)

)
= concat

(
K(1),K(2)

)
∈ R2k×dmodel . (27)

TIES merging. TIES merging (Yadav et al., 2023) (Trim–Elect–Sign Merging) fuses task vectors
by retaining only the largest-magnitude and sign-consistent components across tasks. This approach
preserves salient and mutually aligned activations while suppressing contradictory or noisy features.
Given n task vectors, TIES merging proceeds in three stages:

1. Trim. Given a task vector τj , the trimming step applies magnitude-based pruning:

τ̂j = topk(τj), (28)

where topk retains the top k% of parameters by magnitude and sets the remaining entries to zero.
The trimmed vector is decomposed into its sign and magnitude components:

τ̂j = γ̂j ⊙ m̂j , (29)

where
γ̂j = sign(τ̂j), m̂j = |τ̂j |,

and ⊙ denotes element-wise multiplication.

2. Elect. The election step performs magnitude-weighted sign aggregation. The merged sign
vector is computed by selecting, for each coordinate, the sign with the largest summed magnitude
across all trimmed task vectors:

γm = sign

 n∑
j=1

τ̂j

 . (30)

3. Merge. Given the trimmed task vectors τ̂j , the merging step selectively aggregates only those
coordinates whose signs match the elected sign γm. Formally,

aj = I(γ̂j = γm) ,

τm =

 n∑
j=1

τ̂j ⊙ aj

⊘
 n∑
j=1

aj

 , (31)

where I(e) is the indicator function that returns 1 if the condition e is true and 0 otherwise, and ⊘
denotes element-wise division.

H CASE STUDY

We present a case study to illustrate the decomposition process. As shown in Table 16, the sub-
question generator iteratively breaks down the question into sub-questions. For each step in Table 16,
the upper part above the dashed line corresponds to the input template used by the sub-question
generator, while the lower part shows the retrieval and sub-answer generation process. Green text
denotes retrieved content, and red text indicates generated sub-answers. When the sub-question
generator produces no further sub-questions, the resulting chain C is passed into the merged-expert
LM model. The inference process is illustrated in Table 14, where blue text highlights the final
answer.

We further provide an error-case analysis, as shown in Table 17. This failure is triggered by an
incorrect retrieval result for one of the sub-questions, which leads to an erroneous sub-answer. The
mistake then propagates to subsequent steps, causing the next sub-question to deviate from the
original problem and ultimately resulting in a chain reaction of compounding errors. As indicated
by our ablation study on the number of retrieved documents (i.e., cases where |SP | > 1), increasing
retrieval depth helps stabilize sub-question answering accuracy and consequently improves overall
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performance. This reveals a key limitation of our method: incorrect sub-answers may induce a
ripple effect throughout the iterative decomposition process—a challenge shared by all multi-hop
decomposition-based approaches.

Initial prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?

Duel at Diablo: Duel at Diablo is a 1966 western film starring James Garner in his first Western
since leaving ”Maverick” and Sidney Poitier in his first Western.
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
2-step prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner

James Garner: He starred in several television series over more than five decades, including such
popular roles as Bret Maverick in the 1950s western comedy series M̈averickänd Jim Rockford
in T̈he Rockford Files,̈ and played leading roles in more than 50 theatrical films, including T̈he
Great Escape(̈1963) with Steve McQueen, Paddy Chayefsky’s T̈he Americanization of Emily(̈1964),
G̈rand Prix(̈1966), Blake Edwards’ V̈ictor/Victoria(̈1982), M̈urphy’s Romance(̈1985), for which he
received an Academy Award nomination, S̈pace Cowboys(̈2000) with Clint Eastwood, and T̈he
Notebook(̈2004).
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes
3-step prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes

James Garner: James Garner (born James Scott Bumgarner; April 7, 1928 – July 19, 2014) was an
American actor, producer, and voice artist.
Sub-question: What year was James Garner born?
sub-answer: 1928
4-step prompt:
Decompose the following question into sub-questions:
What year was the actor born that starred in both Duel at Diablo and Space Cowboys?
Sub-question: Who starred in Duel at Diablo?
Sub-answer: James Garner
Sub-question: Did James Garner also star in Space Cowboys?
Sub-answer: Yes
Sub-question: What year was James Garner born?
sub-answer: 1928

⟨EOS⟩

Table 16: Case example generated by the sub-question generator. At each step, the input appears
above the dotted line, while the black text below shows the output. Red text indicates the answer to
the generated sub-question.
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Initial prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?

Charlotte Riley: She is known for her roles as Sarah Hurst in ”Easy Virtue” and as Catherine Earn-
shaw in ITV’s adaptation of ”Wuthering Heights”.
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley
2-step prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley

Into the Dark (film): Into the Dark, also known as ”I Will Follow You into the Dark”, is a 2012
supernatural romance thriller written and directed by Mark Edwin Robinson.
Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?
Sub-answer: Into the Dark
3-step prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley
Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?
Sub-answer: Into the Dark

Into the Dark (film): Into the Dark, also known as ”I Will Follow You into the Dark”, is a 2012
supernatural romance thriller written and directed by Mark Edwin Robinson.
Sub-question: Who wrote the 2012 supernatural thriller film ’Into the Dark’?
sub-answer: Mark Edwin Robinson
4-step prompt:
Decompose the following question into sub-questions:
The actress that plays Sarah Hurst in Ëasy Virtues̈tars with Dervla Kirwan in a 2012 supernatural
thriller film written by who?
Sub-question: Who plays Sarah Hurst in the 2010 film ’Easy Virtue’?
Sub-answer: Charlotte Riley
Sub-question: Which 2012 supernatural thriller film stars Dervla Kirwan and Charlotte Riley?
Sub-answer: Into the Dark
Sub-question: Who wrote the 2012 supernatural thriller film ’Into the Dark’?
Sub-answer: Mark Edwin Robinson

⟨EOS⟩

Table 17: A failure case induced by sub-question retrieval. An incorrect retrieval result generated
from a sub-question triggers a chain reaction, ultimately resulting in an overall failure.
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